
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 2

Type system

Glossary
T Type (with unknown nullability)
T !! Non-nullable type
T? Nullable type
{T} Universe of all possible types
{T !!}

Universe of non-nullable types
{T?}

Universe of nullable types
Well-formed type

A properly constructed type w.r.t. Kotlin type system
Γ Type context
A <: B

A is a subtype of B
A���<: > B

A and B are not related w.r.t. subtyping
Type constructor

An abstract type with one or more type parameters, which must be
instantiated before use

Parameterized type
A concrete type, which is the result of type constructor instantiation

Type parameter
Formal type parameter of a type constructor

Type argument
Actual type argument in a parameterized type

T [A1, . . . , An]
The result of type constructor T instantiation with type arguments Ai

T [σ] The result of type constructor T (F1, . . . , Fn) instantiation with the assumed

1

2 CHAPTER 2. TYPE SYSTEM

substitution σ : F1 = A1, . . . , Fn = An

σT The result of type substitution in type T w.r.t. substitution σ
KT (F, A)

Captured type from the type capturing of type parameter F and type
argument A in parameterized type T

T ⟨K1, . . . , Kn⟩
The result of type capturing for parameterized type T with captured types
Ki

T ⟨τ⟩
The result of type capturing for parameterized type T (F1, . . . , Fn) with
captured substitution τ : F1 = K1, . . . , Fn = Kn

A & B
Intersection type of A and B

A | B
Union type of A and B

GLB
Greatest lower bound

LUB
Least upper bound

Introduction
Similarly to most other programming languages, Kotlin operates on data in
the form of values or objects, which have types — descriptions of what is the
expected behaviour and possible values for their datum. An empty value is
represented by a special null object; most operations with it result in runtime
errors or exceptions.

Kotlin has a type system with the following main properties.

• Hybrid static, gradual and flow type checking;
• Null safety;
• No unsafe implicit conversions;
• Unified top and bottom types;
• Nominal subtyping with bounded parametric polymorphism and mixed-site

variance.

Type safety (consistency between compile and runtime types) is verified stat-
ically, at compile time, for the majority of Kotlin types. However, for better
interoperability with platform-dependent code Kotlin also support a variant of
gradual types in the form of flexible types. Even more so, in some cases the
compile-time type of a value may change depending on the control- and data-flow
of the program; a feature usually known as flow typing, represented in Kotlin as
smart casts.

Null safety is enforced by having two type universes: nullable (with nullable types
T ?) and non-nullable (with non-nullable types T !!). A value of any non-nullable

2.1. TYPE KINDS 3

type cannot contain null, meaning all operations within the non-nullable type
universe are safe w.r.t. empty values, i.e., should never result in a runtime error
caused by null.

Implicit conversions between types in Kotlin are limited to safe upcasts w.r.t.
subtyping, meaning all other (unsafe) conversions must be explicit, done via
either a conversion function or an explicit cast. However, Kotlin also supports
smart casts — a special kind of implicit conversions which are safe w.r.t. program
control- and data-flow, which are covered in more detail here.

The unified supertype type for all types in Kotlin is kotlin.Any?, a nullable
version of kotlin.Any. The unified subtype type for all types in Kotlin is
kotlin.Nothing.

Kotlin uses nominal subtyping, meaning subtyping relation is defined when
a type is declared, with bounded parametric polymorphism, implemented as
generics via parameterized types. Subtyping between these parameterized types
is defined through mixed-site variance.

2.1 Type kinds
For the purposes of this section, we establish the following type kinds — different
flavours of types which exist in the Kotlin type system.

• Built-in types
• Classifier types
• Type parameters
• Function types
• Array types
• Flexible types
• Nullable types
• Intersection types
• Union types

We distinguish between concrete and abstract types. Concrete types are types
which are assignable to values. Abstract types need to be instantiated as concrete
types before they can be used as types for values.

Note: for brevity, we omit specifying that a type is concrete. All
types not described as abstract are implicitly concrete.

We further distinguish concrete types between class and interface types; as Kotlin
is a language with single inheritance, sometimes it is important to discriminate
between these kinds of types. Any given concrete type may be either a class or
an interface type, but never both.

We also distinguish between denotable and non-denotable types. The former are
types which are expressible in Kotlin and can be written by the end-user. The

4 CHAPTER 2. TYPE SYSTEM

latter are special types which are not expressible in Kotlin and are used by the
compiler in type inference, smart casts, etc.

2.1.1 Built-in types
Kotlin type system uses the following built-in types, which have special semantics
and representation (or lack thereof).

kotlin.Any

kotlin.Any is the unified supertype (⊤) for {T !!}, i.e., all non-nullable types are
subtypes of kotlin.Any, either explicitly, implicitly, or by subtyping relation.

Note: additional details about kotlin.Any are available here.

kotlin.Nothing

kotlin.Nothing is the unified subtype (⊥) for {T}, i.e., kotlin.Nothing is a
subtype of all well-formed Kotlin types, including user-defined ones. This makes
it an uninhabited type (as it is impossible for anything to be, for example, a
function and an integer at the same time), meaning instances of this type can
never exist at runtime; subsequently, there is no way to create an instance of
kotlin.Nothing in Kotlin.

Note: additional details about kotlin.Nothing are available here.

kotlin.Function

kotlin.Function(R) is the unified supertype of all function types. It is param-
eterized over function return type R.

Built-in integer types

Kotlin supports the following signed integer types.

• kotlin.Int
• kotlin.Short
• kotlin.Byte
• kotlin.Long

Besides their use as types, integer types are important w.r.t. integer literal types.

Note: additional details about built-in integer types are available
here.

Array types

Kotlin arrays are represented as a parameterized type kotlin.Array(T), where
T is the type of the stored elements, which supports get/set operations. The

2.1. TYPE KINDS 5

kotlin.Array(T) type follows the rules of regular type constructors and param-
eterized types w.r.t. subtyping.

Note: unlike Java, arrays in Kotlin are declared as invariant. To use
them in a co- or contravariant way, one should use use-site variance.

In addition to the general kotlin.Array(T) type, Kotlin also has the following
specialized array types:

• DoubleArray (for kotlin.Array(kotlin.Double))
• FloatArray (for kotlin.Array(kotlin.Float))
• LongArray (for kotlin.Array(kotlin.Long))
• IntArray (for kotlin.Array(kotlin.Int))
• ShortArray (for kotlin.Array(kotlin.Short))
• ByteArray (for kotlin.Array(kotlin.Byte))
• CharArray (for kotlin.Array(kotlin.Char))
• BooleanArray (for kotlin.Array(kotlin.Boolean))

These array types structurally match the corresponding kotlin.Array(T) type;
i.e., IntArray has the same methods and properties as kotlin.Array(kotlin.Int).
However, they are not related by subtyping; meaning one cannot pass a
BooleanArray argument to a function expecting an kotlin.Array(kotlin.Boolean).

Note: the presence of such specialized types allows the compiler to
perform additional array-related optimizations.

Note: specialized and non-specialized array types match modulo
their iterator types, which are also specialized; Iterator<Int> is
specialized to IntIterator.

Array type specialization ATS(A) is a transformation of a generic
kotlin.Array(T) type to a corresponding specialized version, which
works as follows.

• if kotlin.Array(T) has a specialized version TArray, ATS(kotlin.Array(T)) =
TArray

• if kotlin.Array(T) does not have a specialized version, ATS(kotlin.Array(T)) =
kotlin.Array(T)

ATS takes an important part in how variable length parameters are handled.

Note: additional details about built-in array types are available here.

2.1.2 Classifier types
Classifier types represent regular types which are declared as classes, interfaces
or objects. As Kotlin supports parametric polymorphism, there are two variants
of classifier types: simple and parameterized.

6 CHAPTER 2. TYPE SYSTEM

Simple classifier types

A simple classifier type

T : S1, . . . , Sm

consists of

• type name T
• (optional) list of supertypes S1, . . . , Sm

To represent a well-formed simple classifier type, T : S1, . . . , Sm should satisfy
the following conditions.

• T is a valid type name
• ∀i ∈ [1, m] : Si must be concrete, non-nullable, well-formed type
• the transitive closure S∗(T) of the set of type supertypes S(T :

S1, . . . , Sm) = {S1, . . . , Sm} ∪ S(S1) ∪ . . . ∪ S(Sm) is consistent, i.e., does
not contain two parameterized types with different type arguments.

Example:

// A well-formed type with no supertypes
interface Base

// A well-formed type with a single supertype Base
interface Derived : Base

// An ill-formed type,
// as nullable type cannot be a supertype
interface Invalid : Base?

Note: for the purpose of different type system examples, we assume
the presence of the following well-formed concrete types:

• class String
• interface Number
• class Int <: Number
• class Double <: Number

Note: Number is actually a built-in abstract class; we use it as an
interface for illustrative purposes.

Parameterized classifier types

A classifier type constructor

T (F1, . . . , Fn) : S1, . . . , Sm

describes an abstract type and consists of

2.1. TYPE KINDS 7

• type name T
• type parameters F1, . . . , Fn

• (optional) list of supertypes S1, . . . , Sm

To represent a well-formed type constructor, T (F1, . . . , Fn) : S1, . . . , Sm should
satisfy the following conditions.

• T is a valid type name
• ∀i ∈ [1, n] : Fi must be well-formed type parameter
• ∀j ∈ [1, m] : Sj must be concrete, non-nullable, well-formed type

To instantiate a type constructor, one provides it with type arguments, creating
a concrete parameterized classifier type

T [A1, . . . , An]

which consists of

• type constructor T
• type arguments A1, . . . , An

To represent a well-formed parameterized type, T [A1, . . . , An] should satisfy the
following conditions.

• T is a well-formed type constructor with n type parameters
• ∀i ∈ [1, n] : Ai must be well-formed concrete type
• ∀i ∈ [1, n] : variance of Ai does not contradict variance of Fi

• ∀i ∈ [1, n] : Ai <: τUi, where Ui is the upper bound for Fi and captured
substitution τ : F1 = K1, . . . , Fn = Kn manipulates captured types.

• the transitive closure S∗(T) of the set of type supertypes S(T ⟨τ⟩ :
τS1, . . . , τSm) = {τS1, . . . , τSm} ∪ S(τS1) ∪ . . . ∪ S(τSm) is consistent, i.e.,
does not contain two parameterized types with different type arguments.

Example:

// A well-formed type constructor with no supertypes
// A and B are unbounded type parameters
interface Generic<A, B>

// A well-formed type constructor
// with a single parameterized supertype
// Int and String are well-formed concrete types
interface ConcreteDerived<P, Q> : Generic<Int, String>

// A well-formed type constructor
// with a single parameterized supertype
// P and Q are type parameters of GenericDerived,
// used as type arguments of Generic
interface GenericDerived<P, Q> : Generic<P, Q>

8 CHAPTER 2. TYPE SYSTEM

// An ill-formed type constructor,
// as abstract type Generic
// cannot be used as a supertype
interface Invalid<P> : Generic

// A well-formed type constructor with no supertypes
// out A is a projected type parameter
interface Out<out A>

// A well-formed type constructor with no supertypes
// S : Number is a bounded type parameter
// (S <: Number)
interface NumberWrapper<S : Number>

// A well-formed type constructor
// with a single parameterized supertype
// NumberWrapper<Int> is well-formed,
// as Int <: Number
interface IntWrapper : NumberWrapper<Int>

// An ill-formed type constructor,
// as NumberWrapper<String> is an ill-formed parameterized type
// (String not(<:>) Number)
interface InvalidWrapper : NumberWrapper<String>

2.1.3 Type parameters
Type parameters are a special kind of types, which are introduced by type
constructors. They are considered well-formed concrete types only in the type
context of their declaring type constructor.

When creating a parameterized type from a type constructor, its type parameters
with their respective type arguments go through capturing and create captured
types, which follow special rules described in more detail below.

Type parameters may be either unbounded or bounded. By default, a type
parameter F is unbounded, which is the same as saying it is a bounded type
parameter of the form F <: kotlin.Any?.

A bounded type parameter additionally specifies upper type bounds for the type
parameter and is defined as F <: B1, . . . , Bn, where Bi is an i-th upper bound
on type parameter F .

To represent a well-formed bounded type parameter of type constructor T ,
F <: B1, . . . , Bn should satisfy either of the following sets of conditions.

2.1. TYPE KINDS 9

• Bounded type parameter with regular bounds:
– F is a type parameter of type constructor T
– ∀i ∈ [1, n] : Bi must be concrete, non-type-parameter, well-formed

type
– No more than one of Bi may be a class type

Note: the last condition is a nod to the single inheritance nature of
Kotlin: any type may be a subtype of no more than one class type.
For any two class types, either these types are in a subtyping relation
(and you should use the more specific type in the bounded type
parameter), or they are unrelated (and the bounded type parameter
is empty).

Actual support for multiple class type bounds would be needed only
in very rare cases, such as the following example.

interface Foo
interface Bar

open class A<T>
class B<T> : A<T>

class C<T> where T : A<out Foo>, T : B<out Bar>
// A convoluted way of saying T <: B<out Foo & Bar>,
// which contains a non-denotable intersection type

• Bounded type parameter with type parameter bound:
– F is a type parameter of type constructor T
– i = 1 (i.e., there is a single upper bound)
– B1 must be well-formed type parameter

From the definition, it follows F <: B1, . . . , Bn can be represented as F <: U
where U = B1 & . . . & Bn (aka intersection type).

Function type parameters

Function type parameters are a flavor of type parameters, which are used in
function declarations to create parameterized functions. They are considered
well-formed concrete types only in the type context of their declaring function.

Note: one may view such parameterized functions as a kind of
function type constructors.

Function type parameters work similarly to regular type parameters, however,
they do not support specifying mixed-site variance.

Mixed-site variance

To implement subtyping between parameterized types, Kotlin uses mixed-site
variance — a combination of declaration- and use-site variance, which is easier

10 CHAPTER 2. TYPE SYSTEM

to understand and reason about, compared to wildcards from Java. Mixed-site
variance means you can specify, whether you want your parameterized type to
be co-, contra- or invariant on some type parameter, both in type parameter
(declaration-site) and type argument (use-site).

Info: variance is a way of describing how subtyping works for variant
parameterized types. With declaration-site variance, for two non-
equivalent types A <: B, subtyping between T<A> and T depends
on the variance of type parameter F for some type constructor T .

• if F is covariant (out F), T<A> <: T
• if F is contravariant(in F), T<A> :> T
• if F is invariant (default), T<A> ���<: > T

Use-site variance allows the user to change the type variance of
an invariant type parameter by specifying it on the corresponding
type argument. out A means covariant type argument, in A means
contravariant type argument; for two non-equivalent types A <: B
and an invariant type parameter F of some type constructor T ,
subtyping for use-site variance has the following rules.

• T<out A> <: T<out B>
• T<in A> :> T<in B>
• T<A> <: T<out A>
• T<A> <: T<in A>

Important: by the transitivity of the subtyping operator these rules
imply that the following also holds:

• T<A> <: T<out B>
• T<in A> :> T

Note: Kotlin does not support specifying both co- and contravariance
at the same time, i.e., it is impossible to have T<out A in B> neither
on declaration- nor on use-site.

Note: informally, covariant type parameter out A of type constructor
T means “T is a producer of As and gets them out”; contravariant
type parameter in A of type constructor T means “T is a consumer
of As and takes them in”.

For further discussion about mixed-site variance and its practical applications,
we readdress you to subtyping.

Declaration-site variance

A type parameter F may be invariant, covariant or contravariant.

By default, all type parameters are invariant.

2.1. TYPE KINDS 11

To specify a covariant type parameter, it is marked as out F . To specify a
contravariant type parameter, it is marked as in F .

The variance information is used by subtyping and for checking allowed operations
on values of co- and contravariant type parameters.

Important: declaration-site variance can be used only when declaring
types, e.g., function type parameters cannot be variant.

Example:

// A type constructor with an invariant type parameter
interface Invariant<A>
// A type constructor with a covariant type parameter
interface Out<out A>
// A type constructor with a contravariant type parameter
interface In<in A>

fun testInvariant() {
var invInt: Invariant<Int> = ...
var invNumber: Invariant<Number> = ...

if (random) invInt = invNumber // ERROR
else invNumber = invInt // ERROR

// Invariant type parameters do not create subtyping
}

fun testOut() {
var outInt: Out<Int> = ...
var outNumber: Out<Number> = ...

if (random) outInt = outNumber // ERROR
else outNumber = outInt // OK

// Covariant type parameters create "same-way" subtyping
// Int <: Number => Out<Int> <: Out<Number>
// (more specific type Out<Int> can be assigned
// to a less specific type Out<Number>)

}

fun testIn() {
var inInt: In<Int> = ...
var inNumber: In<Number> = ...

if (random) inInt = inNumber // OK
else inNumber = inInt // ERROR

12 CHAPTER 2. TYPE SYSTEM

// Contravariant type parameters create "opposite-way" subtyping
// Int <: Number => In<Int> :> In<Number>
// (more specific type In<Number> can be assigned
// to a less specific type In<Int>)

}

Use-site variance

Kotlin also supports use-site variance, by specifying the variance for type argu-
ments. Similarly to type parameters, one can have type arguments being co-,
contra- or invariant.

Important: use-site variance cannot be used when declaring a super-
type top-level type argument.

By default, all type arguments are invariant.

To specify a covariant type argument, it is marked as out A. To specify a
contravariant type argument, it is marked as in A.

Kotlin prohibits contradictory combinations of declaration- and use-site variance
as follows.

• It is a compile-time error to use a covariant type argument in a contravariant
type parameter

• It is a compile-time error to use a contravariant type argument in a covariant
type parameter

In case one cannot specify any well-formed type argument, but still needs
to use a parameterized type in a type-safe way, they may use bivariant type
argument ⋆, which is roughly equivalent to a combination of out kotlin.Any?
and in kotlin.Nothing (for further details, see subtyping).

Note: informally, T [⋆] means “I can give out something very generic
(kotlin.Any?) and cannot take in anything”.

Example:

// A type constructor with an invariant type parameter
interface Inv<A>

fun test() {
var invInt: Inv<Int> = ...
var invNumber: Inv<Number> = ...
var outInt: Inv<out Int> = ...
var outNumber: Inv<out Number> = ...
var inInt: Inv<in Int> = ...
var inNumber: Inv<in Number> = ...

when (random) {

2.1. TYPE KINDS 13

1 -> {
inInt = invInt // OK
// T<in Int> :> T<Int>

inInt = invNumber // OK
// T<in Int> :> T<in Number> :> T<Number>

}
2 -> {

outNumber = invInt // OK
// T<out Number> :> T<out Int> :> T<Int>

outNumber = invNumber // OK
// T<out Number> :> T<Number>

}
3 -> {

invInt = inInt // ERROR
invInt = outInt // ERROR
// It is invalid to assign less specific type
// to a more specific one
// T<Int> <: T<in Int>
// T<Int> <: T<out Int>

}
4 -> {

inInt = outInt // ERROR
inInt = outNumber // ERROR
// types with co- and contravariant type parameters
// are not connected by subtyping
// T<in Int> not(<:>) T<out Int>

}
}

}

2.1.4 Type capturing
Type capturing (similarly to Java capture conversion) is used when instantiating
type constructors; it creates abstract captured types based on the type information
of both type parameters and arguments, which present a unified view on the
resulting types and simplifies further reasoning.

The reasoning behind type capturing is closely related to variant parameterized
types being a form of bounded existential types; e.g., A<out T> may be loosely
considered as the following existential type: ∃X : X <: T.A⟨X⟩. Informally,
a bounded existential type describes a set of possible types, which satisfy its
bound constraints. Before such a type can be used, it needs to be opened (or
unpacked): existentially quantified type variables are lifted to fresh type variables
with corresponding bounds. We call these type variables captured types.

14 CHAPTER 2. TYPE SYSTEM

For a given type constructor T (F1, . . . , Fn) : S1, . . . , Sm, its instance T [σ] = T ⟨τ⟩
uses the following rules to create captured type Ki from the type parameter Fi

and type argument Ai, at least one of which should have specified variance to
create a captured type. In case both type parameter and type argument are
invariant, their captured type is equivalent to Ai.

Important: type capturing is not recursive.

Note: All applicable rules are used to create the resulting constraint
set.

• For a covariant type parameter out Fi, if Ai is an ill-formed type or a
contravariant type argument, Ki is an ill-formed type. Otherwise, Ki <: Ai.

• For a contravariant type parameter in Fi, if Ai is an ill-formed type or a
covariant type argument, Ki is an ill-formed type. Otherwise, Ki :> Ai.

• For a bounded type parameter Fi <: Ui ≡ B1 & . . . & Bm, if ¬(Ai <: τUi),
Ki is an ill-formed type. Otherwise, Ki <: τUi.

Note: captured substitution τ : F1 = K1, . . . , Fn = Kn manipu-
lates captured types.

• For a covariant type argument out Ai, if Fi is a contravariant type param-
eter, Ki is an ill-formed type. Otherwise, Ki <: Ai.

• For a contravariant type argument in Ai, if Fi is a covariant type parameter,
Ki is an ill-formed type. Otherwise, Ki :> Ai.

• For a bivariant type argument ⋆, kotlin.Nothing <: Ki <: kotlin.Any?.

• Otherwise, Ki ≡ Ai.

By construction, every captured type K has the following form:

{L1 <: K, . . . , Lp <: K, K <: U1, . . . , K <: Uq}

which can be represented as

L <: K <: U

where L = L1 | . . . | Lp and U = U1 & . . . & Uq.

Note: for implementation reasons the compiler may approximate L
and/or U ; for example, in the current implementation L is always
approximated to be a single type.

Note: as every captured type corresponds to a fresh type variable, two
different captured types Ki and Kj which describe the same set of
possible types (i.e., their constraint sets are equal) are not considered
equal. However, in some cases type inference may approximate a

2.1. TYPE KINDS 15

captured type K to a concrete type K≈; in our case, it would be
that K≈

i ≡ K≈
j .

Examples: also show the use of type containment to establish sub-
typing.

interface Inv<T>
interface Out<out T>
interface In<in T>

interface Root<T>

interface A
interface B : A
interface C : B

fun <T> mk(): T = TODO()

interface Bounded<T : A> : Root<T>

fun test01() {

val bounded: Bounded<in B> = mk()

// Bounded<in B> <: Bounded<KB> where B <: KB <: A
// (from type capturing)
// Bounded<KB> <: Root<KB>
// (from supertype relation)

val test: Root<in C> = bounded

// ?- Bounded<in B> <: Root<in C>
//
// Root<KB> <: Root<in C> where B <: KB <: A
// (from above facts)
// KB ⪯ in C
// (from subtyping for parameterized types)
// KB ⪯ in KC where C <: KC <: C
// (from type containment rules)
// KB :> KC
// (from type containment rules)
// (A :> KB :> B) :> (C :> KC :> C)
// (from subtyping for captured types)
// B :> C
// (from supertype relation)
// True

16 CHAPTER 2. TYPE SYSTEM

}

interface Foo<T> : Root<Out<T>>

fun test02() {

val foo: Foo<out B> = mk()

// Foo<out B> <: Foo<KB> where KB <: B
// (from type capturing)
// Foo<KB> <: Root<Out<KB>>
// (from supertype relation)

val test: Root<out Out> = foo

// ?- Foo<out B> <: Root<out Out>
//
// Root<Out<KB>> <: Root<out Out> where KB <: B
// (from above facts)
// Out<KB> ⪯ out Out
// (from subtyping for parameterized types)
// Out<KB> <: Out
// (from type containment rules)
// Out<out KB> <: Out<out B>
// (from declaration-site variance)
// out KB ⪯ out B
// (from subtyping for parameterized types)
// out KB ⪯ out KB' where B <: KB' <: B
// (from type containment rules)
// KB <: KB'
// (from type containment rules)
// (KB :< B) <: (B <: KB' <: B)
// (from subtyping for captured types)
// B <: B
// (from subtyping definition)
// True

}

interface Bar<T> : Root<Inv<T>>

fun test03() {

val bar: Bar<out B> = mk()

// Bar<out B> <: Bar<KB> where KB <: B

2.1. TYPE KINDS 17

// (from type capturing)
// Bar<KB> <: Root<Inv<KB>>
// (from supertype relation)

val test: Root<out Inv> = bar

// ?- Bar<out B> <: Root<out Inv>
//
// Root<Inv<KB>> <: Root<out Inv> where KB <: B
// (from above facts)
// Inv<KB> ⪯ out Inv
// (from subtyping for parameterized types)
// Inv<KB> <: Inv
// (from type containment rules)
// KB ⪯ B
// (from subtyping for parameterized types)
// KB ⪯ KB' where B <: KB' <: B
// (from type containment rules)
// KB ⊆ KB'
// (from type containment rules)
// (Nothing <: KB :< B) ⊆ (B <: KB' <: B)
//
// False

}

interface Recursive<T : Recursive<T>>

fun <T : Recursive<T>> probe(e: Recursive<T>): T = mk()

fun test04() {
val rec: Recursive<*> = mk()

// Recursive<*> <: Recursive<KS> where KS <: Recursive<KS>
// (from type capturing)
// Recursive<KS> <: Root<KS>
// (from supertype relation)

val root: Root<*> = rec

// ?- Recursive<*> <: Root<*>
//
// Root<KS> <: Root<KT>
// where Nothing <: KS <: Recursive<KS>
// Nothing <: KT <: Any?
// (from above facts and type capturing)

18 CHAPTER 2. TYPE SYSTEM

// KS ⪯ KT
// (from subtyping for parameterized types)
// KS ⊆ KT
// (from type containment rules)
// (Nothing <: KS <: Recursive<KS>) ⊆ (Nothing <: KT <: Any?)
//
// True

val rootRec: Root<Recursive<*>> = rec

// ?- Recursive<*> <: Root<Recursive<*>>
//
// Root<KS> <: Root<Recursive<*>>
// where Nothing <: KS <: Recursive<KS>
// (from above facts)
// KS ⪯ Recursive<*>
// (from subtyping for parameterized types)
// KS ⪯ KT where Recursive<*> <: KT <: Recursive<*>
// (from type containment rules)
// KS ⊆ KT
// (from type containment rules)
// (Nothing <: KS <: Recursive<KS) ⊆ (Recursive<*> <: KT <: Recursive<*>)
//
// False

}

2.1.5 Type containment
Type containment operator ⪯ is used to decide, whether a type A is contained in
another type B denoted A ⪯ B, for the purposes of establishing type argument
subtyping.

Let A, B be concrete, well-defined non-type-parameter types, KA, KB be cap-
tured types.

Important: type parameters Fi <: Ui are handled as if they have been
converted to well-formed captured types Ki : kotlin.Nothing <:
Ki <: Ui.

⪯ is defined as follows.

• A ⪯ B if A ≡ B

• A ⪯ out B if A <: B

• A ⪯ in B if A :> B

• out A ⪯ out B if A <: B

2.1. TYPE KINDS 19

• in A ⪯ in B if A :> B

Rules for captured types follow the same structure.

• KA ⪯ KB if KA ⊆ KB

• KA ⪯ out KB if KA <: KB

• KA ⪯ in KB if KA :> KB

• out KA ⪯ out KB if KA <: KB

• in KA ⪯ in KB if KA :> KB

In case we need to establish type containment between regular type A and
captured type KB , A is considered as if it is a captured type KA : A <: KA <: A.

2.1.6 Function types
Kotlin has first-order functions; e.g., it supports function types, which describe
the argument and return types of its corresponding function.

A function type FT

FT(A1, . . . , An) → R

consists of

• argument types Ai

• return type R

and may be considered the following instantiation of a special type constructor
FunctionN(in P1, . . . , in Pn, out R) (please note the variance of type parame-
ters)

FT(A1, . . . , An) → R ≡ FunctionN[A1, . . . , An, R]

These FunctionN types follow the rules of regular type constructors and parame-
terized types w.r.t. subtyping.

A function type with receiver FTR

FTR(RT, A1, . . . , An) → R

consists of

• receiver type RT
• argument types Ai

• return type R

20 CHAPTER 2. TYPE SYSTEM

From the type system’s point of view, it is equivalent to the following function
type

FTR(RT, A1, . . . , An) → R ≡ FT(RT, A1, . . . , An) → R

i.e., receiver is considered as yet another argument of its function type.

Note: this means that, for example, these two types are equivalent
w.r.t. type system

• Int.(Int) -> String
• (Int, Int) -> String

However, these two types are not equivalent w.r.t. overload resolu-
tion, as it distinguishes between functions with and without receiver.

Furthermore, all function types FunctionN are subtypes of a general argument-
agnostic type kotlin.Function for the purpose of unification; this subtyping
relation is also used in overload resolution.

Note: a compiler implementation may consider a function type
FunctionN to have additional supertypes, if it is necessary.

Example:

// A function of type Function1<Number, Number>
// or (Number) -> Number
fun foo(i: Number): Number = ...

// A valid assignment w.r.t. function type variance
// Function1<in Int, out Any> :> Function1<in Number, out Number>
val fooRef: (Int) -> Any = ::foo

// A function with receiver of type Function1<Number, Number>
// or Number.() -> Number
fun Number.bar(): Number = ...

// A valid assignment w.r.t. function type variance
// Receiver is just yet another function argument
// Function1<in Int, out Any> :> Function1<in Number, out Number>
val barRef: (Int) -> Any = Number::bar

Suspending function types

Kotlin supports structured concurrency in the form of coroutines via suspending
functions.

For the purposes of type system, a suspending function has a suspending function
type suspend FT(A1, . . . , An) → R, which is unrelated by subtyping to any

2.1. TYPE KINDS 21

non-suspending function type. This is important for overload resolution and
type inference, as it directly influences the types of function values and the
applicability of different functions w.r.t. overloading.

Most function values have either non-suspending or suspending function type
based on their declarations. However, as lambda literals do not have any
explicitly declared function type, they are considered as possibly being both
non-suspending and suspending function type, with the final selection done
during type inference.

Example:

fun foo(i: Int): String = TODO()

fun bar() {
val fooRef: (Int) -> String = ::foo
val fooLambda: (Int) -> String = { it.toString() }
val suspendFooLambda: suspend (Int) -> String = { it.toString() }

// Error: as suspending and non-suspending
// function types are unrelated
// val error: suspend (Int) -> String = ::foo
// val error: suspend (Int) -> String = fooLambda
// val error: (Int) -> String = suspendFooLambda

}

2.1.7 Flexible types
Kotlin, being a multi-platform language, needs to support transparent interoper-
ability with platform-dependent code. However, this presents a problem in that
some platforms may not support null safety the way Kotlin does. To deal with
this, Kotlin supports gradual typing in the form of flexible types.

A flexible type represents a range of possible types between type L (lower bound)
and type U (upper bound), written as (L..U). One should note flexible types
are non-denotable, i.e., one cannot explicitly declare a variable with flexible type,
these types are created by the type system when needed.

To represent a well-formed flexible type, (L..U) should satisfy the following
conditions.

• L and U are well-formed concrete types
• L <: U
• L and U are not flexible types (but may contain other flexible types as

some of their type arguments)

As the name suggests, flexible types are flexible — a value of type (L..U) can be
used in any context, where one of the possible types between L and U is needed
(for more details, see subtyping rules for flexible types). However, the actual

22 CHAPTER 2. TYPE SYSTEM

runtime type T will be a specific type satisfying ∃S : T <: S ∧ L <: S <: U , thus
making the substitution possibly unsafe, which is why Kotlin generates dynamic
assertions, when it is impossible to prove statically the safety of flexible type
use.

Dynamic type

Kotlin includes a special dynamic type, which in many contexts can be viewed
as a flexible type (kotlin.Nothing .. kotlin.Any?). By definition, this type
represents any possible Kotlin type, and may be used to support interoperability
with dynamically typed libraries, platforms or languages.

However, as a platform may assign special meaning to the values of dynamic type,
it may be handled differently from the regular flexible type. These differences
are to be explained in the corresponding platform-dependent sections of this
specification.

Platform types

The main use cases for flexible types are platform types — types which the Kotlin
compiler uses, when interoperating with code written for another platform (e.g.,
Java). In this case all types on the interoperability boundary are subject to
flexibilization — the process of converting a platform-specific type to a Kotlin-
compatible flexible type.

For further details on how flexibilization is done, see the corresponding JVM
section.

Important: platform types should not be confused with multi-platform
projects — another Kotlin feature targeted at supporting platform
interop.

2.1.8 Nullable types
Kotlin supports null safety by having two type universes — nullable and non-
nullable. All classifier type declarations, built-in or user-defined, create non-
nullable types, i.e., types which cannot hold null value at runtime.

To specify a nullable version of type T , one needs to use T ? as a type. Redundant
nullability specifiers are ignored: T?? ≡ T?.

Note: informally, question mark means “T? may hold values of type
T or value null”

To represent a well-formed nullable type, T? should satisfy the following condi-
tions.

• T is a well-formed concrete type

2.1. TYPE KINDS 23

Note: if an operation is safe regardless of absence or presence of
null, e.g., assignment of one nullable value to another, it can be
used as-is for nullable types. For operations on T ? which may violate
null safety, e.g., access to a property, one has the following null-safe
options:

1. Use safe operations
• safe call

2. Downcast from T? to T !!
• unsafe cast
• type check combined with smart casts
• null check combined with smart casts
• not-null assertion operator

3. Supply a default value to use if null is present
• elvis operator

Nullability lozenge

A? B?

A!! B!!

Nullability lozenge represents valid possible subtyping relations between two
nullable or non-nullable types in different combinations of their versions. For
type T , we call T !! its non-nullable version, T? its nullable version.

Note: trivial subtyping relation A!! <: A? is not represented in the
nullability lozenge.

Nullability lozenge may also help in establishing subtyping between two types
by following its structure.

Regular (non-type-variable) types are mapped to nullability lozenge vertices, as
for them A corresponds to A!!, and A? corresponds to A?. Following the lozenge
structure, for regular types A and B, as soon as we have established any valid
subtyping between two versions of A and B, it implies subtyping between all
other valid w.r.t. nullability lozenge combinations of versions of types A and B.

Type variable types (e.g., captured types or type parameters) are mapped to
either nullability lozenge edges or vertices, as for them T corresponds to either
T !! or T?, and T? corresponds to T?. Following the lozenge structure, for type
variable type T (i.e., either non-nullable or nullable version) we need to consider
valid subtyping for both versions T !! and T? w.r.t. nullability lozenge.

24 CHAPTER 2. TYPE SYSTEM

Example: if we have kotlin.Int? <: T?, we also have
kotlin.Int!! <: T? and kotlin.Int!! <: T !!, meaning we
can establish kotlin.Int!! <: T ≡ kotlin.Int <: T .

Example: if we have T? <: kotlin.Int?, we also have T !! <:
kotlin.Int? and T !! <: kotlin.Int!!, however, we can estab-
lish only T <: kotlin.Int?, as T <: kotlin.Int would need
T? <: kotlin.Int!! which is forbidden by the nullability lozenge.

Definitely non-nullable types

As discussed here, type variable types have unknown nullability, e.g., a type
parameter T may correspond to either nullable version T ?, or non-nullable version
T !!. In some cases, one might need to specifically denote a nullable/non-nullable
version of T .

Note: for example, it is needed when overriding a Java method with
a @NotNull annotated generic parameter.

Example:

public interface JBox {
<T> void put(@NotNull T t);

}

class KBox : JBox {
override fun <T> put(t: T/* !! */) = TODO()

}

To denote a nullable version of T , one can use the nullable type syntax T?.

To denote a non-nullable version of T , one can use the definitely non-nullable
type syntax T & Any.

To represent a well-formed definitely non-nullable type, T & Any should satisfy
the following conditions.

• T is a well-formed type parameter with a nullable upper bound
• Any is resolved to kotlin.Any

Example:

typealias MyAny = kotlin.Any

fun <T /* : Any? */ , Q : Any> bar(t: T?, q: Q?, i: Int?) {
// OK
val a: T & Any = t!!
// OK: MyAny is resolved to kotlin.Any
val b: T & MyAny = t!!
// ERROR: Int is not kotlin.Any
val c: T & Int = t!!

2.1. TYPE KINDS 25

// ERROR: Q does not have a nullable upper bound
val d: Q & Any = q!!

// ERROR: Int? is not a type parameter
val e: Int? & Any = i!!

}

One may notice the syntax looks like an intersection type T & Any, and that
is not a coincidence, as an intersection type with Any describes exactly a type
which cannot hold null values. For the purposes of the type system, a definitely
non-nullable type T & Any is consider to be the same as an intersection type
T & Any.

2.1.9 Intersection types
Intersection types are special non-denotable types used to express the fact that
a value belongs to all of several types at the same time.

Intersection type of two types A and B is denoted A & B and is equivalent to the
greatest lower bound of its components GLB(A, B). Thus, the normalization
procedure for GLB may be used to normalize an intersection type.

Note: this means intersection types are commutative and associative
(following the GLB properties); e.g., A&B is the same type as B &A,
and A & (B & C) is the same type as A & B & C.

Note: for presentation purposes, we will henceforth order intersection
type operands lexicographically based on their notation.

When needed, the compiler may approximate an intersection type to a denotable
concrete type using type approximation.

One of the main uses of intersection types are smart casts. Another restricted
version of intersection types are definitely non-nullable types.

2.1.10 Integer literal types
An integer literal type containing types T1, . . . , TN , denoted ILT(T1, . . . , TN) is
a special non-denotable type designed for integer literals. Each type T1, . . . , TN

must be one of the built-in integer types.

Integer literal types are the types of integer literals and have special handling
w.r.t. subtyping.

2.1.11 Union types
Important: Kotlin does not have union types in its type system.
However, they make reasoning about several type system features

26 CHAPTER 2. TYPE SYSTEM

easier. Therefore, we decided to include a brief intro to the union
types here.

Union types are special non-denotable types used to express the fact that a value
belongs to one of several possible types.

Union type of two types A and B is denoted A | B and is equivalent to the least
upper bound of its components LUB(A, B). Thus, the normalization procedure
for LUB may be used to normalize a union type.

Moreover, as union types are not used in Kotlin, the compiler always decays a
union type to a non-union type using type decaying.

2.2 Type contexts and scopes
The way types and scopes interoperate is very similar to how values and scopes
work; this includes visibility, accessing types via qualified names or imports.
This means, in many cases, type contexts are equivalent to the corresponding
scopes. However, there are several important differences, which we outline below.

2.2.1 Inner and nested type contexts
Type parameters are well-formed types in the type context (scope) of their
declaring type constructor, including inner type declarations. However, type
context for a nested type declaration ND of a parent type declaration PD does
not include the type parameters of PD.

Note: nested type declarations cannot capture parent type parame-
ters, as they simply create a regular type available under a nested
path.

Example:

class Parent<T> {
class Nested(val i: Int)

// Can use type parameter T as a type
// in an inner class
inner class Inner(val t: T)

// Cannot use type parameter T as a type
// in a nested class
class Error(val t: T)

}

fun main() {
val nested = Parent.Nested(42)

2.3. SUBTYPING 27

val inner = Parent<String>().Inner("42")
}

2.3 Subtyping
Kotlin uses the classic notion of subtyping as substitutability — if S is a subtype
of T (denoted as S <: T), values of type S can be safely used where values of
type T are expected. The subtyping relation <: is:

• reflexive (A <: A)
• rigidly transitive (A <: B ∧ B <: C ⇒ A <: C for non-flexible types A, B

and C)

Two types A and B are equivalent (A ≡ B), iff A <: B ∧ B <: A. Due to the
presence of flexible types, this relation is also only rigidly transitive, e.g., holds
only for non-flexible types (see here for more details).

2.3.1 Subtyping rules
Subtyping for non-nullable, concrete types uses the following rules.

• ∀T : kotlin.Nothing <: T <: kotlin.Any
• For any simple classifier type T : S1, . . . , Sm it is true that ∀i ∈ [1, m] :

T <: Si

• For any parameterized type T̂ = T ⟨τ⟩ : S1, . . . , Sm it is true that ∀i ∈
[1, m] : T̂ <: τSi

• For any two parameterized types T̂ = T ⟨τ⟩ and T̂ ′ = T ⟨τ ′⟩ with captured
type arguments Ki and K ′

i it is true that T̂ <: T̂ ′ if ∀i ∈ [1, n] : Ki ⪯ K ′
i

Subtyping for captured types uses the following rules.

• ∀K : kotlin.Nothing <: K <: kotlin.Any?
• For any two captured types L <: K <: U and L′ <: K ′ <: U ′, it is true

that K <: K ′ if U <: L′

Subtyping for nullable types is checked separately and uses a special set of rules
which are described here.

2.3.2 Subtyping for flexible types
Flexible types (being flexible) follow a simple subtyping relation with other rigid
(i.e., non-flexible) types. Let T, A, B, L, U be rigid types.

• L <: T ⇒ (L..U) <: T
• T <: U ⇒ T <: (L..U)

This captures the notion of flexible type (L..U) as something which may be
used in place of any type in between L and U . If we are to extend this idea to
subtyping between two flexible types, we get the following definition.

28 CHAPTER 2. TYPE SYSTEM

• L <: B ⇒ (L..U) <: (A..B)

This is the most extensive definition possible, which, unfortunately, makes the
type equivalence relation non-transitive. Let A, B be two different types, for
which A <: B. The following relations hold:

• A <: (A..B) ∧ (A..B) <: A ⇒ A ≡ (A..B)
• B <: (A..B) ∧ (A..B) <: B ⇒ B ≡ (A..B)

However, A ̸≡ B.

2.3.3 Subtyping for intersection types
Intersection types introduce several new rules for subtyping. Let A, B, C, D be
non-nullable types.

• A & B <: A
• A & B <: B
• A <: C ∧ B <: D ⇒ A & B <: C & D

Moreover, any type T with supertypes S1, . . . , SN is also a subtype of S1 & . . . &
SN .

2.3.4 Subtyping for integer literal types
All integer literal type are equivalent w.r.t. subtyping, meaning that for any sets
T1, . . . , TK and U1, . . . , UN of built-in integer types:

• ILT(T1, . . . , TK) <: ILT(U1, . . . , UN)
• ILT(U1, . . . , UN) <: ILT(T1, . . . , TK)
• ∀Ti ∈ {T1, . . . , TK} : ILT(T1, . . . , TK) <: Ti

• ∀Ti ∈ {T1, . . . , TK} : Ti <: ILT(T1, . . . , TK)

Note: the last two rules mean ILT(T1, . . . , TK) can be considered as
an intersection type T1 & . . . & TK or as a union type T1 | . . . | TK ,
depending on the context. Viewing ILT as intersection type allows
us to use integer literals where built-in integer types are expected.
Making ILT behave as union type is needed to support cases when
they appear in contravariant position.

Example:

interface In<in T>

fun <T> T.asIn(): In<T> = ...

fun <S> select(a: S, b: In<S>): S = ...

fun iltAsIntersection() {
val a: Int = 42 // ILT(Byte, Short, Int, Long) <: Int

2.3. SUBTYPING 29

fun foo(a: Short) {}

foo(1377) // ILT(Short, Int, Long) <: Short
}

fun iltAsUnion() {
val a: Short = 42

select(a, 1337.asIn())
// For argument a:
// Short <: S
// For argument b:
// In<ILT(Short, Int, Long)> <: In<S> =>
// S <: ILT(Short, Int, Long)
// Solution: S =:= Short

}

2.3.5 Subtyping for nullable types
Subtyping for two possibly nullable types A and B is defined via two relations,
both of which must hold.

1. Regular subtyping <: for types A and B using the nullability lozenge
2. Subtyping by nullability

null
<:

Subtyping by nullability
null
<: for two possibly nullable types A and B uses the

following rules.

1. A!!
null
<: B

2. A
null
<: B if ∃T !! : A <: T !!

3. A
null
<: B?

4. A
null
<: B if ∄T !! : B <: T !!

5. A? ̸
null
<: B

Informally: these rules represent the following idea derived from the
nullability lozenge.

A ̸
null
<: B if B is definitely non-nullable and A may be

nullable or B may be non-nullable and A is definitely
nullable.

Note: these rules follow the structure of the nullability lozenge and
check the absence of nullability violation A?

null
<: B!! via underapprox-

imating it using the supertype relation (as we cannot enumerate the
subtype relation for B).

30 CHAPTER 2. TYPE SYSTEM

Example:

class Foo<A, B : A?> {
val b: B = mk()
val bQ: B? = mk()

// For this assignment to be well-formed,
// B must be a subtype of A
// Subtyping by nullability holds per rule 4
// Regular subtyping does not hold,
// as B <: A? is not enough to show B <: A
// (we are missing B!! <: A!!)
val ab: A = b // ERROR

// For this assignment to be well-formed,
// B? must be a subtype of A
// Subtyping by nullability does not hold per rule 5
val abQ: A = bQ // ERROR

// For this assignment to be well-formed,
// B must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A? is enough to show B <: A?
val aQb: A? = b // OK

// For this assignment to be well-formed,
// B? must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A? is enough to show B? <: A?
// (taking the upper edge of the nullability lozenge)
val aQbQ: A? = bQ // OK

}

class Bar<A, B : A> {
val b: B = mk()
val bQ: B? = mk()

// For this assignment to be well-formed,
// B must be a subtype of A
// Subtyping by nullability holds per rule 4
// Regular subtyping does hold,
// as B <: A is enough to show B <: A
val ab: A = b // OK

2.4. UPPER AND LOWER BOUNDS 31

// For this assignment to be well-formed,
// B? must be a subtype of A
// Subtyping by nullability does not hold per rule 5
val abQ: A = bQ // ERROR

// For this assignment to be well-formed,
// B must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A is enough to show B <: A?
// (taking the upper triangle of the nullability lozenge)
val aQb: A? = b // OK

// For this assignment to be well-formed,
// B? must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A is enough to show B? <: A?
// (taking the upper edge of the nullability lozenge)
val aQbQ: A? = bQ // OK

}

Example:

A B? C!! A

B T T

This example shows a situation, when the subtyping by nullability
relation from T <: C!! is used to prove T <: A.

2.4 Upper and lower bounds
A type U is an upper bound of types A and B if A <: U and B <: U . A type L
is a lower bound of types A and B if L <: A and L <: B.

Note: as the type system of Kotlin is bounded by definition (the
upper bound of all types is kotlin.Any?, and the lower bound of
all types is kotlin.Nothing), any two types have at least one lower
bound and at least one upper bound.

2.4.1 Least upper bound
The least upper bound LUB(A, B) of types A and B is an upper bound U of A
and B such that there is no other upper bound of these types which is less by
subtyping relation than U .

32 CHAPTER 2. TYPE SYSTEM

Note: LUB is commutative, i.e., LUB(A, B) = LUB(B, A). This
property is used in the subsequent description, e.g., other properties of
LUB are defined only for a specific order of the arguments. Definitions
following from commutativity of LUB are implied.

LUB(A, B) has the following properties, which may be used to normalize it.
This normalization procedure, if finite, creates a canonical representation of
LUB.

Important: A and B are considered to be non-flexible, unless specified
otherwise.

• LUB(A, A) = A

• if A <: B, LUB(A, B) = B

• if A is nullable, LUB(A, B) = LUB(A!!, B!!)?

• if A = T ⟨KA,1, . . . , KA,n⟩ and B = T ⟨KB,1, . . . , KB,n⟩, LUB(A, B) =
T ⟨ϕ(η(KA,1), η(KB,1)), . . . , ϕ(η(KA,n), η(KB,n))⟩, where η(T) and ϕ(X, Y)
are defined as follows:

η(K : L <: K <: U) = {out U, in L}
Informally: in many cases, one may view η(T) as follows.

η(inv X) = {out X, in X}
η(out X) = {out X, in kotlin.Nothing}
η(in X) = {out kotlin.Any?, in X}

η(⋆) = {out kotlin.Any?, in kotlin.Nothing}

ϕ({out Xout, in Xin}, {out Yout, in Yin}) =
η−1({out LUB(Xout, Yout), in GLB(Xin, Yin)})

• if A = (LA..UA) and B = (LB ..UB), LUB(A, B) = (LUB(LA, LB).. LUB(UA, UB))

• if A = (LA..UA) and B is not flexible, LUB(A, B) = (LUB(LA, B).. LUB(UA, B))

Important: in some cases, the least upper bound is handled as
described here, from the point of view of type constraint system.

In the presence of recursively defined parameterized types, the algorithm given
above is not guaranteed to terminate as there may not exist a finite representation
of LUB for particular two types. The detection and handling of such situations
(compile-time error or leaving the type in some kind of denormalized state) is
implementation-defined.

In some situations, it is needed to construct the least upper bound for more than
two types, in which case the least upper bound operator LUB(T1, T2, . . . , TN) is
defined as LUB(T1, LUB(T2, . . . , TN)).

2.4. UPPER AND LOWER BOUNDS 33

2.4.2 Greatest lower bound
The greatest lower bound GLB(A, B) of types A and B is a lower bound L of A
and B such that there is no other lower bound of these types which is greater
by subtyping relation than L.

Note: GLB is commutative, i.e., GLB(A, B) = GLB(B, A). This
property is used in the subsequent description, e.g., other properties of
GLB are defined only for a specific order of the arguments. Definitions
following from commutativity of GLB are implied.

GLB(A, B) has the following properties, which may be used to normalize it.
This normalization procedure, if finite, creates a canonical representation of
GLB.

Important: A and B are considered to be non-flexible, unless specified
otherwise.

• GLB(A, A) = A

• if A <: B, GLB(A, B) = A

• if A is non-nullable, GLB(A, B) = GLB(A!!, B!!)

• if A = T ⟨KA,1, . . . , KA,n⟩ and B = T ⟨KB,1, . . . , KB,n⟩, GLB(A, B) =
T ⟨ϕ(η(KA,1), η(KB,1)), . . . , ϕ(η(KA,n), η(KB,n))⟩, where η(T) and ϕ(X, Y)
are defined as follows:

η(K : L <: K <: U) = {out U, in L}
Informally: in many cases, one may view η(T) as follows.

η(inv X) = {out X, in X}
η(out X) = {out X, in kotlin.Nothing}
η(in X) = {out kotlin.Any?, in X}

η(⋆) = {out kotlin.Any?, in kotlin.Nothing}

ϕ({out Xout, in Xin}, {out Yout, in Yin}) =
(η−1 ◦ Ω)({out GLB(Xout, Yout), in LUB(Xin, Yin)})

Ω({out A, in B}) ={
{out A, in B} if A :> B

{out A, in kotlin.Nothing} if A <: B ∧ A ̸≡ B

Note: the Ω function preserves type system consistency; ∀A, B :
A <: B ∧ A ̸≡ B, type T ⟨{out A, in B}⟩ is the evidence of type
T ⟨X⟩ : X <: A <: B <: X, which makes the type system incon-
sistent. To avoid this situation, we overapproximate in B with
in kotlin.Nothing when needed. Further details are available in
the “Mixed-site variance” paper.

34 CHAPTER 2. TYPE SYSTEM

• if A = (LA..UA) and B = (LB ..UB), GLB(A, B) = (GLB(LA, LB).. GLB(UA, UB))
• if A = (LA..UA) and B is not flexible, GLB(A, B) = (GLB(LA, B).. GLB(UA, B))

Important: in some cases, the greatest lower bound is handled as
described here, from the point of view of type constraint system.

In the presence of recursively defined parameterized types, the algorithm given
above is not guaranteed to terminate as there may not exist a finite representation
of GLB for particular two types. The detection and handling of such situations
(compile-time error or leaving the type in some kind of denormalized state) is
implementation-defined.

In some situations, it is needed to construct the greatest lower bound for
more than two types, in which case the greatest lower bound operator
GLB(T1, T2, . . . , TN) is defined as GLB(T1, GLB(T2, . . . , TN)).

2.5 Type approximation
As we mentioned before, Kotlin type system has denotable and non-denotable
types. In many cases, we need to approximate a non-denotable type, which
appeared, for example, during type inference, into a denotable type, so that it
can be used in the program. This is achieved via type approximation, which we
describe below.

Important: at the moment, type approximation is applied only to
intersection and union types.

Type approximation function α is defined as follows.

• α(A⟨τA⟩ & B⟨τB⟩) = (α↓ ◦ GLB)(S⟨τA→S⟩, S⟨τB→S⟩), where type S is
the least single common supertype of A and B, substitution τP →Q is the
result of chain applying substitutions from type P to type Q :> P , α↓ is a
function which applies type approximation function to the type arguments
if needed;

• α(A⟨τA⟩ | B⟨τB⟩) = α(δ(A⟨τA⟩ | B⟨τB⟩)), where δ is the type decaying
function.

Note: when we talk about the least single common supertype of A
and B, we mean exactly that: if they have several unrelated common
supertypes (e.g., several common superinterfaces), we continue going
up the supertypes, until we find a single common supertype or reach
kotlin.Any?.

2.6 Type decaying
All union types are subject to type decaying, when they are converted to a specific
intersection type, representable within Kotlin type system.

2.6. TYPE DECAYING 35

Important: at the moment, type decaying is applied only to union
types. Note: type decaying is comparable to how least upper bound
computation works in Java.

Type decaying function δ is defined as follows.

• δ(A⟨τA⟩ | B⟨τB⟩) = &S∈S(A,B)(δ↓ ◦ LUB)(S⟨τA→S⟩, S⟨τB→S⟩), where sub-
stitution τP →Q is the result of chain applying substitutions from type P
to type Q :> P , δ↓ is a function which applies type decaying function to
the type arguments if needed, S(A, B) is a set of most specific common
supertypes of A and B.

Note: a set of most specific common supertypes S(A, B) is a reduction
of a set of all common supertypes U(A, B), which excludes all types
T ∈ U such that ∃V ∈ U : V ̸= T ∧ V <: T .

References
1. Ross Tate. “Mixed-site variance.” FOOL, 2013.
2. Ross Tate, Alan Leung, and Sorin Lerner. “Taming wildcards in Java’s

type system.” PLDI, 2011.

36 CHAPTER 2. TYPE SYSTEM

	Type system
	Glossary
	Introduction
	Type kinds
	Built-in types
	Classifier types
	Type parameters
	Type capturing
	Type containment
	Function types
	Flexible types
	Nullable types
	Intersection types
	Integer literal types
	Union types

	Type contexts and scopes
	Inner and nested type contexts

	Subtyping
	Subtyping rules
	Subtyping for flexible types
	Subtyping for intersection types
	Subtyping for integer literal types
	Subtyping for nullable types

	Upper and lower bounds
	Least upper bound
	Greatest lower bound

	Type approximation
	Type decaying
	References

