
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 14

Type inference

Kotlin has a concept of type inference for compile-time type information, meaning
some type information in the code may be omitted, to be inferred by the compiler.
There are two kinds of type inference supported by Kotlin.

• Local type inference, for inferring types of expressions locally, in state-
ment/expression scope;

• Function signature type inference, for inferring types of function return
values and/or parameters.

Type inference is a type constraint problem, and is usually solved by a type
constraint solver. For this reason, type inference is applicable in situations when
the type context contains enough information for the type constraint solver to
create an optimal constraint system solution w.r.t. type inference problem.

Note: for the purposes of type inference, an optimal solution is the
one which does not contain any free type variables with no explicit
constraints on them.

Kotlin also supports flow-sensitive types in the form of smart casts, which have
direct effect on type inference. Therefore, we will discuss them first, before
talking about type inference itself.

14.1 Smart casts
Kotlin introduces a limited form of flow-sensitive typing called smart casts. Flow-
sensitive typing means some expressions in the program may introduce changes
to the compile-time types of variables. This allows one to avoid unneeded explicit
casting of values in cases when their runtime types are guaranteed to conform
to the expected compile-time types.

1

2 CHAPTER 14. TYPE INFERENCE

Flow-sensitive typing may be considered a specific instance of traditional data-
flow analysis. Therefore, before we discuss it further, we need to establish the
data-flow framework, which we will use for smart casts.

14.1.1 Data-flow framework

Smart cast lattices

We assume our data-flow analysis is run on a classic control-flow graph (CFG)
structure, where most non-trivial expressions and statements are simplified
and/or desugared.

Our data-flow domain is a map lattice SmartCastData = Expression →
SmartCastType, where Expression is any Kotlin expression and SmartCastType =
Type × Type sublattice is a product lattice of smart cast data-flow facts of the
following kind.

• First component describes the type, which an expression definitely has
• Second component describes the type, which an expression definitely does

not have

The sublattice order, join and meet are defined as follows.

P1 × N1 ⊑ P2 × N2 ⇔ P1 <: P2 ∧ N1 :> N2

P1 × N1 ⊔ P2 × N2 = LUB(P1, P2) × GLB(N1, N2)
P1 × N1 ⊓ P2 × N2 = GLB(P1, P2) × LUB(N1, N2)

Note: a well-informed reader may notice the second component is
behaving very similarly to a negation type.

(P1 & ¬N1) | (P2 & ¬N2) ⊑ (P1 | P2) & (¬N1 | ¬N2)
= (P1 | P2) & ¬(N1 & N2)

(P1 & ¬N1) & (P2 & ¬N2) = (P1 & P2) & (¬N1 & ¬N2)
= (P1 & P2) & ¬(N1 | N2)

This is as intended, as “type which an expression definitely does
not have” is exactly a negation type. In smart casts, as Kotlin type
system does not have negation types, we overapproximate them when
needed.

Smart cast transfer functions

The data-flow information uses the following transfer functions.

14.1. SMART CASTS 3

[[assume(x is T)]] (s) = s[x → s(x) ⊓ (T × ⊤)]
[[assume(x !is T)]] (s) = s[x → s(x) ⊓ (⊤ × T)]

[[x as T]] (s) = s[x → s(x) ⊓ (T × ⊤)]
[[x !as T)]] (s) = s[x → s(x) ⊓ (⊤ × T)]

[[assume(x == null)]] (s) = s[x → s(x) ⊓ (kotlin.Nothing? ×⊤)]
[[assume(x != null)]] (s) = s[x → s(x) ⊓ (⊤ × kotlin.Nothing?)]

[[assume(x === null)]] (s) = s[x → s(x) ⊓ (kotlin.Nothing? ×⊤)]
[[assume(x !== null)]] (s) = s[x → s(x) ⊓ (⊤ × kotlin.Nothing?)]

[[assume(x == y)]] (s) = s[x → s(x) ⊓ s(y),
y → s(x) ⊓ s(y)]

[[assume(x != y)]] (s) = s[x → s(x) ⊓ swap(isNullable(s(y))),
y → s(y) ⊓ swap(isNullable(s(x)))]

[[assume(x === y)]] (s) = s[x → s(x) ⊓ s(y),
y → s(x) ⊓ s(y)]

[[assume(x !== y)]] (s) = s[x → s(x) ⊓ swap(isNullable(s(y))),
y → s(y) ⊓ swap(isNullable(s(x)))]

[[x = y]] (s) = s[x → s(y)]

[[killDataFlow(x)]] (s) = s[x → (⊤ × ⊤)]

[[l]] (s) =
⊔

p∈predecessor(l)

[[p]] (s)

where

swap(P × N) = N × P

isNullable(s) =
{

(kotlin.Nothing? ×⊤) if s ⊑ (kotlin.Nothing? ×⊤)
(⊤ × ⊤) otherwise

Important: transfer functions for == and != are used only if the
corresponding equals implementation is known to be equivalent to

4 CHAPTER 14. TYPE INFERENCE

reference equality check. For example, generated equals implemen-
tation for data classes is considered to be equivalent to reference
equality check.

Note: in some cases, after the CFG simplification a program location
l may be duplicated and associated with several locations l1, . . . , lN in
the resulting CFG. If so, the data-flow information for l is calculated
as

[[l]] =
N⊔

i=1
[[li]]

Note: a killDataFlow instruction is used to reset the data-flow in-
formation in cases, when a compiler deems necessary to stop its
propagation. For example, it may be used in loops to speed up
data-flow analysis convergence. This is the current behaviour of the
Kotlin compiler.

After the data-flow analysis is done, for a program location l we have its data-flow
information [[l]], which contains data-flow facts [[l]] [e] = (P ×N) for an expression
e.

14.1.2 Smart cast types
The data-flow information is used to produce the smart cast type as follows.

First, smart casts may influence the compile-time type of an expression e (called
smart cast sink) only if the sink is stable.

Second, for a stable smart cast sink e we calculate the overapproximation of its
possible type.

[[l]] [e] = (P×N) ⇒ smartCastTypeOf (e) = typeOf (e)&P&approxNegationType(N)

approxNegationType(N) =
{

kotlin.Any if kotlin.Nothing? <: N

kotlin.Any? otherwise

As a result, smartCastTypeOf (e) is used as a compile-time type of e for most
purposes (including, but not limited to, function overloading and type inference
of other values).

Note: the most important exception to when smart casts are used in
type inference is direct property declaration.

14.1. SMART CASTS 5

fun noSmartCastInInference() {
var a: Any? = null

if (a == null) return

var c = a // Direct property declaration

c // Declared type of `c` is Any?
// However, here it's smart casted to Any

}

fun <T> id(a: T): T = a

fun smartCastInInference() {
var a: Any? = null

if (a == null) return

var c = id(a)

c // Declared type of `c` is Any
}

Smart casts are introduced by the following Kotlin constructions.

• Conditional expressions (if)
• When expressions (when);
• Elvis operator (operator ?:);
• Safe navigation operator (operator ?.);
• Logical conjunction expressions (operator &&);
• Logical disjunction expressions (operator ||);
• Not-null assertion expressions (operator !!);
• Cast expressions (operator as);
• Type-checking expressions (operator is);
• Simple assignments;
• Platform-specific cases: different platforms may add other kinds of expres-

sions which introduce additional smart cast sources.

Note: property declarations are not listed here, as their types are
derived from initializers.

Note: for the purposes of smart casts, most of these constructions are
simplified and/or desugared, when we are building the program CFG
for the data-flow analysis. We informally call such constructions
smart cast sources, as they are responsible for creating smart cast
specific instructions.

6 CHAPTER 14. TYPE INFERENCE

14.1.3 Smart cast sink stability
A smart cast sink is stable for smart casting if its value cannot be changed via
means external to the CFG; this guarantees the smart cast conditions calculated
by the data-flow analysis still hold at the sink. This is one of the necessary
conditions for smart cast to be applicable to an expression.

Smart cast sink stability breaks in the presence of the following aspects.

• concurrent writes;
• mutable value capturing;
• separate module compilation;
• custom getters;
• delegation.

The following smart cast sinks are considered stable.

1. Immutable local or classifier-scope properties without delegation or custom
getters;

2. Mutable local properties without delegation or custom getters, if the
compiler can prove that they are effectively immutable, i.e., cannot be
changed by external means;

3. Immutable properties of immutable stable properties without delegation
or custom getters, if they are declared in the current module.

Effectively immutable smart cast sinks

We will call redefinition of e direct redefinition, if it happens in the same
declaration scope as the definition of e. If e is redefined in a nested declaration
scope (w.r.t. its definition), this is a nested redefinition.

Note: informally, a nested redefinition means the property has been
captured in another scope and may be changed from that scope in a
concurrent fashion.

We define direct and nested smart cast sinks in a similar way.

Example:

fun example() {
// definition
var x: Int? = null

if (x != null) {
run {

// nested smart cast sink
x.inc()

// nested redefinition
x = ...

14.1. SMART CASTS 7

}
// direct smart cast sink
x.inc()

}

// direct redefinition
x = ...

}

A mutable local property P defined at D is considered effectively immutable at
a direct sink S, if there are no nested redefinitions on any CFG path between D
and S.

A mutable local property P defined at D is considered effectively immutable at a
nested sink S, if there are no nested redefinitions of P and all direct redefinitions
of P precede S in the CFG.

Example:

fun directSinkOk() {
var x: Int? = 42 // definition
if (x != null) // smart cast source

x.inc() // direct sink
run {

x = null // nested redefinition
}

}

fun directSinkBad() {
var x: Int? = 42 // definition
run {

x = null // nested redefinition
// between a definition
// and a sink

}
if (x != null) // smart cast source

x.inc() // direct sink
}

fun nestedSinkOk() {
var x: Int? = 42 // definition
x = getNullableInt() // direct redefinition
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
}

8 CHAPTER 14. TYPE INFERENCE

fun nestedSinkBad01() {
var x: Int? = 42 // definition
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
x = getNullableInt() // direct redefinition

// after the nested sink
}

fun nestedSinkBad02() {
var x: Int? = 42 // definition
run {

x = null // nested redefinition
}
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
}

14.1.4 Loop handling
As mentioned before, a compiler may use killDataFlow instructions in loops to
avoid slow data-flow analysis convergence. In the general case, a loop body may be
evaluated zero or more times, which, combined with killDataFlow instructions,
causes the smart cast sources from the loop body to not propagate to the
containing scope. However, some loops, for which we can have static guarantees
about how their body is evaluated, may be handled differently. For the following
loop configurations, we consider their bodies to be definitely evaluated one or
more times.

• while (true) { ... }
• do { ... } while (condition)

Note: in the current implementation, only the exact while (true)
form is handled as described; e.g., while (true == true) does not
work.

Note: one may extend the number of loop configurations, which are
handled by smart casts, if the compiler implementation deems it
necessary.

Example:

fun breakFromInfiniteLoop() {
var a: Any? = null

14.1. SMART CASTS 9

while (true) {
if (a == null) return

if (randomBoolean()) break
}

a // Smart cast to Any
}

fun doWhileAndSmartCasts() {
var a: Any? = null

do {
if (a == null) return

} while (randomBoolean())

a // Smart cast to Any
}

fun doWhileAndSmartCasts2() {
var a: Any? = null

do {
println(a)

} while (a == null)

a // Smart cast to Any
}

14.1.5 Bound smart casts
In some cases, it is possible to introduce smart casting between properties if it
is known at compile-time that these properties are bound to each other. For
instance, if a variable a is initialized as a copy of variable b and both are stable,
they are guaranteed to reference the same runtime value and any assumption
about a may be also applied to b and vice versa.

Example:

val a: Any? = ...
val b = a

if (b is Int) {
// as a and b point to the same value,
// a also is Int
a.inc()

}

10 CHAPTER 14. TYPE INFERENCE

In more complex cases, however, it may not be trivial to deduce that two (or
more) properties point to the same runtime object. This relation is known as
must-alias relation between program references and it is implementation-defined
in which cases a particular Kotlin compiler may safely assume this relation holds
between two particular properties at a particular program point. However, it
must guarantee that if two properties are considered bound, it is impossible for
these properties to reference two different values at runtime.

One way of implementing bound smart casts would be to divide the space of
stable program properties into disjoint alias sets of properties, and the analysis
described above links the smart cast data flow information to sets of properties
instead of single properties.

Such view could be further refined by considering special alias sets separately;
e.g., an alias set of definitely non-null properties, which would allow the compiler
to infer that a?.b !== null implies a !== null (for non-nullable b).

14.2 Local type inference
Local type inference in Kotlin is the process of deducing the compile-time types
of expressions, lambda expression parameters and properties. As previously
mentioned, type inference is a type constraint problem, and is usually solved by
a type constraint solver.

In addition to the types of intermediate expressions, local type inference also
performs deduction and substitution for generic type parameters of functions
and types involved in every expression. You can use the Expressions part of this
specification as a reference point on how the types for different expressions are
constructed.

Important: additional effects of smart casts are considered in local
type inference, if applicable.

Type inference in Kotlin is bidirectional; meaning the types of expressions may
be derived not only from their arguments, but from their usage as well. Note
that, albeit bidirectional, this process is still local, meaning it processes one
statement at a time, strictly in the order of their appearance in a scope; e.g.,
the type of property in statement S1 that goes before statement S2 cannot be
inferred based on how S1 is used in S2.

As solving a type constraint system is not a definite process (there may be
more than one valid solution for a given constraint system), type inference may
create several valid solutions. In particular, one may always derive a constraint
A <: T <: B for every free type variable T , where types A and B are both valid
solutions.

Note: this is valid even if T is a free type variable without any
explicit constraints, as every type in Kotlin has an implicit constraint

14.3. FUNCTION SIGNATURE TYPE INFERENCE 11

kotlin.Nothing <: T <: kotlin.Any?.

In these cases an optimal constraint system solution is picked w.r.t. local type
inference.

Note: for the purposes of local type inference, an optimal solution
is the one which does not contain any free type variables with no
explicit constraints on them.

14.3 Function signature type inference
Function signature type inference is a variant of local type inference, which is
performed for function declarations, lambda literals and anonymous function
declarations.

14.3.1 Named and anonymous function declarations
As described here, a named function declaration body may come in two forms:
an expression body (a single expression) or a control structure body. For the
latter case, an expected return type must be provided or is assumed to be
kotlin.Unit and no special kind of type inference is needed. For the former
case, an expected return type may be provided or can be inferred using local
type inference from the expression body. If the expected return type is provided,
it is used as an expected constraint on the result type of the expression body.

Example:

fun <T> foo(): T { ... }
fun bar(): Int = foo() // an expected constraint T' <: Int
// allows the result of `foo` to be inferred automatically.

14.3.2 Statements with lambda literals
Complex statements involving one or more lambda literals introduce an additional
level of complexity to type inference and overload resolution mechanisms. As
mentioned in the overload resolution section, the overload resolution of callables
involved in such statements is performed regardless of the contents of the lambda
expressions and before any processing of their bodies is performed (including
local type inference).

For a complex statement S involving (potentially overloaded) callables
C1, . . . , CN and lambda literals L1, . . . , LM , excluding the bodies of these
literals, they are processed as follows.

1. An empty type constraint system Q is created;

2. The overload resolution, if possible, picks candidates for C1, . . . , CN ac-
cording to the overload resolution rules;

12 CHAPTER 14. TYPE INFERENCE

3. For each lambda literal with unspecified number of parameters, we decide
whether it has zero or one parameter based on the form of the callables
and/or the expected type of the lambda literal. If there is no way to
determine the number of parameters, it is assumed to be zero. If the
number of parameters is determined to be one, the phantom parameter it
is proceeded in further steps as if it was a named lambda parameter;

Important: the presence or absence of the phantom parameter
it in the lambda body does not influence this process in any
way.

4. For each lambda body L1, . . . , LN , the expected constraints on the lambda
arguments and/or lambda result type from the selected overload candidates
(if any) are added to Q, and the overload resolution for all statements in
these bodies is performed w.r.t. updated type constraint system Q. This
may result in performing steps 1-3 in a recursive top-down fashion for
nested lambda literals;

Important: in some cases overload resolution may fail to pick a
candidate, e.g., because the expected constraints are incomplete,
causing the constraint system to be unsound. If this happens, it
is implementation-defined whether the compiler continues the
top-down analysis or stops abruptly.

5. When the top-down analysis is done and the overload candidates are fixed,
local type inference is performed on each lambda body and each statement
bottom-up, from the most inner lambda literals to the outermost ones,
processing one lambda literal at a time, with the following additions.

• When inferring type of the return value (the last expression of a
lambda body and/or the subjects for return expressions referring
to this lambda literal), the additional constraints introduced on the
result type of this lambda literal are added to Q;

• If inference with these constraints fails, but the result type is a subtype
of kotlin.Unit, the inference is repeated without the additional
constraints on the return value;

• The type of each lambda literal is considered to be the functional type
FT(P1, . . . , PS) → R, where P1, . . . , PS are the types of its parameters
inferred from external constraints or specified in the lambda literal
itself and R is the inferred type of its return value in the presence of
external constraints.

The external constraints on lambda parameters, return value and body may
come from the following sources:

• The (possibly overloaded) callable which uses the lambda literal as an
argument;

Note: as overload resolution is performed before any lambda
literal inference takes place, this candidate is always known

14.4. BARE TYPE ARGUMENT INFERENCE 13

before external constraints are needed;

• The expected type of the declaration which uses the lambda literal as its
body or initializer.

Examples:

fun <T> foo(): T { ... }
fun <R> run(body: () -> R): R { ... }

fun bar() {
val x = run {

run {
run {

foo<Int>() // last expression inferred to be of type Int
} // this lambda is inferred to be of type () -> Int

} // this lambda is inferred to be of type () -> Int
} // this lambda is inferred to be of type () -> Int
// x is inferred to be of type Int

val y: Double = run { // this lambda has an external constraint R' <: Double
run { // this lambda has an external constraint R'' <: Double

foo() // this call has an external constraint T' <: Double
// allowing to infer T to be Double in foo

}
}

}

14.4 Bare type argument inference
Bare type argument inference is a special kind of type inference where, given
a type T and a constructor TC, the type arguments A0, A1 . . . AN are inferred
such that TC[A0, A1 . . . AN] <: T . It is used together with bare types syntax
sugar that can be employed in type checking and casting operators. The process
is performed as follows.

First, let’s consider the simple case of T being non-nullable, non-intersection type.
Then, a simple type constraint system is constructed by introducing type variables
for A0, A1 . . . AN and then solving the constraint TC[A0, A1 . . . AN] <: T .

If T is an intersection type, the same process is performed for every member of
the intersection type individually and then the resulting type argument values
for each parameter AK are merged using the following principle:

• If all values for a particular parameters are star-projections, the result is a
star-projection;

• If some of the values are not star-projections and are strictly equal to each
other, the result is one of their values;

14 CHAPTER 14. TYPE INFERENCE

• Else, the result is a star-projection.

If T is a nullable type U?, the steps given above are performed for its non-nullable
counterpart type U .

14.5 Builder-style type inference
Note: before Kotlin 1.7, builder-style type inference required using the
@BuilderInference annotation on lambda parameters. Currently,
for simple cases when there is a single lambda parameter which
requires builder-style inference, this annotation may be omitted.

When working with DSLs that have generic builder functions, one may want
to infer the generic builder type parameters using the information from the
builder’s lambda body. Kotlin supports special kind of type inference called
builder-style type inference to allow this in some cases.

In order to allow builder-style inference for a generic builder function and its
type parameter P, it should satisfy the following requirements:

• It has a lambda parameter of function type with receiver, with receiver
type T

• The receiver type T uses type parameter P in its type arguments
• The receiver type T can be used as receiver for callables which can provide

information about P via their use

Note: using the type parameter P directly as the receiver type
T (e.g., fun <Q /* P */> myBuilder(builder: Q /* T */.() ->
Unit)) is not yet supported.

In essence, the builder-style inference allows the type of the lambda parameter
receiver to be inferred from its usage in the lambda body. This is performed
only if the standard type inference cannot infer the required types, meaning one
could provide additional type information to help with the inference, e.g., via
explicit type arguments, and avoid the need for builder-style inference.

If the builder-style inference is needed, for a call to an eligible function with
a lambda parameter, the inference is performed as described above, but the
type arguments of the lambda parameter receiver are viewed as postponed type
variables till the body of the lambda expression is proceeded.

Note: during the builder-style inference process, a postponed type
variable is not required to be inferred to a concrete type.

After the inference of statements inside the lambda is complete, these postponed
type variables are inferred using an additional type inference step, which takes
the resulting type constraint system and tries to find the instantiation of the
postponed type variables to concrete types.

If the system cannot be solved, it is a compile-time error.

14.5. BUILDER-STYLE TYPE INFERENCE 15

Builder-style inference has the following important restrictions.

• Any attempt to use an expression with type which is a postponed type
variable is a compile-time error.

• If a call needs builder-style inference for more than one lambda parameter,
they all should be marked with @BuilderInference annotation. Otherwise,
it is a compile-time error.

Note: notable examples of builder-style inference-enabled functions
are kotlin.sequence and kotlin.iterator. See standard library
documentation for details.

Example:

fun <K, V> buildMap(action: MutableMap<K, V>.() -> Unit): Map<K, V> { ... }

interface Map<K, out V> : Map<K, V> { ... }
interface MutableMap<K, V> : Map<K, V> {

fun put(key: K, value: V): V?
fun putAll(from: Map<out K, V>): Unit

}

fun addEntryToMap(baseMap: Map<String, Number>,
additionalEntry: Pair<String, Int>?) {

val myMap = buildMap/* <?, ?> */ { // cannot infer type arguments
// needs builder-style inference

putAll(baseMap)
// provides information about String <: K, Number <: V

if (additionalEntry != null) {
put(additionalEntry.first, additionalEntry.second)
// provides information about String <: K, Int <: V

}
}
// solves to String =:= K, Number =:= V
// ...

}

16 CHAPTER 14. TYPE INFERENCE

	Type inference
	Smart casts
	Data-flow framework
	Smart cast types
	Smart cast sink stability
	Loop handling
	Bound smart casts

	Local type inference
	Function signature type inference
	Named and anonymous function declarations
	Statements with lambda literals

	Bare type argument inference
	Builder-style type inference

