
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 7

Statements

statements:
[statement {semis statement}] [semis]

statement:
{label | annotation} (declaration | assignment | loopStatement | expression)

Kotlin does not explicitly distinguish between statements, expressions and dec-
larations, i.e., expressions and declarations can be used in statement positions.
This section focuses only on those statements that are not expressions or decla-
rations. For information on those parts of Kotlin, please refer to the Expressions
and Declarations sections of the specification.

Example: Kotlin supports using conditionals both as expressions and
as statements. As their use as expressions is more general, detailed
information about conditionals is available in the Expressions section
of the specification.

7.1 Assignments
assignment:

((directlyAssignableExpression '=') | (assignableExpression assignmentAn-
dOperator)) {NL} expression

assignmentAndOperator:
'+='
| '-='
| '*='
| '/='
| '%='

1

2 CHAPTER 7. STATEMENTS

An assignment is a statement that writes a new value to some program entity, de-
noted by its left-hand side. Both left-hand and right-hand sides of an assignment
must be expressions, more so, there are several restrictions for the expression on
the left-hand side.

For an expression to be assignable, i.e. be allowed to occur on the left-hand side
of an assignment, it must be one of the following:

• An identifier referring to a mutable property;
• A navigation expression referring to a mutable property. If this navigation

operator is the safe navigation operator, this introduces a special case of
safe assignment;

• An indexing expression.

Note: Kotlin assignments are not expressions and cannot be used
as such.

7.1.1 Simple assignments
A simple assignment is an assignment which uses the assign operator =. If the
left-hand side of an assignment refers to a mutable property, a value of that
property is changed when an assignment is evaluated, using the following rules
(applied in order).

• If a property has a setter (including delegated properties), it is called using
the right-hand side expression as its argument;

• Otherwise, if a property is a mutable property, its value is changed to the
evaluation result of the right-hand side expression.

If the left-hand side of an assignment is an indexing expression, the whole
statement is treated as an overloaded operator with the following expansion:

A[B1, B2, B3, . . . , BN] = C is the same as calling A.set(B1, B2, B3, . . . , BN , C)
where set is a suitable operator function.

7.1.2 Operator assignments
An operator assignment is a combined-form assignment which involves one of the
following operators: +=, -=, *=, /=, %=. All of these operators are overloadable
operator functions with the following expansions (applied in order):

• A += B is exactly the same as one of the following:
– A.plusAssign(B) if a suitable plusAssign operator function exists

and is available;
– A = A.plus(B) if a suitable plus operator function exists and is

available.
• A -= B is exactly the same as one of the following:

– A.minusAssign(B) if a suitable minusAssign operator function ex-
ists and is available;

7.1. ASSIGNMENTS 3

– A = A.minus(B) if a suitable minus operator function exists and is
available.

• A *= B is exactly the same as one of the following:
– A.timesAssign(B) if a suitable timesAssign operator function ex-

ists and is available;
– A = A.times(B) if a suitable times operator function exists and is

available.
• A /= B is exactly the same as one of the following:

– A.divAssign(B) if a suitable divAssign operator function exists
and is available;

– A = A.div(B) if a suitable div operator function exists and is
available;

• A %= B is exactly the same as one of the following:
– A.remAssign(B) if a suitable remAssign operator function exists

and is available;
– A = A.rem(B) if a suitable rem operator function exists and is

available.

Note: before Kotlin version 1.3, there were additional overloadable
functions for % called mod/modAssign

After the expansion, the resulting function call expression or simple assignment
is processed according to their corresponding rules, and overload resolution
and type checking are performed. If both expansion variants result in correctly
resolved and inferred code, this should be reported as an operator overloading
ambiguity. If only one of the expansion variants can be resolved correctly, this
variant is picked as the correct one. If neither of variants result in correct code,
the operator calls must be reported as unresolved.

Example: consider the following compound operator state-
ment: x[y] += z. The corresponding expansion variants are
x.get(y).plusAssign(z) and x.set(x.get(y).plus(z)) accord-
ing to expansion rules for corresponding operators. If, for example,
the call to set in the second variant results in resolution or inference
error, the whole corresponding expansion is deemed unresolved and
the first variant is picked if applicable.

Note: although for most real-world use cases operators ++ and --
are similar to operator assignments, in Kotlin they are expressions
and are described in the corresponding section of this specification.

7.1.3 Safe assignments
If the left-hand side of an assignment involves a safe-navigation operator, it is
treated as a special case of safe assignment. Safe assignments are expanded
similar to safe navigation operator expressions:

• a?.c is exactly the same as

4 CHAPTER 7. STATEMENTS

when(val $tmp = a) {
null -> null
else -> { $tmp.c }

}

For any right-hand combinations of operators present in c, which are
expanded further, as usual.

Example: The assignment

x?.y[0] = z

is expanded to

when(val $tmp = x) {
null -> null
else -> { $tmp.y[0] = z }

}

which, according to expansion rules for indexing assignments is, in
turn, expanded to

when(val $tmp = x) {
null -> null
else -> { $tmp.y.set(0, z) }

}

7.2 Loop statements
Loop statements describe an evaluation of a certain number of statements
repeatedly until a loop exit condition applies.

loopStatement:
forStatement
| whileStatement
| doWhileStatement

Loops are closely related to the semantics of jump expressions, as these expres-
sions, namely break and continue, are only allowed in a body of a loop. Please
refer to the corresponding sections for details.

7.2.1 While-loop statements
whileStatement:

'while'
{NL}
'('
expression
')'

7.2. LOOP STATEMENTS 5

{NL}
(controlStructureBody | ';')

A while-loop statement is similar to an if expression in that it also has a condition
expression and a body consisting of zero or more statements. While-loop
statement evaluating its body repeatedly for as long as its condition expression
evaluates to true or a jump expression is evaluated to finish the loop.

Note: this also means that the condition expression is evaluated
before every evaluation of the body, including the first one.

The while-loop condition expression must be a subtype of kotlin.Boolean.

7.2.2 Do-while-loop statements
doWhileStatement:

'do'
{NL}
[controlStructureBody]
{NL}
'while'
{NL}
'('
expression
')'

A do-while-loop statement, similarly to a while-loop statement, also describes a
loop, with the following differences. First, it has a different syntax. Second, it
evaluates the loop condition expression after evaluating the loop body.

Note: this also means that the body is always evaluated at least
once.

The do-while-loop condition expression must be a subtype of kotlin.Boolean.

7.2.3 For-loop statements
forStatement:

'for'
{NL}
'('
{annotation}
(variableDeclaration | multiVariableDeclaration)
'in'
expression
')'
{NL}
[controlStructureBody]

6 CHAPTER 7. STATEMENTS

Note: unlike most other languages, Kotlin does not have a free-form
condition-based for loops. The only form of a for-loop available in
Kotlin is the “foreach” loop, which iterates over lists, arrays and
other data structures.

A for-loop statement is a special kind of loop statement used to iterate over some
data structure viewed as an iterable collection of elements. A for-loop statement
consists of a loop body, a container expression and an iteration variable
declaration.

The for-loop is actually an overloadable syntax form with the following expansion:

for(VarDecl in C) Body is the same as

when(val $iterator = C.iterator()) {
else -> while ($iterator.hasNext()) {

val VarDecl = __iterator.next()
<... all the statements from Body>

}
}

where iterator, hasNext, next are all suitable operator functions available in
the current scope. VarDecl here may be a variable name or a set of variable
names as per destructuring variable declarations.

Note: the expansion is hygienic, i.e., the generated iterator variable
never clashes with any other variable in the program and cannot be
accessed outside the expansion.

7.3 Code blocks
block:

'{'
{NL}
statements
{NL}
'}'

statements:
[statement {semis statement}] [semis]

A code block is a sequence of zero or more statements between curly braces
separated by newlines or/and semicolons. Evaluating a code block means
evaluating all its statements in the order they appear inside of it.

Note: Kotlin does not support code blocks as statements; a curly-
braces code block in a statement position is a lambda literal.

A last expression of a code block is the last statement in it (if any) if and only
if this statement is also an expression. A code block is said to contain no last

7.3. CODE BLOCKS 7

expression if it does not contain any statements or its last statement is not an
expression (e.g., it is an assignment, a loop or a declaration).

Informally: you may consider the case of a missing last expression
as if a synthetic last expression with no runtime semantics and type
kotlin.Unit is introduced in its place.

A control structure body is either a single statement or a code block. A last
expression of a control structure body CSB is either the last expression of a
code block (if CSB is a code block) or the single expression itself (if CSB is an
expression). If a control structure body is not a code block or an expression, it
has no last expression.

Note: this is equivalent to wrapping the single expression in a new
synthetic code block.

In some contexts, a control structure body is expected to have a value and/or a
type. The value of a control structure body is:

• the value of its last expression if it exists;
• the singleton kotlin.Unit object otherwise.

The type of a control structure body is the type of its value.

7.3.1 Coercion to kotlin.Unit

When we expect the type of a control structure body to be kotlin.Unit, we
relax the type checking requirements for its type by coercing it to kotlin.Unit.
Specifically, we ignore the type mismatch between kotlin.Unit and the control
structure body type.

Examples:

fun foo() {
val a /* : () -> Unit */ = {

if (true) 42
// CSB with no last expression
// Type is defined to be `kotlin.Unit`

}

val b: () -> Unit = {
if (true) 42 else -42
// CSB with last expression of type `kotlin.Int`
// Type is expected to be `kotlin.Unit`
// Coercion to kotlin.Unit applied

}
}

8 CHAPTER 7. STATEMENTS

	Statements
	Assignments
	Simple assignments
	Operator assignments
	Safe assignments

	Loop statements
	While-loop statements
	Do-while-loop statements
	For-loop statements

	Code blocks
	Coercion to kotlin.Unit

