
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 15

Runtime type information

The runtime type information (RTTI) is the information about Kotlin types of
values available from these values at runtime. RTTI affects the semantics of
certain expressions, changing their evaluation depending on the amount of RTTI
available for particular values, implementation, and platform:

• The type checking operator
• The cast expression, especially the as? operator
• Class literals and the values they evaluate to

Runtime types are particular instances of RTTI for a particular value at runtime.
These model a subset of the Kotlin type system. Namely, the runtime types are
limited to classifier types, function types and a special case of kotlin.Nothing?
which is the type of null reference and the only nullable runtime type. This
includes the classifier types created by anonymous object literals. There is a
slight distinction between a Kotlin type system type and its runtime counterpart:

• On some platforms, some particular types may have the same runtime
type representation. This means that checking or casting values of these
types works the same way as if they were the same type

• Generic types with the same classifier are not required to have different
runtime representations. One cannot generally rely on them having the
same representation outside of a particular platform. Platform specifica-
tions must clarify whether some or all types on these platforms have this
feature.

RTTI is also the source of information for platform-specific reflection facilities
in the standard library.

The types actual values may have are limited to class and object types and func-
tion types as well as kotlin.Nothing? for the null reference. kotlin.Nothing
(not to be confused with its nullable variant kotlin.Nothing?) is special in the
way that this type is never encountered as a runtime type even though it may

1



2 CHAPTER 15. RUNTIME TYPE INFORMATION

have a platform-specific representation. The reason for this is that this type is
used to signify non-existent values.

15.1 Runtime-available types
Runtime-available types are the types that can be guaranteed (during compilation)
to have a concrete runtime counterpart. These include all the runtime types,
their nullable variants as well as reified type parameters, that are guaranteed
to inline to a runtime type during type parameter substitution. Only runtime-
available types may be passed (implicitly or explicitly) as substitutions to reified
type parameters, used for type checks and safe casts. During these operations,
the nullability of the type is checked using reference-equality to null, while the
rest is performed by accessing the runtime type of a value and comparing it to
the supplied runtime-available type.

For all generic types that are not expected to have RTTI for their generic
arguments, only “raw” variants of generic types (denoted in code using the
star-projected type notation or a special parameter-less notation) are runtime-
available.

Note: one may say that classifier generics are partially runtime
available due to them having information about only the classifier
part of the type

Exception types must be runtime-available to enable type checks that the catch
clause of try-expression performs.

Only non-nullable runtime types may be used in class literal expressions. These
include reified type parameters with non-nullable upper bounds, as well as all
classifier and function types.

15.2 Reflection
Particular platforms may provide more complex facilities for runtime type
introspection through the means of reflection — special platform-provided part
of the standard library that allows to access more detailed information about
types and declarations at runtime. It is, however, platform-specific and one must
refer to particular platform documentation for details.


	Runtime type information
	Runtime-available types
	Reflection


