
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 11

Overload resolution

Glossary
type(e)

Type of expression e

Introduction
Kotlin supports overloading for callables and properties, that is, the ability for
several callables (functions or function-like properties) or properties with the
same name to coexist in the same scope, with the compiler picking the most
suitable one when such entity is referenced. This section describes overload
resolution process in detail.

Note: most of this section explains the overload resolution process for
callables, as the overload resolution process for properties uses the
same framework. Important differences w.r.t. properties are covered
in the corresponding section.

Unlike many object-oriented languages, Kotlin does not have only regular class
methods, but also top-level functions, local functions, extension functions and
function-like values, which complicate the overload resolution process quite a
bit. Additionally, Kotlin has infix functions, operator and property overloading,
which add their own specifics to this process.

11.1 Basics

11.1.1 Receivers
Every function or property that is defined as a method or an extension has one

1

2 CHAPTER 11. OVERLOAD RESOLUTION

or more special parameters called receiver parameters. When calling such a
callable using navigation operators (. or ?.) the left hand side value is called
an explicit receiver of this particular call. In addition to the explicit receiver,
each call may indirectly access zero or more implicit receivers.

Implicit receivers are available in a syntactic scope according to the following
rules:

• Any receiver available in a scope is available in its downwards-linked scopes;
• In a classifier declaration scope (including object and companion object

declarations), the declared object is available as implicit this;
• In a classifier declaration scope (including object and companion object

declarations), the static callables of the declared object are available on a
phantom static implicit this;

• If a function or a property is an extension, this parameter of the extension
is also available inside the extension declaration;

• If a lambda expression has an extension function type, this argument
of the lambda expression is also available inside the lambda expression
declaration.

Important: a phantom static implicit this is a special receiver, which
is included in the receiver chain for the purposes of handling static
functions from enum classes. It may also be used on platforms to
handle their static-like entities, e.g., static methods on JVM platform.

The available receivers are prioritized in the following way:

• Receivers provided in the most inner scope have higher priority as ordered
w.r.t. link relation;

• The implicit this receiver has higher priority than phantom static implicit
this;

• The phantom static implicit this receiver has higher priority than the
current class companion object receiver;

• Current class companion object receiver has higher priority than any of
the superclass companion objects;

• Superclass companion object receivers are prioritized according to the
inheritance order.

Important: these rules mean implicit receivers are always totally
ordered w.r.t. their priority, as no two implicit receivers can have
the same priority.

Important: DSL-specific annotations (marked with kotlin.DslMarker
annotation) change the availability of implicit receivers in the
following way: for all types marked with a particular DSL-specific
annotation, only the highest priority implicit receiver is available in
a given scope.

The implicit receiver having the highest priority is also called the default implicit
receiver. The default implicit receiver is available in a scope as this. Other

11.1. BASICS 3

available receivers may be accessed using labeled this-expressions.

If an implicit receiver is available in a given scope, it may be used to call callables
implicitly in that scope without using the navigation operator.

For extension callables, the receiver used as the extension receiver parameter
is called extension receiver, while the implicit receiver associated with the
declaration scope the extension is declared in is called dispatch receiver. For a
particular callable invocation, any or both receivers may be involved, but, if an
extension receiver is involved, the dispatch receiver must be implicit.

Note: by definition, local extension callables do not have a dispatch
receiver, as they are declared in a statement scope.

Note: there may be situations in which the same implicit receiver is
used as both the dispatch receiver and the extension receiver for a
particular callable invocation, for example:

interface Y

class X : Y {
fun Y.foo() {} // `foo` is an extension for Y,

// needs extension receiver to be called

fun bar() {
foo() // `this` reference is both

// the extension and the dispatch receiver
}

}

fun <T> mk(): T = TODO()

fun main() {
val x: X = mk()
val y: Y = mk()

// y.foo()
// Error, as there is no implicit receiver
// of type X available

with (x) {
y.foo() // OK!

}
}

11.1.2 The forms of call-expression
Any function in Kotlin may be called in several different ways:

4 CHAPTER 11. OVERLOAD RESOLUTION

• A fully-qualified call without receiver: package.foo();
• A call with an explicit receiver: a.foo();
• An infix function call: a foo b;
• An overloaded operator call: a + b;
• A call without an explicit receiver: foo().

Although syntactically similar, there is a difference between the first two kinds
of calls: in the first case, package is a name of a Kotlin package, while in the
second case a is a value or a type.

For each of these cases, a compiler should first pick a number of overload
candidates, which form a set of possibly intended callables (overload candidate
set, OCS), and then choose the most specific function to call based on the types
of the function and the call arguments.

Important: the overload candidates are picked before the most
specific function is chosen.

11.1.3 Callables and invoke convention
A callable X for the purpose of this section is one of the following:

• Function-like callables:
– A function named X at its declaration site;
– A constructor of a type named X at its declaration site;
– Any of the above named Y at its declaration site, but imported into

the current scope using a renaming import as X.
• Property-like callables with an operator function invoke available as a

member or an extension in the current scope:
– A property named X at its declaration site;
– An object or a companion object named X at its declaration site;
– A companion object of a classifier type named X at its declaration

site;
– An enum entry named X at its declaration site;
– Any of the above named Y at its declaration site, but imported into

the current scope using a renaming import as X.

For property-like callables, a call X(Y0, . . . , YN) is an overloadable operator which
is expanded to X.invoke(Y0, . . . , YN). The call may contain type parameters,
named parameters, variable argument parameter expansion and trailing lambda
parameters, all of which are forwarded as-is to the corresponding invoke function.

The set of implicit receivers itself (denoted by this expression) may also be used
as a property-like callable using this as the left-hand side of the call expression.
As with normal property-like callables, this@A(Y0, . . . , YN) is an overloadable
operator which is expanded to this@A.invoke(Y0, . . . , YN).

A member callable is one of the following:

• a member function-like callable (including constructors);

11.2. BUILDING THE OVERLOAD CANDIDATE SET 5

• a member property-like callable with a member operator invoke.

An extension callable is one of the following:

• an extension function-like callable;
• a member property-like callable with an extension operator invoke;
• an extension property-like callable with a member operator invoke;
• an extension property-like callable with an extension operator invoke.

Informally: the mnemonic rule to remember this order is “functions
before properties, members before extensions”.

A local callable is any callable which is declared in a statement scope.

11.1.4 c-level partition
When calculating overload candidate sets, member callables produce the following
sets, considered separately, ordered by higher priority first:

• Member function-like callables;
• Member property-like callables.

Extension callables produce the following sets, considered separately, ordered by
higher priority first:

• Extension function-like callables;
• Member property-like callables with extension invoke;
• Extension property-like callables with member invoke;
• Extension property-like callables with extension invoke.

Let us define this partition of callables to overload candidate sets as c-level
partition (callable-level partition). As this partition is the most fine-grained
of all other steps of partitioning resolution candidates into sets, it is always
performed last, after all other applicable steps.

11.2 Building the overload candidate set

11.2.1 Fully-qualified call
If a call is fully-qualified (that is, it contains a complete package path), then
the overload candidate set S simply contains all the top-level callables with the
specified name in the specified package. As a package name can never clash with
any other declared entity, after performing c-level partition on S, the resulting
sets are the only ones available for further processing.

Example:

package a.b.c

fun foo(a: Int) {}

6 CHAPTER 11. OVERLOAD RESOLUTION

fun foo(a: Double) {}
fun foo(a: List<Char>) {}
val foo = {}
. . .
a.b.c.foo()

Here the resulting overload candidate set contains all the callables
named foo from the package a.b.c.

Important: a fully-qualified callable name has the form P.n(), where
n is a simple callable name and P is a complete package path refer-
encing an existing package.

11.2.2 Call with an explicit receiver
If a call is done via a navigation operator (. or ?.), but is not a fully-qualified
call, then the left hand side value of the call is the explicit receiver of this call.

A call of callable f with an explicit receiver e is correct if at least one of the
following holds:

1. f is an accessible member callable of the classifier type type(e) or any of
its supertypes;

2. f is an accessible extension callable of the classifier type type(e) or any
of its supertypes, including top-level, local and imported extensions.

3. f is an accessible static member callable of the classifier type e.

Important: callables for case 2 include not only regular extension
callables, but also extension callables from any of the available implicit
receivers. For example, if class P contains a member extension
function f for another class T and an object of class P is available as
an implicit receiver, extension function f may be used for such call if
T conforms to the type type(e).

If a call is correct, for a callable f with an explicit receiver e of type T the
following sets are analyzed (in the given order):

1. Non-extension member callables named f of type T;
2. Extension callables named f, whose receiver type U conforms to type T, in

the current scope and its upwards-linked scopes, ordered by the size of the
scope (smallest first), excluding the package scope;

• First, we assume there is no implicit receiver available for the
dispatch receiver of f (i.e., we analyze local extension callables only);

• Second, we consider each implicit receiver available for the dispatch
receiver of f in the order of the implicit receiver priority;

3. Explicitly imported extension callables named f, whose receiver type U
conforms to type T;

4. Extension callables named f, whose receiver type U conforms to type T,
declared in the package scope;

11.2. BUILDING THE OVERLOAD CANDIDATE SET 7

5. Star-imported extension callables named f, whose receiver type U conforms
to type T;

6. Implicitly imported extension callables named f (either from the Kotlin
standard library or platform-specific ones), whose receiver type U conforms
to type T.

Note: here type U conforms to type T, if T <: U .

There is a important special case here, however, as a callable may be a property-
like callable with an operator function invoke, and these may belong to different
sets (e.g., the property itself may be star-imported, while the invoke operator
on it is a local extension). In this situation, such callable belongs to the lowest
priority set of its parts (e.g., for the above case, priority 5 set).

Example: when trying to resolve between an explicitly imported
extension property (priority 3) with a member invoke (priority 1)
and a local property (priority 2) with a star-imported extension
invoke (priority 5), the first one wins (max(3, 1) < max(2, 5)).

When analyzing these sets, the first set which contains any applicable callable
is picked for c-level partition, which gives us the resulting overload candidate set.

Important: this means, among other things, that if the set constructed
on step Y contains the overall most suitable candidate function, but
the set constructed on step X < Y is not empty, the callables from set
X will be picked despite them being less suitable overload candidates.

After we have fixed the overload candidate set, we search this set for the most
specific callable.

Call with an explicit type receiver

A call with an explicit receiver may be performed not only on a value receiver,
but also on a type receiver.

Note: type receivers can appear when working with enum classes or
interoperating with platform-dependent code.

They mostly follow the same rules as calls with an explicit value receiver. However,
for a callable f with an explicit type receiver T the following sets are analyzed
(in the given order):

1. Static member callables named f of type T;
2. Static member callables named f of type T declared implicitly;
3. The overload candidate sets for call T.f(), where T is a companion object

of type T.

Call with an explicit super-form receiver

A call with an explicit receiver may be performed not only on a value receiver,
but also on a super-form receiver.

8 CHAPTER 11. OVERLOAD RESOLUTION

They mostly follow the same rules as calls with an explicit value receiver. However,
there are some differences which we outline below.

For a callable f with an explicit basic super-form receiver super in a classifier
declaration with supertypes A1, A2, . . . , AN the following sets are considered for
non-emptiness:

1. Non-extension member callables named f of type A1;
2. Non-extension member callables named f of type A2;
3. . . . ;

n. Non-extension member callables named f of type AN.

If at least two of these sets are non-empty, this is a compile-time error. Otherwise,
the non-empty set (if any) is analyzed as usual.

For a callable f with an explicit extended super-form receiver super<A> the
following sets are analyzed (in the given order):

1. Non-extension member callables named f of type A.

Additionally, in either case, abstract callables are not considered valid candidates
for the overload resolution process.

11.2.3 Infix function call
Infix function calls are a special case of function calls with explicit receiver in
the left hand side position, i.e., a foo b may be an infix form of a.foo(b).

However, there is an important difference: during the overload candidate set
construction the only callables considered for inclusion are the ones with the
infix modifier. This means we consider only function-like callables with infix
modifier and property-like callables with an infix operator function invoke.
All other callables are not considered for inclusion. Aside from this difference,
candidates are selected using the same rules as for normal calls with explicit
receiver.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for calls with explicit receiver.

Different platform implementations may extend the set of functions considered
as infix functions for the overload candidate set.

11.2.4 Operator call
According to the operator overloading section, some operator expressions in
Kotlin can be overloaded using definition-by-convention via specifically-named
functions. This makes operator expressions semantically equivalent to function
calls with explicit receiver, where the receiver expression is selected based on
the operator used.

11.2. BUILDING THE OVERLOAD CANDIDATE SET 9

However, there is an important difference: during the overload candidate set
construction the only functions considered for inclusion are the ones with the
operator modifier. All other functions (and any properties) are not considered
for inclusion. Aside from this difference, candidates are selected using the same
rules as for normal calls with explicit receiver.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for calls with explicit receiver.

Note: this also means that all the properties available through the
invoke convention are non-eligible for operator calls, as there is no
way of specifying the operator modifier for them; even though the
invoke callable is required to always have such modifier. As invoke
convention itself is an operator call, it is impossible to use more than
one invoke convention in a single call.

Different platform implementations may extend the set of functions considered
as operator functions for the overload candidate set.

Note: these rules are valid not only for dedicated operator expres-
sions, but also for other operator-based defined-by-convention calls,
e.g., for-loop iteration conventions, operator-form assignments or
property delegation.

11.2.5 Call without an explicit receiver
A call which is performed with a simple path is a call without an explicit
receiver. As such, it may either have one or more implicit receivers or reference
a top-level function.

Note: this case does not include calls using the invoke operator
function where the left-land side of the call is not an identifier, but
some other kind of expression (as this is not a simple path). These
cases are handled the same way as operator calls and need no further
special treatment.

Example:

fun foo(a: Foo, b: Bar) {
(a + b)(42)
// Such a call is handled as if it is
// (a + b).invoke(42)

}

As with calls with explicit receiver, we first pick an overload candidate set and
then search this set for the most specific function to match the call.

For an identifier named f the following sets are analyzed (in the given order):

1. Local non-extension callables named f in the current scope and its upwards-
linked scopes, ordered by the size of the scope (smallest first), excluding

10 CHAPTER 11. OVERLOAD RESOLUTION

the package scope;
2. The overload candidate sets for each pair of implicit receivers e and d

available in the current scope, calculated as if e is the explicit receiver, in
order of the receiver priority;

3. Top-level non-extension functions named f, in the order of:
a. Callables explicitly imported into the current file;
b. Callables declared in the same package;
c. Callables star-imported into the current file;
d. Implicitly imported callables (either from the Kotlin standard library

or platform-specific ones).

Similarly to how it works for calls with explicit receiver, a property-like callable
with an invoke function belongs to the lowest priority set of its parts.

When analyzing these sets, the first set which contains any callable with the
corresponding name and conforming types is picked for c-level partition, which
gives us the resulting overload candidate set.

After we have fixed the overload candidate set, we search this set for the most
specific callable.

11.2.6 Call with named parameters
Calls in Kotlin may use named parameters in call expressions, e.g., f(a = 2),
where a is a parameter specified in the declaration of f. Such calls are treated
the same way as normal calls, but the overload resolution sets are filtered to only
contain callables which have matching formal parameter names for all named
parameters from the call.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for the respective type of call.

Note: for properties called via invoke convention, the named pa-
rameters must be present in the declaration of the invoke operator
function.

Unlike positional arguments, named arguments are matched by name directly to
their respective formal parameters; this matching is performed separately for
each function candidate.

While the number of defaults does affect resolution process, the fact that some
argument was or was not mapped as a named argument does not affect this
process in any way.

11.2.7 Call with trailing lambda expressions
A call expression may have a single lambda expression placed outside of the
argument list or even completely replacing it (see this section for further details).
This has no effect on the overload resolution process, aside from the argument

11.3. DETERMINING FUNCTION APPLICABILITY FOR A SPECIFIC CALL11

reordering which may happen because of variable length parameters or parameters
with defaults.

Example: this means that calls f(1, 2) { g() } and f(1, 2, body
= { g() }) are completely equivalent w.r.t. the overload resolution,
assuming body is the name of the last formal parameter of f.

11.2.8 Call with specified type parameters
A call expression may have a type argument list explicitly specified before the
argument list (see this section for further details). Such calls are treated the same
way as normal calls, but the overload resolution sets are filtered to only contain
callables which contain exactly the same number of formal type parameters at
declaration site. In case of a property-like callable with invoke, type parameters
must be present at the invoke operator function declaration instead.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for the respective type of call.

11.3 Determining function applicability for a
specific call

11.3.1 Rationale
A function is applicable for a specific call if and only if the function parameters
may be assigned the arguments values specified at the call site and all type
constraints of the function type parameters hold w.r.t. supplied or inferred type
arguments.

11.3.2 Description
Determining function applicability for a specific call is a type constraint problem.

First, for every non-lambda argument of the function called, type inference is
performed. Lambda arguments are excluded, as their type inference needs the
results of overload resolution to finish.

Second, the following constraint system is built:

• For every non-lambda argument inferred to have type Ti, corresponding to
the function parameter of type Uj , a constraint Ti <: Uj is constructed;

• All declaration-site type constraints for the function are also added to the
constraint system;

• For every lambda argument with the number of lambda arguments known
to be K, corresponding to the function parameter of type Um, a special con-
straint of the form (FT(L1, . . . , LK) → R & FTR(RT, L1, . . . , Ln) → R) <:
Um is added to the constraint system, where R, RT, L1, . . . , LK are fresh
type variables;

12 CHAPTER 11. OVERLOAD RESOLUTION

• For each lambda argument with an unknown number of lambda
arguments (that is, being equal to 0 or 1), corresponding to the
function parameter of type Un, a special constraint of the form
(FT() → R & FT(L) → R & FTR(RT) → R & FTR(RT, L) → R) <: Um

is added to the constraint system, where R, RT, L are fresh type variables;

If this constraint system is sound, the function is applicable for the call. Only
applicable functions are considered for the next step: choosing the most specific
candidate from the overload candidate set.

Receiver parameters are handled in the same way as other parameters in this
mechanism, with one important exception: any receiver of type kotlin.Nothing
is deemed not applicable for any member callables, regardless of other parameters.
This is due to the fact that, as kotlin.Nothing is the subtype of any other
type in Kotlin type system, it would have allowed all member callables of all
available types to participate in the overload resolution, which is theoretically
possible, but very resource-consuming and does not make much sense from the
practical point of view. Extension callables are still available, because they are
limited to the declarations available or imported in the current scope.

Note: although it is impossible to create a value of type
kotlin.Nothing directly, there may be situations where performing
overload resolution on such value is necessary; for example,
it may occur when doing safe navigation on values of type
kotlin.Nothing?.

11.4 Choosing the most specific candidate from
the overload candidate set

11.4.1 Rationale
The main rationale for choosing the most specific candidate from the overload
candidate set is the following:

The most specific callable can forward itself to any other callable
from the overload candidate set, while the opposite is not true.

If there are several functions with this property, none of them are the most
specific and an overload resolution ambiguity error should be reported by the
compiler.

Consider the following example.

fun f(arg: Int, arg2: String) {} // (1)
fun f(arg: Any?, arg2: CharSequence) {} // (2)
...
f(2, "Hello")

11.4. CHOOSING THE MOST SPECIFIC CANDIDATE FROM THE OVERLOAD CANDIDATE SET13

Both functions (1) and (2) are applicable for the call, but function (1) could
easily call function (2) by forwarding both arguments into it, and the reverse is
impossible. As a result, function (1) is more specific of the two.

fun f1(arg: Int, arg2: String) {
f2(arg, arg2) // VALID: can forward both arguments

}
fun f2(arg: Any?, arg2: CharSequence) {

f1(arg, arg2) // INVALID: function f1 is not applicable
}

The rest of this section will describe how the Kotlin compiler checks for this
property in more detail.

11.4.2 Algorithm of MSC selection
When an overload resolution set S is selected and it contains more than one
callable, we need to choose the most specific candidate from these callables. The
selection process uses the type constraint facilities of Kotlin, in a way similar to
the process of determining function applicability.

For every two distinct members of the candidate set F1 and F2, the following
constraint system is constructed and solved:

• For every non-default argument of the call and their corresponding
declaration-site parameter types X1, . . . , XN of F1 and Y1, . . . , YN of F2, a
type constraint XK <: YK is built unless both XK and YK are built-in
integer types. If both XK and YK are built-in integer types, a type
constraint Widen(XK) <: Widen(YK) is built instead, where Widen is the
integer type widening operator. During construction of these constraints,
all declaration-site type parameters T1, . . . , TM of F1 are considered bound
to fresh type variables T ∼

1 , . . . , T ∼
M , and all type parameters of F2 are

considered free;
• If F1 and F2 are extension callables, their extension receivers are also

considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

• All declaration-site type constraints of X1, . . . , XN and Y1, . . . , YN are also
added to the constraint system.

Note: this constraint system checks whether F1 can forward itself to
F2.

If the resulting constraint system is sound, it means that F1 is equally or more
applicable than F2 as an overload candidate (aka applicability criteria). The
check is then repeated with F1 and F2 swapped.

This check may result in one of the following outcomes:

14 CHAPTER 11. OVERLOAD RESOLUTION

1. Only one of the two candidates is more applicable than the other;
2. Neither of the two candidates is more applicable than the other;
3. Both F1 and F2 are more applicable than the other.

In case 1, the more applicable candidate of the two is found and no additional
steps are needed.

In case 2, an additional step is performed.

• Any non-parameterized callable is a more specific candidate than any
parameterized callable; If there are several non-parameterized candidates,
further steps are limited to those candidates.

In case 3, several additional steps are performed in order.

• Any non-parameterized callable is a more specific candidate than any pa-
rameterized callable (same as case 2). If there are several non-parameterized
candidates, further steps are limited to those candidates;

• For each candidate we count the number of default parameters not specified
in the call (i.e., the number of parameters for which we use the default
value). The candidate with the least number of non-specified default
parameters is a more specific candidate;

• For all candidates, the candidate having any variable-argument parameters
is less specific than any candidate without them.

Note: it may seem strange to process built-in integer types in a
way different from other types, but it is needed for cases when the
call argument is an integer literal with an integer literal type. In
this particular case, several functions with different built-in integer
types for the corresponding parameter may be applicable, and the
kotlin.Int overload is selected to be the most specific.

Important: compiler implementations may extend these steps with
additional checks, if they deem necessary to do so.

If after these additional steps there are still several candidates which are equally
applicable for the call, we may attempt to use the lambda return type to refine
function applicability. If there are still more than one most specific candidate
afterwards, this is an overload ambiguity which must be reported as a compile-
time error.

Note: unlike the applicability test, the candidate comparison con-
straint system is not based on the actual call, meaning that, when
comparing two candidates, only constraints visible at declaration site
apply.

If the callables in check are properties with available invoke, the same process
is applied in two steps:

• First, the properties are compared for applicability and the most applicable
property is chosen as described above. If several properties are equally

11.4. CHOOSING THE MOST SPECIFIC CANDIDATE FROM THE OVERLOAD CANDIDATE SET15

applicable, this is an overload ambiguity as usual;
• Second, for the property selected at first step, the most applicable operator

invoke overload is chosen.

11.4.3 Using lambda return type to refine function appli-
cability

If the most specific candidate set C is ambiguous (has more than one callable) and
contains at least one callable marked with kotlin.OverloadResolutionByLambdaReturnType,
several additional checks and steps are performed to reduce it, by attempting to
infer a single lambda return type and use it to refine function applicability.

First, we perform the following checks.

1. We check if the function call contains exactly one lambda argument A
which requires type inference (which does not have an explicitly defined
type).

2. For every function in C we collect parameters Pi corresponding to argument
A and check their function types Ti to be structurally equal excluding
return types (SEERT).

Informally: SEERT checks whether function types have the exactly
same input parameters.

Examples: the following two function types are considered SEERT.

• (Int, String) -> Int
• (Int, String) -> Double

The following two function types are not considered SEERT.

• Int.(String) -> Int
• (Int, String) -> Double

If all checks succeed, we can perform the type inference for the lambda argument
A, as in all cases its parameter types are known (corollary from check 2 succeeding)
and their corresponding constraints can be added to the constraint system. The
constraint system solution gives us the inferred lambda return type Rinf, which
may be used to refine function applicability, by removing overload candidates
with incompatible lambda return types.

This is performed by repeating the function applicability test on the most
specific candidate set C, with the additional constraint R ≡ Rinf added for the
corresponding lambda argument A. Candidates which remain applicable with
this additional constraint are added to the refined set C ′.

Note: If any of the checks described above fails, we continue with
the set C ′ = C.

If set C ′ contains more than one candidate, we attempt to prefer candidates with-
out kotlin.OverloadResolutionByLambdaReturnType annotation. If there

16 CHAPTER 11. OVERLOAD RESOLUTION

are any, they are included in the resulting most specific candidate set Cres, with
which we finish the MSC selection. Otherwise, we finish the MSC selection with
the set C ′.

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testOk01() {
foo { 42 }
// Both (1) and (2) are applicable
// (2) is preferred by the lambda return type

}

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: Unit.() -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testError01() {
val take = Unit
// Overload ambiguity
foo { 42 }
// Both (1) and (2) are applicable
// None is preferred by the lambda return type
// as their parameters are not SEERT

}

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: Unit.() -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testOk02() {
val take = Unit
foo { a -> 42 }
// Only (2) is applicable
// as its lambda takes one parameter

}

11.5. RESOLVING PROPERTY ACCESS 17

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> CharSequence) = Unit // (2)

fun testError02() {
// Error: required String, found CharSequence
foo { a ->

val a: CharSequence = "42"
a

}
// Both (1) and (2) are applicable
// (1) is the only most specific candidate
// We do not attempt refinement by the lambda return type

}

11.5 Resolving property access
As properties in Kotlin can have custom getters and setters, be extension or
delegated, they are also subject to overload resolution. Overload resolution for
property access works similarly to how it works for callables, i.e., it consists of
two steps: building the overload candidate set of applicable candidates, and then
choosing the most specific candidate from the overload candidate set.

Important: this section concerns only properties accessed using prop-
erty access syntax a.x or just x without call suffix. If a property is
accessed with a call suffix, it is treated as any other callable and is
required to have a suitable invoke overload available, see the rest of
this part for details

There are two variants of property access syntax: read-only property access and
property assignment.

Note: there is also safe navigation syntax for both assignment and
read-only access, but that is expanded to non-safe navigation syntax
covered by this section. Please refer to corresponding sections for
details.

Read-only property access a.x is resolved the same way as if the property access
in question was a special function call a.x$get() and each property val/var x:
T was replaced with corresponding function fun x$get(): T having all the same
extension receivers, context receivers, type parameters and scope as the original
property and providing direct access to the property getter. For different flavors
of property declarations and getters, refer to corresponding section. Please

18 CHAPTER 11. OVERLOAD RESOLUTION

note that this excludes any possibility to employ invoke-convention as these
ephemeral functions cannot be properties themselves.

Example: one may consider property access in class A to be resolved
as if it has been transformed to class AA.

class A {
val a: Int = 5 // (1)

val Double.a: Boolean // (2)
get() = this != 42.0

fun test() {

println(a) // Resolves to (1)

with(42.0) {
println(this@A.a) // Resolves to (1)
println(this.a) // Resolves to (2)
println(a) // Resolves to (2)

}
}

}

class AA {
fun a$get(): Int = 5 // (1)

fun Double.a$get(): Boolean // (2)
= this != 42.0

fun test() {

println(a$get()) // Resolves to (1)

with(42.0) {
println(this@AA.a$get()) // Resolves to (1)
println(this.a$get()) // Resolves to (2)
println(a$get()) // Resolves to (2)

}
}

}

Property assignment a.x = y is resolved the same way as if it was replaced with
a special function call a.x$set(y) and each property var/val x: T was re-
placed with a corresponding function fun x$set(value: T) having all the same
extension receiver parameters, context receiver parameters, type parameters and
scope as the original property and providing direct access to the property setter.
For different flavors of property declarations and setters, refer to corresponding

11.5. RESOLVING PROPERTY ACCESS 19

section. Please note that, although a read-only property declaration (using the
keyword val) does not allow for assignment or having a setter, it still takes part
in overload resolution for property assignment and may still be picked up as a
candidate. Such a candidate (in case it is selected as the final candidate) will
result in compiler error at later stages of compilation.

Note: informally, one may look at property assignment resolution
as a sub-kind of read-only property resolution described above, first
resolving the property as if it was accessed in a read-only fashion,
and then using the setter. Read-only property access and property
assignment syntax used in the same position never resolve to different
property candidates

Example: one may consider property access in class B to be resolved
as if it has been transformed to class BB. Declaration bodies for
ephemeral functions are omitted to avoid confusion

class B {
var b: Int = 5 // (1)

val Double.b: Int // (2)
get() = this.toInt()

fun test() {
b = 5 // Resolves to (1)

with(42.0) {
// Resolves to (1)
this@B.b = 5
// Resolves to (2) and compiler error: cannot assign read-only property
this.b = 5
// Resolves to (2) and compiler error: cannot assign read-only property
b = 5

}
}

}

class BB {
fun b$get(): Int // (1, getter)
fun b$set(value: Int) // (1, setter)

fun Double.b$get(): Int // (2, getter)
fun Double.b$set(value: Int) // (2, setter)

fun test() {
b$set(5) // Resolves to (1)

with(42.0) {

20 CHAPTER 11. OVERLOAD RESOLUTION

// Resolves to (1)
this@B.b$set(5)
// Resolves to (2)
this.b$set(5)
// Resolves to (2)
this.b$set(5)

}
}

}

The overload resolution for properties has the following features distinct from
overload resolution for callables.

• Properties without getter or setter are assumed to have default implemen-
tations for accessors (ones which get or set its backing field);

• The overload resolution takes into account the kind of property, meaning
an extension read-only property is considered to have an extension getter,
an extension mutable property is considered to have an extension getter
and setter, etc.;

• Object declarations and enumeration entries may be accessed using the
property access syntax given that they may be resolved in the current
scope.

11.6 Resolving callable references
Callable references introduce a special case of overload resolution which is
somewhat similar to how regular calls are resolved, but different in several
important aspects.

First, property and function references are treated equally, as both kinds of
references have a type which is a subtype of a function type. Second, the type
information needed to perform the resolution steps is acquired from expected type
of the reference itself, rather than the types of arguments and/or result. The
invoke operator convention does not apply to callable reference candidates.
Third, and most important, is that, in the case of a call with a callable reference
as a parameter, the resolution is bidirectional, meaning that both the callable
being called and the callable being referenced are to be resolved simultaneously.

11.6.1 Resolving callable references not used as arguments
to a call

In a simple case when the callable reference is not used as an argument to an
overloaded call, its resolution is performed as follows:

• For each callable reference candidate, we perform the following steps:
– We build its type constraints and add them to the constraint system

of the expression the callable reference is used in;

11.6. RESOLVING CALLABLE REFERENCES 21

– A callable reference is deemed applicable if the constraint system is
sound;

• For all applicable candidates, the resolution sets are built according to the
same rules as building OCS for regular calls;

• If the highest priority set contains more than one callable, this is an
overload ambiguity and should be reported as a compile-time error.

• Otherwise, the single callable in the set is chosen as the result of the
resolution process.

Note: this is different from the overload resolution for regular calls in
that no most specific candidate selection process is performed inside
the sets

Important: when the callable reference resolution for T::f requires
building overload candidate sets for both type and value receiver
candidates, they are considered in the following order.

1. Static member callables named f of type T;
2. The overload candidate sets for call t::f, where t is a value of

type T;
3. The overload candidate sets for call T::f, where T is a companion

object of type T.

Callable references to members of companion objects are deprioritized,
as you could always use the T.Companion::f syntax to reference
them.

Important: when building the OCS for a callable reference, invoke
operator convention does not apply, and all property references are
treated equally as function references, being placed in the same sets.
For example, consider the following code:

fun foo() = 1
val foo = 2
...
val y = ::foo

Here both function foo and property foo are valid candidates for
the callable reference and are placed in the same candidate set, thus
producing an overload ambiguity. It is not important whether there
is a suitable invoke operator available for the type of property foo.

Example: consider the following two functions:

fun foo(i: Int): Int = 2 // (1)
fun foo(d: Double): Double = 2.0 // (2)

In the following case:

val x: (Int) -> Int = ::foo

22 CHAPTER 11. OVERLOAD RESOLUTION

candidate (1) is picked, because (assuming CRT is the type of
the callable reference) the constraint CRT <: FT(kotlin.Int) →
kotlin.Int is built and only candidate (1) is applicable w.r.t. this
constraint.

In another case:

fun bar(f: (Double) -> Double) {}

bar(::foo)

candidate (2) is picked, because (assuming CRT is the type of the
callable reference) the constraint CRT <: FT(kotlin.Double) →
kotlin.Double is built and only candidate (2) is applicable w.r.t.
this constraint.

Please note that no bidirectional resolution is performed here as there
is only one candidate for bar. If there were more than one candidate,
the bidirectional resolution process would apply, possibly resulting
in an overload resolution failure.

11.6.2 Bidirectional resolution for callable calls
If a callable reference (or several callable references) is itself an argument to an
overloaded function call, the resolution process is performed for both callables
simultaneously.

Assume we have a call f(::g, b, c).

1. For each overload candidate f, a separate overload resolution process is
completed as described in other parts of this section, up to the point of
picking the most specific candidate. During this process, the only constraint
for the callable reference ::g is that it is an argument of a function type;

2. For the most specific candidate f found during the previous step, the
overload resolution process for ::g is performed as described here and the
most specific candidate for ::g is selected.

Note: this may result in selecting the most specific candidate for f
which has no available candidates for ::g, meaning the bidirectional
resolution process fails when resolving ::g.

When performing bidirectional resolution for calls with multiple callable reference
arguments, the algorithm is exactly the same, with each callable reference resolved
separately in step 2. This ensures the overload resolution process for every callable
being called is performed only once.

11.7 Type inference and overload resolution
Type inference in Kotlin is a very complicated process, and it is performed

11.8. CONFLICTING OVERLOADS 23

after overload resolution is done; meaning type inference may not affect the way
overload resolution candidate is picked in any way.

Note: if we had allowed interdependence between type inference and
overload resolution, we would have been able to create an infinitely
oscillating behaviour, leading to an infinite compilation.

Important: an exception to this limitation is when a lambda return
type is used to refine function applicability. By limiting the scope of
interdependence between type inference and overload resolution to a
single step, we avoid creating an oscillating behaviour.

11.8 Conflicting overloads
In cases when it is known two callables are definitely interlinked in overload
resolution (e.g., two member function-like callables declared in the same classifier),
meaning they will always be considered together for overload resolution, Kotlin
compiler performs conflicting overload detection for such callables.

Two callables f and g are definitely interlinked in overload resolution, if the
following are true.

• f is not overriding g (and vice versa);
• f and g belong to the same level of c-level partition;
• f and g are declared in the same scope.

Different platform implementations may extend which callables are considered
as definitely interlinked.

Two definitely interlinked callables f and g may create a overload conflict, if
they could result in an overload ambiguity on most regular call sites.

To check whether such situation is possible, we compare f and g w.r.t. their
applicability for a phantom call site with a fully specified argument list (i.e.,
with no used default arguments). If both f and g are equally or more specific
to each other and neither of them is selected by the additional steps of MSC
selection, we have an overload conflict.

Different platform implementations may extend which callables are considered
as conflicting overloads.

24 CHAPTER 11. OVERLOAD RESOLUTION

	Overload resolution
	Glossary
	Introduction
	Basics
	Receivers
	The forms of call-expression
	Callables and invoke convention
	c-level partition

	Building the overload candidate set
	Fully-qualified call
	Call with an explicit receiver
	Infix function call
	Operator call
	Call without an explicit receiver
	Call with named parameters
	Call with trailing lambda expressions
	Call with specified type parameters

	Determining function applicability for a specific call
	Rationale
	Description

	Choosing the most specific candidate from the overload candidate set
	Rationale
	Algorithm of MSC selection
	Using lambda return type to refine function applicability

	Resolving property access
	Resolving callable references
	Resolving callable references not used as arguments to a call
	Bidirectional resolution for callable calls

	Type inference and overload resolution
	Conflicting overloads

