
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 9

Operator overloading

Some syntax forms in Kotlin are defined by convention, meaning that their
semantics are defined through syntactic expansion of one syntax form into
another syntax form.

Particular cases of definition by convention include:

• Arithmetic and comparison operators;
• invoke convention;
• Operator-form assignments;
• For-loop statements;
• Delegated properties;
• Destructuring declarations.

Important: another case of definition by convention is safe navigation,
which is covered in more detail in its respective section.

There are several points shared among all the syntax forms defined using definition
by convention:

• The expansions are hygienic: if they introduce new identifiers that were not
present in original syntax, all such identifiers are not accessible outside the
expansion and cannot clash with any other declarations in the program;

• The expressions captured by an expansion are using call-by-need evaluation
strategy, meaning that they are evaluated only once during first usage
specified in the expansion even if the expansion itself has more than one
usage of such an expression;

• An expansion may lead to another expansion, following the same rules;
• All call expressions that are produced by expansion are only allowed to

use operator functions.

This expansion of a particular syntax form to a different piece of code is usually
defined in the terms of operator functions.

1

2 CHAPTER 9. OPERATOR OVERLOADING

Operator functions are function which are declared with a special keyword
operator and are not different from regular functions when called via function
calls. However, operator functions can also be used in definition by convention.

Note: it is not important whether an operator function is a member
or an extension, nor whether it is suspending or not. The only
requirements are the ones listed in the respected sections.

For example, for an operator form a + b where a is of type A and b
is of type B any of the following function definitions are applicable:

class A {
// member function
operator fun plus(b: B) = ...
// suspending member function
suspend operator fun plus(b: B) = ...

}

// extension function
operator fun A.plus(b: B) = ...
// suspending extension function
suspend operator fun A.plus(b: B) = ...

Assuming additional implicit receiver of this type is available, it may
also be an extension defined in another type:

object Ctx {
// extension that is a member of some context type
operator fun A.plus(b: B) = ...

fun add(a: A, b: B) = a + b
}

Note: different platforms may add additional criteria on whether a
function may be considered a suitable candidate for operator conven-
tion.

The details of individual expansions are available in the sections of their respective
operators, here we would like to describe how they interoperate.

For example, take the following declarations:

class A {
operator fun inc(): A { ... }

}

object B {
operator fun get(i: Int): A { ... }
operator fun set(i: Int, value: A) { ... }

}

9.1. DESTRUCTURING DECLARATIONS 3

object C {
operator fun get(i: Int): B { ... }

}

The expression C[0][0]++ is expanded (see the Expressions section for details)
using the following rules:

• The operations are expanded in order of their priority.

• First, the increment operator is expanded, resulting in:

C[0][0] = C[0][0].inc()

• Second, the assignment to an indexing expression (produced by the previous
expansion) is expanded, resulting in:

C[0].set(C[0][0].inc())

• Third, the indexing expressions are expanded, resulting in:

C.get(0).set(C.get(0).get(0).inc())

Important: although the resulting expression contains several in-
stances of the subexpression C.get(0), as all these instances were
created from the same original syntax form, the subexpression is
evaluated only once, making this code roughly equivalent to:

val $tmp = C.get(0)
$tmp.set($tmp.get(0).inc())

9.1 Destructuring declarations
A special case of definition by convention is the destructuring declaration of
properties, which is available for local properties, parameters of lambda literals
and the iteration variable of for-loops. See the corresponding sections for
particular syntax.

This convention allows to introduce a number (one or more) of properties in
the place of one by immediately destructuring the property during construction.
The immediate value (that is, the initializing expression of the local property,
the value acquired from the operator convention of a for-loop statement, or an
argument passed into a lambda body) is assigned to a number of placeholders
p0, . . . , pN where each placeholder is either an identifier or a special ignoring
placeholder _ (note that _ is not a valid identifier in Kotlin). For each identifier
the corresponding operator function componentK with K being equal to the
position of the placeholder in the declaration (starting from 1) is called
without arguments and the result is assigned to a fresh value referred to as the
identifier used. For each ignoring placeholder, no calls are performed and nothing
is assigned. Each placeholder may be provided with an optional type signature

4 CHAPTER 9. OPERATOR OVERLOADING

TM which is used in type inference as any property type would. Note that an
ignoring placeholder may also be provided with a type signature, in which case
although the call to corresponding componentM function is not performed, it still
must be checked for function applicability during type inference.

Examples:

val (x: A, _, z) = f()

is expanded to

val $tmp = f()
val x: A = $tmp.component1()
val z = $tmp.component3()

where component1 and component3 are suitable operator functions
available on the value returned by f()

for((x: A, _, z) in f()) { ... }

is expanded to (as per for-loop expansion)

when(val $iterator = f().iterator()) {
else -> while ($iterator.hasNext()) {

val $tmp = $iterator.next()
val x: A = $tmp.component1()
val z = $tmp.component3()
...

}
}

where iterator(), next(), hasNext(), component1() and
component3 are all suitable operator functions available on their
respective receivers.

foo { (x: A, _, z) -> ... }

is expanded to

foo { $tmp ->
val x: A = $tmp.component1()
val z = $tmp.component3()
...

}

where component1() and component3 are all suitable operator func-
tions available on the value of lambda argument.

	Operator overloading
	Destructuring declarations

