
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 13

Kotlin type constraints

Some complex tasks that need to be solved when compiling Kotlin code are
formulated best using constraint systems over Kotlin types. These are solved
using constraint solvers.

13.1 Type constraint definition
A type constraint in general is an inequation of the following form: T <: U where
T and U are concrete Kotlin types. As Kotlin has parameterized types, T and
U may be free type variables: unknown types which may be substituted by any
other type in Kotlin.

Please note that, in general, not all type parameters are considered as free type
variables in a constraint system. Some type variables may be fixed in a constraint
system; for example, type parameters of a parameterized class inside its body
are unknown types, but are not free type variables either. A fixed type variable
describes an unknown, but fixed type which is not to be substituted.

We will use the notation Ti for a type variable and T̃i for a fixed type variable.
The main difference between fixed type variables and concrete types is that
different concrete types may not be equal, but a fixed type variable may be equal
to another fixed type variable or a concrete type.

Examples of valid type constraints:

• List<X̃> <: Y
• List<X̃> <: List<List<Int>>
• X̃ <: Y

Every constraint system has general implicit constraints Tj <: kotlin.Any? and
kotlin.Nothing <: Tj for every type Tj mentioned in the system, including
type variables.

1



2 CHAPTER 13. KOTLIN TYPE CONSTRAINTS

13.2 Type constraint solving
There are two tasks which a type constraint solver may perform: checking
constraint system for soundness, i.e., if a solution exists, and solving constraint
system, i.e., inferring a satisfying substitution of concrete types for all free type
variables.

Checking a constraint system for soundness can be viewed as a much simpler
case of solving that constraint system: if there is a solution, the system is sound,
meaning there are only two possible outcomes. Solving a constraint system, on
the other hand, may have multiple possible outcomes, as there may be multiple
valid solutions.

Example: constraint systems which are sound yet no relevant solu-
tions exist.

• X <: Y
• List<X> <: Collection<X>

13.2.1 Checking constraint system soundness
Checking constraint system soundness is a satisfiability problem. That is, given
a number of constraints in the form S <: T containing zero or more free type
variables (also called inference type variables), it needs to determine if these
constraints are non-contradictory, i.e., if there exists a possible instantiation of
these free variables to concrete types which makes all given constraints valid.

This problem can be reduced to finding a set of lower and upper bounds for
each of these variables and determining if these bounds are non-contradictory.
The algorithm of finding these bounds is implementation-defined and is not
guaranteed to prove the satisfiability of given constraints in all possible cases.

A sample bound inference algorithm

The algorithm given in this section is just an example of a family of algorithms
that may be applied to the problem given above. A particular implementation
is not guaranteed to follow this algorithm, but one may use it as a reference on
how this problem may be approached.

Note: a well-informed reader may notice this algorithm to be similar
to the one used by Java. This is not a coincidence: our sample
inference algorithm has indeed been inspired by Java’s.

The algorithm works in two phases: reduction and incorporation which are
applied to the constraint system and its current solution in turns until a fixpoint
or an error is reached (aka reduction-incorporation procedure or RIP). The
reduction phase is used to produce bounds for inference variables based on
constraints; this phase is also responsible for eliminating the constraints which



13.2. TYPE CONSTRAINT SOLVING 3

are no longer needed. The incorporation phase is used to introduce new bounds
and constraints from existing bounds.

A bound is similar to a constraint in that it has the form S <: T , at least one of
S or T is an inference variable. Thus, the current (and also the final) solution is
a set of upper and lower bounds for each inference variable. A resolved type in
this context is any type which does not contain inference variables.

Reduction phase: for each constraint S <: T in the constraint system the
following rules are applied:

• If S and T are resolved types and:
– If S <: T , this constraint is eliminated;
– Otherwise, this is an inference error;

• Otherwise, if S is an inference variable α, a new bound α <: T is added to
current solution;

• Otherwise, if T is an inference variable β, a new bound S <: β is added to
current solution;

• Otherwise, if S is a flexible type of the form (α..α?) where α is an inference
variable, a new bound α <: (T..T?) is added to current solution;

• Otherwise, if T is a flexible type of the form (α..α?) where α is an inference
variable, a new bound (S..S?) <: α is added to current solution;

• Otherwise, if S is a nullable type of the form A? and:
– If T is a known non-nullable type (a classifier type, a nullability-

asserted type B!!, a type variable with a known non-nullable lower
bound, or an intersection type containing a known non-nullable type),
this is an inference error;

– Otherwise, the constraint is reduced to A <: T . Also, if T is also a
nullable type of the form B?, an additional constraint A!! <: B is
introduced;

• Otherwise, if S is a flexible type of the form (B..A?) and:
– If T is a nullable type of form C?, the constraint is reduced to

(B..A) <: C, or to A <: C if A ≡ B;
– Otherwise, the constraint is reduced to (B..A) <: T , or to A <: T if

A ≡ B;
• Otherwise, if T is a parameterized type G[A1, . . . , AN ], among all super-

types of S the one of the form G[B1, . . . , BN ] is chosen.
– If no such supertype exists, this is an inference error;
– Otherwise, for each M ∈ [1, N ], a type argument constraint for

containment AM ⪯ BM is introduced (see below);
• Otherwise, if T is any other classifier type and T is among supertypes for

S, the constraint is eliminated; otherwise, this is an inference error;
• Otherwise, if T is a type variable and:

– If S is an intersection type containing T , this constraint is eliminated;
– Otherwise, if T has a lower bound B, the constraint is reduced to

S <: B;
– Otherwise, this is an inference error;



4 CHAPTER 13. KOTLIN TYPE CONSTRAINTS

• Otherwise, if T is an intersection type A1 & . . . & AN , the constraint is
reduced to N constraints S <: AM for each M ∈ [1, N ];

• Otherwise, if T is a nullable type of the form B? and:
– If S is a known non-nullable type (a classifier type, a nullability-

asserted type A!!, a type variable with a known non-nullable lower
bound, or an intersection type containing a known non-nullable type),
the constraint is reduced to S <: B;

– Otherwise, this is an inference error.

Type argument constraints for a containment relation Q ⪯ F are constructed as
follows:

Important: for the purposes of this algorithm, declaration-site vari-
ance type arguments are considered to be their equivalent use-site
variance versions.

• If either Q or F is a special bivariant type argument ⋆, no constraints are
produced;

• If F has the form F ′ (is invariant):
– If Q is also invariant and of the form Q′, two constraints are produced:

F ′ <: Q′ and Q′ <: F ′;
– If Q has any other variance, this is an inference error;

• If F has the form out F ′ (is covariant):
– If Q has the form out Q′ or Q′, the following constraint is produced:

Q′ <: F ′;
– If Q has the form in Q′, the following constraint is produced:

kotlin.Any? <: F ′;
• If F has the form in F ′ (is contravariant):

– If Q has the form in Q′ or Q′, the following constraint is produced:
F ′ <: Q′;

– If Q has the form out Q′, the following constraint is produced: F ′ <:
kotlin.Nothing.

Incorporation phase: for each bound and particular bound combinations
in the current solution, new constraints are produced as follows (it is safe to
assume that each constraint is introduced into the system only once, so if this
step produces constraints that have already been reduced, they are not added
into the system):

• For each inference variable α, for each pair of bounds S <: α and α <: T ,
a new constraint is produced: S <: T ;

• For each inference variable α, if there is a pair of bounds S <: α and
α <: S (i.e., α is equivalent to S), for each bound Q <: P where Q or P
contains α, a new constraint is produced: Q[α := S] <: P [α := S];

• For each inference variable α, for each pair of bounds α <: S and α <: T
where S has a supertype of the form G[A1, . . . , AN ] and T has a matching
supertype of the form G[B1, . . . , BN ], for each matching supertype G and
each M ∈ [1, N ], if both AM and BM are invariant and have forms A′

M and



13.2. TYPE CONSTRAINT SOLVING 5

B′
M respectively, the following new constraints are produced: A′

M <: B′
M

and B′
M <: A′

M .

13.2.2 Finding optimal constraint system solution
As any constraint system may have multiple valid solutions, finding one which
is “optimal” in some sense is not possible in general, because the notion of the
best solution for a task depends on the said task. To deal with this, a constraint
system allows two additional types of constraints:

• A pull-up constraint for type variable T , denoted ↑ T , signifying that when
finding a substitution for this variable, the optimal solution is the largest
one according to subtyping relation;

• A push-down constraint for type variable T , denoted ↓ T , signifying that
when finding a substitution for this variable, the optimal solution is the
smallest one according to subtyping relation.

If a variable has no constraints of these kinds associated with it, it is assumed to
have a pull-up implicit constraint. The process of instantiating the free variables
of a constraint system starts by finding the bounds for each free variable (as
mentioned in the previous section) and then, given these bounds, continues to
pick the right type from them. Excluding other free variables, this boils down to:

• For a variable with a push-down constraint, the solution is the greatest
lower bound of all upper bounds for this variable, excluding other free
variables;

• For a variable with a pull-up constraint, the solution is the least upper
bound of all lower bounds for this variable, excluding other free variables;

• For a variable with both or none, the solution is also the least upper bound
of all lower bounds for this variable, excluding other free variables.

If there are inference variables dependent on other inference variables (α is
dependent on β iff there is a bound α <: T or T <: α where T contains β), this
process is performed in stages.

During each stage a set of inference variables not dependent on other inference
variables (but possibly dependent on each other) is selected, the solutions for
these variables are found using existing bounds, and after that these variables
are resolved in the current bound set by replacing all of their instances in other
bounds by the solution. This may trigger a new RIP.

After that, a new independent set of inference variables is picked and this process
is repeated until an inference error occurs or a solution for each inference variable
is found.

13.2.3 The relations on types as constraints
In other sections (for example, Expressions and Statements) the relations between
types may be expressed using the type operations found in the type system



6 CHAPTER 13. KOTLIN TYPE CONSTRAINTS

section of this document.

The greatest lower bound of two types is converted directly as-is, as the greatest
lower bound is always an intersection type.

The least upper bound of two types is converted as follows. If type T is defined
to be the least upper bound of A and B, the following constraints are produced:

• A <: T
• B <: T
• ↓ T
• ↑ A
• ↑ B

Important: the results of finding GLB or LUB via a constraint system
may be different from the results of finding them via a normalization
procedure (i.e., imprecise); however, they are sound w.r.t. bound,
meaning a constraint system GLB is still a lower bound and a
constraint system LUB is still an upper bound.

Example:

Let’s assume we have the following code:

val e = if (c) a else b

where a, b, c are some expressions with unknown types (having no
other type constraints besides the implicit ones).

Assume the type variables generated for them are A, B and C
respectively, the type variable for e is E. According to the conditional
expression rules, this produces the following relations:

• C <: kotlin.Boolean
• E = LUB(A, B)

These, in turn, produce the following explicit constraints:

• C <: kotlin.Boolean
• A <: E
• B <: E
• ↓ E
• ↑ A
• ↑ B

which, w.r.t. general and pull-up implicit constraints, produce the
following solution:

• C → kotlin.Boolean
• A → kotlin.Any?
• B → kotlin.Any?
• E → kotlin.Any?


	Kotlin type constraints
	Type constraint definition
	Type constraint solving
	Checking constraint system soundness
	Finding optimal constraint system solution
	The relations on types as constraints



