
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Introduction

Kotlin took inspiration from many programming languages, including (but not
limited to) Java, Scala, C# and Groovy. One of the main ideas behind Kotlin
is being pragmatic, i.e., being a programming language useful for day-to-day
development, which helps the users get the job done via its features and its tools.
Thus, a lot of design decisions were and still are influenced by how beneficial
these decisions are for Kotlin users.

Kotlin is a multiplatform, statically typed, general-purpose programming lan-
guage. Currently, as of version 1.9, it supports compilation to the following
platforms.

• JVM (Java Virtual Machine)
• JS (JavaScript)
• Native (native binaries for various architectures)

Furthermore, it supports transparent interoperability between different platforms
via its Kotlin Multiplatform Project (Kotlin MPP) feature.

The type system of Kotlin distinguishes at compile time between nullable and
non-nullable types, achieving null-safety, i.e., guaranteeing the absence of runtime
errors caused by the absence of value (i.e., null value). Kotlin also extends
its static type system with elements of gradual and flow typing, for better
interoperability with other languages and ease of development.

Kotlin is an object-oriented language which also has a lot of functional program-
ming elements. From the object-oriented side, it supports nominal subtyping with
bounded parametric polymorphism (akin to generics) and mixed-site variance.
From the functional programming side, it has first-class support for higher-order
functions and lambda literals.

This specification covers Kotlin/Core, i.e., fundamental parts of Kotlin which
should function mostly the same way irregardless of the underlying platform.
These parts include such important things as language expressions, declarations,
type system and overload resolution.

Important: due to the complexities of platform-specific implemen-
tations, platforms may extend, reduce or change the way some as-

1



2

pects of Kotlin/Core function. We mark these platform-dependent
Kotlin/Core fragments in the specification to the best of our abilities.

Platform-specific parts of Kotlin and its multiplatform capabilities will be cov-
ered in their respective sub-specifications, i.e., Kotlin/JVM, Kotlin/JS and
Kotlin/Native.

Compatibility
Kotlin Language Specification is still in progress and has experimental stability
level, meaning no compatibility should be expected between even incremental
releases of the specification, any parts can be added, removed or changed without
warning.

Important: while the specification has experimental stability level,
the Kotlin language itself and its compiler have different stability
levels for different components, which are described in more detail
here.

Experimental features
In several cases this specification discusses experimental Kotlin features, i.e.,
features which are still in active development and which may be changed in the
future. When so, the specification talks about the current state of said features,
with no guarantees of their future stability (or even existence in the language).

The experimental features are marked as such in the specification to the best of
our abilities.

Acknowledgments
We would like to thank the following people for their invaluable help and feedback
during the writing of this specification.

Note: the format is “First name Last name”, ordered by last name

• Zalim Bashorov
• Andrey Breslav
• Roman Elizarov
• Stanislav Erokhin
• Neal Gafter
• Dmitrii Petrov
• Victor Petukhov
• Vladimir Reshetnikov
• Dmitry Savvinov
• Anastasiia Spaseeva

https://kotlinlang.org/docs/components-stability.html


3

• Mikhail Zarechenskii
• Denis Zharkov

We would also like to thank Pandoc, its authors and community, as this speci-
fication would be much harder to implement without Pandoc’s versatility and
support.

Feedback
If you have any feedback for this document, feel free to create an issue at our
GitHub. In case you prefer to use email, you can use marat.akhin@jetbrains.com
and mikhail.belyaev@jetbrains.com.

Reference
If one needs to reference this specification, they may use the following:

Marat Akhin, Mikhail Belyaev et al. “Kotlin language specification:
Kotlin/Core”, JetBrains / JetBrains Research, 2020

https://pandoc.org/
https://github.com/Kotlin/kotlin-spec/issues
mailto:marat.akhin@jetbrains.com
mailto:mikhail.belyaev@jetbrains.com


4


	Introduction
	Compatibility
	Experimental features
	Acknowledgments
	Feedback
	Reference


