
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 5

Inheritance

Kotlin is an object-oriented language with its object model based on inheritance.

5.1 Classifier type inheritance
Classifier types may be inherited from each other: the type inherited from is
called the base type, while the type which inherits the base type is called the
derived type. The following limitations are imposed on the possible inheritance
structure.

A class or object type is allowed to inherit from only one class type (called its
direct superclass) and multiple interface types. As specified in the declaration
section, if the superclass of a class or object type is not specified, it is assumed
to be kotlin.Any. This means, among other things, that every class or object
type always has a direct superclass.

A class is called closed and cannot be inherited from if it is not explicitly
declared as either open or abstract.

Note: classes are neither open nor abstract by default.

A data class, enum class or annotation class cannot be declared open or
abstract, i.e., are always closed and cannot be inherited from. Declaring a class
sealed also implicitly declares it abstract.

An interface type may be inherited from any number of other interface types
(and only interface types), if the resulting type is well-formed.

Object types cannot be inherited from.

Inheritance is the primary mechanism of introducing subtyping relations between
user-defined types in Kotlin. When a classifier type A is declared with base types

1



2 CHAPTER 5. INHERITANCE

B1, . . . , Bm, it introduces subtyping relations A <: B1, . . . , A <: Bm, which are
then used in overload resolution and type inference mechanisms.

5.1.1 Abstract classes
A class declared abstract cannot be instantiated, i.e., an object of this class
cannot be created directly. Abstract classes are implicitly open and their primary
purpose is to be inherited from. Abstract classes (similarly to interfaces) allow
for abstract property and function declarations in their scope.

5.1.2 Sealed classes and interfaces
A class or interface (but not a functional interface) may be declared sealed,
making it special from the inheritance point-of-view.

• A sealed class is implicitly abstract (and these two modifiers are exclu-
sive);

• A sealed class or interface can only be inherited from by types declared
in the same package and in the same module, and which have a fully-
qualified name (meaning local and anonymous types cannon be inherited
from sealed types);

• Sealed classes and interfaces allow for exhaustiveness checking of when
expressions for values of such types. Any sealed type S is associated with
its direct non-sealed subtypes: a set of non-sealed types, which are either
direct subtypes of S or transitive subtypes of S via some number of other
sealed types. These direct non-sealed subtypes form the boundary for
exhaustiveness checks.

5.1.3 Inheritance from built-in types
Built-in types follow the same rules as user-defined types do. Most of them are
closed class types and cannot be inherited from. Function types are treated as
interfaces and can be inherited from as such.

5.2 Matching and subsumption of declarations
A callable declaration D matches to a callable declaration B if the following are
true.

• B and D have the same name;
• B and D are declarations of the same kind (property declarations or

function declarations);
• Function signature of D (if any) matches function signature of B (if any).

A callable declaration D subsumes a callable declaration B if the following are
true.



5.3. INHERITING 3

• B and D match;
• The classifier of B (where it is declared) is a supertype of the classifier of

D.

The notions of matching and subsumption are used when talking about how
declarations are inherited and overridden.

5.3 Inheriting
A callable declaration (that is, a property or member function declaration) inside
a classifier declaration is said to be inheritable if:

• Its visibility (and the visibility of its getter and setter, if present) is not
private.

If the declaration B of the base classifier type is inheritable, no other inheritable
declaration from the base classifier types subsume B, no declarations in the
derived classifier type override B, then B is inherited by the derived classifier
type.

As Kotlin is a language with single inheritance (only one supertype can be a
class, any number of supertypes can be an interface), there are several additional
rules which refine how declarations are inherited.

• If a derived class type inherits a declaration from its superclass, no other
matching abstract declarations from its superinterfaces are inherited.

• If a derived classifier type inherits several matching concrete declarations
from its supertypes, it is a compile-time error (this means a derived classifier
type should override such declarations).

• If a derived concrete classifier type inherits an abstract declaration from
its supertypes, it is a compile-time error (this means a derived classifier
type should override such declaration).

• If a derived classifier type inherits both an abstract and a concrete dec-
laration from its superinterfaces, it is a compile-time error (this means a
derived classifier type should override such declarations).

5.4 Overriding
A callable declaration (that is, a property or member function declaration) inside
a classifier declaration is said to be overridable if:

• Its visibility (and the visibility of its getter and setter, if present) is not
private;

• It is declared as open, abstract or override (interface methods and
properties are implicitly abstract if they don’t have a body or open if
they do).



4 CHAPTER 5. INHERITANCE

It is illegal for a declaration to be both private and either open, abstract or
override, such declarations should result in a compile-time error.

If the declaration B of the base classifier type is overridable, the declaration
D of the derived classifier type subsumes B, and D has an override modifier,
then D is overriding the base declaration B.

A function declaration D which overrides function declaration B should satisfy
the following conditions.

• Return type of D is a subtype of return type of B;
• Suspendability of D and B must be the same.

A property declaration D which overrides property declaration B should satisfy
the following conditions.

• Mutability of D is not stronger than mutability of B (where read-only val
is stronger than mutable var);

• Type of D is a subtype of type of B; except for the case when both D and
B are mutable (var), then types of D and B must be equivalent.

Otherwise, it is a compile-time error.

If the base declaration is not overridable and/or the overriding declaration
does not have an override modifier, it is not permitted and should result in a
compile-time error.

If the overriding declaration does not have its visibility specified, its visibility is
implicitly set to be the same as the visibility of the overridden declaration.

If the overriding declaration does have its visibility specified, it must not be
stronger than the visibility of the overridden declaration.

Examples:

open class B {
protected open fun f() {}

}
class C : B() {

open override fun f() {}
// `f` is protected, as its visibility is
// inherited from the base declaration

}
class D : B() {

public open override fun f() {}
// this is correct, as public visibility is
// weaker that protected visibility
// from the base declaration

}

open class P {



5.4. OVERRIDING 5

open fun g() {}
}

class Q : P() {
protected open override fun g() {}
// this is an error, as protected visibility is
// stronger that public visibility
// from the base declaration

}

Important: platforms may introduce additional cases of both overrid-
ability and subsumption of declarations, as well as limit the overriding
mechanism due to implementation limitations.

Note: Kotlin does not have a concept of full hiding (or shadowing)
of declarations.

Note: if a declaration binds a new function to the same name as was
introduced in the base class, but which does not subsume it, it is
neither a compile-time error nor an overriding declaration. In this
case these two declarations follow the normal rules of overloading.
However, these declarations may still result in a compile-time error
as a result of conflicting overload detection.



6 CHAPTER 5. INHERITANCE


	Inheritance
	Classifier type inheritance
	Abstract classes
	Sealed classes and interfaces
	Inheritance from built-in types

	Matching and subsumption of declarations
	Inheriting
	Overriding


