
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 8

Expressions

Glossary
CSB

Control structure body

Introduction
Expressions (together with statements) are one of the main building blocks of
any program, as they represent ways to compute program values or control the
program execution flow.

In Kotlin, an expression may be used as a statement or used as an expression
depending on the context. As all expressions are valid statements, standalone
expressions may be used as single statements or inside code blocks.

An expression is used as an expression, if it is encountered in any position where
a statement is not allowed, for example, as an operand to an operator or as an
immediate argument for a function call. An expression is used as a statement if
it is encountered in any position where a statement is allowed.

Some expressions are allowed to be used as statements, only if certain restrictions
are met; this may affect the semantics, the compile-time type information or/and
the safety of these expressions.

8.1 Constant literals
Constant literals are expressions which describe constant values. Every constant
literal is defined to have a single standard library type, whichever it is defined
to be on current platform. All constant literals are evaluated immediately.

1

2 CHAPTER 8. EXPRESSIONS

8.1.1 Boolean literals
BooleanLiteral

'true' | 'false'

Keywords true and false denote boolean literals of the same values. These are
strong keywords which cannot be used as identifiers unless escaped. Values true
and false always have the type kotlin.Boolean.

8.1.2 Integer literals
IntegerLiteral:

DecDigitNoZero {DecDigitOrSeparator} DecDigit
| DecDigit

HexLiteral
'0' ('x' | 'X') HexDigit {HexDigitOrSeparator} HexDigit
| '0' ('x' | 'X') HexDigit

BinLiteral
'0' ('b' | 'B') BinDigit {BinDigitOrSeparator} BinDigit
| '0' ('b' | 'B') BinDigit

DecDigitNoZero:
'1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

DecDigitOrSeparator:
DecDigit | '_'

HexDigitOrSeparator:
HexDigit | '_'

BinDigitOrSeparator
BinDigit | '_'

DecDigits:
DecDigit {DecDigitOrSeparator} DecDigit
| DecDigit

Decimal integer literals

A sequence of decimal digit symbols (0 though 9) is a decimal integer literal.
Digits may be separated by an underscore symbol, but no underscore can be
placed before the first digit or after the last one.

Note: unlike other languages, Kotlin does not support octal literals.
Even more so, any decimal literal starting with digit 0 and containing
more than 1 digit is not a valid decimal literal.

8.1. CONSTANT LITERALS 3

Hexadecimal integer literals

A sequence of hexadecimal digit symbols (0 through 9, a through f, A through
F) prefixed by 0x or 0X is a hexadecimal integer literal. Digits may be separated
by an underscore symbol, but no underscore can be placed before the first digit
or after the last one.

Binary integer literals

A sequence of binary digit symbols (0 or 1) prefixed by 0b or 0B is a binary integer
literal. Digits may be separated by an underscore symbol, but no underscore
can be placed before the first digit or after the last one.

8.1.3 The types for integer literals
Any of the decimal, hexadecimal or binary literals may be suffixed by the long
literal mark (symbol L). An integer literal with the long literal mark has type
kotlin.Long. A literal without the mark has a special integer literal type
dependent on the value of the literal:

• If the value is greater than maximum kotlin.Long value (see built-in
integer types), it is an illegal integer literal and should be a compile-time
error;

• Otherwise, if the value is greater than maximum kotlin.Int value (see
built-in integer types), it has type kotlin.Long;

• Otherwise, it has an integer literal type containing all the built-in integer
types guaranteed to be able to represent this value.

Example: integer literal 0x01 has value 1 and therefore has type
ILT(kotlin.Byte, kotlin.Short, kotlin.Int, kotlin.Long). Inte-
ger literal 70000 has value 70000, which is not representable us-
ing types kotlin.Byte and kotlin.Short and therefore has type
ILT(kotlin.Int, kotlin.Long).

8.1.4 Real literals
RealLiteral:

FloatLiteral | DoubleLiteral

FloatLiteral:
DoubleLiteral ('f' | 'F')
| DecDigits ('f' | 'F')

DoubleLiteral:
[DecDigits] '.' DecDigits [DoubleExponent]
| [DecDigits] [DoubleExponent]

A real literal consists of the following parts: the whole-number part, the decimal
point (ASCII period character .), the fraction part and the exponent. Unlike

4 CHAPTER 8. EXPRESSIONS

other languages, Kotlin real literals may only be expressed in decimal numbers.
A real literal may also be followed by a type suffix (f or F).

The exponent is an exponent mark (e or E) followed by an optionally signed
decimal integer (a sequence of decimal digits).

The whole-number part and the exponent part may be omitted. The fraction
part may be omitted only together with the decimal point, if the whole-number
part and either the exponent part or the type suffix are present. Unlike other
languages, Kotlin does not support omitting the fraction part, but leaving the
decimal point in.

The digits of the whole-number part or the fraction part or the exponent may
be optionally separated by underscores, but an underscore may not be placed
between, before, or after these parts. It also may not be placed before or after
the exponent mark symbol.

A real literal without the type suffix has type kotlin.Double, a real literal with
the type suffix has type kotlin.Float.

Note: this means there is no special suffix associated with type
kotlin.Double.

8.1.5 Character literals
CharacterLiteral

''' (EscapeSeq | <any character excluding CR, LF, ''' or '\'>) '''

EscapeSeq
UniCharacterLiteral | EscapedIdentifier

UniCharacterLiteral
'\' 'u' HexDigit HexDigit HexDigit HexDigit

EscapedIdentifier
'\' ('t' | 'b' | 'r' | 'n' | ''' | '"' | '\' | '$')

A character literal defines a constant holding a Unicode character value. A
simply-formed character literal is any symbol between two single quotation
marks (ASCII single quotation character '), excluding newline symbols (CR and
LF), the single quotation mark itself and the escaping mark (ASCII backslash
character \).

All character literals have type kotlin.Char.

Escaped characters

A character literal may also contain an escaped symbol of two kinds: a simple
escaped symbol or a Unicode codepoint. Simple escaped symbols include:

• \t — the Unicode TAB symbol (U+0009);

8.2. CONSTANT EXPRESSIONS 5

• \b — the Unicode BACKSPACE symbol (U+0008);
• \r — CR;
• \n — LF ;
• \' — the Unicode apostrophe symbol (U+0027);
• \" — the Unicode double quotation symbol (U+0028);
• \\ — the Unicode backslash symbol (U+005C);
• \$ — the Unicode DOLLAR sign (U+0024).

A Unicode codepoint escaped symbol is the symbol \u followed by exactly four
hexadecimal digits. It represents the Unicode symbol with the codepoint equal
to the number represented by these four digits.

Note: this means Unicode codepoint escaped symbols support only
Unicode symbols in range from U+0000 to U+FFFF.

8.1.6 String literals
Kotlin supports string interpolation which supersedes traditional string literals.
For further details, please refer to the corresponding section.

8.1.7 Null literal
The keyword null denotes the null reference, which represents an absence
of a value and is a valid value only for nullable types. Null reference has type
kotlin.Nothing? and is, by definition, the only value of this type.

8.2 Constant expressions
We use the term “constant expression” to refer to any expression constructed of
the following:

• constant literals
• access expressions to enum entries
• string interpolation over constant expressions
• an implementation-defined set of functions that can always be evaluated

at compile-time

8.3 String interpolation expressions
stringLiteral:

lineStringLiteral
| multiLineStringLiteral

lineStringLiteral:
'"' {lineStringContent | lineStringExpression} '"'

6 CHAPTER 8. EXPRESSIONS

multiLineStringLiteral:
'"""' {multiLineStringContent | multiLineStringExpression | '"'}
TRIPLE_QUOTE_CLOSE

lineStringContent:
LineStrText
| LineStrEscapedChar
| LineStrRef

lineStringExpression:
'${'
{NL}
expression
{NL}
'}'

multiLineStringContent:
MultiLineStrText
| '"'
| MultiLineStrRef

multiLineStringExpression:
'${'
{NL}
expression
{NL}
'}'

String interpolation expressions replace the traditional string literals and super-
sede them. A string interpolation expression consists of one or more fragments
of two different kinds: string content fragments (raw pieces of string content
inside the quoted literal) and interpolated expression fragments, specified by a
special syntax using the $ symbol.

Interpolated expressions support two different forms.

• $id, where id is a simple path available in the current scope;
• ${e}, where e is a valid Kotlin expression.

Note: the first form requires id to be a simple path; if you want to
reference a qualified path (e.g., foo.bar), you should use the second
form as ${foo.bar}.

In either case, the interpolated value is evaluated and converted into
kotlin.String by a process defined below. The resulting value of a string
interpolation expression is the concatenation of all fragments in the expression.

An interpolated value v is converted to kotlin.String according to the following
convention:

• If it is equal to the null reference, the result is "null";

8.4. TRY-EXPRESSIONS 7

• Otherwise, the result is v.toString() where toString is the kotlin.Any
member function (no overloading resolution is performed to choose this
function in this context).

There are two kinds of string interpolation expressions: line interpolation ex-
pressions and multiline (or raw) interpolation expressions. The difference is that
some symbols (namely, newline symbols) are not allowed to be used inside line
interpolation expressions and they need to be escaped in the same way they
are escaped in character literals. On the other hand, multiline interpolation
expressions allow such symbols inside them, but do not allow single character
escaping of any kind.

Note: among other things, this means that escaping of the $ symbol
is impossible in multiline strings. If you need an escaped $ symbol,
use an interpolated expression "${'$'}" instead.

String interpolation expression always has type kotlin.String.

Examples:

The following code

val a = "Hello, $x is ${foo()}"
val b = """
Hello, $x
is "${foo()}"
"""

is equivalent to

val a = "Hello, " + (x?.toString() ?: "null") +
" is " + (foo()?.toString() ?: "null")

val b = "\nHello, " + (x?.toString() ?: "null") +
"\nis \"" + (foo()?.toString() ?: "null") + "\"\n"

8.4 Try-expressions
tryExpression:

'try' {NL} block ((({NL} catchBlock {{NL} catchBlock}) [{NL} finally-
Block]) | ({NL} finallyBlock))

catchBlock:
'catch'
{NL}
'('
{annotation}
simpleIdentifier
':'
type

8 CHAPTER 8. EXPRESSIONS

[{NL} ',']
')'
{NL}
block

finallyBlock:
'finally' {NL} block

A try-expression is an expression starting with the keyword try. It consists of a
code block (try body) and one or more of the following kinds of blocks: zero or
more catch blocks and an optional finally block. A catch block starts with the soft
keyword catch with a single exception parameter, which is followed by a code
block. A finally block starts with the soft keyword finally, which is followed
by a code block. A valid try-expression must have at least one catch or finally
block.

The try-expression evaluation evaluates its body; if any statement in the try body
throws an exception (of type E), this exception, rather than being immediately
propagated up the call stack, is checked for a matching catch block. If a catch
block of this try-expression has an exception parameter of type T :> E, this
catch block is evaluated immediately after the exception is thrown and the
exception itself is passed inside the catch block as the corresponding parameter.
If there are several catch blocks which match the exception type, the first one is
picked.

For an in-detail explanation on how exceptions and catch-blocks work, please
refer to the Exceptions section. For a low-level explanation, please refer to the
platform-specific parts of this document.

If there is a finally block, it is evaluated after the evaluation of all previous
try-expression blocks, meaning:

• If no exception is thrown during the evaluation of the try body, no catch
blocks are executed, the finally block is evaluated after the try body, and
the program execution continues as normal.

• If an exception was thrown, and one of the catch blocks matched its type,
the finally block is evaluated after the evaluation of the matching catch
block.

• If an exception was thrown, but no catch block matched its type, the finally
block is evaluated before propagating the exception up the call stack.

The value of the try-expression is the same as the value of the last expression of
the try body (if no exception was thrown) or the value of the last expression of
the matching catch block (if an exception was thrown and matched). All other
situations mean that an exception is going to be propagated up the call stack,
and the value of the try-expression is undefined.

Note: as described, the finally block (if present) is always executed,
but has no effect on the value of the try-expression.

8.5. CONDITIONAL EXPRESSIONS 9

The type of the try-expression is the least upper bound of the types of the last
expressions of the try body and the last expressions of all the catch blocks.

Note: these rules mean the try-expression always may be used as an
expression, as it always has a corresponding result value.

8.5 Conditional expressions
ifExpression:

'if'
{NL}
'('
{NL}
expression
{NL}
')'
{NL}
(controlStructureBody | ([controlStructureBody] {NL} [';'] {NL} 'else'
{NL} (controlStructureBody | ';')) | ';')

Conditional expressions use a boolean value of one expression (condition) to
decide which of the two control structure bodies (branches) should be evaluated.
If the condition evaluates to true, the first branch (the true branch) is evaluated
if it is present, otherwise the second branch (the false branch) is evaluated if it
is present.

Note: this means the following branchless conditional expression,
despite being of almost no practical use, is valid in Kotlin

if (condition) else;

The value of the resulting expression is the same as the value of the chosen
branch.

The type of the resulting expression is the least upper bound of the types of two
branches, if both branches are present. If either of the branches are omitted, the
resulting conditional expression has type kotlin.Unit and may be used only as
a statement.

Example:

// x has type kotlin.Int and value 1
val x = if (true) 1 else 2
// illegal, as if expression without false branch
// cannot be used as an expression
val y = if (true) 1

The type of the condition expression must be a subtype of kotlin.Boolean,
otherwise it is a compile-time error.

10 CHAPTER 8. EXPRESSIONS

Note: when used as expressions, conditional expressions are special
w.r.t. operator precedence: they have the highest priority (the same
as for all primary expressions) when placed on the right side of any
binary expression, but when placed on the left side, they have the
lowest priority. For details, see Kotlin grammar.

Example:

x = if (true) 1 else 2

is the same as

x = (if (true) 1 else 2)

At the same time

if (true) x = 1 else x = 2

is the same as

if (true) (x = 1) else (x = 2)

8.6 When expressions
whenExpression:

'when'
{NL}
[whenSubject]
{NL}
'{'
{NL}
{whenEntry {NL}}
{NL}
'}'

whenEntry:
(whenCondition {{NL} ',' {NL} whenCondition} [{NL} ','] {NL} '->'
{NL} controlStructureBody [semi])
| ('else' {NL} '->' {NL} controlStructureBody [semi])

whenCondition:
expression
| rangeTest
| typeTest

rangeTest:
inOperator {NL} expression

typeTest:
isOperator {NL} type

8.6. WHEN EXPRESSIONS 11

When expression is similar to a conditional expression in that it allows one of
several different control structure bodies (cases) to be evaluated, depending on
some boolean conditions. The key difference is that a when expressions may
include several different conditions with their corresponding control structure
bodies. When expression has two different forms: with bound value and without
it.

When expression without bound value (the form where the expression
enclosed in parentheses after the when keyword is absent) evaluates one of the
different CSBs based on its condition from the when entry. Each when entry
consists of a boolean condition (or a special else condition) and its corresponding
CSB. When entries are checked and evaluated in their order of appearance. If
the condition evaluates to true, the corresponding CSB is evaluated and the
value of when expression is the same as the value of the CSB. All remaining
conditions and expressions are not evaluated.

The else condition is a special condition which evaluates to true if none of the
branches above it evaluated to true. The else condition must also be in the
last when entry of when expression, otherwise it is a compile-time error.

Note: informally, you can always replace the else condition with an
always-true condition (e.g., boolean literal true) with no changes
to the result of when expression.

When expression with bound value (the form where the expression enclosed
in parentheses after the when keyword is present) is similar to the form without
bound value, but uses a different syntax and semantics for conditions. In fact, it
supports four different condition forms:

• Type test condition: type checking operator followed by a type (is T or
!is T). The resulting condition is a type check expression of the form
boundValue is T or boundValue !is T.

• Contains test condition: containment operator followed by an expression
(in Expr or !in Expr). The resulting condition is a containment check
expression of the form boundValue in Expr or boundValue !in Expr.

• Any other applicable expression (Expr) The resulting condition is an equal-
ity check of the form boundValue == Expr.

• The else condition, which is a special condition which evaluates to true
if none of the branches above it evaluated to true. The else condition
must also be in the last when entry of when expression, otherwise it is a
compile-time error.

Note: the rule for “any other expression” means that if a when expres-
sion with bound value contains a boolean condition, this condition is
checked for equality with the bound value, instead of being used
directly for when entry selection.

Note: in Kotlin version 1.3 and earlier, simple (unlabeled) break and
continue expressions were disallowed in when expressions.

12 CHAPTER 8. EXPRESSIONS

The type of the resulting when expression is the least upper bound of the types
of all its entries. If when expression is not exhaustive, it has type kotlin.Unit
and may be used only as a statement.

Examples:

val a = 42
val b = -1

when {
a == b -> {}
a != b -> {}

}

// Error, as it is a non-exhaustive when expression
val c = when {

a == b -> {}
a != b -> {}

}

val d = when {
a == b -> {}
a != b -> {}
else -> {}

}

when {
a == b || a != b -> {}
42 > 0 -> {}

}

val a = 42
val b = -1

val l = (1..10).toList()

when (a) {
is Int, !is Int -> {}
in l, !in l -> {}

}

// Error, as it is a non-exhaustive when expression
val c = when (a) {

is Int, !is Int -> {}
in l, !in l -> {}

}

8.6. WHEN EXPRESSIONS 13

val d = when (a) {
is Int, !is Int -> {}
in l, !in l -> {}
else -> {}

}

When with bound value also allows for an in-place property declaration of the
form when (val V = E) { ... } inside the parentheses. This declares a new
property (see declaration sections for details) alongside the usual mechanics of
the when-expression. The scope of this property is limited to the when expression,
including both conditions and control structure bodies of the expression. As
its form is limited to a simple “assignment-like” declaration with an initializer,
this property does not allow getters, setters, delegation or destructuring. It
is also required to be immutable. Conceptually, it is very similar to declaring
such a property before the when-expression and using it as subject, but with a
difference in scoping of this property described above.

Example:

when(val a = b + c) {
!is Foo -> a + 1
else -> b

}

val y = a // illegal, a is not visible here anymore

8.6.1 Exhaustive when expressions
A when expression is called exhaustive if at least one of the following is true:

• It has an else entry;
• It has a bound value and at least one of the following is true:

– The bound expression is of type kotlin.Boolean and the conditions
contain both:

∗ A constant expression evaluating to true;
∗ A constant expression evaluating to false;

– The bound expression is of a sealed class or interface S and all of its
direct non-sealed subtypes T1, . . . , Tn are covered in this expression. A
subtype Ti is considered covered if when expression contains one of
the following:

∗ a type test condition is Sj , where Sj <: S, Ti <: Sj ;
∗ a type test condition !is Sj , where Sj <: S, Ti ��<: Sj , ∃k ≠ i :

Tk <: Sj .
Note: in case the set of direct non-sealed subtypes for sealed
type S is empty (i.e., its sealed hierarchy is uninhabited), the
exhaustiveness of when expression is implementation-defined.

Additionally, an enum subtype Ei is considered covered also if all its
enumerated values are checked for equality using constant expression;

14 CHAPTER 8. EXPRESSIONS

– The bound expression is of an enum class type and all its enumerated
values are checked for equality using constant expression;

– The bound expression is of a nullable type T? and one of the cases
above is met for its non-nullable counterpart T together with another
condition which checks the bound value for equality with null.

For object types, the type test condition may be replaced with equality check
with the object value.

Note: if one were to override equals for an object type incorrectly
(i.e., so that an object is not equal to itself), it would break the
exhaustiveness check. It is unspecified whether this situation leads
to an exception or an undefined value for this when expression.

sealed class Base
class Derived1: Base()
object Derived2: Base()

val b: Base = ...

val c = when(b) {
is Derived1 -> ...
Derived2 -> ...
// no else needed here

}

sealed interface I1
sealed interface I2
sealed interface I3

class D1 : I1, I2
class D2 : I1, I3

sealed class D3 : I1, I3

fun foo() {
val b: I1 = mk()

val c = when(a) {
!is I3 -> {} // covers D1
is D2 -> {} // covers D2
// D3 is sealed and does not take part
// in the exhaustiveness check

}
}

Informally: an exhaustive when expression is guaranteed to evaluate
one of its CSBs regardless of the specific when conditions.

8.7. LOGICAL DISJUNCTION EXPRESSIONS 15

8.7 Logical disjunction expressions
disjunction:

conjunction {{NL} '||' {NL} conjunction}

Operator symbol || performs logical disjunction over two values of type
kotlin.Boolean. This operator is lazy, meaning that it does not evaluate the
right hand side argument unless the left hand side argument evaluated to false.

Both operands of a logical disjunction expression must have a type which is a
subtype of kotlin.Boolean, otherwise it is a compile-time error. The type of
logical disjunction expression is kotlin.Boolean.

8.8 Logical conjunction expressions
conjunction:

equality {{NL} '&&' {NL} equality}

Operator symbol && performs logical conjunction over two values of type
kotlin.Boolean. This operator is lazy, meaning that it does not evaluate
the right hand side argument unless the left hand side argument evaluated to
true.

Both operands of a logical conjunction expression must have a type which is a
subtype of kotlin.Boolean, otherwise it is a compile-time error. The type of
logical disjunction expression is kotlin.Boolean.

8.9 Equality expressions
equality:

comparison {equalityOperator {NL} comparison}

equalityOperator:
'!='
| '!=='
| '=='
| '==='

Equality expressions are binary expressions involving equality operators. There
are two kinds of equality operators: reference equality operators and value equality
operators.

8.9.1 Reference equality expressions
Reference equality expressions are binary expressions which use reference equality
operators: === and !==. These expressions check if two values are equal (===)
or non-equal (!==) by reference: two values are equal by reference if and only if

16 CHAPTER 8. EXPRESSIONS

they represent the same runtime value. In particular, this means that two values
acquired by the same constructor call are equal by reference, while two values
created by two different constructor calls are not equal by reference. A value
created by any constructor call is never equal by reference to a null reference.

There is an exception to these rules: values of value classes are not guaranteed
to be reference equal even if they are created by the same constructor invocation
as said constructor invocation is explicitly allowed to be inlined by the compiler.
It is thus highly discouraged to compare value classes by reference.

For special values created without explicit constructor calls, notably, constant
literals and constant expressions composed of those literals, and for values of
value classes, the following holds:

• If these values are non-equal by value, they are also non-equal by reference;
• Any instance of the null reference null is equal by reference to any other

instance of the null reference;
• Otherwise, equality by reference is implementation-defined and should not

be used as a means of comparing such values.

Reference equality expressions always have type kotlin.Boolean.

Kotlin checks the applicability of reference equality operators at compile-time
and may reject certain combinations of types for A and B. Specifically, it uses
the following basic principle.

If type of A and type of B are definitely distinct and not related by
subtyping, A === B is an invalid expression and should result in a
compile-time error.

Informally: this principle means “no two objects of different types
can be equal by reference”.

8.9.2 Value equality expressions
Value equality expressions are binary expressions which use value equality op-
erators: == and !=. These operators are overloadable, but are different from
other overloadable operators in that the expansion depends on the form of the
arguments.

Reference equality contract for the equals method implementation consists of
the following requirements imposed on kotlin.Any.equals override:

1. ∀A, B : A === B =⇒ A.equals(B)
2. ∀A, B : B === null =⇒ !A.equals(B)

The operators themselves have the following expansion:

• A != B is exactly the same as !(A == B);
• A == B has a more complex expansion:

8.10. COMPARISON EXPRESSIONS 17

– If either of A or B is a null literal null, then A == B is exactly the
same as A === B;

– If both of A and B have compile-time types that are built-in floating
point arithmetic types or their nullable variants, then A == B is exactly
the same as (A === null && B === null) || (A !== null && B
!== null && ieee754Equals(A!!, B!!)) where ieee754Equals is
a special intrinsic function unavailable in user-side Kotlin which
performs equality comparison of two floating-point numbers according
to IEEE 754 equality specification;

– Otherwise, A == B is semantically equivalent to (A as? Any)?.equals(B
as Any?) ?: (B === null), assuming that operator equals
abides the reference equality contract. This means that if the
compiler implementation can prove that A === null or B === null
or A === B, this expansion may be optimized to never call equals
function at all.

Note: the expansion involving a call to equals operator function
always resolves to the member function of kotlin.Any as there is
no way to provide a more suitable overload candidate. Furthermore,
it is not possible to write an operator-qualified function with this
name that is not an override of this member function.

Note: the floating-point type expansion given above means that, in
some situations and on some platforms, A == B and (A as Any?) ==
(B as Any?) may produce different results if A and B are floating-
point numbers. For example, on JVM platform the overridden equals
implementation for floating-point numbers does not follow the IEEE
754 definition of equality, so A == A is false, while (A as Any?) ==
(A as Any?) is true if A has a NaN value.

Value equality expressions always have type kotlin.Boolean as does the equals
method in kotlin.Any.

Kotlin checks the applicability of value equality operators at compile-time and
may reject certain combinations of types for A and B. Specifically, it uses the
following basic principle.

If type of A and type of B are definitely distinct and not related by
subtyping, A == B is an invalid expression and should result in a
compile-time error.

Informally: this principle means “no two objects unrelated by sub-
typing can ever be considered equal by ==”.

8.10 Comparison expressions
comparison:

https://ieeexplore.ieee.org/document/8766229

18 CHAPTER 8. EXPRESSIONS

genericCallLikeComparison {comparisonOperator {NL} genericCallLike-
Comparison}

comparisonOperator:
'<'
| '>'
| '<='
| '>='

Comparison expressions are binary expressions which use the comparison op-
erators: <, >, <= and >=. These operators are overloadable with the following
expansion:

• If both A and B have the same compile-time type which is also one of the
built-in floating point arithmetic types, then:

– A < B is exactly the same as ieee754Less(A, B)
– A > B is exactly the same as ieee754Less(B, A)
– A <= B is exactly the same as ieee754Less(A, B) || ieee754Equals(A,

B)
– A >= B is exactly the same as ieee754Less(B, A) || ieee754Equals(A,

B)
• Otherwise:

– A < B is exactly the same as integerLess(A.compareTo(B), 0)
– A > B is exactly the same as integerLess(0, A.compareTo(B))
– A <= B is exactly the same as !integerLess(0, A.compareTo(B))
– A >= B is exactly the same as !integerLess(A.compareTo(B), 0)

where compareTo is a valid operator function available in the current scope,
integerLess is a special intrinsic function unavailable in user-side Kotlin which
performs integer “less-than” comparison of two integer numbers and ieee754Less
and ieee754Equals are special intrinsic functions unavailable in user-side Kotlin
which perform IEEE 754 compliant “less-than” and equality comparison respec-
tively.

The compareTo operator function must have return type kotlin.Int, otherwise
such declaration is a compile-time error.

All comparison expressions always have type kotlin.Boolean.

8.11 Type-checking and containment-checking
expressions

infixOperation:
elvisExpression {(inOperator {NL} elvisExpression) | (isOperator {NL}
type)}

inOperator:
'in'

https://ieeexplore.ieee.org/document/8766229

8.11. TYPE-CHECKING AND CONTAINMENT-CHECKING EXPRESSIONS19

| NOT_IN

isOperator:
'is'
| NOT_IS

8.11.1 Type-checking expressions
A type-checking expression uses a type-checking operator is or !is and has an
expression E as a left-hand side operand and a type name T as a right-hand
side operand. A type-checking expression checks whether the runtime type of E
is a subtype of T for is operator, or not a subtype of T for !is operator.

The type T must be runtime-available, otherwise it is a compile-time error.

If the type T is not a parameterized type, it must be runtime-available, otherwise
it is a compile-time error. If T is a parameterized type, the bare type argument
inference is performed for the compile-time known type of E and the type
constructor TC of T . After that, given the result arguments of this bare type
inference A0, A1 . . . AN , T must suffice the constraint T !! <: TC[A0, A1 . . . AN],
checking each of its argument for conformance with the type of E.

Example:

interface Foo<A, B>
class Fee<T, U>: Foo<U, T>

fun f(foo: Foo<String, Int>) {
// valid: you can specify parameters
// as long as they correspond to base type
if(foo is Fee<Int, String>) { ... }
// invalid: Fee<String, Int> is not a subtype
// of Foo<String, Int>
if(foo is Fee<String, Int>) { ... }
// valid: may be specified partially
if(foo is Fee<Int, *>) { ... }

T may also be specified without arguments by using the bare type syntax in which
case the same process of bare type argument inference is performed, with the
difference being that the resulting arguments A0, A1 . . . AN are used as arguments
for T directly. If any of these arguments are inferred to be star-projections, this
is a compile-time error.

Example:

interface Foo<A, B>
class Fee<T, U>: Foo<U, T>

fun f(foo: Foo<String, Int>) {

20 CHAPTER 8. EXPRESSIONS

// valid: same as foo is Fee<Int, String>
if(foo is Fee) { ... }

Type-checking expression always has type kotlin.Boolean.

Note: the expression null is T? for any type T always evaluates to
true, as the type of the left-hand side (null) is kotlin.Nothing?,
which is a subtype of any nullable type T?.

Note: type-checking expressions may create smart casts, for further
details, refer to the corresponding section.

8.11.2 Containment-checking expressions
A containment-checking expression is a binary expression which uses a contain-
ment operator in or !in. These operators are overloadable with the following
expansion:

• A in B is exactly the same as B.contains(A);
• A !in B is exactly the same as !(B.contains(A)).

where contains is a valid operator function available in the current scope.

Note: this means that, contrary to the order of appearance in the code,
the right-hand side expression of a containment-checking expression
is evaluated before its left-hand side expression

The contains function must have a return type kotlin.Boolean, otherwise it
is a compile-time error. Containment-checking expressions always have type
kotlin.Boolean.

8.12 Elvis operator expressions

elvisExpression:
infixFunctionCall {{NL} elvis {NL} infixFunctionCall}

An elvis operator expression is a binary expression which uses an elvis operator
(?:). It checks whether the left-hand side expression is reference equal to null,
and, if it is, evaluates and return the right-hand side expression.

This operator is lazy, meaning that if the left-hand side expression is not
reference equal to null, the right-hand side expression is not evaluated.

The type of elvis operator expression is the least upper bound of the non-nullable
variant of the type of the left-hand side expression and the type of the right-hand
side expression.

8.13. RANGE EXPRESSIONS 21

8.13 Range expressions
rangeExpression:

additiveExpression {('..' | '..<') {NL} additiveExpression}

A range expression is a binary expression which uses a range operator .. or a
range-until operator ..<. These are overloadable operators with the following
expansions:

• A..B is exactly the same as A.rangeTo(B)
• A..<B is exactly the same as A.rangeUntil(B)

where rangeTo or rangeUntil is a valid operator function available in the current
scope.

The return type of these functions is not restricted. A range expression has the
same type as the return type of the corresponding operator function overload
variant.

8.14 Additive expressions
additiveExpression:

multiplicativeExpression {additiveOperator {NL} multiplicativeExpression}

additiveOperator:
'+'
| '-'

An additive expression is a binary expression which uses an addition (+) or
subtraction (-) operators. These are overloadable operators with the following
expansions:

• A + B is exactly the same as A.plus(B)
• A - B is exactly the same as A.minus(B)

where plus or minus is a valid operator function available in the current scope.

The return type of these functions is not restricted. An additive expression has
the same type as the return type of the corresponding operator function overload
variant.

8.15 Multiplicative expressions
multiplicativeExpression:

asExpression {multiplicativeOperator {NL} asExpression}

multiplicativeOperator:
'*'

22 CHAPTER 8. EXPRESSIONS

| '/'
| '%'

A multiplicative expression is a binary expression which uses a multiplication
(*), division (/) or remainder (%) operators. These are overloadable operators
with the following expansions:

• A * B is exactly the same as A.times(B)
• A / B is exactly the same as A.div(B)
• A % B is exactly the same as A.rem(B)

where times, div, rem is a valid operator function available in the current scope.

Note: in Kotlin version 1.3 and earlier, there was an additional
overloadable operator for % called mod, which has been removed in
Kotlin 1.4.

The return type of these functions is not restricted. A multiplicative expression
has the same type as the return type of the corresponding operator function
overload variant.

8.16 Cast expressions
asExpression:

prefixUnaryExpression {{NL} asOperator {NL} type}

asOperator:
'as'
| 'as?'

A cast expression is a binary expression which uses cast operators as or as? and
has the form E as/as? T, where E is an expression and T is a type name.

An as cast expression E as T is called an unchecked cast expression. This
expression perform a runtime check whether the runtime type of E is a subtype
of T and throws an exception otherwise. If type T is a runtime-available type
without generic parameters, then this exception is thrown immediately when
evaluating the cast expression, otherwise it is implementation-defined whether
an exception is thrown at this point.

An unchecked cast expression result always has the same type as the type T
specified in the expression.

An as? cast expression E as? T is called a checked cast expression. This
expression is similar to the unchecked cast expression in that it also does a
runtime type check, but does not throw an exception if the types do not match,
it returns null instead. If type T is not a runtime-available type, then the
check is not performed and null is never returned, leading to potential runtime
errors later in the program execution. This situation should be reported as a
compile-time warning.

8.17. PREFIX EXPRESSIONS 23

If type T is a runtime-available type with generic parameters, type parameters
are not checked w.r.t. subtyping. This is another potentially erroneous situation,
which should be reported as a compile-time warning.

Similarly to type checking expressions, some type arguments may be excluded
from this check if they are known from the supertype of E and, if all type
arguments of T can be inferred, they may be omitted altogether using the bare
type syntax. See type checking section for explanation.

The checked cast expression result has the type which is the nullable variant of
the type T specified in the expression.

Note: cast expressions may create smart casts, for further details,
refer to the corresponding section.

8.17 Prefix expressions
prefixUnaryExpression:

{unaryPrefix} postfixUnaryExpression

unaryPrefix:
annotation
| label
| (prefixUnaryOperator {NL})

prefixUnaryOperator:
'++'
| '--'
| '-'
| '+'
| excl

8.17.1 Annotated expressions
Any expression in Kotlin may be prefixed with any number of annotations. These
do not change the value of the expression and can be used by external tools and
for implementing platform-dependent features. See annotations chapter of this
document for further information and examples of annotations.

8.17.2 Prefix increment expressions
A prefix increment expression is an expression which uses the prefix form of
operator ++. It is an overloadable operator with the following expansion:

• ++A is exactly the same as when(val $tmp = A.inc()) { else -> A =
$tmp; $tmp } where inc is a valid operator function available in the
current scope.

24 CHAPTER 8. EXPRESSIONS

Informally: ++A assigns the result of A.inc() to A and also returns
it as the result.

For a prefix increment expression ++A expression A must be an assignable expres-
sion. Otherwise, it is a compile-time error.

As the result of inc is assigned to A, the return type of inc must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A prefix increment expression has the same type as the return type of the
corresponding inc overload variant.

8.17.3 Prefix decrement expressions
A prefix decrement expression is an expression which uses the prefix form of
operator --. It is an overloadable operator with the following expansion:

• --A is exactly the same as when(val $tmp = A.dec()) { else -> A =
$tmp; $tmp } where dec is a valid operator function available in the
current scope.

Informally: --A assigns the result of A.dec() to A and also returns
it as the result.

For a prefix decrement expression --A expression A must be an assignable
expression. Otherwise, it is a compile-time error.

As the result of dec is assigned to A, the return type of dec must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A prefix decrement expression has the same type as the return type of the
corresponding dec overload variant.

8.17.4 Unary minus expressions
An unary minus expression is an expression which uses the prefix form of operator
-. It is an overloadable operator with the following expansion:

• -A is exactly the same as A.unaryMinus() where unaryMinus is a valid
operator function available in the current scope.

No additional restrictions apply.

8.17.5 Unary plus expressions
An unary plus expression is an expression which uses the prefix form of operator
+. It is an overloadable operator with the following expansion:

• +A is exactly the same as A.unaryPlus() where unaryPlus is a valid
operator function available in the current scope.

No additional restrictions apply.

8.18. POSTFIX OPERATOR EXPRESSIONS 25

8.17.6 Logical not expressions
A logical not expression is an expression which uses the prefix operator !. It is
an overloadable operator with the following expansion:

• !A is exactly the same as A.not() where not is a valid operator function
available in the current scope.

No additional restrictions apply.

8.18 Postfix operator expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix

postfixUnaryOperator:
'++'
| '--'
| ('!' excl)

8.18.1 Postfix increment expressions
A postfix increment expression is an expression which uses the postfix form of
operator ++. It is an overloadable operator with the following expansion:

• A++ is exactly the same as when(val $tmp = A) { else -> A =
$tmp.inc(); $tmp } where inc is a valid operator function available in
the current scope.

Informally: A++ stores the value of A to a temporary variable, assigns
the result of A.inc() to A and then returns the temporary variable
as the result.

For a postfix increment expression A++ expression A must be assignable expres-
sions. Otherwise, it is a compile-time error.

As the result of inc is assigned to A, the return type of inc must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A postfix increment expression has the same type as its operand expression (for
our examples, the type of A).

26 CHAPTER 8. EXPRESSIONS

8.18.2 Postfix decrement expressions
A postfix decrement expression is an expression which uses the postfix form of
operator --. It is an overloadable operator with the following expansion:

• A-- is exactly the same as when(val $tmp = A) { else -> A =
$tmp.dec(); $tmp } where dec is a valid operator function available in
the current scope.

Informally: A-- stores the value of A to a temporary variable, assigns
the result of A.dec() to A and then returns the temporary variable
as the result.

For a postfix decrement expression A-- expression A must be assignable expres-
sions. Otherwise, it is a compile-time error.

As the result of dec is assigned to A, the return type of dec must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A postfix decrement expression has the same type as its operand expression (for
our examples, the type of A).

8.19 Not-null assertion expressions
A not-null assertion expression is a postfix expression which uses an operator !!.
For an expression e!!, if the type of e is nullable, a not-null assertion expression
checks whether the evaluation result of e is equal to null and, if it is, throws a
runtime exception. If the evaluation result of e is not equal to null, the result
of e!! is the evaluation result of e.

If the type of e is non-nullable, not-null assertion expression e!! has no effect.

The type of not-null assertion expression is the non-nullable variant of the type
of e.

Note: this type may be non-denotable in Kotlin and, as such, may
be approximated in some situations with the help of type inference.

8.20 Indexing expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix

8.21. CALL AND PROPERTY ACCESS EXPRESSIONS 27

indexingSuffix:
'['
{NL}
expression
{{NL} ',' {NL} expression}
[{NL} ',']
{NL}
']'

An indexing expression is a suffix expression which uses one or more subexpres-
sions as indices between square brackets ([and]).

It is an overloadable operator with the following expansion:

• A[I_0,I_1,...,I_N] is exactly the same as A.get(I_0,I_1,...,I_N),
where get is a valid operator function available in the current scope.

An indexing expression has the same type as the corresponding get expression.

Indexing expressions are assignable, for a corresponding assignment form, see
here.

8.21 Call and property access expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix

navigationSuffix:
memberAccessOperator {NL} (simpleIdentifier | parenthesizedExpression |
'class')

callSuffix:
[typeArguments] (([valueArguments] annotatedLambda) | valueArguments)

annotatedLambda:
{annotation} [label] {NL} lambdaLiteral

valueArguments:
'(' {NL} [valueArgument {{NL} ',' {NL} valueArgument} [{NL} ',']
{NL}] ')'

typeArguments:
'<'

28 CHAPTER 8. EXPRESSIONS

{NL}
typeProjection
{{NL} ',' {NL} typeProjection}
[{NL} ',']
{NL}
'>'

typeProjection:
([typeProjectionModifiers] type)
| '*'

typeProjectionModifiers:
typeProjectionModifier {typeProjectionModifier}

memberAccessOperator:
({NL} '.')
| ({NL} safeNav)
| '::'

8.21.1 Navigation operators
Expressions which use the navigation binary operators (., ?. or ::) are
syntactically similar, but, in fact, may have very different semantics.

a.c may have one of the following semantics when used as an expression:

• A fully-qualified type, property or object name. The left side of . must be
a value available in the current scope, while the right side corresponds to
a declaration in the scope of that value.

Note: qualification uses operator . only.

• A property access. Here a is a value available in the current scope and c is
a property name.

Note: the navigation operator . is closely related to the concept of
paths.

If followed by the call suffix (arguments in parentheses), a.c() may have one of
the following semantics when used as an expression:

• A function call; here a is a value available in the current scope and c is a
function name;

• A property access with invoke-convention; here a is a value available in
the current scope and c is a property name.

These expressions follow the overloading rules.

a::c may have one of the following semantics when used as an expression:

• A class literal expression if, instead of an identifier, c is the keyword class;

8.21. CALL AND PROPERTY ACCESS EXPRESSIONS 29

• A property reference. Here a may be either a value available in the current
scope or a type name, and c is a property name.

• A function reference. Here a may be either a value available in the current
scope or a type name, and c is a function name.

a?.c is a safe navigation operator, which has the following expansion:

• a?.c is exactly the same as

when (val $tmp = a) {
null -> null
else -> { $tmp.c }

}

for any right-hand combinations of operators present in c, which are
expanded further, as usual.

The type of a?.c is the nullable variant of the type of a.c.

Note: safe navigation expression may also include the call suffix as
a?.c()and is expanded in a similar fashion.

8.21.2 Callable references
Callable references are a special kind of expressions used to refer to callables
(properties and functions) without actually calling/accessing them. They are not
to be confused with class literals which use similar syntax, but with the keyword
class instead of an identifier.

A callable reference A::c where A is a type name and c is a name of a callable
available for type A is a callable reference for type A. A callable reference e::c
where e is an expression of type E and c is a name of a callable available for
type E is a callable reference for expression e. The exact callable selected when
using this syntax is based on overload resolution much like when accessing the
value of a property using the . navigation operator. However, in some cases
there are important differences which we cover in the corresponding paragraphs.

Depending on the meaning of the left-hand and right-hand sides of a callable
reference lhs::rhs, the value of the whole expression is defined as follows.

• If lhs is a type, but not a value (an example of a type which can also
be used as a value is an object type), while rhs is resolved to refer to a
property of lhs, lhs::rhs is a type-property reference;

• If lhs is a type, but not a value (an example of a type which can also
be used as a value is an object type), while rhs is resolved to refer to a
function available on rhs, lhs::rhs is a type-function reference;

• If lhs is a value, while rhs is resolved to refer to a property of lhs,
lhs::rhs is a value-property reference;

• If lhs is a value, while rhs is resolved to refer to a function available on
rhs, lhs::rhs is a value-function reference.

30 CHAPTER 8. EXPRESSIONS

Important: callable references to callables which are a member and
an extension (that is, an extension to one type declared as a member
of a classifier) are forbidden

Examples:

class A {
val a: Int = 42

fun a(): String = "TODO()"

companion object {
val bProp: Int = 42

fun bFun(): String = "TODO()"
}

}

object O {
val a: Int = 42

fun a(): String = "TODO()"
}

fun main() {
// Error: ambiguity between two possible callables
// val errorAmbiguity = A::a

// Error: cannot reference companion object implicitly
// val errorCompanion = A::bFun

val aTypePropRef: (A) -> Int = A::a

val aTypeFunRef: (A) -> String = A::a

val aValPropRef: () -> Int = A()::a

val aValFunRef: () -> String = A()::a

// Error: object type behave as values
// val oTypePropRef: (O) -> Int = O::a

// Error: object types behave as values
// val oTypeFunRef: (O) -> String = O::a

val oValPropRef: () -> Int = O::a

8.21. CALL AND PROPERTY ACCESS EXPRESSIONS 31

val oValFunRef: () -> String = O::a
}

The types of these expressions are implementation-defined, but the following
constraints must hold:

• The type of any property reference is a subtype of kotlin.reflect.KProperty<T>,
where the type parameter T is fixed to the type of the property;

• The type of any function reference is a subtype of kotlin.reflect.KFunction<T>,
where the type parameter T is fixed to the return type of the function;

• The type of any callable reference is a subtype of function type which
allows the corresponding callable to be accessed/called accordingly.

– For a type-callable reference lhs::rhs, it is a function type (O, Arg0
... ArgN) -> R, where O is a receiver type (type of lhs), Arg0, ...
, ArgN are either empty (for a property reference) or the types of
function formal parameters (for a function reference), and R is the
result type of the callable;

– For a value-callable reference lhs::rhs, it is a function type (Arg0
... ArgN) -> R, where Arg0, ... , ArgN are either empty (for a
property reference) or the types of function formal parameters (for
a function reference), and R is the result type of the callable. The
receiver of such callable reference is bound to lhs.

Being of a function type also means callable references are valid callables them-
selves, with an appropriate operator invoke overload, which allows using call
syntax to evaluate such callable with the suitable arguments.

Informally: one may say that any callable reference is essentially the
same as a lambda literal with the corresponding number of arguments,
delegating to the callable being referenced.

Please note that the above holds for resolved callable references, where it is
known what entity a particular reference references. In the general case, however,
it is unknown as the overload resolution must be performed first. Please refer to
the corresponding section for details.

8.21.3 Class literals
A class literal is similar in syntax to a callable reference, with the difference
being that it uses the keyword class. Similar to callable references, there are
two forms of class literals: type and value class literals.

Note: class literals are one of the few cases where a parameterized
type may (and actually must) be used without its type parameters.

All class literals lhs::class are of type kotlin.KClass<T> and produce a
platform-defined object associated with type T, which, in turn, is either the
lhs type or the runtime type of the lhs value. In both cases, T must be a
runtime-available non-nullable type. As the runtime type of any expression

32 CHAPTER 8. EXPRESSIONS

cannot be known at compile time, the compile-time type of a class literal is
kotlin.KClass<U> where T <: U and U is the compile-time type of lhs.

A class literal can be used to access platform-specific capabilities of the runtime
type information available on the current platform, either directly or through
reflection facilities.

8.21.4 Function calls and property access
Function call expression is an expression used to invoke functions. Property
access expression is an expression used to access properties.

There are two kinds of both: with and without explicit receiver (the left-hand
side of the . operator). For details on how a particular candidate and receiver
for a particular call / property access is chosen, please refer to the Overload
resolution section.

Important: in some cases function calls are syntactically indistin-
guishable from property accesses with invoke-convention call suffix.

From this point on in this section we well refer to both as function calls. As
described in the function declaration section, function calls receive arguments of
several different kinds:

• Explicit receiver argument, used in calls with explicit receivers;
• Normal arguments, provided directly inside the parentheses part of the

call;
• Named arguments in the form identifier = value, where identifier

is a parameter name used at declaration-site of the function;
• Variable length arguments, provided the same way as normal arguments;
• A trailing lambda literal argument, specified outside the parentheses (see

lambda literal section for details).

In addition to these, a function declaration may specify a number of default
parameters, which allow one to omit specifying them at call-site, in which case
their default value is used during the evaluation.

The evaluation of a function call begins with the evaluation of its explicit receiver,
if it is present. Function arguments are then evaluated in the order of their
appearance in the function call left-to-right, with no consideration on how
the parameters of the function were specified during function declaration. This
means that, even if the order at declaration-site was different, arguments at call-
site are evaluated in the order they are given. Default arguments not specified
in the call are all evaluated after all provided arguments, in the order of their
appearance in function declaration. Afterwards, the function itself is invoked.

Note: this means default argument expressions which are used (i.e.,
for which the call-site does not provide explicit arguments) are reeval-
uated at every such call-site. Default argument expressions which

8.21. CALL AND PROPERTY ACCESS EXPRESSIONS 33

are not used (i.e., for which the call-site provides explicit arguments)
are not evaluated at such call-sites.

Examples: we use a notation similar to the control-flow section to
illustrate the evaluation order.

fun f(x: Int = h(), y: Int = g())
...
f() // $1 = h(); $2 = g(); $result = f($1, $2)
f(m(), n()) // $1 = m(); $2 = n(); $result = f($1, $2)
f(y = n(), x = m()) // $1 = n(); $2 = m(); $result = f($2, $1)
f(y = n()) // $1 = n(); $2 = h(); $result = f($2, $1)

fun f(x: Int = h(), y: () -> Int)
...
f(y = {2}) // $1 = {2}; $2 = h(); $result = f($2, $1)
f { 2 } // $1 = {2}; $2 = h(); $result = f($2, $1)
f(m()) { 2 } // $1 = m(); $2 = {2}; $result = f($1, $2)

Operator calls work in a similar way: every operator evaluates in the same order
as its expansion does, unless specified otherwise.

Note: this means that the containment-checking operators are effec-
tively evaluated right-to-left w.r.t. their expansion.

8.21.5 Spread operator expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

Spread operator expression is a special kind of expression which is only applicable
in the context of calling a function with variable length parameters. For a spread
operator expression *E it is required that E is of an array type and the expression
itself is used as a value argument to a function call. This allows passing an array
as a spread value argument, providing the elements of an array as the variable
length argument of a callable. It is allowed to mix spread arguments with regular
arguments, all fitting into the same variable length argument slot, with elements
of all spread arguments supplied in sequence.

Example:

fun foo(vararg c: String) { ... }
...
val a: String = "a"
val b: Array<String> = arrayOf("b", "c", "d")
val c: String = "e"
val d: Array<String> = arrayOf()
val e: Array<String> = arrayOf("f", "g")
...
foo(a, *b, c, *d, *e)

34 CHAPTER 8. EXPRESSIONS

// is equivalent to
foo("a", "b", "c", "d", "e", "f", "g")

Spread operator expressions are not allowed in any other context. See Variable
length parameter section for details.

The type of a spread argument must be a subtype of ATS(kotlin.Array(out T))
for a variable length parameter of type T .

Example: for parameter vararg a: Int the type of a corresponding
spread argument must be a subtype of IntArray, for parameter
vararg b: T where T is a classifier type the type of a corresponding
spread argument must be a subtype of Array<out T>.

8.22 Function literals
Kotlin supports using functions as values. This includes, among other things,
being able to use named functions (via function references) as parts of expres-
sions. However, sometimes it does not make much sense to provide a separate
function declaration, when one would rather define a function in-place. This is
implemented using function literals.

There are two types of function literals in Kotlin: lambda literals and anonymous
function declarations. Both of these provide a way of defining a function in-place,
but have a number of differences which we discuss in their respective sections.

8.22.1 Anonymous function declarations
anonymousFunction:

['suspend']
{NL}
'fun'
[{NL} type {NL} '.']
{NL}
parametersWithOptionalType
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

Anonymous function declarations, despite their name, are not declarations per
se, but rather expressions which resemble function declarations. They have a
syntax very similar to function declarations, with the following key differences:

• Anonymous functions do not have a name;
• Anonymous functions cannot have type parameters;
• Anonymous functions cannot have default parameters;
• Anonymous functions may have variable length parameters, but they are au-

tomatically decayed to non-variable length parameters of the corresponding

8.22. FUNCTION LITERALS 35

array type via array type specialization;
• Anonymous functions may omit formal parameter types and return type,

if they can be inferred from the context.

Anonymous function declaration can declare an anonymous extension function
by following the extension function declaration convention.

Note: as anonymous functions may not have type parameters, you
cannot declare an anonymous extension function on a parameterized
receiver type.

The type of an anonymous function declaration is the function type constructed
similarly to a named function declaration.

8.22.2 Lambda literals
lambdaLiteral:

'{'
{NL}
[[lambdaParameters] {NL} '->' {NL}]
statements
{NL}
'}'

lambdaParameters:
lambdaParameter {{NL} ',' {NL} lambdaParameter} [{NL} ',']

lambdaParameter:
variableDeclaration
| (multiVariableDeclaration [{NL} ':' {NL} type])

Lambda literals are similar to anonymous function declarations in that they
define a function with no name. Unlike them, however, lambdas use very different
syntax, similar to control structure bodies of other expressions.

Every lambda literal consists of an optional lambda parameter list, specified
before the arrow (->) operator, and a body, which is everything after the arrow
operator.

Lambda body introduces a new statement scope.

Lambda literals have the same restrictions as anonymous function declarations,
but additionally cannot have vararg parameters.

Lambda literals can introduce destructuring parameters. Lambda parameter
of the form (a, b, ..., n) (note the parenthesis) declares a destructuring
formal parameter, which references the actual argument and its componentN()
functions as follows (see the operator overloading section for details).

val plus: (Pair<Int, Double>) -> String = { (i, d) ->
"$i + $d = ${i + d}"

36 CHAPTER 8. EXPRESSIONS

}

val plus: (Pair<Int, Double>) -> String = { p ->
val i = p.component1()
val d = p.component2()
"$i + $d = ${i + d}"

}

If a lambda expression has no parameter list, it can be defining a function with
either zero or one parameter, the exact case dependent on the use context of
this lambda. The selection of number of parameters in this case is performed
during type inference.

If a lambda expression has no explicit parameter list, but does have one parameter,
this parameter can be accessed inside the lambda body using a special property
called it.

Note: having no explicit parameter list (no arrow operator) in a
lambda is different from having zero parameters (nothing preceding
the arrow operator).

Any lambda may define either a normal function or an extension function, the
exact case dependent on the use context of the lambda. If a lambda expression
defines an extension function, its extension receiver may be accessed using the
standard this syntax inside the lambda body.

Lambda literals are different from other forms of function declarations in that
non-labeled return expressions inside lambda body refer to the outer non-lambda
function the expression is used in rather than the lambda expression itself. Such
non-labeled returns are only allowed if the lambda and all its parent lambdas (if
present) are guaranteed to be inlined, otherwise it is a compile-time error.

If a lambda expression is labeled, it can be returned from using a labeled return
expression.

If a non-labeled lambda expression is used as a parameter to a function call,
the name of the function called may be used as a label.

If a labeled return expression is used when there are several matching labels
available (e.g., inside several nested function calls with the same name), this is
resolved as return to the nearest matching label.

Example:

// kotlin.run is a standard library inline function
// receiving a lambda parameter

fun foo() { // (1)
run b@ { // (2)

run b@ { // (3)
return; // returns from (1)

8.22. FUNCTION LITERALS 37

}
}

}

fun bar() { // (1)
run b@ { // (2)

run b@ { // (3)
return@b; // returns from (3)

}
}

}

fun baz() { // (1)
run b@ { // (2)

run c@ { // (3)
return@b; // returns from (2)

}
}

}

fun qux() { // (1)
run { // (2)

run { // (3)
return@run; // returns from (3)

}
}

}

fun quux() { // (1)
run { // (2)

run b@ { // (3)
return@run; // returns from (2)

}
}

}

fun quz() { // (1)
run b@ { // (2)

run b@ { // (3)
return@run; // illegal: both run invocations are labeled

}
}

}

Any properties used inside the lambda body are captured by the lambda
expression and, depending on whether it is inlined or not, affect how these

38 CHAPTER 8. EXPRESSIONS

properties are processed by other mechanisms, e.g. smart casts. See corresponding
sections for details.

8.23 Object literals
objectLiteral:

['data']
{NL}
'object'
[{NL} ':' {NL} delegationSpecifiers {NL}]
[{NL} classBody]

Object literals are used to define anonymous objects in Kotlin. Anonymous
objects are similar to regular objects, but they (obviously) have no name and
thus can be used only as expressions.

Note: in object literals, only inner classes are allowed; interfaces,
objects or nested classes are forbidden.

Anonymous objects, just like regular object declarations, can have at most one
base class and zero or more base interfaces declared in its supertype specifiers.

The main difference between a regular object declaration and an anonymous
object is its type. The type of an anonymous object is a special kind of type
which is usable (and visible) only in the scope where it is declared. It is similar
to a type of a regular object declaration, but, as it cannot be used outside the
declaring scope, has some interesting effects.

When a value of an anonymous object type escapes current scope:

• If the type has only one declared supertype, it is implicitly downcasted to
this declared supertype;

• If the type has several declared supertypes, there must be an implicit or
explicit cast to any suitable type visible outside the scope, otherwise it is
a compile-time error.

Note: an implicit cast may arise, for example, from the results of
type inference.

Note: in this context “escaping current scope” is performed im-
mediately if the corresponding value is declared as a non-private
global- or classifier-scope property, as those are parts of an externally
accessible interface.

Example:

open class Base
interface I

class M {

8.24. THIS-EXPRESSIONS 39

fun bar() = object : Base(), I {}
// Error, as public return type of `bar`
// cannot be anonymous

fun baz(): Base = object : Base(), I {}
// OK, as an anonymous type is implicitly
// cast to Base

private fun qux() = object : Base(), I {}
// OK, as an anonymous type does not escape
// via private functions

private fun foo() = object {
fun bar() { println("foo.bar") }

}

fun test1() = foo().bar()

fun test2() = foo()
// OK, as an anonymous type is implicitly
// cast to Any

}

fun main() {
M().test1() // OK
M().test2().bar() // Error: Unresolved reference: bar

}

8.23.1 Functional interface lambda literals
If a lambda literal is preceded with a functional interface name, this expression
defines an anonymous object, implementing the specified functional interface
via the provided lambda literal (which becomes the implementation of its single
abstract method).

To be a well-formed functional interface lambda literal, the type of lambda literal
must be a subtype of the associated function type of the specified functional
interface.

8.24 This-expressions
thisExpression:

'this'
| THIS_AT

This-expressions are special kind of expressions used to access receivers available

40 CHAPTER 8. EXPRESSIONS

in the current scope. The basic form of this expression, denoted by a non-
labeled this keyword, is used to access the default implicit receiver according
to the receiver priority. In order to access other implicit receivers, labeled this
expressions are used. These may be any of the following:

• this@type, where type is a name of any classifier currently being declared
(that is, this-expression is located in the inner scope of the classifier
declaration), refers to the implicit object of the type being declared;

• this@function, where function is a name of any extension function
currently being declared (that is, this-expression is located in the function
body), refers to the implicit receiver object of the extension function;

• this@lambda, where lambda is a label provided for a lambda literal cur-
rently being declared (that is, this-expression is located in the lambda
expression body), refers to the implicit receiver object of the lambda
expression;

• this@outerFunction, where outerFunction is the name of a function
which takes lambda literal currently being declared as an immediate argu-
ment (that is, this-expression is located in the lambda expression body),
refers to the implicit receiver object of the lambda expression.

Note: this@outerFunction notation is mutually exclusive with
this@lambda notation, meaning if a lambda literal is labeled
this@outerFunction cannot be used.

Note: this@outerFunction and this@label notations can be
used only in lambda literals which have an extension function
type, i.e., have an implicit receiver.

Important: any other forms of this-expression are illegal and
should result in a compile-time error.

In case there are several entities with the same label, labeled this refers to the
closest label.

Example:

interface B
object C

class A/* receiver (1) */ {
fun B/* receiver (2) */ .foo() {

// `run` is a standard library function
// with an extension lambda parameter
C/* receiver (3) */ .run {

this // refers to receiver (3) of type C
this@A // refers to receiver (1) of type A
// this@B // illegal: B is not being declared
this@foo // refers to receiver (2) of type B

8.25. SUPER-FORMS 41

this@run // refers to receiver (3) of type C
}
C/* receiver (4) */ .run label@{

this // refers to receiver (4) of type C
this@A // refers to receiver (1) of type A
// this@B // illegal: B is not being declared
this@foo // refers to receiver (2) of type B
this@label // refers to receiver (4) of type C
// this@run // illegal: lambda literal is labeled

}
}

}

8.25 Super-forms
superExpression:

('super' ['<' {NL} type {NL} '>'] [AT_NO_WS simpleIdentifier])
| SUPER_AT

Super-forms are special kind of expression which can only be used as receivers
in a call or property access expression. Any use of super-form expression in any
other context is a compile-time error.

Super-forms are used in classifier declarations to access implementations from
the immediate supertypes without invoking overriding behaviour.

If an implementation is not available (e.g., one attempts to access an abstract
method of a supertype in this fashion), this is a compile-time error.

The basic form of this expression, denoted by super keyword, is used to access
the immediate supertype of the currently declared classifier selected as a part
of overload resolution. In order to access a specific supertype implementations,
extended super expressions are used. These may be any of the following:

• super<Klazz>, where Klazz is a name of one of the immediate super-
types of the currently declared classifier, refers to that supertype and its
implementations;

• super<Klazz>@type, where type is a name of any currently declared
classifier and Klazz is a name of one of the immediate supertypes of the
type classifier, refers to that supertype and its implementations.

Note: super<Klazz>@type notation can be used only in inner
classes, as only inner classes can have access to supertypes of
other classes, i.e., supertypes of their parent class.

Example:

interface A {

42 CHAPTER 8. EXPRESSIONS

fun foo() { println("A") }
}
interface B {

fun foo() { println("B") }
}

open class C : A {
override fun foo() { println("C") }

}

class E : C() {
init {

super.foo() // "C"
super<C>.foo() // "C"

}
}

class D : C(), A, B {
init {

// Error: ambiguity as several immediate supertypes
// with callable `foo` are available here
// super.foo()
super<C>.foo() // "C"
super.foo() // "B"
// Error: A is *not* an immediate supertype,
// as C inherits from A and is considered
// to be "more immediate"
// super<A>.foo()

}

inner class Inner {
init {

// Error: C is not available
// super<C>.foo()
super<C>@D.foo() // "C"
super@D.foo() // "B"

}
}

override fun foo() { println("D") }
}

8.26 Jump expressions
jumpExpression:

8.26. JUMP EXPRESSIONS 43

('throw' {NL} expression)
| (('return' | RETURN_AT) [expression])
| 'continue'
| CONTINUE_AT
| 'break'
| BREAK_AT

Jump expressions are expressions which redirect the evaluation of the program to
a different program point. All these expressions have several things in common:

• They all have type kotlin.Nothing, meaning that they never produce
any runtime value;

• Any code which follows such expressions is never evaluated.

8.26.1 Throw expressions
Throw expression throw e allows throwing exception objects. A valid throw
expression throw e requires that:

• e is a value of a runtime-available type;
• e is a value of an exception type.

Throwing an exception results in checking active try-blocks. See the Exceptions
section for details.

8.26.2 Return expressions
A return expression, when used inside a function body, immediately stops
evaluating the current function and returns to its caller, effectively making the
function call expression evaluate to the value specified in this return expression
(if any). A return expression with no value implicitly returns the kotlin.Unit
object.

There are two forms of return expression: a simple return expression, specified
using the non-labeled return keyword, which returns from the innermost function
declaration (or anonymous function declaration), and a labeled return expression
of the form return@Context which works as follows.

• If return@Context is used inside a named function declaration, the name
of the declared function may be used as Context to refer to that function.
If several declarations match the same name, the return@Context is
considered to be from the nearest matching function;

• If return@Context is used inside a non-labeled lambda literal, the name
of the function using this lambda expression as its argument may be used
as Context to refer to the lambda literal;

• If return@Context is used inside a labeled lambda literal, the label may
be used as Context to refer to the lambda literal.

44 CHAPTER 8. EXPRESSIONS

If a return expression is used in the context of a lambda literal which is not
inlined in the current context and refers to any function scope declared outside
this lambda literal, it is disallowed and should result in a compile-time error.

Note: these rules mean a simple return expression inside a lambda
expression returns from the innermost function in which this
lambda expression is defined. They also mean such return expression
is allowed only inside inlined lambda expressions.

8.26.3 Continue expressions
A continue expression is a jump expression allowed only within loop bodies.
When evaluated, this expression passes the control to the start of the next loop
iteration (aka “continue-jumps”).

There are two forms of continue expressions:

• A simple continue expression, specified using the continue keyword, which
continue-jumps to the innermost loop statement in the current scope;

• A labeled continue expression, denoted continue@Loop, where Loop is a
label of a labeled loop statement L, which continue-jumps to the loop L.

If a continue expression is used in the context of a lambda literal which refers to
any loop scope outside this lambda literal, it is disallowed and should result in a
compile-time error.

8.26.4 Break expressions
A break expression is a jump expression allowed only within loop bodies. When
evaluated, this expression passes the control to the next program point immedi-
ately after the loop (aka “break-jumps”).

There are two forms of break expressions:

• A simple break expression, specified using the break keyword, which
break-jumps to the innermost loop statement in the current scope;

• A labeled break expression, denoted break@Loop, where Loop is a label of
a labeled loop statement L, which break-jumps to the loop L.

If a break expression is used in the context of a lambda literal which refers to
any loop scope outside this lambda literal, it is disallowed and should result in a
compile-time error.

	Expressions
	Glossary
	Introduction
	Constant literals
	Boolean literals
	Integer literals
	The types for integer literals
	Real literals
	Character literals
	String literals
	Null literal

	Constant expressions
	String interpolation expressions
	Try-expressions
	Conditional expressions
	When expressions
	Exhaustive when expressions

	Logical disjunction expressions
	Logical conjunction expressions
	Equality expressions
	Reference equality expressions
	Value equality expressions

	Comparison expressions
	Type-checking and containment-checking expressions
	Type-checking expressions
	Containment-checking expressions

	Elvis operator expressions
	Range expressions
	Additive expressions
	Multiplicative expressions
	Cast expressions
	Prefix expressions
	Annotated expressions
	Prefix increment expressions
	Prefix decrement expressions
	Unary minus expressions
	Unary plus expressions
	Logical not expressions

	Postfix operator expressions
	Postfix increment expressions
	Postfix decrement expressions

	Not-null assertion expressions
	Indexing expressions
	Call and property access expressions
	Navigation operators
	Callable references
	Class literals
	Function calls and property access
	Spread operator expressions

	Function literals
	Anonymous function declarations
	Lambda literals

	Object literals
	Functional interface lambda literals

	This-expressions
	Super-forms
	Jump expressions
	Throw expressions
	Return expressions
	Continue expressions
	Break expressions

