
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 16

Exceptions

An exception type declaration is any type declaration that meets the following
criteria:

• It is a class or object declaration;
• It has kotlin.Throwable as one of its supertypes (either explicitly or

implicitly);
• It has no type parameters.

Any object of an exception type may be thrown or caught.

16.1 Catching exceptions
A try-expression becomes active once the execution of the program enters it
and stops being active once the execution of the program leaves it. If there
are several active try-expressions, the one that became active last is currently
active.

If an exception is thrown while a try-expression is currently active and this try-
expression has any catch-blocks, those catch-blocks are checked for applicability
for this exception. A catch-block is applicable for an exception object if the
runtime type of this expression object is a subtype of the bound exception
parameter of the catch-block.

Note: the applicability check is subject to Kotlin runtime type
information limitations and may be dependent on the platform imple-
mentation of runtime type information, as well as the implementation
of exception classes.

If a catch-block is applicable for the exception thrown, the code inside the
block is evaluated and the value of the block is returned as the value of a
try-expression. If the try-expression contains a finally-block, the body of

1



2 CHAPTER 16. EXCEPTIONS

this block is evaluated after the body of the selected catch block. If these
evaluations results in throwing other exceptions (including the one caught by the
catch-block), they are propagated as if none of the catch-blocks were applicable.

Important: the try-expression itself is not considered active inside
its own catch and finally blocks.

If none of the catch-blocks of the currently active try-expression are applicable
for the exception, the finally block (if any) is still evaluated, and the exception
is propagated, meaning the next active try-expression becomes currently active
and is checked for applicability.

If there are no active try-blocks, the execution of the program finishes, signaling
that the exception has reached top level.

16.2 Throwing exceptions
Throwing an exception object is done using throw-expression. A valid throw
expression throw e requires that:

• e is a value of a runtime-available type;
• e is a value of an exception type.

Throwing an exception results in checking active try-blocks.

Note: Kotlin does not specify whether throwing exceptions involves
construction of a program stack trace and how the actual exception
handling is implemented. This is a platform-dependent mechanism.


	Exceptions
	Catching exceptions
	Throwing exceptions


