
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev

ii

Chapter 4

Declarations

Glossary
Entity

Distinguishable part of a program
Identifier

Name of a program entity
Path

Sequence of identifiers which references a program entity in a given scope

Introduction
Declarations in Kotlin are used to introduce entities (values, types, etc.); most
declarations are named, i.e. they also assign an identifier to their own entity,
however, some declarations may be anonymous.

Every declaration is accessible in a particular scope, which is dependent both
on where the declaration is located and on the declaration itself. Every named
declaration introduces a binding for this name in the scope it is declared in. For
most of the declarations, this scope is the declaration scope introduced by the
parent declaration, e.g. the declaration this declaration is syntactically nested
in. See scoping section for details.

4.1 Classifier declaration
classDeclaration:

[modifiers]
('class' | (['fun' {NL}] 'interface'))
{NL}

1

2 CHAPTER 4. DECLARATIONS

simpleIdentifier
[{NL} typeParameters]
[{NL} primaryConstructor]
[{NL} ':' {NL} delegationSpecifiers]
[{NL} typeConstraints]
[({NL} classBody) | ({NL} enumClassBody)]

objectDeclaration:
[modifiers]
'object'
{NL}
simpleIdentifier
[{NL} ':' {NL} delegationSpecifiers]
[{NL} classBody]

Classifier declarations introduce new types to the program, of the forms described
here. There are three kinds of classifier declarations:

• class declarations;
• interface declarations;
• object declarations.

Important: object literals are similar to object declarations and are
considered to be anonymous classifier declarations, despite being
expressions.

4.1.1 Class declaration
A simple class declaration consists of the following parts.

• Name c;
• Optional primary constructor declaration ptor ;
• Optional supertype specifiers S1, . . . , Ss;
• Optional body b, which may include the following:

– secondary constructor declarations stor1, . . . , storc;
– instance initialization blocks init1, . . . , initi;
– property declarations prop1, . . . , propp;
– function declarations md1, . . . , mdm;
– companion object declaration companionObj;
– nested classifier declarations nested.

and creates a simple classifier type c : S1, . . . , Ss.

Supertype specifiers are used to create inheritance relation between the declared
type and the specified supertype. You can use classes and interfaces as supertypes,
but not objects or inner classes.

Note: if supertype specifiers are absent, the declared type is consid-
ered to be implicitly derived from kotlin.Any.

4.1. CLASSIFIER DECLARATION 3

It is allowed to inherit from a single class only, i.e., multiple class inheritance is
not supported. Multiple interface inheritance is allowed.

Instance initialization block describes a block of code which should be executed
during object creation.

Property and function declarations in the class body introduce their respective
entities in this class’ scope, meaning they are available only on an entity of the
corresponding class.

Companion object declaration companion object CO { ... } for class C intro-
duces an object, which is available under this class’ name or under the path
C.CO. Companion object name may be omitted, in which case it is considered to
be equal to Companion.

Nested classifier declarations introduce new classifiers, available under this class’
name. Further details are available here.

A parameterized class declaration, in addition to what constitutes a simple class
declaration, also has a type parameter list T1, . . . , Tm and extends the rules for
a simple class declaration w.r.t. this type parameter list. Further details are
described here.

Examples:

// An open class with no supertypes
//
open class Base

// A class inherited from `Base`
//
// Has a single read-only property `i`
// declared in its primary constructor
//
class B(val i: Int) : Base()

// An open class with no superclasses
//
// Has a single read-only property `i`
// declared in its body
//
// Initial value for the property is calculated
// in the init block
//
open class C(arg: Int) {

val i: Int

init {
i = arg * arg

4 CHAPTER 4. DECLARATIONS

}
}

// A class inherited from `C`
// Does not have a primary constructor,
// thus does not need to invoke the supertype constructor
//
// The secondary constructor delegates to the supertype constructor
class D : C {

constructor(s: String) : super(s.toInt())
}

// An open class inherited from `Base`
//
// Has a companion object with a mutable property `name`
class E : Base() {

companion object /* Companion */ {
var name = "I am a companion object of E!"

}
}

Example:

class Pair(val a: Int, val b: Int) : Comparable<Pair> {

fun swap(): Pair = Pair(b, a)

override fun compareTo(other: Pair): Int {
val f = a.compareTo(other.a)
if (f != 0) return f
return b.compareTo(other.b)

}

companion object {
fun duplet(a: Int) = Pair(a, a)

}
}

Constructor declaration

There are two types of class constructors in Kotlin: primary and secondary.

A primary constructor is a concise way of describing class properties together
with constructor parameters, and has the following form

ptor : (p1, . . . , pn)

4.1. CLASSIFIER DECLARATION 5

where each of pi may be one of the following:

• regular constructor parameter name : type;
• read-only property constructor parameter val name : type;
• mutable property constructor parameter var name : type.

Property constructor parameters, together with being regular constructor pa-
rameters, also declare class properties of the same name and type.

Important: if a property constructor parameter with type T is
specified as vararg, its corresponding class property type is the
result of array type specialization of type Array<out T>.

One can consider primary constructor parameters to have the following syntactic
expansion.

class Foo(i: Int, vararg val d: Double, var s: String) : Super(i, d, s) {}

class Foo(i: Int, vararg d_: Double, s_: String) : Super(i, d_, s_) {
val d = d_
var s = s_

}

When accessing property constructor parameters inside the class body, one
works with their corresponding properties; however, when accessing them in
the supertype specifier list (e.g., as an argument to a superclass constructor
invocation), we see them as actual parameters, which cannot be changed.

If a class declaration has a primary constructor and also includes a class supertype
specifier, that specifier must represent a valid invocation of the supertype
constructor.

A secondary constructor describes an alternative way of creating a class instance
and has only regular constructor parameters.

If a class has a primary constructor, any secondary constructor must dele-
gate to either the primary constructor or to another secondary constructor via
this(...).

If a class does not have a primary constructor, its secondary constructors must
delegate to either the superclass constructor via super(...) (if the superclass
is present in the supertype specifier list) or to another secondary constructor via
this(...). If the only superclass is kotlin.Any, delegation is optional.

In all cases, it is forbidden if two or more secondary constructors form a delegation
loop.

Class constructors (both primary and secondary) may have variable-argument
parameters and default parameter values, just as regular functions. Please refer
to the function declaration reference for details.

6 CHAPTER 4. DECLARATIONS

If a class does not have neither primary, nor secondary constructors, it is assumed
to implicitly have a default parameterless primary constructor. This also means
that, if a class declaration includes a class supertype specifier, that specifier must
represent a valid invocation of the supertype constructor.

Examples:

open class Base

class POKO : Base() {}

class NotQuitePOKO : Base {
constructor() : super() {}

}

class Primary(val s: String) : Base() {
constructor(i: Int) : this(i.toString()) {}

constructor(d: Double) : this(d.toInt()) {}

// Error, has primary ctor,
// needs to delegate to primary or secondary ctor
// constructor() : super() {}

}

class Secondary : Base {
constructor(i: Int) : super() {}

constructor(s: String) : this(s.toInt()) {}

// Ok, no primary ctor,
// can delegate to `super(...)`
constructor() : super() {}

}

Constructor declaration scopes

Similar to function declarations, a constructor introduces two scopes: a con-
structor parameter scope and a constructor body scope, see function declaration
section for details. The constructor parameter scope is upward-linked to the
static classifier declaration scope of its classifier. In addition to this, primary
constructor parameter scope is downward-linked to the classifier initialization
scope. There is also no primary constructor body scope as primary constructor
has no body.

Nested and inner classifiers

If a classifier declaration ND is nested in another classifier declaration PD, it

4.1. CLASSIFIER DECLARATION 7

creates a nested classifier type — a classifier type available under the path
PD . ND. In all other aspects, nested classifiers are equivalent to regular ones.

Inner classes are a special kind of nested classifiers, which introduce types of
objects associated (linked) with other (parent) objects. An inner class declaration
ID nested in another classifier declaration PD may reference an object of type
ID associated with it.

This association happens when instantiating an object of type ID, as its con-
structor may be invoked only when a receiver of type PD is available, and this
receiver becomes associated with the new instantiated object of type ID.

Inner classes cannot be declared in interface declarations, as interfaces cannot
be instantiated.

Inner classes cannot be declared in a statement scope, as such scope does not
have an object to associate the inner class with.

Inner classes cannot be declared in object declarations, as object declarations
also create a single named value of their type, which makes additional association
unnecessary.

Note: for information on how type parameters of parent and nested
/ inner classifiers interoperate, we delegate you to the type system
section of the specification.

Note: unlike object declarations, in object literals only inner classes
are allowed, as types of object literals are anonymous, making their
nested classifiers available only through explicit receiver, effectively
forcing them to be inner.

Examples:

interface Quz {
interface Bar
class Nested
// Error: no parent object to reference,
// as interfaces cannot be instantiated
// inner class Inner

}

class Foo {
interface Bar
class Nested
inner class Inner

}

object Single {
interface Bar
class Nested

8 CHAPTER 4. DECLARATIONS

// Error: value of type Single is available as-is,
// no reason to make an inner class
// inner class Inner

}

fun foo() {
// Error: interfaces cannot be local
// interface Bar

class Nested

// Error: inner classes cannot be local
// inner class Inner

}

fun test() {
val fooV = Foo()

Quz.Nested()
Foo.Nested()
fooV.Inner()

Single.Nested()

val anon = object {
// Error: cannot reference <anon>.Bar
// interface Bar
// Error: cannot reference <anon>.Nested
// class Nested
inner class Inner

}

anon.Inner()
}

Inheritance delegation

In a classifier (an object or a class) declaration C, any supertype I inheritance
may be delegated to an arbitrary value v if:

• The supertype I is an interface type;
• v has type T such that T <: I.

The inheritance delegation uses a syntax similar to property delegation using
the by keyword, but is specified in the classifier declaration header and is a very
different concept. If inherited using delegation, each method M of I (whether
they have a default implementation or not) is delegated to the corresponding

4.1. CLASSIFIER DECLARATION 9

method of v as if it was overridden in C with all the parameter values directly
passed to the corresponding method in v, unless the body of C itself has a
suitable override of M (see the method overriding section).

The particular means on how v is stored inside the classifier object is platform-
defined.

Due to the initialization order of a classifier object, the expression used to
construct v can not access any of the classifier object properties or methods
excluding the parameters of the primary constructor.

Example:

interface I {
fun foo(value: Int): Double
val bar: Long

}
interface J : I {

fun fee(): Int
}

class C(delegatee: I): I by delegatee

is expanded to

interface I {
fun foo(value: Int): Double
val bar: Long

}
interface J : I {

fun fee(): Int
}

class C(delegatee: I): I {
val I$delegate = delegate

override fun foo(value: Int): Double = I$delegate.foo(value)
override val bar: Long

get() = I$delegate.bar
}

Please note that the expression used as delegate is accessed exactly
once when creating the object, e.g. if the delegate expression contains
a mutable property access, this mutable property is accessed once
during object construction and its subsequent changes do not affect
the delegated interface functions. See classifier initialization section
for details on the evaluation order of classifier initialization entities.

For example (assuming interface I from the previous example is
defined):

10 CHAPTER 4. DECLARATIONS

var mut = object: J {...}

class D: I by mut // D delegates I to mutable property

is expanded to

var mut = object: J {...}
class D: I {

val I$delegate = mut // mut is accessed only once

override fun foo(value: Int): Double = I$delegate.foo(value)
override val bar: Long

get() = I$delegate.bar
}

mut = x1
val d1 = D() // d1 methods are delegated to x1
mut = x2
val d2 = D() // d2 methods are delegated to x2
// but d1 methods are still delegated to x1

Abstract classes

A class declaration can be marked abstract. Such classes cannot be instantiated
directly; they are used as superclasses for other classes or objects.

Abstract classes may contain one or more abstract members: members without
implementation, which should be implemented in a subtype of this abstract
class.

4.1.2 Data class declaration
A data class dataClass is a special kind of class, which represents a product
type constructed from a number of data properties (dp1, . . . , dpm), described in
its primary constructor. Non-property constructor parameters are not allowed
in the primary constructor of a data class. As such, data classes allow Kotlin
to reduce the boilerplate and generate a number of additional data-relevant
functions.

• equals() / hashCode() / toString() functions compliant with their
contracts:

– equals(that) returns true iff:
∗ that has the same runtime type as this;
∗ this.prop == that.prop returns true for every data property

prop;
– hashCode() returns the same numbers for values A and B if they are

equal w.r.t. the generated equals;

4.1. CLASSIFIER DECLARATION 11

– toString() returns a string representations which is guaranteed to
include the class name along with all the data properties’ string
representations.

• A copy() function for shallow object copying with the following properties:
– It has the same number of parameters as the primary constructor

with the same names and types;
– It calls the primary constructor with the corresponding parameters

at the corresponding positions;
– It has defaults for all the parameters defaulting to the value of the

corresponding property in this object.
• A number of componentN() functions for destructuring declaration:

– For the data property at position N (starting from 1), the generated
componentN function has the same type as this property and returns
the value of this property;

– It has an operator modifier, allowing it to be used in destructuring
declarations;

– The number of these functions is the same as the number of data
properties.

All these functions consider only data properties {dpi}; e.g., your data class
may include regular property declarations in its body, however, they will not be
considered in the equals() implementation or have a componentN() generated
for them.

There are several rules as to how these generated functions may be explicified or
inherited.

Note: a generated function is explicified, if its implementation (with
matching function signature) is provided explicitly in the body of the
data class. A generated function is inherited, if its implementation
(with matching function signature) is taken from a supertype of the
data class.

The declarations of equals, hashCode and toString may be explicified similarly
to how overriding works in normal classes. If a correct explicit implementation is
available, no function is generated. Other functions (copy, componentN) cannot
be explicified.

The declarations of equals, hashCode and toString may be inherited from the
base class, if it provides a final version with a matching signature. If a correct
inherited implementation is available, no function is generated. Other functions
(copy, componentN) cannot be inherited.

In addition, for every generated function, if any of the base types provide an
open function with a matching signature, it is automatically overridden by the
generated function as if it was generated with an override modifier.

Note: data classes or their supertypes may also have functions which
have a matching name and/or signature with one of the generated

12 CHAPTER 4. DECLARATIONS

functions. As expected, these cases result in either override or
overload conflicts the same way they would with a normal class
declaration, or they create two separate functions which follow the
rules of overloading.

Data classes have the following restrictions:

• Data classes are closed and cannot be inherited from;
• Data classes must have a primary constructor with property constructor

parameters only, which become data properties for the data class;
• There must be at least one data property in the primary constructor;
• Data properties cannot be specified as vararg constructor arguments.

For example, the following data class declaration

data class DC(val x: Int, val y: Double)

is equivalent to

class DC(val x: Int, val y: Double) {
override fun equals(other: Any?): Boolean {

if(other !is DC) return false
return x == other.x && y == other.y

}

override fun hashCode(): Int = x.hashCode() + 31 * y.hashCode()

override fun toString(): String = "DC(x=$x,y=$y)"

operator fun component1(): Int = x

operator fun component2(): Double = y

fun copy(x: Int = this.x, y: Double = this.y): DC = DC(x, y)
}

The following data class declaration

data class DC(val x: Int) {
override fun equals(other: Any?) = false
override fun toString(): String = super.toString()

}

may be equivalent to

class DC(val x: Int) {
override fun equals(other: Any?) = false

override fun hashCode(): Int = x.hashCode()

override fun toString(): String = super.toString()

4.1. CLASSIFIER DECLARATION 13

operator fun component1(): Int = x

fun copy(x: Int = this.x): DC = DC(x)
}

(note how equals and toString implementations are explicified in
the second declaration)

Disclaimer: the implementations of these methods given in this
examples are not guaranteed to exactly match the ones generated
by kotlin compiler, please refer to the descriptions of these methods
above for guarantees

Data object declaration

Note: as of Kotlin 1.9, this feature is experimental.

A data object dataObject is a special kind of object, which extends the data
class abstraction (product type of one or more data properties) to a case of unit
type: product type of zero data properties.

Note: unit type has only one possible value, thus it is also known as
singleton type.

Similarly to data classes, there are a number of functions with predefined
behaviour generated for data objects.

• equals() / hashCode() / toString() functions compliant with their
contracts:

– equals(that) returns true iff that has the same runtime type as
this;

– hashCode() returns the same numbers for values A and B if they are
equal w.r.t. the generated equals;

– toString() returns a string representations which is guaranteed to
include the object name.

Note: copy() and componentN() functions are not generated, as
they are not relevant for a unit type.

• copy() function is not needed as unit type has a single possible
value;

• componentN() functions are not needed as unit type has no
data properties.

Unlike data classes, however, for data objects the only generated function which
can be exemplified or inherited is toString(); equals() and hashCode() for a
data object always work as specified above. This is to ensure data objects do
not violate the unit type invariant of “being inhabited by only one value”, which
would be possible if one were to provide a custom equals() implementation.

14 CHAPTER 4. DECLARATIONS

If either equals() or hashCode() function would be exemplified or inherited by
a data object, it is a compile-time error.

Data objects have the same restrictions are regular objects.

Note: companion objects and object literals cannot be data objects.

4.1.3 Enum class declaration
Enum class E is a special kind of class with the following properties:

• It has a number of predefined values that are declared in the class itself
(enum entries);

• No other values of this class can be constructed;
• It implicitly inherits the built-in class kotlin.Enum<E> (and cannot have

any other base classes);
• It is implicitly final and cannot be inherited from;
• It cannot have type parameters of any kind;
• It has special syntax to accommodate for the properties described above.

Note: for the purposes of overload resolution, enum entries are
considered to be static member callables of the enum class type

Enum class body uses special kind of syntax (see grammar) to declare enum
entries in addition to all other declarations inside the class body. Enum entries
have their own bodies that may contain their own declarations, similar to object
declarations.

Note: an enum class can have zero enum entries. This makes objects
of this class impossible to construct.

Every enum entry of class E implicitly overrides members of kotlin.Enum<E> in
the following way:

• public final val name: String

defined to be the same as the name of the entry as declared in code;

• public final val ordinal: Int

defined to be the ordinal of the entry, e.g. the position of this entry in the
list of entries, starting with 0;

• public override final fun compareTo(other: E): Int

(a member of kotlin.Comparable<E>) defined by default to compare
entries by their ordinals, but may be overridden to have different behaviour
both in the enum class declaration and in entry declarations;

• public override fun toString(): String

4.1. CLASSIFIER DECLARATION 15

(a member of kotlin.Any) defined by default to return the entry name,
but may be overridden to have different behaviour both in the enum class
declaration and in entry declarations.

In addition to these, every enum class type E has the following static members
declared implicitly:

• public final static val entries: EnumEntries<E>

This property returns an instance of a special immutable EnumEntries<E>
list of all possible enum values in the order they are declared;

• public final static fun valueOf(value: String): E

This function returns an object corresponding to the entry with the name
equal to value parameter of the call or throws an exception otherwise.

Important: static is not a valid Kotlin keyword and is only used
here for clarity. The static members are handled differently by the
overload resolution.

Kotlin standard library also introduces a function to access all enum values for a
specific enum class called kotlin.enumEntries<T>. Please refer to the standard
library documentation for details.

Note: the entries property is available since Kotlin 1.9.

For backwards compatibility, in addition to the entries property, every enum
class type E has the following static member function declared implicitly.

• public final static fun values(): kotlin.Array<E>

This function returns an array of all possible enum values in the order
they are declared. Every invocation of this function returns a new array
to disallow changing its contents.

Important: values function is effectively deprecated and entries
property should be used instead.

Kotlin standard library also introduces another function to access all enum values
for a specific enum class called kotlin.enumValues<T> (which is deprecated for
subsequent removal). Please refer to the standard library documentation for
details.

Example:

enum class State { LIQUID, SOLID, GAS }

...
State.SOLID.name // "SOLID"
State.SOLID.ordinal // 1
State.GAS > State.LIQUID // true
State.SOLID.toString() // "SOLID"

16 CHAPTER 4. DECLARATIONS

State.valueOf("SOLID") // State.SOLID
State.valueOf("Foo") // throws exception
State.values() // arrayOf(State.LIQUID, State.SOLID, State.GAS)

...

// enum class can have additional declarations that may be overridden in its values:
enum class Direction(val symbol: Char) {

UP('ˆ') {
override val opposite: Direction

get() = DOWN
},
DOWN('v') {

override val opposite: Direction
get() = UP

},
LEFT('<') {

override val opposite: Direction
get() = RIGHT

},
RIGHT('>') {

override val opposite: Direction
get() = LEFT

};
abstract val opposite: Direction

}

4.1.4 Annotation class declaration
Annotations class is a special kind of class that is used to declare annotations.
Annotation classes have the following properties:

• They cannot have any secondary constructors;
• All the primary constructor parameters must use the property syntax;
• They implicitly implement kotlin.Annotation interface (and cannot im-

plement additional interfaces);
• They cannot have any specified base classes;
• They are implicitly closed and cannot be inherited from;
• They may not have any member functions, properties not declared in the

primary constructor or any overriding declarations;
• They cannot have companion objects;
• They cannot have nested classes;
• The types of primary constructor parameters are limited to:

– kotlin.String;
– kotlin.KClass;
– Built-in number types;

4.1. CLASSIFIER DECLARATION 17

– Other annotation types;
– Arrays of any other allowed type.

Important: when we say “other annotation types”, we mean an
annotation type cannot reference itself, either directly or indirectly.
For example, if annotation type A references annotation type B which
references an array of A, it is prohibited and reported as a compile-
time error.

Note: annotation classes can have type parameters, but cannot use
them as types for their primary constructor parameters. Their main
use is for various annotation processing tools, which can access the
type arguments from the source code.

The main use of annotation classes is when specifying code annotations for other
entities. Additionally, annotation classes can be instantiated directly, for cases
when you require working with an annotation instance directly. For example,
this is needed for interoperability with some Java annotation APIs, as in Java
you can implement an annotation interface and then instantiate it.

Note: before Kotlin 1.6, annotation classes could not be instantiated
directly.

Examples:

// a couple annotation classes
annotation class Super(val x: Int, val f: Float = 3.14f)
annotation class Duper(val supers: Array<Super>)

// the same classes used as annotations
@Duper(arrayOf(Super(2, 3.1f), Super(3)))
class SuperClass {

@Super(4)
val x = 3

}

// annotation class without parameters
annotation class Transmogrifiable

@Transmogrifiable
fun f(): Int = TODO()

// variable argument properties are supported
annotation class WithTypes(vararg val classes: KClass<out Annotation>)

@WithTypes(Super::class, Transmogrifiable::class)
val x = 4

18 CHAPTER 4. DECLARATIONS

4.1.5 Value class declaration
A class may be declared a value class by using inline or value modifier in its
declaration. Value classes must adhere to the following limitations:

• Value classes are closed and cannot be inherited from;
• Value classes cannot be inner, data or enum classes;
• Value classes must have a primary constructor with a single property

constructor parameter, which is the data property of the class;
• This property cannot be specified as vararg constructor argument;
• This property must be declared public;
• They must not override equals and hashCode member functions of

kotlin.Any;
• They must not have any base classes besides kotlin.Any;
• No other properties of this class may have backing fields.

Note: inline modifier for value classes is supported as a legacy
feature for compatibility with Kotlin 1.4 experimental inline classes
and will be deprecated in the future.

Note: before Kotlin 1.8, value classes supported only properties of [a
runtime-available types].

Value classes implicitly override equals and hashCode member functions of
kotlin.Any by delegating them to their only data property. Unless toString
is overridden by the value class definition, it is also implicitly overridden by
delegating to the data property. In addition to these, an value class is allowed
by the implementation to be inlined where applicable, so that its data property
is operated on instead. This also means that the property may be boxed back
to the value class by using its primary constructor at any time if the compiler
decides it is the right thing to do.

Note: when inlining a data property of a non-runtime-available type
U (i.e., a non-reified type parameter), the property is considered to
be of type, which is the runtime-available upper bound of U .

Due to these restrictions, it is highly discouraged to use value classes with the
reference equality operators.

Note: in the future versions of Kotlin, value classes may be allowed
to have more than one data property.

4.1.6 Interface declaration
Interfaces differ from classes in that they cannot be directly instantiated in the
program, they are meant as a way of describing a contract which should be
satisfied by the interface’s subtypes. In other aspects they are similar to classes,
therefore we shall specify their declarations by specifying their differences from
class declarations.

4.1. CLASSIFIER DECLARATION 19

• An interface can be declared only in a declaration scope;
– Additionally, an interface cannot be declared in an object literal;

• An interface cannot have a class as its supertype;
– This also means it is not considered to have kotlin.Any as its super-

type for the purposes of inheriting and overriding callables;
– However, it is still considered to be a subtype of kotlin.Any w.r.t.

subtyping;
• An interface cannot have a constructor;
• Interface properties cannot have initializers or backing fields;
• Interface properties cannot be delegated;
• An interface cannot have inner classes;
• An interface and all its members are implicitly open;
• All interface member properties and functions are implicitly public;

– Trying to declare a non-public member property or function in an
interface is an compile-time error;

• Interface member properties and functions without implementation are
implicitly abstract.

Functional interface declaration

A functional interface is an interface with a single abstract function and no
other abstract properties or functions.

A function interface declaration is marked as fun interface. It has the following
additional restrictions compared to regular interface declarations.

• A functional interface can have only one abstract member function, which
must be non-parameterized;

• A functional interface cannot have any abstract member properties;

A functional interface has an associated function type, which is the same as the
function type of its single abstract member function.

Important: the associated function type of a functional interface is
different from the type of said functional interface.

If one needs an object of a functional interface type, they can use the regular
ways of implementing an interface, either via an anonymous object declaration
or as a complete class. However, as functional interface essentially represents
a single function, Kotlin supports the following additional ways of providing
a functional interface implementation from function values (expressions with
function type).

• If an expression L is used as an argument of functional type T in a function
call, and the type of L is a subtype of the associated function type of T,
this argument is considered as an instance of T with expression L used as
its abstract member function implementation.

Example:

20 CHAPTER 4. DECLARATIONS

fun interface FI {
fun bar(s: Int): Int

}

fun doIt(fi: FI) {}

fun foo() {
doIt { it }
doIt { s: Int -> s + 42 }
doIt { s: Number -> s.toInt() }

doIt(fun(s): Int { return s; })

val l = { s: Number -> s.toInt() }

doIt(l)
}

• When encountered in a function call as the function being called, a functional
interface name T is considered to be representing a function of type (T)
-> T, which allows conversion-like function calls as in the examples below.

Example:

fun interface FI {
fun bar(s: Int): Int

}

fun foo() {
val fi = FI { it }
val fi2 = FI { s: Int -> s + 42 }
val fi3 = FI { s: Number -> s.toInt() }
val fi4 = FI({ it })

val lambda = { s: Int -> s + 42 }
val fi5 = FI(lambda)

}

Informally: this feature is known as “Single Abstract Method” (SAM)
conversion.

Note: in Kotlin version 1.3 and earlier, SAM conversion was not
available for Kotlin functional interfaces.

Note: SAM conversion is also available on Kotlin/JVM for Java
functional interfaces.

4.1. CLASSIFIER DECLARATION 21

4.1.7 Object declaration
Object declarations are similar to class declaration in that they introduce a new
classifier type, but, unlike class or interface declarations, they also introduce a
value of this type in the same declaration. No other values of this type may be
declared, making object a single existing value of its type.

Note: This is similar to singleton pattern common to object-oriented
programming in introducing a type which includes a single global
value.

Similarly to interfaces, we shall specify object declarations by highlighting their
differences from class declarations.

• An object can only be declared in a declaration scope;
– Additionally, an object cannot be declared in an object literal;

• An object type cannot be used as a supertype for other types;
• An object cannot have an explicit primary or secondary constructor;
• An object cannot have a companion object;
• An object cannot have inner classes;
• An object cannot be parameterized, i.e., cannot have type parameters.

Note: an object is assumed to implicitly have a default parameterless
primary constructor.

Note: this section is about declaration of named objects. Kotlin also
has a concept of anonymous objects, or object literals, which are
similar to their named counterparts, but are expressions rather than
declarations and, as such, are described in the corresponding section.

Note: besides regular object declarations, Kotlin supports data object
declarations.

4.1.8 Local class declaration
A class (but not an interface or an object) may be declared locally inside a
statement scope (namely, inside a function). Such declarations are similar to
object literals in that they may capture values available in the scope they are
declared in:

fun foo() {
val x = 2
class Local {

val y = x
}
Local().y // 2

}

Enum classes and annotation classes cannot be declared locally.

22 CHAPTER 4. DECLARATIONS

4.1.9 Classifier initialization
When creating a class or object instance via one of its constructors ctor, it is
initialized in a particular order, which we describe here.

A primary pctor or secondary constructor ctor has a corresponding superclass
constructor sctor defined as follows.

• For primary constructor pctor, a corresponding superclass constructor
sctor is the one from the supertype specifier list;

• For secondary constructor ctor, a corresponding supertype constructor
sctor is the one ending the constructor delegation chain of ctor;

• If an explicit superclass constructor is not available, Any() is implicitly
used.

When a classifier type is initialized using a particular secondary constructor
ctor delegated to primary constructor pctor which, in turn, is delegated to
the corresponding superclass constructor sctor, the following happens, in this
initialization order :

• The superclass object is initialized as if created by invoking sctor with the
specified parameters;

• Interface delegation expressions are invoked and the result of each is stored
in the object to allow for interface delegation, in the order of appearance
of delegation declarations in the supertype specifier list;

• pctor is invoked using the specified parameters, initializing all the properties
declared by its property parameters in the order of appearance in the
constructor declaration;

• Each property initialization code as well as the initialization blocks in the
class body are invoked in the order of appearance in the class body;

• ctor body is invoked using the specified parameters.

Note: this means that if an init-block appears between two property
declarations in the class body, its body is invoked between the
initialization code of these two properties.

The initialization order stays the same if any of the entities involved are omitted,
in which case the corresponding step is also omitted (e.g., if the object is created
using the primary constructor, the body of the secondary one is not invoked).

If any step in the initialization order creates a loop, it results in unspecified
behaviour.

If any of the properties are accessed before they are initialized w.r.t initialization
order (e.g., if a method called in an initialization block accesses a property
declared after the initialization block), the value of the property is unspecified.
It stays unspecified even after the “proper” initialization is performed.

Note: this can also happen if a property is captured in a lambda
expression used in some way during subsequent initialization steps.

4.1. CLASSIFIER DECLARATION 23

Examples:

open class Base(val v: Any?) {
init {

println("2: $this")
}

}

interface I

class Init(val a: Number) : Base(0xC0FFEE) /* (2) */ ,
I by object : I {

init { println("2.5") }
} /* (2.5) */ {

init {
println("3: $this") /* (3) */

}

constructor(v: Int) : this(v as Number) {
println("10: $this") /* (10) */

}

val b: String = a.toString() /* (4) */

init {
println("5: $this") /* (5) */

}

var c: Any? = "b is $b" /* (6) */

init {
println("7: $this") /* (7) */

}

val d: Double = 42.0 /* (8) */

init {
println("9: $this") /* (9) */

}

override fun toString(): String {
return "Init(a=$a, b='$b', c=$c, d=$d)"

}
}

24 CHAPTER 4. DECLARATIONS

fun main() {
Init(5)
// 2: Init(a=null, b='null', c=null, d=0.0)
// 3: Init(a=5, b='null', c=null, d=0.0)
// 5: Init(a=5, b='5', c=null, d=0.0)
// 7: Init(a=5, b='5', c=b is 5, d=0.0)
// 9: Init(a=5, b='5', c=b is 5, d=42.0)
// 10: Init(a=5, b='5', c=b is 5, d=42.0)

// Here we can see how the undefined values for
// uninitialized properties may leak outside

}

4.1.10 Classifier declaration scopes
Every classifier declaration introduces two declarations scope syntactically bound
by the classifier body, if any: the static classifier body scope and the actual
classifier body scope Every function, property or inner classifier declaration
contained within the classifier body are declared in the actual classifier body
scope of this classifier. All non-primary constructors of the classifier, as well as
any non-inner nested classifier, including the companion object declaration (if
it exists) and enum entries (if this is an enum class), are declared in the static
classifier body scope. Static classifier body scope is upwards-linked to the actual
classifier body scope. For an object declaration, static classifier body scope and
the actual classifier body scoped are one and the same.

In addition to this, objects and classes introduce a special object initialization
scope, which is not syntactically delimited. The scopes of each initialization
expression of every property in the class body, as well as the scopes of each
initialization block, is upward-linked to the object initialization scope, which
itself is upward-linked to the actual classifier body scope.

If a classifier declares a primary constructor, the parameters of this constructor
are bound in the special primary constructor parameter scope, which is downward-
linked to the initialization scope and upward-linked to the scope the classifier
is declared in. The interface delegation expressions (if any) are resolved in the
primary constructor parameter scope if it exists and in the scope the classifier is
declared in otherwise.

4.2 Function declaration
functionDeclaration:

[modifiers]
'fun'
[{NL} typeParameters]
[{NL} receiverType {NL} '.']

4.2. FUNCTION DECLARATION 25

{NL}
simpleIdentifier
{NL}
functionValueParameters
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

functionBody:
block
| ('=' {NL} expression)

Function declarations assign names to functions — blocks of code which may be
called by passing them a number of arguments. Functions have special function
types which are covered in more detail here.

A simple function declaration consists of four main parts:

• Name f ;
• Parameter list (p1 : P1[= v1], . . . , pn : Pn[= vn]);
• Return type R;
• Body b.

and has a function type f : (p1 : P1, . . . , pn : Pn) → R.

Parameter list (p1 : P1[= v1], . . . , pn : Pn[= vn]) describes function parameters,
i.e. inputs needed to execute the declared function. Each parameter pi : Pi = vi

introduces pi as a name of value with type Pi available inside function body b;
therefore, parameters are final and cannot be changed inside the function. A
function may have zero or more parameters.

A parameter may include a default value vi, which is used if the corresponding
argument is not specified in function invocation; vi must be an expression which
evaluates to type V <: Pi.

Return type R, if omitted, is calculated as follows.

• If function body b is present in the expression form and it may be inferred
to have a valid type B : B ̸≡ kotlin.Nothing, R ≡ B.

• If function body b is present in the block form, R ≡ kotlin.Unit.

In other cases return type R cannot be omitted and must be specified explicitly.

As type kotlin.Nothing has a special meaning in Kotlin type system,
it must be specified explicitly, to avoid spurious kotlin.Nothing
function return types.

Function body b is optional; if it is omitted, a function declaration creates an
abstract function, which does not have an implementation. This is allowed only
inside an abstract class or an interface. If a function body b is present, it should
evaluate to type B which should satisfy B <: R.

26 CHAPTER 4. DECLARATIONS

A parameterized function declaration consists of five main parts.

• Name f ;
• Type parameter list T1, . . . , Tm;
• Parameter list (p1 : P1 = v1, . . . , pn : Pn = vn);
• Return type R;
• Body b.

and extends the rules for a simple function declaration w.r.t. type parameter
list. Further details are described here.

4.2.1 Function signature
In some cases we need to establish whether one function declaration matches
another, e.g., for checking overridability. To do that, we compare function
signatures, which consist of the following.

• Name f ;
• Type parameter list T1, . . . , Tm (if present);
• Parameter list P1, . . . , Pn.

Two function signatures A and B are considered matching, if the following is
true.

• Name of A is the same as the name of B;
• Formal parameter types of A are pairwise equal to the formal parameter

types of B w.r.t. possible type parameter substitutions;
• If the number of type parameters is the same, type parameters of A must

be pairwise equivalent to the type parameters of B.

Important: a platform implementation may change which function
signatures are considered matching, depending on the platform’s
specifics.

4.2.2 Named, positional and default parameters
Kotlin supports named parameters out-of-the-box, meaning one can bind an
argument to a parameter in function invocation not by its position, but by its
name, which is equal to the argument name.

fun bar(a: Int, b: Double, s: String): Double = a + b + s.toDouble()

fun main(args: Array<String>) {
println(bar(b = 42.0, a = 5, s = "13"))

}

Note: it is prohibited to bind the same named parameter to an
argument several times, such invocations should result in a compile-
time error.

4.2. FUNCTION DECLARATION 27

All the names of named parameters are resolved at compile-time, meaning
that performing a call with a parameter name not used at declaration-site is a
compile-time error.

If one wants to mix named and positional arguments, the argument list must
conform to the following form: PoN1, . . . , PoNM , N1, . . . , NQ, where PoNi is
an i-th argument in either positional or named form, Nj is a named argument
irregardless of its position.

Note: in Kotlin version 1.3 and earlier, PoNi were restricted to
positional arguments only.

If one needs to provide a named argument to a variable length parameter, it can
be achieved via either regular named argument arg = arr or a spread operator
expression form arg = *arr. In both cases type of arr must be a subtype of
ATS(kotlin.Array(out T)) for a variable length parameter of type T .

Note: in Kotlin version 1.3 and earlier, only the spread operator
expression form for named variable length arguments was supported.

Kotlin also supports default parameters — parameters which have a default
value used in function invocation, if the corresponding argument is missing.
Note that default parameters cannot be used to provide a value for positional
argument in the middle of the positional argument list; allowing this would
create an ambiguity of which argument for position i is the correct one: explicit
one provided by the developer or implicit one from the default value.

fun bar(a: Int = 1, b: Double = 42.0, s: String = "Hello"): Double =
a + b + s.toDouble()

fun main(args: Array<String>) {
// Valid call, all default parameters used
println(bar())
// Valid call, defaults for `b` and `s` used
println(bar(2))
// Valid call, default for `b` used
println(bar(2, s = "Me"))

// Invalid call, default for `b` cannot be used
println(bar(2, "Me"))

}

In summary, argument list should have the following form:

• Zero or more arguments in either positional or named form;
• Zero or more named arguments.

Missing arguments are bound to their default values, if they exist.

The evaluation order of argument list is described in Function calls and property
access section of this specification.

28 CHAPTER 4. DECLARATIONS

4.2.3 Variable length parameters
One of the parameters may be designated as being variable length (aka vararg).
A parameter list (p1, . . . , vararg pi : Pi = vi, . . . , pn) means a function may be
called with any number of arguments in the i-th position. These arguments are
represented inside function body b as a value pi of type, which is the result of
array type specialization of type kotlin.Array(out Pi).

Important: we also consider variable length parameters to have
such types for the purposes of type inference and calls with named
parameters.

If a variable length parameter is not last in the parameter list, all subsequent
arguments in the function invocation should be specified as named arguments.

If a variable length parameter has a default value, it should be an expression
which evaluates to a value of type, which is the result of array type specialization
of type kotlin.Array(out Pi).

A value of type Q <: ATS(kotlin.Array(out Pi)) may be unpacked to a variable
length parameter in function invocation using spread operator; in this case array
elements are considered to be separate arguments in the variable length parameter
position.

Note: this means that, for variable length parameters corresponding
to specialized array types, unpacking is possible only for these special-
ized versions; for a variable length parameter of type Int, for example,
unpacking is valid only for IntArray, and not for Array<Int>.

A function invocation may include several spread operator expressions cor-
responding to the vararg parameter. These may also be freely mixed with
non-spread-expression arguments.

Examples

fun foo(vararg i: Int) { ... }
fun intArrayOf(vararg i: Int): IntArray = i
...
// i is [1, 2, 3]
foo(1, 2, 3)
// i is [1, 2, 3]
foo(*intArrayOf(1, 2, 3))
// i is [1, 2, 3, 4, 5]
foo(1, 2, *intArrayOf(3, 4), 5)
// i is [1, 2, 3, 4, 5, 6]
foo(*intArrayOf(1, 2, 3), 4, *intArrayOf(5, 6))

4.2.4 Extension function declaration
An extension function declaration is similar to a standard function declaration,

4.2. FUNCTION DECLARATION 29

but introduces an additional special function parameter, the receiver parameter.
This parameter is designated by specifying the receiver type (the type before
. in function name), which becomes the type of this receiver parameter. This
parameter is not named and must always be supplied (either explicitly or
implicitly), e.g. it cannot be a variable-argument parameter, have a default value,
etc.

Calling such a function is special because the receiver parameter is not supplied
as an argument of the call, but as the receiver of the call, be it implicit or explicit.
This parameter is available inside the scope of the function as the implicit receiver
or this-expression, while nested scopes may introduce additional receivers that
take precedence over this one. See the receiver section for details. This receiver
is also available (as usual) in nested scope using labeled this syntax using the
name of the declared function as the label.

For more information on how a particular receiver for each call is chosen, please
refer to the overloading section.

Note: when declaring extension functions inside classifier declarations,
this receiver takes precedence over the classifier object, which is
usually the current receiver inside nested functions

For all other purposes, extension functions are not different from non-extension
functions.

Examples:

fun Int.foo() { println(this + 1) } // this has type Int

fun main(args: Array<String>) {
2.foo() // prints "3"

}

class Bar {
fun foo() { println(this) } // this has type Bar
fun Int.foo() { println(this) } // this has type Int

}

4.2.5 Inlining
A function may be declared inline using a special inline modifier. This allows
the compiler to inline the function at call-site, replacing the call with the body
of the function with arguments mapped to corresponding parameters. It is
unspecified whether inlining will actually be performed, however.

Declaring a function inline has two additional effects:

• It allows type parameters of the function to be declared reified, making
them runtime-available and allowing usage of specific expressions involving
these parameters, such as type checks and class literals. Calling such a

30 CHAPTER 4. DECLARATIONS

function is only allowed in a context where a particular type argument
provided for this type parameter is also a runtime-available type.

• Any parameter of this function of a function type is treated as inlined
parameter unless it has one of two special modifiers: crossinline or
noinline. If a particular argument corresponding to inline parameter is a
lambda literal, this lambda literal is considered inlined and, in particular,
affects the way the return expressions are handled in its body. See the
corresponding section for details.

Inlined parameters are not allowed to escape the scope of the function body,
meaning that they cannot be stored in variables, returned from the function or
captured by other values. They may only be called inside the function body or
passed to other functions as inline arguments.

Crossinline parameters may not be stored or returned from the function, but may
be captured (for example, by object literals or other noinline lambda literals).

Noinline parameters may be treated as any other values. They may also be
passed to other functions as noinline or crossinline arguments.

Particular platforms may introduce additional restrictions or guarantees for the
inlining mechanism.

Important: for extension functions, the extension receiver is consid-
ered to be effectively noinline.

Examples:

fun bar(value: Any?) {}

inline fun inlineParameter(arg: () -> Unit) { arg() }
inline fun noinlineParameter(noinline arg: () -> Unit) { arg() }
inline fun crossinlineParameter(crossinline arg: () -> Unit) { arg() }

inline fun foo(inl: () -> Unit,
crossinline cinl: () -> Unit,
noinline noinl: () -> Unit) {

// all arguments may be called
inl()
cinl()
noinl()
// all arguments may be passed as inline
inlineParameter(inl)
inlineParameter(cinl)
inlineParameter(noinl)
// only noinline arguments may be passed as noinline
noinlineParameter(inl) // not allowed
noinlineParameter(cinl) // not allowed
noinlineParameter(noinl)

4.2. FUNCTION DECLARATION 31

// noinline/crossinline arguments may be passed as crossinline
crossinlineParameter(inl) // not allowed
crossinlineParameter(cinl)
crossinlineParameter(noinl)
// only noinline arguments may be passed to non-inline functions
bar(inl) // not allowed
bar(cinl) // not allowed
bar(noinl)
// noinline/crossinline parameters may be captured in lambda literals
bar({ inl() }) // not allowed
bar({ cinl() })
bar({ noinl() })

}

4.2.6 Infix functions
A function may be declared as an infix function by using a special infix modifier.
An infix function can be called in an infix form, i.e., a foo b instead of a.foo(b).

To be a valid infix function, function F must satisfy the following requirements.

• F has a dispatch or an extension receiver
• F has exactly one parameter

4.2.7 Local function declaration
A function may be declared locally inside a statement scope (namely, inside
another function). Such declarations are similar to function literals in that they
may capture values available in the scope they are declared in. Otherwise they
are similar to regular function declarations.

fun foo() {
var x = 2

fun bar(): Int {
return x

}

println(bar()) // 2

x = 42
println(bar()) // 42

}

4.2.8 Tail recursion optimization
A function may be declared tail-recursive by using a special tailrec modifier.
A tail-recursive function that contains a recursive call to itself may be optimized

32 CHAPTER 4. DECLARATIONS

to a non-recursive form by a particular platform in order to avoid problems of
recursion such as a possibility of stack overflows possible on some platforms.

In order to be applicable for such an optimization, the function must adhere
to tail recursive form: for all paths containing recursive calls the result of the
recursive call must also be the result of the function. If a function declaration
is marked with the tailrec modifier, but is not actually applicable for the
optimization, it must produce a compile-time warning.

Examples:

// this is not a tail-recursive function
// so tailrec modifier will produce a warning
tailrec fun factorial(i: Int): Int {

if (i == 0) return 1
return i * factorial(i - 1)

}
// this is a tail-recursive function
tailrec fun factorialTC(i: Int, result: Int = 1): Int {

if (i == 0) return result
return factorialTC(i - 1, i * result)

}

factorialTC declaration given above should be compiled to loop
form similar to the following declaration

fun factorialLoop(i: Int, result: Int = 1): Int {
var $i: Int = i
var $result: Int = result
while(true) {

if ($i == 0) return $result
else {

$i = $i - 1
$result = $i * $result

}
}

}

4.2.9 Function declaration scopes
Every function declaration body introduces a function body scope, which is a
statement scope containing everything declared inside the function body and is
delimited by the function body itself.

In addition to this scope, function parameters exist in a special function parameter
scope, which is upward-linked to the scope the function is declared in and
downward-linked to the function body scope.

4.3. PROPERTY DECLARATION 33

4.3 Property declaration
propertyDeclaration:

[modifiers]
('val' | 'var')
[{NL} typeParameters]
[{NL} receiverType {NL} '.']
({NL} (multiVariableDeclaration | variableDeclaration))
[{NL} typeConstraints]
[{NL} (('=' {NL} expression) | propertyDelegate)]
[{NL} ';']
{NL}
(([getter] [{NL} [semi] setter]) | ([setter] [{NL} [semi] getter]))

Kotlin uses properties to represent object-like entities, such as local variables,
class fields or top-level values.

Property declarations may create read-only (val) or mutable (var) entities in
their respective scope.

Properties may also have custom getter or setter — special functions which are
used to read or write the property value. Getters and setters cannot be called
directly, but rather define how the corresponding properties are evaluated when
accessed.

4.3.1 Read-only property declaration
A read-only property declaration val x: T = e introduces x as a name of the
result of e.

A read-only property declaration may include a custom getter in the form of

val x: T = e
get(): T { ... } // (1)

or

val x: T = e
get(): T = ... // (2)

in which case x is used as a synonym to the getter invocation. All of the right-
hand value e, the type T in both positions, and the getter are optional, however,
at least one of them must be specified. More so, if we cannot infer the resulting
property type from the type of e or from the type of getter in expression form
(2), the type T must be specified explicitly either as the property type, or as the
getter return type. In case both e and T are specified, the type of e must be a
subtype of T (see subtyping for more details).

The initializer expression e, if given, serves as the starting value for the property
backing field (see getters and setters section for details) and is evaluated when

34 CHAPTER 4. DECLARATIONS

the property is created. Properties that are not allowed to have backing fields
(see getters and setters section for details) are also not allowed to have initializer
expressions.

Note: although a property with an initializer expression looks similar
to an assignment, it is different in several key ways: first, a read-only
property cannot be assigned, but may have an initializer expression;
second, the initializer expression never invokes the property setter,
but assigns the property backing field value directly.

4.3.2 Mutable property declaration
A mutable property declaration var x: T = e introduces x as a name of a
mutable variable with type T and initial value equals to the result of e. The
rules regarding the right-hand value e and the type T match those of a read-only
property declaration.

A mutable property declaration may include a custom getter and/or custom
setter in the form of

var x: T = e
get(): TG { ... }
set(value: TS) { ... }

in which case x is used as a synonym to the getter invocation when read from
and to the setter invocation when written to.

4.3.3 Local property declaration
If a property declaration is local, it creates a local entity which follows most
of the same rules as the ones for regular property declarations. However, local
property declarations cannot have custom getters or setters.

Local property declarations also support destructuring declaration in the form of

val (a: T, b: U, c: V, ...) = e

which is a syntactic sugar for the following expansion

val a: T = e.component1()
val b: U = e.component2()
val c: V = e.component3()
...

where componentN() should be a valid operator function available on the result
of e. Some of the entries in the destructuring declaration may be replaced
with an ignore marker _, which signifies that no variable is declared and no
componentN() function is called.

As with regular property declaration, type specification is optional, in which
case the type is inferred from the corresponding componentN() function. De-

4.3. PROPERTY DECLARATION 35

structuring declarations cannot use getters, setters or delegates and must be
initialized in-place.

4.3.4 Getters and setters
As mentioned before, a property declaration may include a custom getter and/or
custom setter (together called accessors) in the form of

var x: T = e
get(): TG { ... }
set(anyValidArgumentName: TS): RT { ... }

These functions have the following requirements

• TG ≡ T ;

• TS ≡ T ;

• RT ≡ kotlin.Unit;

• Types TG, TS and RT are optional and may be omitted from the declara-
tion;

• Read-only properties may have a custom getter, but not a custom setter;

• Mutable properties may have any combination of a custom getter and a
custom setter

• Setter argument may have any valid identifier as argument name.

Note: Regular coding convention recommends value as the name for
the setter argument

One can also omit the accessor body, in which case a default implementation is
used (also known as default accessor).

var x: T = e
get
set

This notation is usually used if you need to change some aspects of
an accessor (i.e., its visibility) without changing the default imple-
mentation.

Getters and setters allow one to customize how the property is accessed, and
may need access to the property’s backing field, which is responsible for actually
storing the property data. It is accessed via the special field property available
inside accessor body, which follows these conventions

• For a property declaration of type T, field has the same type T
• field is read-only inside getter body
• field is mutable inside setter body

However, the backing field is created for a property only in the following cases

36 CHAPTER 4. DECLARATIONS

• A property has no custom accessors;
• A property has a default accessor;
• A property has a custom accessor, and it uses field property;
• A mutable property has a custom getter or setter, but not both.

In all other cases a property has no backing field. Properties without backing
fields are not allowed to have initializer expressions.

Read/write access to the property is replaced with getter/setter invocation
respectively. Getters and setters allow for some modifiers available for function
declarations (for example, they may be declared inline, see grammar for details).

Properties themselves may also be declared inline, meaning that both getter
and setter of said property are inline. Additionally, inline properties are not
allowed to have backing fields, i.e., they must have custom accessors which do
not use the field property.

4.3.5 Delegated property declaration
A delegated read-only property declaration val x: T by e introduces x as a
name for the delegation result of property x to the entity e or to the delegatee
of e provided by provideDelegate. For the former, one may consider these
properties as regular properties with a special delegating getters:

val x: T by e

is the same as

val x$delegate = e
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)

Here every access to such property (x in this case) becomes an overloadable form
which is expanded into the following:

e.getValue(thisRef, property)

where

• e is the delegating entity; the compiler needs to make sure that this is
accessible in any place x is accessible;

• getValue is a suitable operator function available on e;
• thisRef is the receiver object for the property. This argument is null for

local properties;
• property is an object of the type kotlin.KProperty<*> that contains

information relevant to x (for example, its name, see standard library
documentation for details).

A delegated mutable property declaration var x: T by e introduces x as a
name of a mutable entity with type T, access to which is delegated to the entity
e or to the delegatee of e provided by provideDelegate. As before, one may

4.3. PROPERTY DECLARATION 37

view these properties as regular properties with special delegating getters and
setters:

var x: T by e

is the same as

val x$delegate = e
var x: T

get(): T = x$delegate.getValue(thisRef, ::x)
set(value: T) { x$delegate.setValue(thisRef, ::x, value) }

Read access is handled the same way as for a delegated read-only property. Any
write access to x (using, for example, an assignment operator x = y) becomes
an overloadable form with the following expansion:

e.setValue(thisRef, property, y)

where

• e is the delegating entity; the compiler needs to make sure that this is
accessible in any place x is accessible;

• setValue is a suitable operator function available on e;
• thisRef is the receiver object for the property. This argument is null for

local properties;
• property is an object of the type kotlin.KProperty<*> that contains

information relevant to x (for example, its name, see standard library
documentation for details);

• y is the value x is assigned to. In case of complex assignments (see the
assignment section), as they are all overloadable forms, first the assignment
expansion is performed, and after that, the expansion of the delegated
property using normal assignment.

The type of a delegated property may be omitted at the declaration site, meaning
that it may be inferred from the delegating function itself, as it is with regular
getters and setters. If this type is omitted, it is inferred as if it was assigned the
value of its expansion. If this inference fails, it is a compile-time error.

If the delegate expression has a suitable operator function called provideDelegate,
a provided delegate is used instead. The provided delegate is accessed using the
following expansion:

val x: T by e

is the same as

val x$delegate = e.provideDelegate(thisRef, ::x)
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)

and

var x: T by e

38 CHAPTER 4. DECLARATIONS

is the same as

val x$delegate = e.provideDelegate(thisRef, ::x)
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)
set(value) { x$delegate.setValue(thisRef, ::x, value) }

where provideDelegate is a suitable operator function available using the re-
ceiver e, while getValue and setValue work the same way they do with normal
property delegation. As is the case withsetValue and getValue, thisRef is a ref-
erence to the receiver of the property or null for local properties, but there is also
a special case: for extension properties thisRef supplied to provideDelegate is
null, while thisRef provided to getValue and setValue is the actual receiver.
This is due to the fact that, during the creation of the property, no receiver is
available.

For both provided and standard delegates, the generated delegate value is placed
in the same context as its corresponding property. This means that for a class
member property it will be a synthetic member, for a local property it is a local
value in the same scope as the property and for top-level (both extension and
non-extension) properties it will be a top-level value. This affects this value’s
lifetime in the same way normal value lifetime works.

Example:

operator fun <V, R : V> Map<in String, V>.getValue(
thisRef: Any?, property: KProperty<*>): R =

getOrElse(property.name) {
throw NoSuchElementException()

} as R

operator fun <V> MutableMap<in String, V>.setValue(
thisRef: Any?, property: KProperty<*>, newValue: V) =

set(property.name, newValue)

fun handleConfig(config: MutableMap<String, Any?>) {
val parent by config // Any?
val host: String by config // String
var port: Int by config // Int

// Delegating property accesses to Map.getValue
// Throwing NSEE as there is no "port" key in the map
// println("$parent: going to $host:$port")

// Delegating property access to Map.setValue
port = 443
// Map now contains "port" key

4.3. PROPERTY DECLARATION 39

// Delegating property accesses to Map.getValue
// Not throwing NSEE as there is "port" key in the map
println("$parent: going to $host:$port")

}

fun main() {
handleConfig(mutableMapOf(

"parent" to "",
"host" to "https://kotlinlang.org/"

))
}

Example with provideDelegate:

operator fun <V> MutableMap<in String, V>.provideDelegate(
thisRef: Any?,
property: KProperty<*>): MutableMap<in String, V> =

if (containsKey(property.name)) this
else throw NoSuchElementException()

operator fun <V, R : V> Map<in String, V>.getValue(
thisRef: Any?, property: KProperty<*>): R = ...

operator fun <V> MutableMap<in String, V>.setValue(
thisRef: Any?, property: KProperty<*>, newValue: V) = ...

fun handleConfig(config: MutableMap<String, Any?>) {
val parent by config // Any?
val host: String by config // String
var port: Int by config // Int
// Throwing NSEE here as `provideDelegate`
// checks for "port" key in the map

...
}

fun main() {
handleConfig(mutableMapOf(

"parent" to "",
"host" to "https://kotlinlang.org/"

))
}

4.3.6 Extension property declaration
An extension property declaration is similar to a standard property declaration,
but, very much alike an extension function, introduces an additional parameter to

40 CHAPTER 4. DECLARATIONS

the property called the receiver parameter. This is different from usual property
declarations, that do not have any parameters. There are other differences from
standard property declarations:

• Extension properties cannot have initializers;
• Extension properties cannot have backing fields;
• Extension properties cannot have default accessors.

Note: informally, on can say that extension properties have no state
of their own. Only properties that use other objects’ storage facilities
and/or uses constant data can be extension properties.

Aside from these differences, extension properties are similar to regular properties,
but, when accessing such a property one always need to supply a receiver , implicit
or explicit. Like for regular properties, the type of the receiver must be a subtype
of the receiver parameter, and the value that is supplied as the receiver is bound
to the receiver parameter. For more information on how a particular receiver for
each access is chosen, please refer to the overloading section.

The receiver parameter can be accessed inside getter and setter scopes of the
property as the implicit receiver or this. It may also be accessed inside nested
scopes using labeled this syntax using the name of the property declared as
the label. For delegated properties, the value passed into the operator functions
getValue and setValue as the receiver is the value of the receiver parameter,
rather than the value of the outer classifier. This is also true for local extension
properties: while regular local properties are passed null as the first argument
of these operator functions, local extension properties are passed the value of
the receiver argument instead.

Note: when declaring extension properties inside classifier declara-
tions, this receiver takes precedence over the classifier object, which
is usually the current receiver inside nested properties

For all other purposes, extension properties are not different from non-extension
properties.

Examples:

val Int.foo: Int get() = this + 1

fun main(args: Array<String>) {
println(2.foo.foo) // prints "4"

}

class Bar {
val foo get() = this // returns type Bar
val Int.foo get() = this // returns type Int

}

4.3. PROPERTY DECLARATION 41

4.3.7 Property initialization
All non-abstract properties must be definitely initialized before their first use.
To guarantee this, Kotlin compiler uses a number of analyses which are described
in more detail here.

4.3.8 Constant properties
A property may be declared constant, meaning that its value is known during
compilation, by using the special const modifier. In order to be declared const,
a property must meet the following requirements:

• Its type is one of the following:
– One of the the built-in integral types;
– One of the the built-in floating types;
– kotlin.Boolean;
– kotlin.Char;
– kotlin.String;

• It is declared in the top-level scope or inside an object declaration;
• It has an initializer expression and this initializer expression can be evalu-

ated at compile-time. Integer literals and string interpolation expressions
without evaluated expressions, as well as built-in arithmetic/comparison
operations and string concatenation operations on those are such expres-
sions, as well as other constant properties, but it is implementation-defined
which other expressions qualify for this;

• It does not have getters, setters or delegation specifiers.

Example:

// Correct constant properties
const val answer = 2 * 21
const val msg = "Hello World!"
const val calculated = answer + 45

// Incorrect constant property
const val emptyStringHashCode = "".hashCode()

4.3.9 Late-initialized properties
A mutable member property can be declared with a special lateinit modifier,
effectively turning off the property initialization checks for it. Such a property
is called late-initialized and may be used for values that are supposed to be
initialized not during object construction, but during some other time (for
example, a special initialization function). This means, among other things,
that it is the responsibility of the programmer to guarantee that the property is
initialized before its usage.

A property may be declared late-initialized if:

42 CHAPTER 4. DECLARATIONS

• It has no custom getters, setters or delegation;
• It is a member or a top-level property;
• It is mutable;
• It has declared non-nullable type which is also not one of the following

types:
– One of the built-in integer types;
– One of the built-in floating types;
– kotlin.Boolean;
– kotlin.Char.

4.3.10 Property declaration scopes
Every property getter and setter introduce the same function parameter scope and
function body scope as a corresponding function would, see function declaration
scopes for details. Getter and setter parameter scopes are upward-linked to the
scope property is declared in. Property itself introduces a new binding in the
scope it is declared in.

Initialization expressions and delegate expressions for properties, however, are
special. If the property declaration resides in a classifier body scope, its initializa-
tion expression or delegate expression is resolved in the initialization scope of the
same classifier. If the property declaration is local or top-level, its initialization
expression or delegate expression is resolved in the scope the property is declared
in.

4.4 Type alias
typeAlias:

[modifiers]
'typealias'
{NL}
simpleIdentifier
[{NL} typeParameters]
{NL}
'='
{NL}
type

Type alias introduces an alternative name for the specified type and supports
both simple and parameterized types. If type alias is parameterized, its type
parameters must be unbounded and cannot specify variance. Bounds and
variance of these parameters is always defined to be the same as the corresponding
parameters in the type being aliased, unless they are not referenced in the aliased
type, in which case they are considered unbounded and invariant. Another
restriction is that recursive type aliases are forbidden — the type alias name
cannot be used in its own right-hand side.

4.5. DECLARATIONS WITH TYPE PARAMETERS 43

At the moment, Kotlin supports only top-level type aliases. The scope where it
is accessible is defined by its visibility modifiers.

Examples:

// simple typealias declaration
typealias IntList = List<Int>
// parameterized type alias declaration
// T has out variance implicitly
typealias IntMap<T> = Map<Int, T>
// type parameter may be unreferenced
typealias Strange<T> = String

4.5 Declarations with type parameters
Most declarations may be introduced as generic, introducing type parameters
that must be explicitly specified or inferred when the corresponding declaration
is used. For declarations that introduce new types this mechanism provides the
means of introducing a parameterized type. Please refer to the corresponding
section for details.

Type parameters may be used as types inside the scope introduced by the
declaration. When such a declaration is used, the parameters are substituted by
types available inside the scope the declaration is used in.

The following declarations are not allowed to have type parameters:

• Non-extension property declarations;
• Object declarations (including companion object declarations);
• Constructor declarations;
• Getters and setters of property declarations;
• Enum class declarations;
• Classifier declarations inheriting from kotlin.Throwable.

Type parameters are allowed to specify subtyping restrictions on them in the
form T : U, meaning T <: U where T is a type parameter and U is some other
type available in the scope the declaration is declared in. These either are
written directly at the parameter placement syntax or using a special where
syntax. Any number of restrictions is allowed on a single type, however, for a
given type parameter T, only one restriction T : U can have U to be another
type parameter.

These restrictions are turned into corresponding type constraints when the type
parameters are substituted with types and are employed during type inference
and overload resolution of any usage of the corresponding declaration. See the
corresponding sections for details.

Type parameters do not introduce runtime-available types unless declared
reified. Only type parameters of inline functions can be declared reified.

44 CHAPTER 4. DECLARATIONS

4.5.1 Type parameter variance
The declaration-site variance of a particular type parameter for a classifier
declaration is specified using special keywords in (for covariant parameters) and
out (for contravariant parameters). If the variance is not specified, the parameter
is implicitly declared invariant. See the type system section for details.

A type parameter is used in covariant position in the following cases:

• It is used as an argument in another generic type and the corresponding
parameter in that type is covariant;

• It is the return type of a function;
• It is a type of a property.

A type parameter is used in contravariant position in the following cases:

• It is used as an argument in another generic type and the corresponding
parameter in that type is contravariant;

• It is a type of an parameter of a function;
• It is a type of a mutable property.

A type parameter is used in an invariant position if it is used as an argument in
another generic type and the corresponding parameter in that type is invariant.

A usage of a contravariant type parameter in a covariant or invariant position,
as well as usage of a covariant type parameter in a contravariant or invariant
position, results in variance conflict and a compiler error, unless the containing
declaration is private to the type parameter owner (in which case its visibility
is restricted, see the visibility section for details). This applies only to mem-
ber declarations of the corresponding class, extensions are not subject to this
limitation.

This restrictions may be lifted in particular cases by annotating the
corresponding type parameter usage with a special built-in annotation
kotlin.UnsafeVariance. By supplying this annotation the author of the code
explicitly declares that safety features that variance checks provide are not
needed in this particular declarations.

Examples:

class Inv<T> {
fun a(): T {...} // Ok, covariant usage
fun b(value: T) {...} // Ok, contravariant usage
fun c(p: Out<T>) {...} // Ok, covariant usage
fun d(): Out<T> {...} // Ok, covariant usage
fun e(p: In<T>) {...} // Ok, contravariant usage
fun f(): In<T> {...} // Ok, contravariant usage

}

class Out<out T> { // T is covariant

4.5. DECLARATIONS WITH TYPE PARAMETERS 45

fun a(): T {...} // Ok, covariant usage
fun b(value: T) {...} // ERROR, contravariant usage
fun c(p: Inv<T>) {...} // ERROR, invariant usage
fun d(): Inv<T> {...} // ERROR, invariant usage

}

class In<in T> { // T is contravariant
fun a(): T {...} // ERROR, covariant usage
fun b(value: T) {...} // Ok, contravariant usage
fun c(p: Inv<T>) {...} // ERROR, invariant usage
fun d(): Inv<T> {...} // ERROR, invariant usage

}

Any of these restrictions may be lifted using @UnsafeVariance an-
notation on the type argument:

class Out<out T> { // T is covariant
fun b(value: @UnsafeVariance T) {...} // Ok

}

class In<in T> { // T is contravariant
fun a(): @UnsafeVariance T {...} // Ok

}

Using @UnsafeVariance is inherently unsafe and should be used only
when the programmer can guarantee that variance violations would
not result in runtime errors. For example, receiving a value in a
contravariant position for a covariant class parameter is usually OK
if the function involved is guaranteed not to mutate internal state of
the class.

For examples on how restrictions are lifted for private visibility
(private-to-this), see visibility section

4.5.2 Reified type parameters
Type parameters of inline function or property declarations (and only those) can
be declared reified using the corresponding keyword. A reified type parameter
is a runtime-available type inside their declaration’s scope, see the corresponding
section for details. Reified type parameters can only be substituted by other
runtime-available types when using such declarations.

Example:

fun <T> foo(value: Any?) {
// ERROR, is-operator is only allowed for runtime-available types
if(value is T) ...

}

46 CHAPTER 4. DECLARATIONS

inline fun <reified T> foo(value: Any?) {
if(value is T) ... // Ok

}

4.5.3 Underscore type arguments
In case one needs to explicitly specify some type parameters via type arguments,
but wants to use type inference for the rest, they can use an underscore type
argument.

An underscore type argument does not add any type information to the constraint
system besides the presence of a type parameter, i.e., parameterized declaration
with different number of type parameters could be distinguished by different
number of underscore type arguments.

If the type inference is successful, each underscore type argument is considered
to be equal to the inferred type for their respective type parameter. If the type
inference is not successful, it is a compile-time error.

Example:

fun <T> mk(): T = TODO()

interface MyRunnable<T> {
fun execute(): T

}

class StringRunnable : MyRunnable<String> {
override fun execute(): String = "test"

}

class IntRunnable : MyRunnable<Int> {
override fun execute(): Int = 42

}

inline fun <reified S : MyRunnable<T>, T> run(): T = mk<S>().execute()

fun main() {
val s = run<StringRunnable, _ /* inferred to String */ >()
assert(s == "test")

val i = run<IntRunnable, _ /* inferred to Int */ >()
assert(i == 42)

}

Example:

fun <T> foo(t: T): T = TODO() // (1)
fun <T, R : List<T>> foo(t: T, d: Double = 42.0): T = TODO() // (2)

4.6. DECLARATION VISIBILITY 47

fun bar() {
val a: Boolean = foo(true)
// resolves to (1)
// per overload resolution rules

val b: Int = foo<_ /* U1 */ >(42)
// resolves to (1)
// with U1 inferred to Int

val c: Double = foo<_ /* U1 */ , _ /* U2 */ >(42.0)
// resolves to (2)
// with U1 inferred to Double and U2 inferred to List<Double>

}

4.6 Declaration visibility
Each declaration has a visibility property relative to the scope it is declared in.
By default, all the declarations are public, meaning that they can be accessed
from any other scope their outer scope can be accessed from. The only exception
to this rule are overriding declarations that by default inherit the visibility
from the declaration they override. Declarations may be also marked public
explicitly.

Declarations marked as private can only be accessed from the same scope they
are declared in. For example, all private top-level declarations in a file may
only be accessed by code from the same file.

Some private declarations are special in that they have an even more restricted
visibility, called “private to this”. These include declarations that are allowed
to lift certain variance rules in their types as long as they are never accessed
outside this object, meaning that they can be accessed using this as the receiver,
but are not visible on other instances of the same class even in the methods of
this class. For example, for a class declaration C with type parameter T it is not
allowed to introduce declarations involving T with conflicting variance, unless
they are declared private. That is, if T is declared as covariant, any declarations
with a type using T in a contravariant position (including properties with type T
itself if they are mutable) and if T is declared as contravariant, any declarations
with a type using T in a covariant position (including properties with type T
itself) are forbidden, unless they are declared using private visibility, in which
case they are instead treated as “private to this”.

Example:

class Foo<out T>(val t: T) { // T is a covariant parameter
// not allowed, T is in contravariant position
public fun set1(t: T) {}

48 CHAPTER 4. DECLARATIONS

// allowed, set2 is private-to-this
private fun set2(t: T) {}
private fun bar(other: Foo<T>) {

// allowed, set2 is called on this
this.set2(t)
// not allowed, set2 is called on other
other.set2(t)

}
}

Note: the above does not account for @UnsafeVariance annotation
that lifts any variance restrictions on type parameters

Declarations marked as internal may only be accessed from the same module,
treated as public from inside the module and as private from outside the
module.

Declarations in classifier declaration scope can also be declared protected,
meaning that they can only be accessed from the same classifier type as well as
any types inheriting from this type regardless of the scope they are declared in.

There is a partial order of weakness between different visibility modifiers:

• protected and internal are weaker than private;
• public is weaker than protected and internal.

Note: there is a certain restriction regarding inline functions that
have a different visibility from entities they access. In particular,
an inline function cannot access entities with a stronger visibil-
ity (i.e. public inline function accessing a private property).
There is one exception to this: a public inline function can access
internal entities which are marked with a special builtin annotation
@PublishedApi.

Example:

class Foo<T>(internal val t: T) {
// not allowed, t is internal, getValue is public
inline fun getValue(): T = t

}
class Bar<T>(@PublishedApi internal val t: T) {

// allowed through @PublishedApi
inline fun getValue(): T = t

}

	Declarations
	Glossary
	Introduction
	Classifier declaration
	Class declaration
	Data class declaration
	Enum class declaration
	Annotation class declaration
	Value class declaration
	Interface declaration
	Object declaration
	Local class declaration
	Classifier initialization
	Classifier declaration scopes

	Function declaration
	Function signature
	Named, positional and default parameters
	Variable length parameters
	Extension function declaration
	Inlining
	Infix functions
	Local function declaration
	Tail recursion optimization
	Function declaration scopes

	Property declaration
	Read-only property declaration
	Mutable property declaration
	Local property declaration
	Getters and setters
	Delegated property declaration
	Extension property declaration
	Property initialization
	Constant properties
	Late-initialized properties
	Property declaration scopes

	Type alias
	Declarations with type parameters
	Type parameter variance
	Reified type parameters
	Underscore type arguments

	Declaration visibility

