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Chapter 12

Control- and data-flow
analysis

Several Kotlin features such as variable initialization analysis and smart cast-
ing analysis require performing control- and data-flow analyses. This section
describes them and their applications.

12.1 Control flow graph
We define all control-flow analyses for Kotlin on a classic model called a control-
flow graph (CFG). A CFG of a program is a graph which loosely defines all
feasible paths the flow of a particular program can take during execution. All
CFGs given in this section are intraprocedural, meaning that they describe the
flow inside a single function, not taking function calls into account. CFG may,
however, include multiple function bodies if said functions are declared inside
each other (as is the case for lambdas).

The following sections describe CFG fragments associated with a particular Kotlin
code construct. These fragments are introduced using visual notation rather
than relational notation to simplify the understanding of the graph structure.
To represent intermediate values created during computation, we use implicit
registers, denoted $1, $2, $3, etc. These are considered to be unique in each
CFG fragment (assigning the same register twice in the same CFG may only
occur in unrelated program paths) and in the complete CFG, too. The numbers
given are only notational.

We introduce special eval nodes, represented in dashed lines, to connect CFG
fragments into bigger fragments. eval x here means that this node must be
replaced with the whole CFG fragment associated with x. When this replacement
is performed, the value produced by eval is the same value that the meta-register

1



2 CHAPTER 12. CONTROL- AND DATA-FLOW ANALYSIS

$result holds in the corresponding fragment. All incoming edges of a fragment
are connected to the incoming edges of the eval node, while all outgoing edges of
a fragment are connected to the outgoing edges of the eval node. It is important,
however, that, if such edges are absent either in the fragment or in the eval
node, they (edges) are removed from the CFG.

We also use the eval b notation where b is not a single statement, but rather
a control structure body. The fragment for a control structure body is the
sequence of fragments for its statements, connected in the program order.

Some of the fragments have two kinds of outgoing edges, labeled t and f on the
pictures. In a similar fashion, some eval nodes have two outgoing edges with
the same labels. If such a fragment is inserted into such a node, only edges with
matching labels are merged into each other. If either the fragment or the node
have only unlabeled outgoing edges, the process is performed same as above.

For some types of analyses, it is important which boolean conditions hold on a
control flow path. We use special assume nodes to introduce these conditions.
assume x means that boolean condition x is always true when program flow
passes through this particular node.

Some nodes are labeled, similarly to how statements may be labeled in Kotlin.
Labeled nodes are considered CFG-unique and are handled as follows: if a
fragment mentions a particular labeled node, this node is the same as any other
node with this label in the complete CFG (i.e., a singular actual node is shared
between all its labeled references). This is important when building graphs
representing loops.

There are two other special kinds of nodes: unreachable nodes, signifying
unreachable code, and backedge nodes, important for some kinds of analyses.

12.1.1 Expressions

Simple expressions, like literals and references, do not affect the control-flow of
the program in any way and are irrelevant w.r.t. CFG.

Function calls and operators

Note: we do not consider operator calls as being different from func-
tion calls, as they are just special types of function calls. Henceforth,
they are not treated separately.

x.f(arg1,..., argN)
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$2 = eval x

$1 = eval arg1

...

$N = eval argN

$result = $2.f($1,...,$N)

f(arg1,..., argN)

$1 = eval arg1

...

$N = eval argN

$result = f($1,...,$N)

Conditional expressions

Note: to simplify the notation, we consider only if-expressions with
both branches present. Any if-statement in Kotlin may be trivially
turned into such an expression by replacing the missing else branch
with a kotlin.Unit object expression.

if(c) tt else ff
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$1 = eval c

t f

assume $1 assume !$1

$2 = eval tt $2 = eval ff

$result = $2

when {
c1 -> b1
else -> bE

}

$1 = eval c1

t f

assume $1 assume !$1

$2 = eval b1 $2 = eval bE

$result = $2

Important: we only consider when expressions having exactly two
branches for simplicity. A when expression with more than two
branches may be trivially desugared into a series of nested when
expression as follows:

when {
<entry1>
<entries...>
else -> bE

}

is the same as
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when {
<entry1>
else -> {

when {
<entries...>
else -> bE

}
}

}

Boolean operators

!x

$1 = eval x

t f

assume $1 assume !$1

$result = false $result = true

f t

x || y

$1 = eval x

t f

assume $1 assume !$1

$2 = eval y

t f

assume $2 assume !$2

$result = true $result = false

t f
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x && y

$1 = eval x

t f

assume $1 assume !$1

$2 = eval y

t f

assume $2 assume !$2

$result = true $result = false

t f

Other expressions

x ?: y

$1 = eval x

assume ($1 === null) assume ($1 !== null)

$2 = eval y $3 = $1

$3 = $2

$result = $3

x?.y
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$1 = eval x

assume ($1 === null) assume ($1 !== null)

$3 = null $3 = $1.y

$result = $3

try { a... }
catch (e1: T1) { b1... }
...
catch (eN: TN) { bN... }
finally { c... }

$1 = eval a

$1 = eval b1 ... $1 = eval bN

$result = $1

(2) : (1) :
eval c eval c

Important: in this diagram we consider finally block twice. The (1)
block is used when handling the finally block and its body. The
(2) block is used when considering the finally block w.r.t. rest of
the CFG.

a!!
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$1 = eval a

assume ($1 !== null) unreachable

$result = $1

a as T

$1 = eval a

assume ($1 is T) unreachable

$result = $1

a as? T

$1 = eval a

assume ($1 is T) assume ($1 !is T)

$2 = $1 $2 = null

$result = $2

{ a: T ... -> body... }
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$result = $literal eval body

return
return@label

unreachable

return a
return@label a
throw a

eval a

unreachable

break@loop

@loop:exit

continue@loop

backedge

@loop:entry

12.1.2 Statements
Note: to simplify the notation, we consider only labeled loops, as
unlabeled loops may be trivially turned into labeled ones by assigning
them a unique label.

loop@ while(c) { b... }
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@loop.entry

backedge $1 = eval c

t f

assume $1 assume !$1

eval b @loop.exit

loop@ do { b... } while(c)

@loop.entry

backedge eval b

$1 = eval c

t f

assume $1 assume !$1

@loop.exit

12.1.3 Declarations

var a = b
var a by b
val a = b
val a by b
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$1 = eval b

a = $1

fun f() { body... }

$1 = eval body

class A (...) {
'declaration 1'
'declaration 2'
'init-block 1'
'declaration 3'
'init-block 2'
...

}

For every declaration and init block in a class body, the control flow is propagated
through every element in the order of their appearance. Here we give a simplified
example.
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eval 'declaration 1'

eval 'declaration 2'

eval 'init-block 1'

eval 'declaration 3'

eval 'init-block 2'

...

eval 'declaration n'

12.1.4 Examples

fun f() = listOf(1, 2).map { it + 2 }.filter { it > 0 }
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$1 = 1

$2 = 2

$3 = listOf($1, $2)

$4 = { it + 2 } $5 = it

$8 = $3.map($4) $6 = 2

$7 = $5 + $2
$9 = { it > 0 } $10 = it

$result = $8.filter($9) $11 = 0

$12 = $10 > $11

fun f(x: Int) {
var y = x
loop@ while(y != 500) {

y++
if(y % 20 == 3) break@loop

}
}



14 CHAPTER 12. CONTROL- AND DATA-FLOW ANALYSIS

$1 = x

y = $1

@loop.entry

backedge

$2 = y

$3 = 500

$4 = $2.equals($3)

assume $4 assume !$4

$5 = false $5 = true

assume !$5 assume $5

@loop.exit $6 = y

$7 = $6.inc()

y = $7

$8 = y

$9 = 20

$10 = $8.rem($9)

$11 = 3

$12 = $10.equals($11)

assume $12 assume !$12
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12.1.5 kotlin.Nothing and its influence on the CFG

As discussed in the type system section of this specification, kotlin.Nothing is
an uninhabited type, meaning an instance of this type can never exist at runtime.
For the purposes of control-flow graph (and related analyses) this means, as
soon as an expression is known statically to have kotlin.Nothing type, all
subsequent code is unreachable.

Important: each specific analysis may decide to either use this in-
formation or ignore it for a given program. If unreachability from
kotlin.Nothing is used, it can be represented in different ways, e.g.,
by changing the CFG structure or via killDataFlow instructions.

12.2 Performing analyses on the control-flow
graph

The analyses defined in this document follow the pattern of analyses based
on monotone frameworks, which work by modeling abstract program states as
elements of lattices and joining these states using standard lattice operations.
Such analyses may achieve limited path sensitivity via the analysis of conditions
used in the assume nodes.

In short, an analysis is defined on the CFG by introducing:

• A lattice S (a partially ordered set that has both a greatest lower bound
and a least upper bound defined for every pair of its elements) of values,
called abstract states;

• A transfer function for mapping CFG nodes to the elements of S, essentially
a set of rules on how to calculate an abstract state for each node of the
CFG either directly or by using abstract states of other nodes.

The result of an analysis is a fixed point of the transfer function for each node
of the given CFG, i.e., an abstract state for each node such that the transfer
function maps the state to itself. For the particular shapes of the transfer
function used in program analyses, given a finite S, the fixed point always exists,
although the details of how this works go out of scope of this document.

12.2.1 Types of lattices

• Flat lattice over set A = {a1, . . . , ai, . . . , an} of incomparable elements is
built by adding a top element ⊤, which is greater than other elements, and
a bottom element ⊥, which is less than other elements. This forms the
following lattice structure.
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⊤

a1 ... ai ... an

⊥

The flat lattice is usually used for analyses interested in exact facts, such as
definite (un)assignment or constant propagation, as the fixed point results
are either exact elements from the set A, or top/bottom elements.

• Map lattice of a set A = {a1, . . . , an} to a lattice L is a lattice with sets of
functions from A to L as its elements.

A → L = {[a1 → l1, . . . , an → ln] |∀i : ai ∈ A, li ∈ L}
f ≤ g ⇔ ∀ai ∈ A : f(ai) ≤ g(ai), where f, g ∈ A → L

The map lattice is usually used as the “top-level” lattice for bootstrapping
the monotone framework analysis, by providing a way to represent the
mapping from program entities (e.g., variables or expressions) to interesting
facts (e.g., their initialization or availability) as a lattice.

12.2.2 Preliminary analysis and killDataFlow instruction

Some analyses described further in this document are based on special instruction
called killDataFlow(υ) where υ is a program variable. These are not present in
the graph representation described above and need to be inferred before such
analyses may actually take place.

killDataFlow inference is based on a standard control-flow analysis with the
lattice of natural numbers over “min” and “max” operations. That is, for every
assignable property x an element of this lattice is a natural number N , with
the least upper bound of two numbers defined as maximum function and the
greatest lower bound as minimum function.

Note: such lattice has 0 as its bottom element and does not have a
top element.

We assume the following transfer functions for our analysis.
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[[x = y]] (s) = s[x → s(x) + 1]

[[backedge]] (s) = {⋆ → 0}

[[l]] (s) =
⊔

p∈predecessor(l)

[[p]] (s)

After running this analysis, for every backedge b and every variable x present
in s, if ∃bp, bs : bp ∈ predecessors(b) ∧ bs ∈ successors(b) ∧ [[bp]] (x) > [[bs]] (x), a
killDataFlow(x) instruction must be inserted after b.

Informally: this somewhat complicated condition matches variables
which have been assigned to in the loop body w.r.t. this loop’s
backedge.

Note: this analysis does involve a possibly infinite lattice (a lattice of
natural numbers) and may seem to diverge on some graphs. However,
if we assume that every backedge in an arbitrary CFG is marked
with a backedge instruction, it is trivial to prove that no number
in the lattice will ever exceed the number of assignments (which is
finite) in the analyzed program as any loop in the graph will contain
at least one backedge.

As an example, consider the following Kotlin code:

var x: Int = 0
var y: Int = 0
while (b1) {

y = f()
do {

x = g()
} while (b2)

}

which results in the following CFG diagram (annotated with the analysis results
where it is important):
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$1 = 0

x = $1 {x -> 1, y -> 0}

$2 = 0

y = $2 {x -> 1, y -> 1}

@loop1:entry

{* -> 0} backedge $3 = b1 {x -> 1, y -> 1}

assume $3 assume !$3
{x -> 2, y -> 2}

$4 = f() @loop1:exit

{x -> 1, y -> 2} y = $4

@loop2.entry

{* -> 0}

backedge $6 = g() {x -> 1, y -> 2}

x = $6 {x -> 2, y -> 2}

$5 = b2

assume $5 assume !$5

@loop2.exit {x -> 2, y -> 2}
{x -> 2, y -> 2}

There are two backedges: one for the inner loop (the inner backedge) and one
for the outer loop (the outer backedge). The inner backedge has one predecessor
with state {x → 2, y → 2} and one successor with state {x → 1, y → 2} with
the value for x being less in the successor, meaning that we need to insert
killDataFlow(x) after the backedge. The outer backedge has one predecessor
with state {x → 2, y → 2} and one successor with state {x → 1, y → 1} with
values for both variables being less in the successor, meaning we need to insert
killDataFlow(x) and killDataFlow(y) after the backedge.
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12.2.3 Variable initialization analysis
Kotlin allows non-delegated properties to not have initializers in their declaration
as long as the property is definitely assigned before its first usage. This property
is checked by the variable initialization analysis (VIA). VIA operates on abstract
values from the assignedness lattice, which is a flat lattice constructed over
the set {Assigned, Unassigned}. The analysis itself uses abstract values from a
map lattice of all property declarations to their abstract states based on the
assignedness lattice. The abstract states are propagated in a forward manner
using the standard join operation to merge states from different paths.

The CFG nodes relevant to VIA include only property declarations and direct
property assignments. Every property declaration adds itself to the domain by
setting the Unassigned value to itself. Every direct property assignment changes
the value for this property to Assigned.

The results of the analysis are interpreted as follows. For every property, any
usage of the said property in any statement is a compile-time error unless the
abstract state of this property at this statement is Assigned. For every read-only
property (declared using val keyword), any assignment to this property is a
compile-time error unless the abstract state of this property is Unassigned.

As an example, consider the following Kotlin code:

/* 1 */ val x: Int // {x → Unassigned, ⋆ → ⊥}
/* 2 */ var y: Int // {x → Unassigned, y → Unassigned, ⋆ → ⊥}
/* 3 */ if (c) { //
/* 4 */ x = 40 // {x → Assigned, y → Unassigned, ⋆ → ⊥}
/* 5 */ y = 4 // {x → Assigned, y → Assigned, ⋆ → ⊥}
/* 6 */ } else { //
/* 7 */ x = 20 // {x → Assigned, y → Unassigned, ⋆ → ⊥}
/* 8 */ } // {x → Assigned, y → ⊤, ⋆ → ⊥}
/* 9 */ y = 5 // {x → Assigned, y → Assigned, ⋆ → ⊥}
/* 10 */ val z = x + y // {x → Assigned, y → Assigned, z → Assigned}

There are no incorrect operations in this example, so the code does not produce
any compile-time errors.

Let us consider another example:

/* 1 */ val x: Int // {x → Unassigned, ⋆ → ⊥}
/* 2 */ var y: Int // {x → Unassigned, y → Unassigned, ⋆ → ⊥}
/* 3 */ while (c) { // {x → ⊤, y → ⊤, ⋆ → ⊥} Error!
/* 4 */ x = 40 // {x → ⊤, y → ⊤, ⋆ → ⊥}
/* 5 */ y = 4 // {x → ⊤, y → ⊤, ⋆ → ⊥}
/* 6 */ } //
/* 7 */ val z = x + y // {x → ⊤, y → ⊤, ⋆ → ⊥} More errors!
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In this example, the state of both properties at line 3 is ⊤, as it is the least
upper bound of the states from lines 5 and 2 (from the while loop), which is
derived to be ⊤. This leads to a compile-time error at line 4 for x, because one
cannot reassign a read-only property.

At line 7 there is another compile-time error when both properties are used, as
there are paths in the CFG which reach line 7 when the properties have not
been assigned (i.e., the case when the while loop body was skipped).

12.2.4 Smart casting analysis

See the corresponding section for details.

12.2.5 Function contracts

Note: as of Kotlin 1.9, contracts for user-defined functions are an
experimental feature and, thus, not described here

Some standard-library functions in Kotlin are defined in such a way that they
adhere to a specific call contract that affects the way calls to such functions are
analyzed from the perspective of the caller’s control flow graph. A function’s
call contract consists of one or more effects.

There are several kinds of effects:

• Calls-in-place effect for a function-type parameter of the function;
• Returns-implies-condition effect for a boolean parameter of the function;
• Particular implementations may introduce other types of effects.

Calls-in-place effect of function F for a function-type parameter P specifies
that for every call of F parameter P will be also invoked as a function. This
effect may also have one of the three invocation types:

• At-least-once, meaning that P will be invoked at least once;
• Exactly-once, meaning that P will be invoked exactly once;
• At-most-once, meaning that P will be invoked at most once.

These effects change the call graph that is produced for a function call of F
when supplied a lambda-expression parameter for P . Without any effect, the
graph looks like this:

For a function call

f(..., { lambda-body... }, ...)
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$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

Please note that control flow information is passed inside the lambda body,
but no information is extracted from it. If the corresponding parameter P is
introduced with exactly-once effect, this changes to:

$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

If the corresponding parameter P is introduced with at-least-once effect, this
changes to:

$N = { lambda-body...} eval lambda-body... backedge

...

$result = f(...,$N,..)

If the corresponding parameter P is introduced with at-most-once effect, this
changes to:

$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

This allows the control-flow information to be extracted from lambda expression
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according to the policy of its invocation.

Returns-implies-condition effect of function F for a boolean parameter P
specifies that if, when invoked normally, a call to F returns, P is assumed to be
true. For a function call

f(..., p, ...)

this changes normal call graph that looks like this:

$N = eval p

...

$result = f(...,$N,..)

to look like this:

$N = eval p

...

$result = f(...,$N,..)

assume $N

The following standard library functions have contracts with the
following effects:

• kotlin.run, kotlin.with, kotlin.let, kotlin.apply,
kotlin.also (all overloads): calls-in-place effect with
invocation kind “exactly-once” for its functional argument;

• kotlin.check, kotlin.require (all overloads): returns-
implies-condition effect on the boolean parameter.

Examples:

This code would result in a initialized variable analysis violation if
run was not a standard function with corresponding contract:

val x: Int
run { // run invokes its argument exactly once
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x = 4
}
// could be error: x is not initialized
// but is ok
println(x)

Several examples of contract-introduced smart-cast:

val x: Any = ...
check(x is Int)
// x is known to be Int thanks to assume introduced by
// the contract of check
val y = x + 4 // would be illegal without contract

val x: Int? = ...
// x is known to be non-null thanks to assume introduced by
// the contract of require
require(x != null)
val y = x + 4 // would be illegal without contract
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