
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 18

Asynchronous programming
with coroutines

18.1 Suspending functions
Most functions in Kotlin may be marked suspending using the special suspend
modifier. There are almost no additional restrictions: regular functions, extension
functions, top-level functions, local functions, lambda literals, all these may be
suspending functions.

Note: the following functions and function values cannot be marked
as suspending.

• anonymous function declarations;
• constructors;
• property getter/setters;
• delegation-related operator functions.

Note: platform-specific implementations may extend the restrictions
on which kinds of functions may be suspending.

Suspending functions have a suspending function type, also marked using the
suspend modifier.

A suspending function is different from non-suspending functions by potentially
having zero or more suspension points — statements in its body which may
pause the function execution to be resumed at a later moment in time. The
main source of suspension points are calls to other suspending functions which
represent possible suspension points.

Note: suspension points are important because at these points another
function may start in the same flow of execution, leading to potential

1



2CHAPTER 18. ASYNCHRONOUS PROGRAMMING WITH COROUTINES

changes in the shared state.

Non-suspending functions may not call suspending functions directly, as they do
not support suspension points. Suspending functions may call non-suspending
functions without any limitations; such calls do not create suspension points.
This restriction is also known as “function colouring”.

Important: an exception to this rule are non-suspending inlined
lambda parameters: if the higher-order function invoking such a
lambda is called from a suspending function, this lambda is allowed
to also have suspension points and call other suspending functions.

Note: suspending functions interleaving each other in this manner
are not dissimilar to how functions from different threads interact
on platforms with multi-threading support. There are, however,
several key differences. First, suspending functions may pause only
at suspension points, i.e., they cannot be paused at an arbitrary
execution point. Second, this interleaving may happen on a single
platform thread.

In a multi-threaded environment suspending functions may also be
interleaved by the platform-dependent concurrent execution, inde-
pendent of the interleaving of coroutines.

The implementation of suspending functions is platform-dependent. Please refer
to the platform documentation for details.

18.2 Coroutines
A coroutine is a concept similar to a thread in traditional concurrent program-
ming, but based on cooperative multitasking, e.g., the switching between different
execution contexts is done by the coroutines themselves rather than the operating
system or a virtual machine.

In Kotlin, coroutines are used to implement suspending functions and can switch
contexts only at suspension points.

A call to a suspending function creates and starts a coroutine. As one can call a
suspending function only from another suspending function, we need a way to
bootstrap this process from a non-suspending context.

Note: this is required as most platforms are unaware of coroutines or
suspending functions, and do not provide a suspending entry point.
However, a Kotlin compiler may elect to provide a suspending entry
point on a specific platform.

One of the ways of starting suspending function from a non-suspending context
is via a coroutine builder : a non-suspending function which takes a suspending

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/


18.3. IMPLEMENTATION DETAILS 3

function type argument (e.g., a suspending lambda literal) and handles the
coroutine lifecycle.

The implementation of coroutines is platform-dependent. Please refer to the
platform documentation for details.

18.3 Implementation details
Despite being platform-dependent, there are several aspects of coroutine imple-
mentation in Kotlin, which are common across all platforms and belong to the
Kotlin/Core. We describe these details below.

18.3.1 kotlin.coroutines.Continuation<T>

Interface kotlin.coroutines.Continuation<T> is the main supertype of all
coroutines and represents the basis upon which the coroutine machinery is
implemented.

public interface Continuation<in T> {
public val context: CoroutineContext
public fun resumeWith(result: Result<T>)

}

Every suspending function is associated with a generated Continuation subtype,
which handles the suspension implementation; the function itself is adapted
to accept an additional continuation parameter to support the Continuation
Passing Style. The return type of the suspending function becomes the type
parameter T of the continuation.

CoroutineContext represents the context of the continuation and is an indexed
set from CoroutineContext.Key to CoroutineContext.Element (e.g., a special
kind of map). It is used to store coroutine-local information, and takes important
part in Continuation interception.

resumeWith function is used to propagate the results in between suspension
points: it is called with the result (or exception) of the last suspension point and
resumes the coroutine execution.

To avoid the need to explicitly create the Result<T> when calling resumeWith,
the coroutine implementation provides the following extension functions.

fun <T> Continuation<T>.resume(value: T)
fun <T> Continuation<T>.resumeWithException(exception: Throwable)

18.3.2 Continuation Passing Style
Each suspendable function goes through a transformation from normally invoked
function to continuation passing style (CPS). For a suspendable function with
parameters p1, p2, . . . , pN and result type T a new function is generated, with an



4CHAPTER 18. ASYNCHRONOUS PROGRAMMING WITH COROUTINES

additional parameter pN+1 of type kotlin.coroutines.Continuation<T> and
return type changed to kotlin.Any?. The calling convention for such function
is different from regular functions as a suspendable function may either suspend
or return.

• If the function returns a result, it is returned directly from the function as
normal;

• If the function suspends, it returns a special marker value COROUTINE_SUSPENDED
to signal its suspended state.

The calling convention is maintained by the compiler during the CPS transforma-
tion, which prevents the user from manually returning COROUTINE_SUSPENDED.
If the user wants to suspend a coroutine, they need to perform the following
steps.

• Access the coroutine’s continuation object by calling suspendCoroutineUninterceptedOrReturn
intrinsic or any of its wrappers;

• Store the continuation object to resume it later;
• Pass the COROUTINE_SUSPENDED marker to the intrinsic, which is then

returned from the function.

As Kotlin does not currently support denotable union types, the return type
is changed to kotlin.Any?, so it can hold both the original return type T and
COROUTINE_SUSPENDED.

18.3.3 Coroutine state machine
Kotlin implements suspendable functions as state machines, since such imple-
mentation does not require specific runtime support. This dictates the explicit
suspend marking (function colouring) of Kotlin coroutines: the compiler has to
know which function can potentially suspend, to turn it into a state machine.

Each suspendable lambda is compiled to a continuation class, with fields rep-
resenting its local variables, and an integer field for current state in the state
machine. Suspension point is where such lambda can suspend: either a sus-
pending function call or suspendCoroutineUninterceptedOrReturn intrinsic
call. For a lambda with N suspension points and M return statements, which
are not suspension points themselves, N + M states are generated (one for each
suspension point plus one for each non-suspending return statement).

Example:

// Lambda body with multiple suspension points
val a = a()
val y = foo(a).await() // suspension point #1
b()
val z = bar(a, y).await() // suspension point #2
c(z)



18.3. IMPLEMENTATION DETAILS 5

// State machine code for the lambda after CPS transformation
// (written in pseudo-Kotlin with gotos)
class <anonymous> private constructor(

completion: Continuation<Any?>
): SuspendLambda<...>(completion) {

// The current state of the state machine
var label = 0

// local variables of the coroutine
var a: A? = null
var y: Y? = null

fun invokeSuspend(result: Any?): Any? {
// state jump table
if (label == 0) goto L0
if (label == 1) goto L1
if (label == 2) goto L2
else throw IllegalStateException()

L0:
// result is expected to be `null` at this invocation

a = a()
label = 1
// 'this' is passed as a continuation
result = foo(a).await(this)
// return if await had suspended execution
if (result == COROUTINE_SUSPENDED)

return COROUTINE_SUSPENDED
L1:

// error handling
result.throwOnFailure()
// external code has resumed this coroutine
// passing the result of .await()
y = (Y) result
b()
label = 2
// 'this' is passed as a continuation
result = bar(a, y).await(this)
// return if await had suspended execution
if (result == COROUTINE_SUSPENDED)

return COROUTINE_SUSPENDED
L2:

// error handling
result.throwOnFailure()
// external code has resumed this coroutine



6CHAPTER 18. ASYNCHRONOUS PROGRAMMING WITH COROUTINES

// passing the result of .await()
Z z = (Z) result
c(z)
label = -1 // No more steps are allowed
return Unit

}

fun create(completion: Continuation<Any?>): Continuation<Any?> {
<anonymous>(completion)

}

fun invoke(completion: Continuation<Any?>): Any? {
create(completion).invokeSuspend(Unit)

}
}

18.3.4 Continuation interception
Asynchronous computations in many cases need to control how they are executed,
with varying degrees of precision. For example, in typical user interface (UI)
applications, updates to the interface should be executed on a special UI thread;
in server-side applications, long-running computations are often offloaded to a
separate thread pool, etc.

Continuation interceptors allow us to intercept the coroutine execution be-
tween suspension points and perform some operations on it, usually wrapping
the coroutine continuation in another continuation. This is done using the
kotlin.coroutines.ContinuationInterceptor interface.

interface ContinuationInterceptor : CoroutineContext.Element {
companion object Key : CoroutineContext.Key<ContinuationInterceptor>
fun <T> interceptContinuation(continuation: Continuation<T>): Continuation<T>
fun releaseInterceptedContinuation(continuation: Continuation<*>)

}

As seen from the declaration, ContinuationInterceptor is a CoroutineContext.Element,
and to perform the continuation interception, an instance of ContinuationInterceptor
should be available in the coroutine context, where it is used similarly to the
following line of code.

val intercepted = continuation.context[ContinuationInterceptor]?.interceptContinuation(continuation) ?: continuation

When the cached intercepted continuation is no longer needed, it is released
using ContinuationInterceptor.releaseInterceptedContinuation(...).

Note: this machinery is performed “behind-the-scenes” by the corou-
tine framework implementation.



18.3. IMPLEMENTATION DETAILS 7

18.3.5 Coroutine intrinsics
Accessing the low-level continuations is performed using a limited number
of built-in intrinsic functions, which form the complete coroutine API. The
rest of asynchronous programming support is provided as a Kotlin library
kotlinx.coroutines.

The complete built-in API for working with coroutines is shown below (all of
these are declared in package kotlin.coroutines.intrinsics of the standard
library).

fun <T> (suspend () -> T).createCoroutineUnintercepted(
completion: Continuation<T>

): Continuation<Unit>

suspend fun <T>
suspendCoroutineUninterceptedOrReturn(

block: (Continuation<T>) -> Any?): T

fun <T> (suspend () -> T).
startCoroutineUninterceptedOrReturn(

completion: Continuation<T>): Any?

fun <T> Continuation<T>.intercepted(): Continuation<T>

// Additional functions for types with explicit receiver

fun <R, T> (suspend R.() -> T).createCoroutineUnintercepted(
completion: Continuation<T>

): Continuation<Unit>

fun <T> (suspend R.() -> T).
startCoroutineUninterceptedOrReturn(

completion: Continuation<T>): Any?

Function createCoroutineUnintercepted is used to create a coroutine
corresponding to its extension receiver suspending function, which invokes
the passed completion continuation upon completion. This function
does not start the coroutine, however; to do that, one have to call
Continuation<T>.resumeWith function on the created continuation object.
Suspending function suspendCoroutineUninterceptedOrReturn provides
access to the current continuation (similarly to how call/cc works in Scheme).
If its lambda returns the COROUTINE_SUSPENDED marker, it also suspends
the coroutine. Together with Continuation<T>.resumeWith function, which
resumes or starts a coroutine, these functions form a complete coroutine API
built into the Kotlin compiler.

https://github.com/Kotlin/kotlinx.coroutines


8CHAPTER 18. ASYNCHRONOUS PROGRAMMING WITH COROUTINES


	Asynchronous programming with coroutines
	Suspending functions
	Coroutines
	Implementation details
	kotlin.coroutines.Continuation<T>
	Continuation Passing Style
	Coroutine state machine
	Continuation interception
	Coroutine intrinsics



