
Kotlin language specification
Version 1.9-rfc+0.1

Marat Akhin Mikhail Belyaev



ii



Chapter 17

Annotations

Annotations are a form of syntactically-defined metadata which may be associated
with different entities in a Kotlin program. Annotations are specified in the
source code of the program and may be accessed on a particular platform using
platform-specific mechanisms both by the compiler (and source-processing tools)
and at runtime (using reflection facilities). Values of annotation types can also
be created directly, but are usually operated on using platform-specific facilities.

Note: before Kotlin 1.6, annotation types could not be created
directly.

17.1 Annotation values
An annotation value is a value of a special annotation type. An annotation type
is a special kind of class type which is allowed to include read-only properties of
the following types:

• Integer types;
• Enum types;
• String type;
• Other annotation types;
• Arrays of any type listed above.

Important: when we say “other annotation types”, we mean an
annotation type cannot reference itself, either directly or indirectly.
For example, if annotation type A references annotation type B which
references an array of A, it is prohibited and reported as a compile-
time error.

Annotation classes are not allowed to have any member functions, constructors
or mutable properties. They are also not allowed to have declared supertypes
and are considered to be implicitly derived from kotlin.Annotation.

1



2 CHAPTER 17. ANNOTATIONS

17.2 Annotation retention
The retention level of an annotation declares which compilation artifacts (for
a particular compiler on a particular platform) retain this kind of annotation.
There are the following types of retention available:

• Source retention (accessible by source-processing tools);

• Binary retention (retained in compilation artifacts);

• Runtime retention (accessible at runtime).

Each subsequent level inherits what is accessible on the previous
levels.

For availability and particular ways of accessing the metadata specified by these
annotations please refer to the corresponding platform-specific documentation.

17.3 Annotation targets
The target of a particular type of annotations is the kind of program entity which
this annotations may be placed on. There are the following targets available:

• A class declaration (including annotation classes);
• An annotation class declaration;
• A type parameter;
• A property declaration;
• A property backing field;
• A property getter;
• A property setter;
• A local property declaration;
• A value parameter in function or constructor declaration;
• A constructor;
• A function declaration;
• A type usage;
• An arbitrary expression;
• A Kotlin file;
• A type alias declaration.

17.4 Annotation declarations
Annotations are declared using annotation class declarations. See the corre-
sponding section for details.

Annotations may be declared repeatable (meaning that the same annotation may
be applied to the same entity more than once) or non-repeatable (meaning that
only one annotation of a particular type may be applied to the same entity).



17.5. BUILT-IN ANNOTATIONS 3

17.5 Built-in annotations

17.5.1 kotlin.annotation.Retention

kotlin.annotation.Retention is an annotation which is only used on annota-
tion classes to specify their annotation retention level. It has the following single
field:

• val value: AnnotationRetention = AnnotationRetention.RUNTIME

The retention level of the annotated annotation.

kotlin.annotation.AnnotationRetention is an enum class with the following
values (see Annotation retention section for details):

• SOURCE;
• BINARY;
• RUNTIME.

17.5.2 kotlin.annotation.Target

kotlin.annotation.Target is an annotation which is only used on annotation
classes to specify targets those annotations are valid for. It has the following
single field:

• vararg val allowedTargets: AnnotationTarget

The allowed annotation targets of the annotated annotation.

kotlin.annotation.AnnotationTarget is an enum class with the following
values (see Annotation targets section for details):

• CLASS;
• ANNOTATION_CLASS;
• TYPE_PARAMETER;
• PROPERTY;
• FIELD;
• LOCAL_VARIABLE;
• VALUE_PARAMETER;
• CONSTRUCTOR;
• FUNCTION;
• PROPERTY_GETTER;
• PROPERTY_SETTER;
• TYPE;
• EXPRESSION;
• FILE;
• TYPEALIAS.



4 CHAPTER 17. ANNOTATIONS

17.5.3 kotlin.annotation.Repeatable

kotlin.annotation.Repeatable is an annotation which is only used on an-
notation classes to specify whether this particular annotation is repeatable.
Annotations are non-repeatable by default.

17.5.4 kotlin.RequiresOptIn / kotlin.OptIn

kotlin.RequiresOptIn is an annotation class with two fields:

• val message: String = ""

The message describing the particular opt-in requirements.

• val level: Level = Level.ERROR

The severity level of the experimental status with two possible values:
Level.WARNING and Level.ERROR.

This annotation is used to introduce implementation-defined experimental lan-
guage or standard library features.

kotlin.OptIn is an annotation class with a single field:

• vararg val markerClass: KClass<out Annotation>

The classes which this annotation allows to use.

This annotation is used to explicitly mark declarations which use experimental
features marked by kotlin.RequiresOptIn.

It is implementation-defined how this annotation is processed.

Note: before Kotlin 1.4.0, there were two other built-in annota-
tions: @Experimental (now replaced by @RequiresOptIn) and
@UseExperimental (now replaced by @OptIn) serving the same
purpose which are now deprecated.

17.5.5 kotlin.Deprecated / kotlin.ReplaceWith

kotlin.Deprecated is an annotation class with the following fields:

• val message: String

A message supporting the deprecation.

• val replaceWith: ReplaceWith = ReplaceWith("")

An optional replacement for the deprecated code.

• val level: DeprecationLevel = DeprecationLevel.WARNING

The deprecation level with three possible values: DeprecationLevel.WARNING,
DeprecationLevel.ERROR and DeprecationLevel.HIDDEN.



17.5. BUILT-IN ANNOTATIONS 5

kotlin.ReplaceWith is itself an annotation class containing the information on
how to perform the replacement in case it is provided. It has the following fields:

• val expression: String

The replacement code.

• vararg val imports: String

An array of imports needed for the replacement code to work correctly.

kotlin.Deprecated is a built-in annotation supporting the deprecation cycle for
declarations: marking some declarations as outdated, soon to be replaced with
other declarations, or not recommended for use. It is implementation-defined
how this annotation is processed, with the following recommendations:

• Attempting to use a declaration with deprecation level of DeprecationLevel.WARNING
should produce a compile-time warning;

• Attempting to use a declaration with deprecation level of DeprecationLevel.ERROR
should produce a compile-time error.

17.5.6 kotlin.Suppress

kotlin.Suppress is an annotation class with the following single field:

• vararg val names: String

The names of features this annotation is suppressing.

kotlin.Suppress is used to optionally mark any piece of code as suppressing
some language feature, such as a compiler warning, an IDE mechanism or a
language feature. The names of features which one can suppress with this
annotation are implementation-defined, as is the processing of this annotation
itself.

17.5.7 kotlin.SinceKotlin

kotlin.SinceKotlin is an annotation class with the following single field:

• val version: String

The version of Kotlin language.

kotlin.SinceKotlin is used to mark a declaration which is only available since
a particular version of the language. These mostly refer to standard library
declarations. It is implementation-defined how this annotation is processed.

17.5.8 kotlin.UnsafeVariance

kotlin.UnsafeVariance is an annotation class with no fields which is only
applicable to types. Any type instance marked by this annotation explicitly



6 CHAPTER 17. ANNOTATIONS

states that the variance errors arising for this particular type instance are to be
ignored by the compiler.

17.5.9 kotlin.DslMarker

kotlin.DslMarker is an annotation class with no fields which is applicable
only to other annotation classes. An annotation class annotated with
kotlin.DslMarker is marked as a marker of a specific DSL (domain-specific
language). Any type annotated with such a marker is said to belong to that
specific DSL. This affects overload resolution in the following way: no two
implicit receivers with types belonging to the same DSL are available in the
same scope. See Overload resolution section for details.

17.5.10 kotlin.PublishedApi

kotlin.PublishedApi is an annotation class with no fields which is applicable
to any declaration. It may be applied to any declaration with internal visibility
to make it available to public inline declarations. See Declaration visibility
section for details.

17.5.11 kotlin.BuilderInference

Marks the annotated function of function argument as eligible for builder-style
type inference. See corresponding section for details.

Note: as of Kotlin 1.9, this annotation is experimental and, in order
to use it in one’s code, one must explicitly enable it using opt-in
annotations given above. The particular marker class used to perform
this is implementation-defined.

17.5.12 kotlin.RestrictSuspension

In some cases we may want to limit which suspending functions can be called in
another suspending function with an extension receiver of a specific type; i.e., if
we want to provide a coroutine-enabled DSL, but disallow the use of arbitrary
suspending functions. To do so, the type T of that extension receiver needs to
be annotated with kotlin.RestrictSuspension, which enables the following
limitations.

• Suspending functions with an extension receiver of type T are restricted
from calling other suspending functions besides those accessible on this
receiver.

• Suspending functions of type T can be called only on an extension receiver.

17.5.13 kotlin.OverloadResolutionByLambdaReturnType

This annotation is used to allow using lambda return type to refine function



17.5. BUILT-IN ANNOTATIONS 7

applicability during overload resolution. Further details are available in the
corresponding section.

Note: as of Kotlin 1.9, this annotation is experimental and, in order
to use it in one’s code, one must explicitly enable it using opt-in
annotations given above. The particular marker class used to perform
this is implementation-defined.



8 CHAPTER 17. ANNOTATIONS


	Annotations
	Annotation values
	Annotation retention
	Annotation targets
	Annotation declarations
	Built-in annotations
	kotlin.annotation.Retention
	kotlin.annotation.Target
	kotlin.annotation.Repeatable
	kotlin.RequiresOptIn / kotlin.OptIn
	kotlin.Deprecated / kotlin.ReplaceWith
	kotlin.Suppress
	kotlin.SinceKotlin
	kotlin.UnsafeVariance
	kotlin.DslMarker
	kotlin.PublishedApi
	kotlin.BuilderInference
	kotlin.RestrictSuspension
	kotlin.OverloadResolutionByLambdaReturnType



