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Introduction

Kotlin took inspiration from many programming languages, including (but not
limited to) Java, Scala, C# and Groovy. One of the main ideas behind Kotlin
is being pragmatic, i.e., being a programming language useful for day-to-day
development, which helps the users get the job done via its features and its tools.
Thus, a lot of design decisions were and still are influenced by how beneficial
these decisions are for Kotlin users.

Kotlin is a multiplatform, statically typed, general-purpose programming lan-
guage. Currently, as of version 1.9, it supports compilation to the following
platforms.

• JVM (Java Virtual Machine)
• JS (JavaScript)
• Native (native binaries for various architectures)

Furthermore, it supports transparent interoperability between different platforms
via its Kotlin Multiplatform Project (Kotlin MPP) feature.

The type system of Kotlin distinguishes at compile time between nullable and
non-nullable types, achieving null-safety, i.e., guaranteeing the absence of runtime
errors caused by the absence of value (i.e., null value). Kotlin also extends
its static type system with elements of gradual and flow typing, for better
interoperability with other languages and ease of development.

Kotlin is an object-oriented language which also has a lot of functional program-
ming elements. From the object-oriented side, it supports nominal subtyping with
bounded parametric polymorphism (akin to generics) and mixed-site variance.
From the functional programming side, it has first-class support for higher-order
functions and lambda literals.

This specification covers Kotlin/Core, i.e., fundamental parts of Kotlin which
should function mostly the same way irregardless of the underlying platform.
These parts include such important things as language expressions, declarations,
type system and overload resolution.

Important: due to the complexities of platform-specific implemen-
tations, platforms may extend, reduce or change the way some as-
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pects of Kotlin/Core function. We mark these platform-dependent
Kotlin/Core fragments in the specification to the best of our abilities.

Platform-specific parts of Kotlin and its multiplatform capabilities will be cov-
ered in their respective sub-specifications, i.e., Kotlin/JVM, Kotlin/JS and
Kotlin/Native.

Compatibility
Kotlin Language Specification is still in progress and has experimental stability
level, meaning no compatibility should be expected between even incremental
releases of the specification, any parts can be added, removed or changed without
warning.

Important: while the specification has experimental stability level,
the Kotlin language itself and its compiler have different stability
levels for different components, which are described in more detail
here.

Experimental features
In several cases this specification discusses experimental Kotlin features, i.e.,
features which are still in active development and which may be changed in the
future. When so, the specification talks about the current state of said features,
with no guarantees of their future stability (or even existence in the language).

The experimental features are marked as such in the specification to the best of
our abilities.
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Chapter 1

Syntax and grammar

1.1 Notation
This section uses a BNF-based notation similar to EBNF with the following
conventions:

• Any sequence of characters given in single-quotes and monospace font
denote a terminal sequence;

• Special terminal sequences that needs specification are given in angle
brackets: <. . . >;

• Normal parentheses are used sparingly to specify priority between other
operations;

• A sequence of rules A and B: (A B);
• Choice between rules A and B: (A | B);
• Optional use of rule A: [A];
• Repetition of rule A: {A}.

Rule names starting with capital letters denote lexical rules, while rule names
starting with lowercase letters denote syntactic rules.

Note: this notation is similar to ISO EBNF as per standard ISO/IEC
14977, but does not employ any special symbols for concatenation
or termination and does not use some of the additional notation
symbols

1.2 Lexical grammar

1.2.1 Whitespace and comments
LF: <unicode character Line Feed U+000A>

7



8 CHAPTER 1. SYNTAX AND GRAMMAR

CR:
<unicode character Carriage Return U+000D>

ShebangLine:
'#!' {<any character excluding CR and LF >}

DelimitedComment:
'/*' { DelimitedComment | <any character> } '*/'

LineComment:
'//' {<any character excluding CR and LF >}

WS:
<one of the following characters: SPACE U+0020, TAB U+0009, Form
Feed U+000C>

NL: LF | (CR [LF])

Hidden:
DelimitedComment | LineComment | WS

1.2.2 Keywords and operators
RESERVED:

'...'

DOT :
'.'

COMMA:
','

LPAREN :
'('

RPAREN :
')'

LSQUARE:
'['

RSQUARE:
']'

LCURL:
'{'

RCURL:
'}'

MULT :
'*'
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MOD:
'%'

DIV :
'/'

ADD:
'+'

SUB:
'-'

INCR:
'++'

DECR:
'--'

CONJ :
'&&'

DISJ :
'||'

EXCL_WS:
'!' Hidden

EXCL_NO_WS:
'!'

COLON :
':'

SEMICOLON :
';'

ASSIGNMENT :
'='

ADD_ASSIGNMENT :
'+='

SUB_ASSIGNMENT :
'-='

MULT_ASSIGNMENT :
'*='

DIV_ASSIGNMENT :
'/='

MOD_ASSIGNMENT :
'%='
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ARROW :
'->'

DOUBLE_ARROW :
'=>'

RANGE:
'..'

COLONCOLON :
'::'

DOUBLE_SEMICOLON :
';;'

HASH :
'#'

AT_NO_WS:
'@'

AT_POST_WS:
'@' (Hidden | NL)

AT_PRE_WS:
(Hidden | NL) '@'

AT_BOTH_WS:
(Hidden | NL) '@' (Hidden | NL)

QUEST_WS:
'?' Hidden

QUEST_NO_WS:
'?'

LANGLE:
'<'

RANGLE:
'>'

LE: '<='

GE:
'>='

EXCL_EQ:
'!='

EXCL_EQEQ:
'!=='

AS_SAFE:
'as?'
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EQEQ:
'=='

EQEQEQ:
'==='

SINGLE_QUOTE:
'\''

RETURN_AT :
'return@' Identifier

CONTINUE_AT :
'continue@' Identifier

BREAK_AT :
'break@' Identifier

THIS_AT :
'this@' Identifier

SUPER_AT :
'super@' Identifier

FILE:
'file'

FIELD:
'field'

PROPERTY :
'property'

GET :
'get'

SET :
'set'

RECEIVER:
'receiver'

PARAM :
'param'

SETPARAM :
'setparam'

DELEGATE:
'delegate'

PACKAGE:
'package'
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IMPORT :
'import'

CLASS:
'class'

INTERFACE:
'interface'

FUN :
'fun'

OBJECT :
'object'

VAL:
'val'

VAR:
'var'

TYPE_ALIAS:
'typealias'

CONSTRUCTOR:
'constructor'

BY :
'by'

COMPANION :
'companion'

INIT :
'init'

THIS:
'this'

SUPER:
'super'

TYPEOF:
'typeof'

WHERE:
'where'

IF: 'if'

ELSE:
'else'

WHEN :
'when'
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TRY :
'try'

CATCH :
'catch'

FINALLY :
'finally'

FOR:
'for'

DO:
'do'

WHILE:
'while'

THROW :
'throw'

RETURN :
'return'

CONTINUE:
'continue'

BREAK :
'break'

AS: 'as'

IS: 'is'

IN : 'in'

NOT_IS:
'!is' (Hidden | NL)

NOT_IN :
'!in' (Hidden | NL)

OUT :
'out'

DYNAMIC :
'dynamic'

PUBLIC :
'public'

PRIVATE:
'private'
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PROTECTED:
'protected'

INTERNAL:
'internal'

ENUM :
'enum'

SEALED:
'sealed'

ANNOTATION :
'annotation'

DATA:
'data'

INNER:
'inner'

TAILREC :
'tailrec'

OPERATOR:
'operator'

INLINE:
'inline'

INFIX:
'infix'

EXTERNAL:
'external'

SUSPEND:
'suspend'

OVERRIDE:
'override'

ABSTRACT :
'abstract'

FINAL:
'final'

OPEN :
'open'

CONST :
'const'



1.2. LEXICAL GRAMMAR 15

LATEINIT :
'lateinit'

VARARG:
'vararg'

NOINLINE:
'noinline'

CROSSINLINE:
'crossinline'

REIFIED:
'reified'

EXPECT :
'expect'

ACTUAL:
'actual'

1.2.3 Literals
DecDigitNoZero:

'1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

DecDigit:
'0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

DecDigitOrSeparator:
DecDigit | '_'

DecDigits:
DecDigit {DecDigitOrSeparator} DecDigit
| DecDigit

DoubleExponent:
('e' | 'E') [('+' | '-')] DecDigits

RealLiteral:
FloatLiteral | DoubleLiteral

FloatLiteral:
DoubleLiteral ('f' | 'F')
| DecDigits ('f' | 'F')

DoubleLiteral:
[DecDigits] '.' DecDigits [DoubleExponent]
| DecDigits DoubleExponent

IntegerLiteral:
DecDigitNoZero {DecDigitOrSeparator} DecDigit
| DecDigit
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HexDigit:
DecDigit
| 'A' | 'B' | 'C' | 'D' | 'E' | 'F'
| 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

HexDigitOrSeparator:
HexDigit | '_'

HexLiteral
'0' ('x' | 'X') HexDigit {HexDigitOrSeparator} HexDigit
| '0' ('x' | 'X') HexDigit

BinDigit
'0' | '1'

BinDigitOrSeparator
BinDigit | '_'

BinLiteral
'0' ('b' | 'B') BinDigit {BinDigitOrSeparator} BinDigit
| '0' ('b' | 'B') BinDigit

UnsignedLiteral
(IntegerLiteral | HexLiteral | BinLiteral) ('u' | 'U') ['L']

LongLiteral
(IntegerLiteral | HexLiteral | BinLiteral) 'L'

BooleanLiteral
'true' | 'false'

NullLiteral
'null'

CharacterLiteral
''' (EscapeSeq | <any character excluding CR, LF, ''' or '\'>) '''

UniCharacterLiteral
'\' 'u' HexDigit HexDigit HexDigit HexDigit

EscapedIdentifier
'\' ('t' | 'b' | 'r' | 'n' | ''' | '"' | '\' | '$')

EscapeSeq
UniCharacterLiteral | EscapedIdentifier

1.2.4 Identifiers
Letter

<any unicode character of categories Lu, Ll, Lt, Lm or Lo>

QuotedSymbol
<any character excluding CR, LF and '`'>
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UnicodeDigit
<any unicode character of category Nd>

Identifier
(Letter | '_') {Letter | '_' | UnicodeDigit}
| '`' QuotedSymbol {QuotedSymbol} '`'

Kotlin supports escaping identifiers by enclosing any sequence of characters
into backtick (`) characters, allowing to use any name as an identifier. This
allows not only using non-alphanumeric characters (like @ or #) in names, but
also using keywords like if or when as identifiers. Actual set of characters that
is allowed to be escaped may, however, be a subject to platform restrictions.
Consult particular platform sections for details.

Note: for example, the following characters are not allowed in iden-
tifiers used as declaration names on the JVM platform even when
escaped due to JVM restrictions: ., ;, [, ], /, <, >, :, \\ .

Escaped identifiers are treated the same as corresponding non-escaped identifier if
it is allowed. For example, an escaped identifier `foo` and non-escaped identifier
foo may be used interchangeably and refer to the same program entity.

IdentifierOrSoftKey
Identifier
| ABSTRACT
| ANNOTATION
| BY
| CATCH
| COMPANION
| CONSTRUCTOR
| CROSSINLINE
| DATA
| DYNAMIC
| ENUM
| EXTERNAL
| FINAL
| FINALLY
| IMPORT
| INFIX
| INIT
| INLINE
| INNER
| INTERNAL
| LATEINIT
| NOINLINE
| OPEN
| OPERATOR
| OUT
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| OVERRIDE
| PRIVATE
| PROTECTED
| PUBLIC
| REIFIED
| SEALED
| TAILREC
| VARARG
| WHERE
| GET
| SET
| FIELD
| PROPERTY
| RECEIVER
| PARAM
| SETPARAM
| DELEGATE
| FILE
| EXPECT
| ACTUAL
| CONST
| SUSPEND

Some of the keywords used in Kotlin are allowed to be used as identifiers even
when not escaped. Such keywords are called soft keywords. You can see the
complete list of soft keyword in the rule above. All other keywords are considered
hard keywords and may only be used as identifiers if escaped.

Note: for example, this is a valid property declaration in Kotlin:

val field = 2

even though field is a keyword

1.2.5 String mode grammar
QUOTE_OPEN

'"'

TRIPLE_QUOTE_OPEN
'"""'

FieldIdentifier
'$' IdentifierOrSoftKey

Opening a double quote (QUOTE_OPEN) rule puts the lexical grammar into
the special “line string” mode with the following rules. Closing double quote
(QUOTE_CLOSE) rule exits this mode.
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QUOTE_CLOSE
'"'

LineStrRef
FieldIdentifier

LineStrText
{<any character except '\', '"' or '$'>} | '$'

LineStrEscapedChar
EscapedIdentifier | UniCharacterLiteral

LineStrExprStart
'${'

Opening a triple double quote (TRIPLE_QUOTE_OPEN) rule puts the lexical
grammar into the special “multiline string” mode with the following rules. Closing
triple double quote (TRIPLE_QUOTE_CLOSE) rule exits this mode.

TRIPLE_QUOTE_CLOSE
[MultilineStringQuote] '"""'

MultilineStringQuote
'"""' {'"'}

MultiLineStrRef
FieldIdentifier

MultiLineStrText
{<any character except '"' or '$'>} | '$'

MultiLineStrExprStart
'${'

1.2.6 Tokens
These are all the valid tokens in one rule. Note that syntax grammar ignores
tokens DelimitedComment, LineComment and WS .

KotlinToken
ShebangLine
| DelimitedComment
| LineComment
| WS
| NL
| RESERVED
| DOT
| COMMA
| LPAREN
| RPAREN
| LSQUARE
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| RSQUARE
| LCURL
| RCURL
| MULT
| MOD
| DIV
| ADD
| SUB
| INCR
| DECR
| CONJ
| DISJ
| EXCL_WS
| EXCL_NO_WS
| COLON
| SEMICOLON
| ASSIGNMENT
| ADD_ASSIGNMENT
| SUB_ASSIGNMENT
| MULT_ASSIGNMENT
| DIV_ASSIGNMENT
| MOD_ASSIGNMENT
| ARROW
| DOUBLE_ARROW
| RANGE
| COLONCOLON
| DOUBLE_SEMICOLON
| HASH
| AT_NO_WS
| AT_POST_WS
| AT_PRE_WS
| AT_BOTH_WS
| QUEST_WS
| QUEST_NO_WS
| LANGLE
| RANGLE
| LE
| GE
| EXCL_EQ
| EXCL_EQEQ
| AS_SAFE
| EQEQ
| EQEQEQ
| SINGLE_QUOTE
| RETURN_AT
| CONTINUE_AT
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| BREAK_AT
| THIS_AT
| SUPER_AT
| FILE
| FIELD
| PROPERTY
| GET
| SET
| RECEIVER
| PARAM
| SETPARAM
| DELEGATE
| PACKAGE
| IMPORT
| CLASS
| INTERFACE
| FUN
| OBJECT
| VAL
| VAR
| TYPE_ALIAS
| CONSTRUCTOR
| BY
| COMPANION
| INIT
| THIS
| SUPER
| TYPEOF
| WHERE
| IF
| ELSE
| WHEN
| TRY
| CATCH
| FINALLY
| FOR
| DO
| WHILE
| THROW
| RETURN
| CONTINUE
| BREAK
| AS
| IS
| IN
| NOT_IS
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| NOT_IN
| OUT
| DYNAMIC
| PUBLIC
| PRIVATE
| PROTECTED
| INTERNAL
| ENUM
| SEALED
| ANNOTATION
| DATA
| INNER
| TAILREC
| OPERATOR
| INLINE
| INFIX
| EXTERNAL
| SUSPEND
| OVERRIDE
| ABSTRACT
| FINAL
| OPEN
| CONST
| LATEINIT
| VARARG
| NOINLINE
| CROSSINLINE
| REIFIED
| EXPECT
| ACTUAL
| Identifier
| RealLiteral
| IntegerLiteral
| HexLiteral
| BinLiteral
| LongLiteral
| BooleanLiteral
| NullLiteral
| CharacterLiteral
| QUOTE_OPEN
| QUOTE_CLOSE
| TRIPLE_QUOTE_OPEN
| TRIPLE_QUOTE_CLOSE
| LineStrRef
| LineStrText
| LineStrEscapedChar
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| LineStrExprStart
| MultilineStringQuote
| MultiLineStrRef
| MultiLineStrText
| MultiLineStrExprStart

EOF
<end of input>

1.3 Syntax grammar
The grammar below replaces some lexical grammar rules with explicit literals
(where such replacement in trivial and always correct, for example, for keywords)
for better readability.

kotlinFile:
[shebangLine]
{NL}
{fileAnnotation}
packageHeader
importList
{topLevelObject}
EOF

script:
[shebangLine]
{NL}
{fileAnnotation}
packageHeader
importList
{statement semi}
EOF

shebangLine:
ShebangLine (NL {NL})

fileAnnotation:
(AT_NO_WS | AT_PRE_WS)
'file'
{NL}
':'
{NL}
(('[' (unescapedAnnotation {unescapedAnnotation}) ']') | unescapedAn-
notation)
{NL}

packageHeader:
['package' identifier [semi]]
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importList:
{importHeader}

importHeader:
'import' identifier [('.' '*') | importAlias] [semi]

importAlias:
'as' simpleIdentifier

topLevelObject:
declaration [semis]

typeAlias:
[modifiers]
'typealias'
{NL}
simpleIdentifier
[{NL} typeParameters]
{NL}
'='
{NL}
type

declaration:
classDeclaration
| objectDeclaration
| functionDeclaration
| propertyDeclaration
| typeAlias

classDeclaration:
[modifiers]
('class' | (['fun' {NL}] 'interface'))
{NL}
simpleIdentifier
[{NL} typeParameters]
[{NL} primaryConstructor]
[{NL} ':' {NL} delegationSpecifiers]
[{NL} typeConstraints]
[({NL} classBody) | ({NL} enumClassBody)]

primaryConstructor:
[[modifiers] 'constructor' {NL}] classParameters

classBody:
'{'
{NL}
classMemberDeclarations
{NL}
'}'
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classParameters:
'('
{NL}
[classParameter {{NL} ',' {NL} classParameter} [{NL} ',']]
{NL}
')'

classParameter:
[modifiers]
['val' | 'var']
{NL}
simpleIdentifier
':'
{NL}
type
[{NL} '=' {NL} expression]

delegationSpecifiers:
annotatedDelegationSpecifier {{NL} ',' {NL} annotatedDelegationSpeci-
fier}

delegationSpecifier:
constructorInvocation
| explicitDelegation
| userType
| functionType
| ('suspend' {NL} functionType)

constructorInvocation:
userType {NL} valueArguments

annotatedDelegationSpecifier:
{annotation} {NL} delegationSpecifier

explicitDelegation:
(userType | functionType)
{NL}
'by'
{NL}
expression

typeParameters:
'<'
{NL}
typeParameter
{{NL} ',' {NL} typeParameter}
[{NL} ',']
{NL}
'>'
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typeParameter:
[typeParameterModifiers] {NL} simpleIdentifier [{NL} ':' {NL} type]

typeConstraints:
'where' {NL} typeConstraint {{NL} ',' {NL} typeConstraint}

typeConstraint:
{annotation}
simpleIdentifier
{NL}
':'
{NL}
type

classMemberDeclarations:
{classMemberDeclaration [semis]}

classMemberDeclaration:
declaration
| companionObject
| anonymousInitializer
| secondaryConstructor

anonymousInitializer:
'init' {NL} block

companionObject:
[modifiers]
'companion'
{NL}
['data']
{NL}
'object'
[{NL} simpleIdentifier]
[{NL} ':' {NL} delegationSpecifiers]
[{NL} classBody]

functionValueParameters:
'('
{NL}
[functionValueParameter {{NL} ',' {NL} functionValueParameter} [{NL}
',']]
{NL}
')'

functionValueParameter:
[parameterModifiers] parameter [{NL} '=' {NL} expression]

functionDeclaration:
[modifiers]
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'fun'
[{NL} typeParameters]
[{NL} receiverType {NL} '.']
{NL}
simpleIdentifier
{NL}
functionValueParameters
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

functionBody:
block
| ('=' {NL} expression)

variableDeclaration:
{annotation} {NL} simpleIdentifier [{NL} ':' {NL} type]

multiVariableDeclaration:
'('
{NL}
variableDeclaration
{{NL} ',' {NL} variableDeclaration}
[{NL} ',']
{NL}
')'

propertyDeclaration:
[modifiers]
('val' | 'var')
[{NL} typeParameters]
[{NL} receiverType {NL} '.']
({NL} (multiVariableDeclaration | variableDeclaration))
[{NL} typeConstraints]
[{NL} (('=' {NL} expression) | propertyDelegate)]
[{NL} ';']
{NL}
(([getter] [{NL} [semi] setter]) | ([setter] [{NL} [semi] getter]))

propertyDelegate:
'by' {NL} expression

getter:
[modifiers] 'get' [{NL} '(' {NL} ')' [{NL} ':' {NL} type] {NL} func-
tionBody]

setter:
[modifiers] 'set' [{NL} '(' {NL} functionValueParameterWithOptional-
Type [{NL} ','] {NL} ')' [{NL} ':' {NL} type] {NL} functionBody]
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parametersWithOptionalType:
'('
{NL}
[functionValueParameterWithOptionalType {{NL} ',' {NL} functionVal-
ueParameterWithOptionalType} [{NL} ',']]
{NL}
')'

functionValueParameterWithOptionalType:
[parameterModifiers] parameterWithOptionalType [{NL} '=' {NL} expres-
sion]

parameterWithOptionalType:
simpleIdentifier {NL} [':' {NL} type]

parameter:
simpleIdentifier
{NL}
':'
{NL}
type

objectDeclaration:
[modifiers]
'object'
{NL}
simpleIdentifier
[{NL} ':' {NL} delegationSpecifiers]
[{NL} classBody]

secondaryConstructor:
[modifiers]
'constructor'
{NL}
functionValueParameters
[{NL} ':' {NL} constructorDelegationCall]
{NL}
[block]

constructorDelegationCall:
('this' | 'super') {NL} valueArguments

enumClassBody:
'{'
{NL}
[enumEntries]
[{NL} ';' {NL} classMemberDeclarations]
{NL}
'}'
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enumEntries:
enumEntry {{NL} ',' {NL} enumEntry} {NL} [',']

enumEntry:
[modifiers {NL}] simpleIdentifier [{NL} valueArguments] [{NL} classBody]

type:
[typeModifiers] (functionType | parenthesizedType | nullableType | typeRef-
erence | definitelyNonNullableType)

typeReference:
userType
| 'dynamic'

nullableType:
(typeReference | parenthesizedType) {NL} (quest {quest})

quest:
QUEST_NO_WS
| QUEST_WS

userType:
simpleUserType {{NL} '.' {NL} simpleUserType}

simpleUserType:
simpleIdentifier [{NL} typeArguments]

typeProjection:
([typeProjectionModifiers] type)
| '*'

typeProjectionModifiers:
typeProjectionModifier {typeProjectionModifier}

typeProjectionModifier:
(varianceModifier {NL})
| annotation

functionType:
[receiverType {NL} '.' {NL}]
functionTypeParameters
{NL}
'->'
{NL}
type

functionTypeParameters:
'('
{NL}
[parameter | type]
{{NL} ',' {NL} (parameter | type)}
[{NL} ',']
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{NL}
')'

parenthesizedType:
'('
{NL}
type
{NL}
')'

receiverType:
[typeModifiers] (parenthesizedType | nullableType | typeReference)

parenthesizedUserType:
'('
{NL}
(userType | parenthesizedUserType)
{NL}
')'

definitelyNonNullableType:
[typeModifiers]
(userType | parenthesizedUserType)
{NL}
'&'
{NL}
[typeModifiers]
(userType | parenthesizedUserType)

statements:
[statement {semis statement}] [semis]

statement:
{label | annotation} (declaration | assignment | loopStatement | expression)

label:
simpleIdentifier (AT_NO_WS | AT_POST_WS) {NL}

controlStructureBody:
block
| statement

block:
'{'
{NL}
statements
{NL}
'}'

loopStatement:
forStatement
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| whileStatement
| doWhileStatement

forStatement:
'for'
{NL}
'('
{annotation}
(variableDeclaration | multiVariableDeclaration)
'in'
expression
')'
{NL}
[controlStructureBody]

whileStatement:
'while'
{NL}
'('
expression
')'
{NL}
(controlStructureBody | ';')

doWhileStatement:
'do'
{NL}
[controlStructureBody]
{NL}
'while'
{NL}
'('
expression
')'

assignment:
((directlyAssignableExpression '=') | (assignableExpression assignmentAn-
dOperator)) {NL} expression

semi:
(';' | NL) {NL}

semis:
';' | NL {';' | NL}

expression:
disjunction

disjunction:
conjunction {{NL} '||' {NL} conjunction}
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conjunction:
equality {{NL} '&&' {NL} equality}

equality:
comparison {equalityOperator {NL} comparison}

comparison:
genericCallLikeComparison {comparisonOperator {NL} genericCallLike-
Comparison}

genericCallLikeComparison:
infixOperation {callSuffix}

infixOperation:
elvisExpression {(inOperator {NL} elvisExpression) | (isOperator {NL}
type)}

elvisExpression:
infixFunctionCall {{NL} elvis {NL} infixFunctionCall}

elvis:
QUEST_NO_WS ':'

infixFunctionCall:
rangeExpression {simpleIdentifier {NL} rangeExpression}

rangeExpression:
additiveExpression {('..' | '..<') {NL} additiveExpression}

additiveExpression:
multiplicativeExpression {additiveOperator {NL} multiplicativeExpression}

multiplicativeExpression:
asExpression {multiplicativeOperator {NL} asExpression}

asExpression:
prefixUnaryExpression {{NL} asOperator {NL} type}

prefixUnaryExpression:
{unaryPrefix} postfixUnaryExpression

unaryPrefix:
annotation
| label
| (prefixUnaryOperator {NL})

postfixUnaryExpression:
primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
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| indexingSuffix
| navigationSuffix

directlyAssignableExpression:
(postfixUnaryExpression assignableSuffix)
| simpleIdentifier
| parenthesizedDirectlyAssignableExpression

parenthesizedDirectlyAssignableExpression:
'('
{NL}
directlyAssignableExpression
{NL}
')'

assignableExpression:
prefixUnaryExpression
| parenthesizedAssignableExpression

parenthesizedAssignableExpression:
'('
{NL}
assignableExpression
{NL}
')'

assignableSuffix:
typeArguments
| indexingSuffix
| navigationSuffix

indexingSuffix:
'['
{NL}
expression
{{NL} ',' {NL} expression}
[{NL} ',']
{NL}
']'

navigationSuffix:
memberAccessOperator {NL} (simpleIdentifier | parenthesizedExpression |
'class')

callSuffix:
[typeArguments] (([valueArguments] annotatedLambda) | valueArguments)

annotatedLambda:
{annotation} [label] {NL} lambdaLiteral
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typeArguments:
'<'
{NL}
typeProjection
{{NL} ',' {NL} typeProjection}
[{NL} ',']
{NL}
'>'

valueArguments:
'(' {NL} [valueArgument {{NL} ',' {NL} valueArgument} [{NL} ',']
{NL}] ')'

valueArgument:
[annotation]
{NL}
[simpleIdentifier {NL} '=' {NL}]
['*']
{NL}
expression

primaryExpression:
parenthesizedExpression
| simpleIdentifier
| literalConstant
| stringLiteral
| callableReference
| functionLiteral
| objectLiteral
| collectionLiteral
| thisExpression
| superExpression
| ifExpression
| whenExpression
| tryExpression
| jumpExpression

parenthesizedExpression:
'('
{NL}
expression
{NL}
')'

collectionLiteral:
'[' {NL} [expression {{NL} ',' {NL} expression} [{NL} ','] {NL}] ']'

literalConstant:
BooleanLiteral
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| IntegerLiteral
| HexLiteral
| BinLiteral
| CharacterLiteral
| RealLiteral
| 'null'
| LongLiteral
| UnsignedLiteral

stringLiteral:
lineStringLiteral
| multiLineStringLiteral

lineStringLiteral:
'"' {lineStringContent | lineStringExpression} '"'

multiLineStringLiteral:
'"""' {multiLineStringContent | multiLineStringExpression | '"'}
TRIPLE_QUOTE_CLOSE

lineStringContent:
LineStrText
| LineStrEscapedChar
| LineStrRef

lineStringExpression:
'${'
{NL}
expression
{NL}
'}'

multiLineStringContent:
MultiLineStrText
| '"'
| MultiLineStrRef

multiLineStringExpression:
'${'
{NL}
expression
{NL}
'}'

lambdaLiteral:
'{'
{NL}
[[lambdaParameters] {NL} '->' {NL}]
statements
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{NL}
'}'

lambdaParameters:
lambdaParameter {{NL} ',' {NL} lambdaParameter} [{NL} ',']

lambdaParameter:
variableDeclaration
| (multiVariableDeclaration [{NL} ':' {NL} type])

anonymousFunction:
['suspend']
{NL}
'fun'
[{NL} type {NL} '.']
{NL}
parametersWithOptionalType
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

functionLiteral:
lambdaLiteral
| anonymousFunction

objectLiteral:
['data']
{NL}
'object'
[{NL} ':' {NL} delegationSpecifiers {NL}]
[{NL} classBody]

thisExpression:
'this'
| THIS_AT

superExpression:
('super' ['<' {NL} type {NL} '>'] [AT_NO_WS simpleIdentifier])
| SUPER_AT

ifExpression:
'if'
{NL}
'('
{NL}
expression
{NL}
')'
{NL}
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(controlStructureBody | ([controlStructureBody] {NL} [';'] {NL} 'else'
{NL} (controlStructureBody | ';')) | ';')

whenSubject:
'(' [{annotation} {NL} 'val' {NL} variableDeclaration {NL} '=' {NL}]
expression ')'

whenExpression:
'when'
{NL}
[whenSubject]
{NL}
'{'
{NL}
{whenEntry {NL}}
{NL}
'}'

whenEntry:
(whenCondition {{NL} ',' {NL} whenCondition} [{NL} ','] {NL} '->'
{NL} controlStructureBody [semi])
| ('else' {NL} '->' {NL} controlStructureBody [semi])

whenCondition:
expression
| rangeTest
| typeTest

rangeTest:
inOperator {NL} expression

typeTest:
isOperator {NL} type

tryExpression:
'try' {NL} block ((({NL} catchBlock {{NL} catchBlock}) [{NL} finally-
Block]) | ({NL} finallyBlock))

catchBlock:
'catch'
{NL}
'('
{annotation}
simpleIdentifier
':'
type
[{NL} ',']
')'
{NL}
block
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finallyBlock:
'finally' {NL} block

jumpExpression:
('throw' {NL} expression)
| (('return' | RETURN_AT) [expression])
| 'continue'
| CONTINUE_AT
| 'break'
| BREAK_AT

callableReference:
[receiverType] '::' {NL} (simpleIdentifier | 'class')

assignmentAndOperator:
'+='
| '-='
| '*='
| '/='
| '%='

equalityOperator:
'!='
| '!=='
| '=='
| '==='

comparisonOperator:
'<'
| '>'
| '<='
| '>='

inOperator:
'in'
| NOT_IN

isOperator:
'is'
| NOT_IS

additiveOperator:
'+'
| '-'

multiplicativeOperator:
'*'
| '/'
| '%'
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asOperator:
'as'
| 'as?'

prefixUnaryOperator:
'++'
| '--'
| '-'
| '+'
| excl

postfixUnaryOperator:
'++'
| '--'
| ('!' excl)

excl:
'!'
| EXCL_WS

memberAccessOperator:
({NL} '.')
| ({NL} safeNav)
| '::'

safeNav:
QUEST_NO_WS '.'

modifiers:
annotation | modifier {annotation | modifier}

parameterModifiers:
annotation | parameterModifier {annotation | parameterModifier}

modifier:
(classModifier | memberModifier | visibilityModifier | functionModifier | prop-
ertyModifier | inheritanceModifier | parameterModifier | platformModifier)
{NL}

typeModifiers:
typeModifier {typeModifier}

typeModifier:
annotation
| ('suspend' {NL})

classModifier:
'enum'
| 'sealed'
| 'annotation'
| 'data'
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| 'inner'
| 'value'

memberModifier:
'override'
| 'lateinit'

visibilityModifier:
'public'
| 'private'
| 'internal'
| 'protected'

varianceModifier:
'in'
| 'out'

typeParameterModifiers:
typeParameterModifier {typeParameterModifier}

typeParameterModifier:
(reificationModifier {NL})
| (varianceModifier {NL})
| annotation

functionModifier:
'tailrec'
| 'operator'
| 'infix'
| 'inline'
| 'external'
| 'suspend'

propertyModifier:
'const'

inheritanceModifier:
'abstract'
| 'final'
| 'open'

parameterModifier:
'vararg'
| 'noinline'
| 'crossinline'

reificationModifier:
'reified'

platformModifier:
'expect'
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| 'actual'

annotation:
(singleAnnotation | multiAnnotation) {NL}

singleAnnotation:
((annotationUseSiteTarget {NL}) | AT_NO_WS | AT_PRE_WS) un-
escapedAnnotation

multiAnnotation:
((annotationUseSiteTarget {NL}) | AT_NO_WS | AT_PRE_WS) '['
(unescapedAnnotation {unescapedAnnotation}) ']'

annotationUseSiteTarget:
(AT_NO_WS | AT_PRE_WS) ('field' | 'property' | 'get' | 'set' |
'receiver' | 'param' | 'setparam' | 'delegate') {NL} ':'

unescapedAnnotation:
constructorInvocation
| userType

simpleIdentifier:
Identifier
| 'abstract'
| 'annotation'
| 'by'
| 'catch'
| 'companion'
| 'constructor'
| 'crossinline'
| 'data'
| 'dynamic'
| 'enum'
| 'external'
| 'final'
| 'finally'
| 'get'
| 'import'
| 'infix'
| 'init'
| 'inline'
| 'inner'
| 'internal'
| 'lateinit'
| 'noinline'
| 'open'
| 'operator'
| 'out'
| 'override'
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| 'private'
| 'protected'
| 'public'
| 'reified'
| 'sealed'
| 'tailrec'
| 'set'
| 'vararg'
| 'where'
| 'field'
| 'property'
| 'receiver'
| 'param'
| 'setparam'
| 'delegate'
| 'file'
| 'expect'
| 'actual'
| 'const'
| 'suspend'
| 'value'

identifier:
simpleIdentifier {{NL} '.' simpleIdentifier}

1.4 Documentation comments
Kotlin supports special comment syntax for code documentation purposes,
called KDoc. The syntax is based on Markdown and Javadoc. Documentation
comments start with /** and end with */ and allows external tools to generate
documentation based on the comment contents.

https://tools.ietf.org/html/rfc7763
https://www.oracle.com/java/technologies/javase/javadoc-tool.html
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Type system

Glossary
T Type (with unknown nullability)
T !! Non-nullable type
T? Nullable type
{T} Universe of all possible types
{T !!}

Universe of non-nullable types
{T?}

Universe of nullable types
Well-formed type

A properly constructed type w.r.t. Kotlin type system
Γ Type context
A <: B

A is a subtype of B
A���<: > B

A and B are not related w.r.t. subtyping
Type constructor

An abstract type with one or more type parameters, which must be
instantiated before use

Parameterized type
A concrete type, which is the result of type constructor instantiation

Type parameter
Formal type parameter of a type constructor

Type argument
Actual type argument in a parameterized type

T [A1, . . . , An]
The result of type constructor T instantiation with type arguments Ai

T [σ] The result of type constructor T (F1, . . . , Fn) instantiation with the assumed

43
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substitution σ : F1 = A1, . . . , Fn = An

σT The result of type substitution in type T w.r.t. substitution σ
KT (F, A)

Captured type from the type capturing of type parameter F and type
argument A in parameterized type T

T ⟨K1, . . . , Kn⟩
The result of type capturing for parameterized type T with captured types
Ki

T ⟨τ⟩
The result of type capturing for parameterized type T (F1, . . . , Fn) with
captured substitution τ : F1 = K1, . . . , Fn = Kn

A & B
Intersection type of A and B

A | B
Union type of A and B

GLB
Greatest lower bound

LUB
Least upper bound

Introduction
Similarly to most other programming languages, Kotlin operates on data in
the form of values or objects, which have types — descriptions of what is the
expected behaviour and possible values for their datum. An empty value is
represented by a special null object; most operations with it result in runtime
errors or exceptions.

Kotlin has a type system with the following main properties.

• Hybrid static, gradual and flow type checking;
• Null safety;
• No unsafe implicit conversions;
• Unified top and bottom types;
• Nominal subtyping with bounded parametric polymorphism and mixed-site

variance.

Type safety (consistency between compile and runtime types) is verified stat-
ically, at compile time, for the majority of Kotlin types. However, for better
interoperability with platform-dependent code Kotlin also support a variant of
gradual types in the form of flexible types. Even more so, in some cases the
compile-time type of a value may change depending on the control- and data-flow
of the program; a feature usually known as flow typing, represented in Kotlin as
smart casts.

Null safety is enforced by having two type universes: nullable (with nullable types
T ?) and non-nullable (with non-nullable types T !!). A value of any non-nullable
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type cannot contain null, meaning all operations within the non-nullable type
universe are safe w.r.t. empty values, i.e., should never result in a runtime error
caused by null.

Implicit conversions between types in Kotlin are limited to safe upcasts w.r.t.
subtyping, meaning all other (unsafe) conversions must be explicit, done via
either a conversion function or an explicit cast. However, Kotlin also supports
smart casts — a special kind of implicit conversions which are safe w.r.t. program
control- and data-flow, which are covered in more detail here.

The unified supertype type for all types in Kotlin is kotlin.Any?, a nullable
version of kotlin.Any. The unified subtype type for all types in Kotlin is
kotlin.Nothing.

Kotlin uses nominal subtyping, meaning subtyping relation is defined when
a type is declared, with bounded parametric polymorphism, implemented as
generics via parameterized types. Subtyping between these parameterized types
is defined through mixed-site variance.

2.1 Type kinds
For the purposes of this section, we establish the following type kinds — different
flavours of types which exist in the Kotlin type system.

• Built-in types
• Classifier types
• Type parameters
• Function types
• Array types
• Flexible types
• Nullable types
• Intersection types
• Union types

We distinguish between concrete and abstract types. Concrete types are types
which are assignable to values. Abstract types need to be instantiated as concrete
types before they can be used as types for values.

Note: for brevity, we omit specifying that a type is concrete. All
types not described as abstract are implicitly concrete.

We further distinguish concrete types between class and interface types; as Kotlin
is a language with single inheritance, sometimes it is important to discriminate
between these kinds of types. Any given concrete type may be either a class or
an interface type, but never both.

We also distinguish between denotable and non-denotable types. The former are
types which are expressible in Kotlin and can be written by the end-user. The
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latter are special types which are not expressible in Kotlin and are used by the
compiler in type inference, smart casts, etc.

2.1.1 Built-in types
Kotlin type system uses the following built-in types, which have special semantics
and representation (or lack thereof).

kotlin.Any

kotlin.Any is the unified supertype (⊤) for {T !!}, i.e., all non-nullable types are
subtypes of kotlin.Any, either explicitly, implicitly, or by subtyping relation.

Note: additional details about kotlin.Any are available here.

kotlin.Nothing

kotlin.Nothing is the unified subtype (⊥) for {T}, i.e., kotlin.Nothing is a
subtype of all well-formed Kotlin types, including user-defined ones. This makes
it an uninhabited type (as it is impossible for anything to be, for example, a
function and an integer at the same time), meaning instances of this type can
never exist at runtime; subsequently, there is no way to create an instance of
kotlin.Nothing in Kotlin.

Note: additional details about kotlin.Nothing are available here.

kotlin.Function

kotlin.Function(R) is the unified supertype of all function types. It is param-
eterized over function return type R.

Built-in integer types

Kotlin supports the following signed integer types.

• kotlin.Int
• kotlin.Short
• kotlin.Byte
• kotlin.Long

Besides their use as types, integer types are important w.r.t. integer literal types.

Note: additional details about built-in integer types are available
here.

Array types

Kotlin arrays are represented as a parameterized type kotlin.Array(T ), where
T is the type of the stored elements, which supports get/set operations. The
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kotlin.Array(T ) type follows the rules of regular type constructors and param-
eterized types w.r.t. subtyping.

Note: unlike Java, arrays in Kotlin are declared as invariant. To use
them in a co- or contravariant way, one should use use-site variance.

In addition to the general kotlin.Array(T ) type, Kotlin also has the following
specialized array types:

• DoubleArray (for kotlin.Array(kotlin.Double))
• FloatArray (for kotlin.Array(kotlin.Float))
• LongArray (for kotlin.Array(kotlin.Long))
• IntArray (for kotlin.Array(kotlin.Int))
• ShortArray (for kotlin.Array(kotlin.Short))
• ByteArray (for kotlin.Array(kotlin.Byte))
• CharArray (for kotlin.Array(kotlin.Char))
• BooleanArray (for kotlin.Array(kotlin.Boolean))

These array types structurally match the corresponding kotlin.Array(T ) type;
i.e., IntArray has the same methods and properties as kotlin.Array(kotlin.Int).
However, they are not related by subtyping; meaning one cannot pass a
BooleanArray argument to a function expecting an kotlin.Array(kotlin.Boolean).

Note: the presence of such specialized types allows the compiler to
perform additional array-related optimizations.

Note: specialized and non-specialized array types match modulo
their iterator types, which are also specialized; Iterator<Int> is
specialized to IntIterator.

Array type specialization ATS(A) is a transformation of a generic
kotlin.Array(T ) type to a corresponding specialized version, which
works as follows.

• if kotlin.Array(T ) has a specialized version TArray, ATS(kotlin.Array(T )) =
TArray

• if kotlin.Array(T ) does not have a specialized version, ATS(kotlin.Array(T )) =
kotlin.Array(T )

ATS takes an important part in how variable length parameters are handled.

Note: additional details about built-in array types are available here.

2.1.2 Classifier types
Classifier types represent regular types which are declared as classes, interfaces
or objects. As Kotlin supports parametric polymorphism, there are two variants
of classifier types: simple and parameterized.
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Simple classifier types

A simple classifier type

T : S1, . . . , Sm

consists of

• type name T
• (optional) list of supertypes S1, . . . , Sm

To represent a well-formed simple classifier type, T : S1, . . . , Sm should satisfy
the following conditions.

• T is a valid type name
• ∀i ∈ [1, m] : Si must be concrete, non-nullable, well-formed type
• the transitive closure S∗(T ) of the set of type supertypes S(T :

S1, . . . , Sm) = {S1, . . . , Sm} ∪ S(S1) ∪ . . . ∪ S(Sm) is consistent, i.e., does
not contain two parameterized types with different type arguments.

Example:

// A well-formed type with no supertypes
interface Base

// A well-formed type with a single supertype Base
interface Derived : Base

// An ill-formed type,
// as nullable type cannot be a supertype
interface Invalid : Base?

Note: for the purpose of different type system examples, we assume
the presence of the following well-formed concrete types:

• class String
• interface Number
• class Int <: Number
• class Double <: Number

Note: Number is actually a built-in abstract class; we use it as an
interface for illustrative purposes.

Parameterized classifier types

A classifier type constructor

T (F1, . . . , Fn) : S1, . . . , Sm

describes an abstract type and consists of
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• type name T
• type parameters F1, . . . , Fn

• (optional) list of supertypes S1, . . . , Sm

To represent a well-formed type constructor, T (F1, . . . , Fn) : S1, . . . , Sm should
satisfy the following conditions.

• T is a valid type name
• ∀i ∈ [1, n] : Fi must be well-formed type parameter
• ∀j ∈ [1, m] : Sj must be concrete, non-nullable, well-formed type

To instantiate a type constructor, one provides it with type arguments, creating
a concrete parameterized classifier type

T [A1, . . . , An]

which consists of

• type constructor T
• type arguments A1, . . . , An

To represent a well-formed parameterized type, T [A1, . . . , An] should satisfy the
following conditions.

• T is a well-formed type constructor with n type parameters
• ∀i ∈ [1, n] : Ai must be well-formed concrete type
• ∀i ∈ [1, n] : variance of Ai does not contradict variance of Fi

• ∀i ∈ [1, n] : Ai <: τUi, where Ui is the upper bound for Fi and captured
substitution τ : F1 = K1, . . . , Fn = Kn manipulates captured types.

• the transitive closure S∗(T ) of the set of type supertypes S(T ⟨τ⟩ :
τS1, . . . , τSm) = {τS1, . . . , τSm} ∪ S(τS1) ∪ . . . ∪ S(τSm) is consistent, i.e.,
does not contain two parameterized types with different type arguments.

Example:

// A well-formed type constructor with no supertypes
// A and B are unbounded type parameters
interface Generic<A, B>

// A well-formed type constructor
// with a single parameterized supertype
// Int and String are well-formed concrete types
interface ConcreteDerived<P, Q> : Generic<Int, String>

// A well-formed type constructor
// with a single parameterized supertype
// P and Q are type parameters of GenericDerived,
// used as type arguments of Generic
interface GenericDerived<P, Q> : Generic<P, Q>
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// An ill-formed type constructor,
// as abstract type Generic
// cannot be used as a supertype
interface Invalid<P> : Generic

// A well-formed type constructor with no supertypes
// out A is a projected type parameter
interface Out<out A>

// A well-formed type constructor with no supertypes
// S : Number is a bounded type parameter
// (S <: Number)
interface NumberWrapper<S : Number>

// A well-formed type constructor
// with a single parameterized supertype
// NumberWrapper<Int> is well-formed,
// as Int <: Number
interface IntWrapper : NumberWrapper<Int>

// An ill-formed type constructor,
// as NumberWrapper<String> is an ill-formed parameterized type
// (String not(<:>) Number)
interface InvalidWrapper : NumberWrapper<String>

2.1.3 Type parameters
Type parameters are a special kind of types, which are introduced by type
constructors. They are considered well-formed concrete types only in the type
context of their declaring type constructor.

When creating a parameterized type from a type constructor, its type parameters
with their respective type arguments go through capturing and create captured
types, which follow special rules described in more detail below.

Type parameters may be either unbounded or bounded. By default, a type
parameter F is unbounded, which is the same as saying it is a bounded type
parameter of the form F <: kotlin.Any?.

A bounded type parameter additionally specifies upper type bounds for the type
parameter and is defined as F <: B1, . . . , Bn, where Bi is an i-th upper bound
on type parameter F .

To represent a well-formed bounded type parameter of type constructor T ,
F <: B1, . . . , Bn should satisfy either of the following sets of conditions.
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• Bounded type parameter with regular bounds:
– F is a type parameter of type constructor T
– ∀i ∈ [1, n] : Bi must be concrete, non-type-parameter, well-formed

type
– No more than one of Bi may be a class type

Note: the last condition is a nod to the single inheritance nature of
Kotlin: any type may be a subtype of no more than one class type.
For any two class types, either these types are in a subtyping relation
(and you should use the more specific type in the bounded type
parameter), or they are unrelated (and the bounded type parameter
is empty).

Actual support for multiple class type bounds would be needed only
in very rare cases, such as the following example.

interface Foo
interface Bar

open class A<T>
class B<T> : A<T>

class C<T> where T : A<out Foo>, T : B<out Bar>
// A convoluted way of saying T <: B<out Foo & Bar>,
// which contains a non-denotable intersection type

• Bounded type parameter with type parameter bound:
– F is a type parameter of type constructor T
– i = 1 (i.e., there is a single upper bound)
– B1 must be well-formed type parameter

From the definition, it follows F <: B1, . . . , Bn can be represented as F <: U
where U = B1 & . . . & Bn (aka intersection type).

Function type parameters

Function type parameters are a flavor of type parameters, which are used in
function declarations to create parameterized functions. They are considered
well-formed concrete types only in the type context of their declaring function.

Note: one may view such parameterized functions as a kind of
function type constructors.

Function type parameters work similarly to regular type parameters, however,
they do not support specifying mixed-site variance.

Mixed-site variance

To implement subtyping between parameterized types, Kotlin uses mixed-site
variance — a combination of declaration- and use-site variance, which is easier
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to understand and reason about, compared to wildcards from Java. Mixed-site
variance means you can specify, whether you want your parameterized type to
be co-, contra- or invariant on some type parameter, both in type parameter
(declaration-site) and type argument (use-site).

Info: variance is a way of describing how subtyping works for variant
parameterized types. With declaration-site variance, for two non-
equivalent types A <: B, subtyping between T<A> and T<B> depends
on the variance of type parameter F for some type constructor T .

• if F is covariant (out F ), T<A> <: T<B>
• if F is contravariant(in F ), T<A> :> T<B>
• if F is invariant (default), T<A> ���<: > T<B>

Use-site variance allows the user to change the type variance of
an invariant type parameter by specifying it on the corresponding
type argument. out A means covariant type argument, in A means
contravariant type argument; for two non-equivalent types A <: B
and an invariant type parameter F of some type constructor T ,
subtyping for use-site variance has the following rules.

• T<out A> <: T<out B>
• T<in A> :> T<in B>
• T<A> <: T<out A>
• T<A> <: T<in A>

Important: by the transitivity of the subtyping operator these rules
imply that the following also holds:

• T<A> <: T<out B>
• T<in A> :> T<B>

Note: Kotlin does not support specifying both co- and contravariance
at the same time, i.e., it is impossible to have T<out A in B> neither
on declaration- nor on use-site.

Note: informally, covariant type parameter out A of type constructor
T means “T is a producer of As and gets them out”; contravariant
type parameter in A of type constructor T means “T is a consumer
of As and takes them in”.

For further discussion about mixed-site variance and its practical applications,
we readdress you to subtyping.

Declaration-site variance

A type parameter F may be invariant, covariant or contravariant.

By default, all type parameters are invariant.
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To specify a covariant type parameter, it is marked as out F . To specify a
contravariant type parameter, it is marked as in F .

The variance information is used by subtyping and for checking allowed operations
on values of co- and contravariant type parameters.

Important: declaration-site variance can be used only when declaring
types, e.g., function type parameters cannot be variant.

Example:

// A type constructor with an invariant type parameter
interface Invariant<A>
// A type constructor with a covariant type parameter
interface Out<out A>
// A type constructor with a contravariant type parameter
interface In<in A>

fun testInvariant() {
var invInt: Invariant<Int> = ...
var invNumber: Invariant<Number> = ...

if (random) invInt = invNumber // ERROR
else invNumber = invInt // ERROR

// Invariant type parameters do not create subtyping
}

fun testOut() {
var outInt: Out<Int> = ...
var outNumber: Out<Number> = ...

if (random) outInt = outNumber // ERROR
else outNumber = outInt // OK

// Covariant type parameters create "same-way" subtyping
// Int <: Number => Out<Int> <: Out<Number>
// (more specific type Out<Int> can be assigned
// to a less specific type Out<Number>)

}

fun testIn() {
var inInt: In<Int> = ...
var inNumber: In<Number> = ...

if (random) inInt = inNumber // OK
else inNumber = inInt // ERROR
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// Contravariant type parameters create "opposite-way" subtyping
// Int <: Number => In<Int> :> In<Number>
// (more specific type In<Number> can be assigned
// to a less specific type In<Int>)

}

Use-site variance

Kotlin also supports use-site variance, by specifying the variance for type argu-
ments. Similarly to type parameters, one can have type arguments being co-,
contra- or invariant.

Important: use-site variance cannot be used when declaring a super-
type top-level type argument.

By default, all type arguments are invariant.

To specify a covariant type argument, it is marked as out A. To specify a
contravariant type argument, it is marked as in A.

Kotlin prohibits contradictory combinations of declaration- and use-site variance
as follows.

• It is a compile-time error to use a covariant type argument in a contravariant
type parameter

• It is a compile-time error to use a contravariant type argument in a covariant
type parameter

In case one cannot specify any well-formed type argument, but still needs
to use a parameterized type in a type-safe way, they may use bivariant type
argument ⋆, which is roughly equivalent to a combination of out kotlin.Any?
and in kotlin.Nothing (for further details, see subtyping).

Note: informally, T [⋆] means “I can give out something very generic
(kotlin.Any?) and cannot take in anything”.

Example:

// A type constructor with an invariant type parameter
interface Inv<A>

fun test() {
var invInt: Inv<Int> = ...
var invNumber: Inv<Number> = ...
var outInt: Inv<out Int> = ...
var outNumber: Inv<out Number> = ...
var inInt: Inv<in Int> = ...
var inNumber: Inv<in Number> = ...

when (random) {
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1 -> {
inInt = invInt // OK
// T<in Int> :> T<Int>

inInt = invNumber // OK
// T<in Int> :> T<in Number> :> T<Number>

}
2 -> {

outNumber = invInt // OK
// T<out Number> :> T<out Int> :> T<Int>

outNumber = invNumber // OK
// T<out Number> :> T<Number>

}
3 -> {

invInt = inInt // ERROR
invInt = outInt // ERROR
// It is invalid to assign less specific type
// to a more specific one
// T<Int> <: T<in Int>
// T<Int> <: T<out Int>

}
4 -> {

inInt = outInt // ERROR
inInt = outNumber // ERROR
// types with co- and contravariant type parameters
// are not connected by subtyping
// T<in Int> not(<:>) T<out Int>

}
}

}

2.1.4 Type capturing
Type capturing (similarly to Java capture conversion) is used when instantiating
type constructors; it creates abstract captured types based on the type information
of both type parameters and arguments, which present a unified view on the
resulting types and simplifies further reasoning.

The reasoning behind type capturing is closely related to variant parameterized
types being a form of bounded existential types; e.g., A<out T> may be loosely
considered as the following existential type: ∃X : X <: T.A⟨X⟩. Informally,
a bounded existential type describes a set of possible types, which satisfy its
bound constraints. Before such a type can be used, it needs to be opened (or
unpacked): existentially quantified type variables are lifted to fresh type variables
with corresponding bounds. We call these type variables captured types.
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For a given type constructor T (F1, . . . , Fn) : S1, . . . , Sm, its instance T [σ] = T ⟨τ⟩
uses the following rules to create captured type Ki from the type parameter Fi

and type argument Ai, at least one of which should have specified variance to
create a captured type. In case both type parameter and type argument are
invariant, their captured type is equivalent to Ai.

Important: type capturing is not recursive.

Note: All applicable rules are used to create the resulting constraint
set.

• For a covariant type parameter out Fi, if Ai is an ill-formed type or a
contravariant type argument, Ki is an ill-formed type. Otherwise, Ki <: Ai.

• For a contravariant type parameter in Fi, if Ai is an ill-formed type or a
covariant type argument, Ki is an ill-formed type. Otherwise, Ki :> Ai.

• For a bounded type parameter Fi <: Ui ≡ B1 & . . . & Bm, if ¬(Ai <: τUi),
Ki is an ill-formed type. Otherwise, Ki <: τUi.

Note: captured substitution τ : F1 = K1, . . . , Fn = Kn manipu-
lates captured types.

• For a covariant type argument out Ai, if Fi is a contravariant type param-
eter, Ki is an ill-formed type. Otherwise, Ki <: Ai.

• For a contravariant type argument in Ai, if Fi is a covariant type parameter,
Ki is an ill-formed type. Otherwise, Ki :> Ai.

• For a bivariant type argument ⋆, kotlin.Nothing <: Ki <: kotlin.Any?.

• Otherwise, Ki ≡ Ai.

By construction, every captured type K has the following form:

{L1 <: K, . . . , Lp <: K, K <: U1, . . . , K <: Uq}

which can be represented as

L <: K <: U

where L = L1 | . . . | Lp and U = U1 & . . . & Uq.

Note: for implementation reasons the compiler may approximate L
and/or U ; for example, in the current implementation L is always
approximated to be a single type.

Note: as every captured type corresponds to a fresh type variable, two
different captured types Ki and Kj which describe the same set of
possible types (i.e., their constraint sets are equal) are not considered
equal. However, in some cases type inference may approximate a
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captured type K to a concrete type K≈; in our case, it would be
that K≈

i ≡ K≈
j .

Examples: also show the use of type containment to establish sub-
typing.

interface Inv<T>
interface Out<out T>
interface In<in T>

interface Root<T>

interface A
interface B : A
interface C : B

fun <T> mk(): T = TODO()

interface Bounded<T : A> : Root<T>

fun test01() {

val bounded: Bounded<in B> = mk()

// Bounded<in B> <: Bounded<KB> where B <: KB <: A
// (from type capturing)
// Bounded<KB> <: Root<KB>
// (from supertype relation)

val test: Root<in C> = bounded

// ?- Bounded<in B> <: Root<in C>
//
// Root<KB> <: Root<in C> where B <: KB <: A
// (from above facts)
// KB ⪯ in C
// (from subtyping for parameterized types)
// KB ⪯ in KC where C <: KC <: C
// (from type containment rules)
// KB :> KC
// (from type containment rules)
// (A :> KB :> B) :> (C :> KC :> C)
// (from subtyping for captured types)
// B :> C
// (from supertype relation)
// True
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}

interface Foo<T> : Root<Out<T>>

fun test02() {

val foo: Foo<out B> = mk()

// Foo<out B> <: Foo<KB> where KB <: B
// (from type capturing)
// Foo<KB> <: Root<Out<KB>>
// (from supertype relation)

val test: Root<out Out<B>> = foo

// ?- Foo<out B> <: Root<out Out<B>>
//
// Root<Out<KB>> <: Root<out Out<B>> where KB <: B
// (from above facts)
// Out<KB> ⪯ out Out<B>
// (from subtyping for parameterized types)
// Out<KB> <: Out<B>
// (from type containment rules)
// Out<out KB> <: Out<out B>
// (from declaration-site variance)
// out KB ⪯ out B
// (from subtyping for parameterized types)
// out KB ⪯ out KB' where B <: KB' <: B
// (from type containment rules)
// KB <: KB'
// (from type containment rules)
// (KB :< B) <: (B <: KB' <: B)
// (from subtyping for captured types)
// B <: B
// (from subtyping definition)
// True

}

interface Bar<T> : Root<Inv<T>>

fun test03() {

val bar: Bar<out B> = mk()

// Bar<out B> <: Bar<KB> where KB <: B
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// (from type capturing)
// Bar<KB> <: Root<Inv<KB>>
// (from supertype relation)

val test: Root<out Inv<B>> = bar

// ?- Bar<out B> <: Root<out Inv<B>>
//
// Root<Inv<KB>> <: Root<out Inv<B>> where KB <: B
// (from above facts)
// Inv<KB> ⪯ out Inv<B>
// (from subtyping for parameterized types)
// Inv<KB> <: Inv<B>
// (from type containment rules)
// KB ⪯ B
// (from subtyping for parameterized types)
// KB ⪯ KB' where B <: KB' <: B
// (from type containment rules)
// KB ⊆ KB'
// (from type containment rules)
// (Nothing <: KB :< B) ⊆ (B <: KB' <: B)
//
// False

}

interface Recursive<T : Recursive<T>>

fun <T : Recursive<T>> probe(e: Recursive<T>): T = mk()

fun test04() {
val rec: Recursive<*> = mk()

// Recursive<*> <: Recursive<KS> where KS <: Recursive<KS>
// (from type capturing)
// Recursive<KS> <: Root<KS>
// (from supertype relation)

val root: Root<*> = rec

// ?- Recursive<*> <: Root<*>
//
// Root<KS> <: Root<KT>
// where Nothing <: KS <: Recursive<KS>
// Nothing <: KT <: Any?
// (from above facts and type capturing)
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// KS ⪯ KT
// (from subtyping for parameterized types)
// KS ⊆ KT
// (from type containment rules)
// (Nothing <: KS <: Recursive<KS>) ⊆ (Nothing <: KT <: Any?)
//
// True

val rootRec: Root<Recursive<*>> = rec

// ?- Recursive<*> <: Root<Recursive<*>>
//
// Root<KS> <: Root<Recursive<*>>
// where Nothing <: KS <: Recursive<KS>
// (from above facts)
// KS ⪯ Recursive<*>
// (from subtyping for parameterized types)
// KS ⪯ KT where Recursive<*> <: KT <: Recursive<*>
// (from type containment rules)
// KS ⊆ KT
// (from type containment rules)
// (Nothing <: KS <: Recursive<KS) ⊆ (Recursive<*> <: KT <: Recursive<*>)
//
// False

}

2.1.5 Type containment
Type containment operator ⪯ is used to decide, whether a type A is contained in
another type B denoted A ⪯ B, for the purposes of establishing type argument
subtyping.

Let A, B be concrete, well-defined non-type-parameter types, KA, KB be cap-
tured types.

Important: type parameters Fi <: Ui are handled as if they have been
converted to well-formed captured types Ki : kotlin.Nothing <:
Ki <: Ui.

⪯ is defined as follows.

• A ⪯ B if A ≡ B

• A ⪯ out B if A <: B

• A ⪯ in B if A :> B

• out A ⪯ out B if A <: B
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• in A ⪯ in B if A :> B

Rules for captured types follow the same structure.

• KA ⪯ KB if KA ⊆ KB

• KA ⪯ out KB if KA <: KB

• KA ⪯ in KB if KA :> KB

• out KA ⪯ out KB if KA <: KB

• in KA ⪯ in KB if KA :> KB

In case we need to establish type containment between regular type A and
captured type KB , A is considered as if it is a captured type KA : A <: KA <: A.

2.1.6 Function types
Kotlin has first-order functions; e.g., it supports function types, which describe
the argument and return types of its corresponding function.

A function type FT

FT(A1, . . . , An) → R

consists of

• argument types Ai

• return type R

and may be considered the following instantiation of a special type constructor
FunctionN(in P1, . . . , in Pn, out R) (please note the variance of type parame-
ters)

FT(A1, . . . , An) → R ≡ FunctionN[A1, . . . , An, R]

These FunctionN types follow the rules of regular type constructors and parame-
terized types w.r.t. subtyping.

A function type with receiver FTR

FTR(RT, A1, . . . , An) → R

consists of

• receiver type RT
• argument types Ai

• return type R
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From the type system’s point of view, it is equivalent to the following function
type

FTR(RT, A1, . . . , An) → R ≡ FT(RT, A1, . . . , An) → R

i.e., receiver is considered as yet another argument of its function type.

Note: this means that, for example, these two types are equivalent
w.r.t. type system

• Int.(Int) -> String
• (Int, Int) -> String

However, these two types are not equivalent w.r.t. overload resolu-
tion, as it distinguishes between functions with and without receiver.

Furthermore, all function types FunctionN are subtypes of a general argument-
agnostic type kotlin.Function for the purpose of unification; this subtyping
relation is also used in overload resolution.

Note: a compiler implementation may consider a function type
FunctionN to have additional supertypes, if it is necessary.

Example:

// A function of type Function1<Number, Number>
// or (Number) -> Number
fun foo(i: Number): Number = ...

// A valid assignment w.r.t. function type variance
// Function1<in Int, out Any> :> Function1<in Number, out Number>
val fooRef: (Int) -> Any = ::foo

// A function with receiver of type Function1<Number, Number>
// or Number.() -> Number
fun Number.bar(): Number = ...

// A valid assignment w.r.t. function type variance
// Receiver is just yet another function argument
// Function1<in Int, out Any> :> Function1<in Number, out Number>
val barRef: (Int) -> Any = Number::bar

Suspending function types

Kotlin supports structured concurrency in the form of coroutines via suspending
functions.

For the purposes of type system, a suspending function has a suspending function
type suspend FT(A1, . . . , An) → R, which is unrelated by subtyping to any
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non-suspending function type. This is important for overload resolution and
type inference, as it directly influences the types of function values and the
applicability of different functions w.r.t. overloading.

Most function values have either non-suspending or suspending function type
based on their declarations. However, as lambda literals do not have any
explicitly declared function type, they are considered as possibly being both
non-suspending and suspending function type, with the final selection done
during type inference.

Example:

fun foo(i: Int): String = TODO()

fun bar() {
val fooRef: (Int) -> String = ::foo
val fooLambda: (Int) -> String = { it.toString() }
val suspendFooLambda: suspend (Int) -> String = { it.toString() }

// Error: as suspending and non-suspending
// function types are unrelated
// val error: suspend (Int) -> String = ::foo
// val error: suspend (Int) -> String = fooLambda
// val error: (Int) -> String = suspendFooLambda

}

2.1.7 Flexible types
Kotlin, being a multi-platform language, needs to support transparent interoper-
ability with platform-dependent code. However, this presents a problem in that
some platforms may not support null safety the way Kotlin does. To deal with
this, Kotlin supports gradual typing in the form of flexible types.

A flexible type represents a range of possible types between type L (lower bound)
and type U (upper bound), written as (L..U). One should note flexible types
are non-denotable, i.e., one cannot explicitly declare a variable with flexible type,
these types are created by the type system when needed.

To represent a well-formed flexible type, (L..U) should satisfy the following
conditions.

• L and U are well-formed concrete types
• L <: U
• L and U are not flexible types (but may contain other flexible types as

some of their type arguments)

As the name suggests, flexible types are flexible — a value of type (L..U) can be
used in any context, where one of the possible types between L and U is needed
(for more details, see subtyping rules for flexible types). However, the actual
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runtime type T will be a specific type satisfying ∃S : T <: S ∧ L <: S <: U , thus
making the substitution possibly unsafe, which is why Kotlin generates dynamic
assertions, when it is impossible to prove statically the safety of flexible type
use.

Dynamic type

Kotlin includes a special dynamic type, which in many contexts can be viewed
as a flexible type (kotlin.Nothing .. kotlin.Any?). By definition, this type
represents any possible Kotlin type, and may be used to support interoperability
with dynamically typed libraries, platforms or languages.

However, as a platform may assign special meaning to the values of dynamic type,
it may be handled differently from the regular flexible type. These differences
are to be explained in the corresponding platform-dependent sections of this
specification.

Platform types

The main use cases for flexible types are platform types — types which the Kotlin
compiler uses, when interoperating with code written for another platform (e.g.,
Java). In this case all types on the interoperability boundary are subject to
flexibilization — the process of converting a platform-specific type to a Kotlin-
compatible flexible type.

For further details on how flexibilization is done, see the corresponding JVM
section.

Important: platform types should not be confused with multi-platform
projects — another Kotlin feature targeted at supporting platform
interop.

2.1.8 Nullable types
Kotlin supports null safety by having two type universes — nullable and non-
nullable. All classifier type declarations, built-in or user-defined, create non-
nullable types, i.e., types which cannot hold null value at runtime.

To specify a nullable version of type T , one needs to use T ? as a type. Redundant
nullability specifiers are ignored: T?? ≡ T?.

Note: informally, question mark means “T? may hold values of type
T or value null”

To represent a well-formed nullable type, T? should satisfy the following condi-
tions.

• T is a well-formed concrete type
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Note: if an operation is safe regardless of absence or presence of
null, e.g., assignment of one nullable value to another, it can be
used as-is for nullable types. For operations on T ? which may violate
null safety, e.g., access to a property, one has the following null-safe
options:

1. Use safe operations
• safe call

2. Downcast from T? to T !!
• unsafe cast
• type check combined with smart casts
• null check combined with smart casts
• not-null assertion operator

3. Supply a default value to use if null is present
• elvis operator

Nullability lozenge

A? B?

A!! B!!

Nullability lozenge represents valid possible subtyping relations between two
nullable or non-nullable types in different combinations of their versions. For
type T , we call T !! its non-nullable version, T? its nullable version.

Note: trivial subtyping relation A!! <: A? is not represented in the
nullability lozenge.

Nullability lozenge may also help in establishing subtyping between two types
by following its structure.

Regular (non-type-variable) types are mapped to nullability lozenge vertices, as
for them A corresponds to A!!, and A? corresponds to A?. Following the lozenge
structure, for regular types A and B, as soon as we have established any valid
subtyping between two versions of A and B, it implies subtyping between all
other valid w.r.t. nullability lozenge combinations of versions of types A and B.

Type variable types (e.g., captured types or type parameters) are mapped to
either nullability lozenge edges or vertices, as for them T corresponds to either
T !! or T?, and T? corresponds to T?. Following the lozenge structure, for type
variable type T (i.e., either non-nullable or nullable version) we need to consider
valid subtyping for both versions T !! and T? w.r.t. nullability lozenge.
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Example: if we have kotlin.Int? <: T?, we also have
kotlin.Int!! <: T? and kotlin.Int!! <: T !!, meaning we
can establish kotlin.Int!! <: T ≡ kotlin.Int <: T .

Example: if we have T? <: kotlin.Int?, we also have T !! <:
kotlin.Int? and T !! <: kotlin.Int!!, however, we can estab-
lish only T <: kotlin.Int?, as T <: kotlin.Int would need
T? <: kotlin.Int!! which is forbidden by the nullability lozenge.

Definitely non-nullable types

As discussed here, type variable types have unknown nullability, e.g., a type
parameter T may correspond to either nullable version T ?, or non-nullable version
T !!. In some cases, one might need to specifically denote a nullable/non-nullable
version of T .

Note: for example, it is needed when overriding a Java method with
a @NotNull annotated generic parameter.

Example:

public interface JBox {
<T> void put(@NotNull T t);

}

class KBox : JBox {
override fun <T> put(t: T/* !! */ ) = TODO()

}

To denote a nullable version of T , one can use the nullable type syntax T?.

To denote a non-nullable version of T , one can use the definitely non-nullable
type syntax T & Any.

To represent a well-formed definitely non-nullable type, T & Any should satisfy
the following conditions.

• T is a well-formed type parameter with a nullable upper bound
• Any is resolved to kotlin.Any

Example:

typealias MyAny = kotlin.Any

fun <T /* : Any? */ , Q : Any> bar(t: T?, q: Q?, i: Int?) {
// OK
val a: T & Any = t!!
// OK: MyAny is resolved to kotlin.Any
val b: T & MyAny = t!!
// ERROR: Int is not kotlin.Any
val c: T & Int = t!!
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// ERROR: Q does not have a nullable upper bound
val d: Q & Any = q!!

// ERROR: Int? is not a type parameter
val e: Int? & Any = i!!

}

One may notice the syntax looks like an intersection type T & Any, and that
is not a coincidence, as an intersection type with Any describes exactly a type
which cannot hold null values. For the purposes of the type system, a definitely
non-nullable type T & Any is consider to be the same as an intersection type
T & Any.

2.1.9 Intersection types
Intersection types are special non-denotable types used to express the fact that
a value belongs to all of several types at the same time.

Intersection type of two types A and B is denoted A & B and is equivalent to the
greatest lower bound of its components GLB(A, B). Thus, the normalization
procedure for GLB may be used to normalize an intersection type.

Note: this means intersection types are commutative and associative
(following the GLB properties); e.g., A&B is the same type as B &A,
and A & (B & C) is the same type as A & B & C.

Note: for presentation purposes, we will henceforth order intersection
type operands lexicographically based on their notation.

When needed, the compiler may approximate an intersection type to a denotable
concrete type using type approximation.

One of the main uses of intersection types are smart casts. Another restricted
version of intersection types are definitely non-nullable types.

2.1.10 Integer literal types
An integer literal type containing types T1, . . . , TN , denoted ILT(T1, . . . , TN ) is
a special non-denotable type designed for integer literals. Each type T1, . . . , TN

must be one of the built-in integer types.

Integer literal types are the types of integer literals and have special handling
w.r.t. subtyping.

2.1.11 Union types
Important: Kotlin does not have union types in its type system.
However, they make reasoning about several type system features
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easier. Therefore, we decided to include a brief intro to the union
types here.

Union types are special non-denotable types used to express the fact that a value
belongs to one of several possible types.

Union type of two types A and B is denoted A | B and is equivalent to the least
upper bound of its components LUB(A, B). Thus, the normalization procedure
for LUB may be used to normalize a union type.

Moreover, as union types are not used in Kotlin, the compiler always decays a
union type to a non-union type using type decaying.

2.2 Type contexts and scopes
The way types and scopes interoperate is very similar to how values and scopes
work; this includes visibility, accessing types via qualified names or imports.
This means, in many cases, type contexts are equivalent to the corresponding
scopes. However, there are several important differences, which we outline below.

2.2.1 Inner and nested type contexts
Type parameters are well-formed types in the type context (scope) of their
declaring type constructor, including inner type declarations. However, type
context for a nested type declaration ND of a parent type declaration PD does
not include the type parameters of PD.

Note: nested type declarations cannot capture parent type parame-
ters, as they simply create a regular type available under a nested
path.

Example:

class Parent<T> {
class Nested(val i: Int)

// Can use type parameter T as a type
// in an inner class
inner class Inner(val t: T)

// Cannot use type parameter T as a type
// in a nested class
class Error(val t: T)

}

fun main() {
val nested = Parent.Nested(42)
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val inner = Parent<String>().Inner("42")
}

2.3 Subtyping
Kotlin uses the classic notion of subtyping as substitutability — if S is a subtype
of T (denoted as S <: T ), values of type S can be safely used where values of
type T are expected. The subtyping relation <: is:

• reflexive (A <: A)
• rigidly transitive (A <: B ∧ B <: C ⇒ A <: C for non-flexible types A, B

and C)

Two types A and B are equivalent (A ≡ B), iff A <: B ∧ B <: A. Due to the
presence of flexible types, this relation is also only rigidly transitive, e.g., holds
only for non-flexible types (see here for more details).

2.3.1 Subtyping rules
Subtyping for non-nullable, concrete types uses the following rules.

• ∀T : kotlin.Nothing <: T <: kotlin.Any
• For any simple classifier type T : S1, . . . , Sm it is true that ∀i ∈ [1, m] :

T <: Si

• For any parameterized type T̂ = T ⟨τ⟩ : S1, . . . , Sm it is true that ∀i ∈
[1, m] : T̂ <: τSi

• For any two parameterized types T̂ = T ⟨τ⟩ and T̂ ′ = T ⟨τ ′⟩ with captured
type arguments Ki and K ′

i it is true that T̂ <: T̂ ′ if ∀i ∈ [1, n] : Ki ⪯ K ′
i

Subtyping for captured types uses the following rules.

• ∀K : kotlin.Nothing <: K <: kotlin.Any?
• For any two captured types L <: K <: U and L′ <: K ′ <: U ′, it is true

that K <: K ′ if U <: L′

Subtyping for nullable types is checked separately and uses a special set of rules
which are described here.

2.3.2 Subtyping for flexible types
Flexible types (being flexible) follow a simple subtyping relation with other rigid
(i.e., non-flexible) types. Let T, A, B, L, U be rigid types.

• L <: T ⇒ (L..U) <: T
• T <: U ⇒ T <: (L..U)

This captures the notion of flexible type (L..U) as something which may be
used in place of any type in between L and U . If we are to extend this idea to
subtyping between two flexible types, we get the following definition.
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• L <: B ⇒ (L..U) <: (A..B)

This is the most extensive definition possible, which, unfortunately, makes the
type equivalence relation non-transitive. Let A, B be two different types, for
which A <: B. The following relations hold:

• A <: (A..B) ∧ (A..B) <: A ⇒ A ≡ (A..B)
• B <: (A..B) ∧ (A..B) <: B ⇒ B ≡ (A..B)

However, A ̸≡ B.

2.3.3 Subtyping for intersection types
Intersection types introduce several new rules for subtyping. Let A, B, C, D be
non-nullable types.

• A & B <: A
• A & B <: B
• A <: C ∧ B <: D ⇒ A & B <: C & D

Moreover, any type T with supertypes S1, . . . , SN is also a subtype of S1 & . . . &
SN .

2.3.4 Subtyping for integer literal types
All integer literal type are equivalent w.r.t. subtyping, meaning that for any sets
T1, . . . , TK and U1, . . . , UN of built-in integer types:

• ILT(T1, . . . , TK) <: ILT(U1, . . . , UN )
• ILT(U1, . . . , UN ) <: ILT(T1, . . . , TK)
• ∀Ti ∈ {T1, . . . , TK} : ILT(T1, . . . , TK) <: Ti

• ∀Ti ∈ {T1, . . . , TK} : Ti <: ILT(T1, . . . , TK)

Note: the last two rules mean ILT(T1, . . . , TK) can be considered as
an intersection type T1 & . . . & TK or as a union type T1 | . . . | TK ,
depending on the context. Viewing ILT as intersection type allows
us to use integer literals where built-in integer types are expected.
Making ILT behave as union type is needed to support cases when
they appear in contravariant position.

Example:

interface In<in T>

fun <T> T.asIn(): In<T> = ...

fun <S> select(a: S, b: In<S>): S = ...

fun iltAsIntersection() {
val a: Int = 42 // ILT(Byte, Short, Int, Long) <: Int
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fun foo(a: Short) {}

foo(1377) // ILT(Short, Int, Long) <: Short
}

fun iltAsUnion() {
val a: Short = 42

select(a, 1337.asIn())
// For argument a:
// Short <: S
// For argument b:
// In<ILT(Short, Int, Long)> <: In<S> =>
// S <: ILT(Short, Int, Long)
// Solution: S =:= Short

}

2.3.5 Subtyping for nullable types
Subtyping for two possibly nullable types A and B is defined via two relations,
both of which must hold.

1. Regular subtyping <: for types A and B using the nullability lozenge
2. Subtyping by nullability

null
<:

Subtyping by nullability
null
<: for two possibly nullable types A and B uses the

following rules.

1. A!!
null
<: B

2. A
null
<: B if ∃T !! : A <: T !!

3. A
null
<: B?

4. A
null
<: B if ∄T !! : B <: T !!

5. A? ̸
null
<: B

Informally: these rules represent the following idea derived from the
nullability lozenge.

A ̸
null
<: B if B is definitely non-nullable and A may be

nullable or B may be non-nullable and A is definitely
nullable.

Note: these rules follow the structure of the nullability lozenge and
check the absence of nullability violation A?

null
<: B!! via underapprox-

imating it using the supertype relation (as we cannot enumerate the
subtype relation for B).
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Example:

class Foo<A, B : A?> {
val b: B = mk()
val bQ: B? = mk()

// For this assignment to be well-formed,
// B must be a subtype of A
// Subtyping by nullability holds per rule 4
// Regular subtyping does not hold,
// as B <: A? is not enough to show B <: A
// (we are missing B!! <: A!!)
val ab: A = b // ERROR

// For this assignment to be well-formed,
// B? must be a subtype of A
// Subtyping by nullability does not hold per rule 5
val abQ: A = bQ // ERROR

// For this assignment to be well-formed,
// B must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A? is enough to show B <: A?
val aQb: A? = b // OK

// For this assignment to be well-formed,
// B? must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A? is enough to show B? <: A?
// (taking the upper edge of the nullability lozenge)
val aQbQ: A? = bQ // OK

}

class Bar<A, B : A> {
val b: B = mk()
val bQ: B? = mk()

// For this assignment to be well-formed,
// B must be a subtype of A
// Subtyping by nullability holds per rule 4
// Regular subtyping does hold,
// as B <: A is enough to show B <: A
val ab: A = b // OK
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// For this assignment to be well-formed,
// B? must be a subtype of A
// Subtyping by nullability does not hold per rule 5
val abQ: A = bQ // ERROR

// For this assignment to be well-formed,
// B must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A is enough to show B <: A?
// (taking the upper triangle of the nullability lozenge)
val aQb: A? = b // OK

// For this assignment to be well-formed,
// B? must be a subtype of A?
// Subtyping by nullability holds per rule 3
// Regular subtyping does hold,
// as B <: A is enough to show B? <: A?
// (taking the upper edge of the nullability lozenge)
val aQbQ: A? = bQ // OK

}

Example:

A B? C!! A

B T T

This example shows a situation, when the subtyping by nullability
relation from T <: C!! is used to prove T <: A.

2.4 Upper and lower bounds
A type U is an upper bound of types A and B if A <: U and B <: U . A type L
is a lower bound of types A and B if L <: A and L <: B.

Note: as the type system of Kotlin is bounded by definition (the
upper bound of all types is kotlin.Any?, and the lower bound of
all types is kotlin.Nothing), any two types have at least one lower
bound and at least one upper bound.

2.4.1 Least upper bound
The least upper bound LUB(A, B) of types A and B is an upper bound U of A
and B such that there is no other upper bound of these types which is less by
subtyping relation than U .
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Note: LUB is commutative, i.e., LUB(A, B) = LUB(B, A). This
property is used in the subsequent description, e.g., other properties of
LUB are defined only for a specific order of the arguments. Definitions
following from commutativity of LUB are implied.

LUB(A, B) has the following properties, which may be used to normalize it.
This normalization procedure, if finite, creates a canonical representation of
LUB.

Important: A and B are considered to be non-flexible, unless specified
otherwise.

• LUB(A, A) = A

• if A <: B, LUB(A, B) = B

• if A is nullable, LUB(A, B) = LUB(A!!, B!!)?

• if A = T ⟨KA,1, . . . , KA,n⟩ and B = T ⟨KB,1, . . . , KB,n⟩, LUB(A, B) =
T ⟨ϕ(η(KA,1), η(KB,1)), . . . , ϕ(η(KA,n), η(KB,n))⟩, where η(T ) and ϕ(X, Y )
are defined as follows:

η(K : L <: K <: U) = {out U, in L}
Informally: in many cases, one may view η(T ) as follows.

η(inv X) = {out X, in X}
η(out X) = {out X, in kotlin.Nothing}
η(in X) = {out kotlin.Any?, in X}

η(⋆) = {out kotlin.Any?, in kotlin.Nothing}

ϕ({out Xout, in Xin}, {out Yout, in Yin}) =
η−1({out LUB(Xout, Yout), in GLB(Xin, Yin)})

• if A = (LA..UA) and B = (LB ..UB), LUB(A, B) = (LUB(LA, LB).. LUB(UA, UB))

• if A = (LA..UA) and B is not flexible, LUB(A, B) = (LUB(LA, B).. LUB(UA, B))

Important: in some cases, the least upper bound is handled as
described here, from the point of view of type constraint system.

In the presence of recursively defined parameterized types, the algorithm given
above is not guaranteed to terminate as there may not exist a finite representation
of LUB for particular two types. The detection and handling of such situations
(compile-time error or leaving the type in some kind of denormalized state) is
implementation-defined.

In some situations, it is needed to construct the least upper bound for more than
two types, in which case the least upper bound operator LUB(T1, T2, . . . , TN ) is
defined as LUB(T1, LUB(T2, . . . , TN )).
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2.4.2 Greatest lower bound
The greatest lower bound GLB(A, B) of types A and B is a lower bound L of A
and B such that there is no other lower bound of these types which is greater
by subtyping relation than L.

Note: GLB is commutative, i.e., GLB(A, B) = GLB(B, A). This
property is used in the subsequent description, e.g., other properties of
GLB are defined only for a specific order of the arguments. Definitions
following from commutativity of GLB are implied.

GLB(A, B) has the following properties, which may be used to normalize it.
This normalization procedure, if finite, creates a canonical representation of
GLB.

Important: A and B are considered to be non-flexible, unless specified
otherwise.

• GLB(A, A) = A

• if A <: B, GLB(A, B) = A

• if A is non-nullable, GLB(A, B) = GLB(A!!, B!!)

• if A = T ⟨KA,1, . . . , KA,n⟩ and B = T ⟨KB,1, . . . , KB,n⟩, GLB(A, B) =
T ⟨ϕ(η(KA,1), η(KB,1)), . . . , ϕ(η(KA,n), η(KB,n))⟩, where η(T ) and ϕ(X, Y )
are defined as follows:

η(K : L <: K <: U) = {out U, in L}
Informally: in many cases, one may view η(T ) as follows.

η(inv X) = {out X, in X}
η(out X) = {out X, in kotlin.Nothing}
η(in X) = {out kotlin.Any?, in X}

η(⋆) = {out kotlin.Any?, in kotlin.Nothing}

ϕ({out Xout, in Xin}, {out Yout, in Yin}) =
(η−1 ◦ Ω)({out GLB(Xout, Yout), in LUB(Xin, Yin)})

Ω({out A, in B}) ={
{out A, in B} if A :> B

{out A, in kotlin.Nothing} if A <: B ∧ A ̸≡ B

Note: the Ω function preserves type system consistency; ∀A, B :
A <: B ∧ A ̸≡ B, type T ⟨{out A, in B}⟩ is the evidence of type
T ⟨X⟩ : X <: A <: B <: X, which makes the type system incon-
sistent. To avoid this situation, we overapproximate in B with
in kotlin.Nothing when needed. Further details are available in
the “Mixed-site variance” paper.



76 CHAPTER 2. TYPE SYSTEM

• if A = (LA..UA) and B = (LB ..UB), GLB(A, B) = (GLB(LA, LB).. GLB(UA, UB))
• if A = (LA..UA) and B is not flexible, GLB(A, B) = (GLB(LA, B).. GLB(UA, B))

Important: in some cases, the greatest lower bound is handled as
described here, from the point of view of type constraint system.

In the presence of recursively defined parameterized types, the algorithm given
above is not guaranteed to terminate as there may not exist a finite representation
of GLB for particular two types. The detection and handling of such situations
(compile-time error or leaving the type in some kind of denormalized state) is
implementation-defined.

In some situations, it is needed to construct the greatest lower bound for
more than two types, in which case the greatest lower bound operator
GLB(T1, T2, . . . , TN ) is defined as GLB(T1, GLB(T2, . . . , TN )).

2.5 Type approximation
As we mentioned before, Kotlin type system has denotable and non-denotable
types. In many cases, we need to approximate a non-denotable type, which
appeared, for example, during type inference, into a denotable type, so that it
can be used in the program. This is achieved via type approximation, which we
describe below.

Important: at the moment, type approximation is applied only to
intersection and union types.

Type approximation function α is defined as follows.

• α(A⟨τA⟩ & B⟨τB⟩) = (α↓ ◦ GLB)(S⟨τA→S⟩, S⟨τB→S⟩), where type S is
the least single common supertype of A and B, substitution τP →Q is the
result of chain applying substitutions from type P to type Q :> P , α↓ is a
function which applies type approximation function to the type arguments
if needed;

• α(A⟨τA⟩ | B⟨τB⟩) = α(δ(A⟨τA⟩ | B⟨τB⟩)), where δ is the type decaying
function.

Note: when we talk about the least single common supertype of A
and B, we mean exactly that: if they have several unrelated common
supertypes (e.g., several common superinterfaces), we continue going
up the supertypes, until we find a single common supertype or reach
kotlin.Any?.

2.6 Type decaying
All union types are subject to type decaying, when they are converted to a specific
intersection type, representable within Kotlin type system.
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Important: at the moment, type decaying is applied only to union
types. Note: type decaying is comparable to how least upper bound
computation works in Java.

Type decaying function δ is defined as follows.

• δ(A⟨τA⟩ | B⟨τB⟩) = &S∈S(A,B)(δ↓ ◦ LUB)(S⟨τA→S⟩, S⟨τB→S⟩), where sub-
stitution τP →Q is the result of chain applying substitutions from type P
to type Q :> P , δ↓ is a function which applies type decaying function to
the type arguments if needed, S(A, B) is a set of most specific common
supertypes of A and B.

Note: a set of most specific common supertypes S(A, B) is a reduction
of a set of all common supertypes U(A, B), which excludes all types
T ∈ U such that ∃V ∈ U : V ̸= T ∧ V <: T .
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1. Ross Tate. “Mixed-site variance.” FOOL, 2013.
2. Ross Tate, Alan Leung, and Sorin Lerner. “Taming wildcards in Java’s

type system.” PLDI, 2011.



78 CHAPTER 2. TYPE SYSTEM



Chapter 3

Built-in types and their
semantics

Kotlin has several built-in classifier types, which are important for the rest of
this document. Some information about these types is given in the type system
section, here we extend it with additional non-type-system-relevant details.

Note: these types may have regular declarations in the standard
library, but they also introduce semantics not representable via Kotlin
source code.

In this section we describe these types and their semantics.

Note: this section is not meant to be a detailed description of all
types available in the standard library, for that please refer to the
standard library documentation.

3.1 kotlin.Any

Besides being the unified supertype of all non-nullable types, kotlin.Any must
also provide the following methods.

• public open operator fun equals(other: Any?): Boolean

Returns true iff a value is equal to some other value. Implementations
of equals must satisfy the properties of reflexivity (x.equals(x) is al-
ways true), symmetry (x.equals(y) == y.equals(x)), transitivity (if
x.equals(y) is true and y.equals(z) is true, x.equals(z) is also true)
and consistency (x.equals(y) should not change its result between multi-
ple invocations). A non-null value also must never be considered equal to
null, i.e., x.equals(null) must be false.

79
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• public open fun hashCode(): Int

Returns the hash code for a value. Implementations of hashCode must
satisfy the following property: if two values are equals w.r.t. equals,
hashCode must consistently produce the same result.

• public open fun toString(): String

Returns a string representation of a value.

3.2 kotlin.Nothing

kotlin.Nothing is an uninhabited type, which means the evaluation of an
expression with kotlin.Nothing type can never complete normally. Therefore,
it is used to mark special situations, such as

• non-terminating expressions
• exceptional control flow
• control flow transfer

Further details about how kotlin.Nothing should be handled are available here
and here.

3.3 kotlin.Unit

kotlin.Unit is a unit type, i.e., a type with only one value kotlin.Unit; all
values of type kotlin.Unit should reference the same underlying kotlin.Unit
object. It is somewhat similar in purpose to void return type in other program-
ming languages in that it signifies an absence of a value (i.e. the returned type
for a function returning nothing), but is different in that there is, in fact, a single
value of this type.

3.4 kotlin.Boolean

kotlin.Boolean is the boolean logic type of Kotlin, representing a value which
may be either true or false. It is the type of boolean literals as well as the
type returned or expected by some built-in Kotlin operators.

3.5 Built-in integer types
Kotlin has several built-in classifier types, which represent signed integer numbers
of different bit size. These types are important w.r.t. type system and integer
literals. Every built-in integer type I is a subtype of kotlin.Comparable<I>.

The signed integer types are the following.
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• kotlin.Int
• kotlin.Short
• kotlin.Byte
• kotlin.Long

Note: Kotlin does not have a built-in arbitrary-precision integer type.

Note: Kotlin does not have any built-in unsigned integer types.

These types may or may not have different runtime representations, depending
on the used platform and/or implementation. Consult the specific platform
reference for further details.

kotlin.Int is the type of integer numbers that is required to be able to hold
the values at least in the range from −231 to 231 − 1. If an arithmetic operation
on kotlin.Int results in arithmetic overflow, the result is unspecified.

kotlin.Short is the type of integer numbers that is required to be able to hold
the values at least in the range from −215 to 215 − 1. If an arithmetic operation
on kotlin.Short results in arithmetic overflow, the result is unspecified.

kotlin.Byte is the type of integer numbers that is required to be able to hold
the values at least in the range from −27 to 27 − 1. If an arithmetic operation
on kotlin.Byte results in arithmetic overflow, the result is unspecified.

kotlin.Long is the type of integer numbers that is required to be able to hold
the values at least in the range from −263 to 263 − 1. If an arithmetic operation
on kotlin.Long results in arithmetic overflow, the result is unspecified.

Note: by “arithmetic overflow” we assume both positive and negative
integer overflows.

Important: a platform implementation may specify behaviour for an
arithmetic overflow.

3.5.1 Integer type widening
In overload resolution, we actually have a priority between built-in integer types
which is very similar to a subtyping relation between these types; however, this
priority is important only w.r.t. overload resolution and does not entail any
actual subtyping between built-in integer types.

In order to introduce this priority we describe a type transformation called
widening of integer types. Widen(T ) for a built-in integer type T is defined as
follows:

• Widen(kotlin.Int) = kotlin.Int & kotlin.Short & kotlin.Byte & kotlin.Long
• Widen(kotlin.Short) = kotlin.Short & kotlin.Byte
• Widen(T ) = T for any other T

Informally: Widen means, for the purposes of overload resolution,
kotlin.Int is preferred over any other built-in integer type and
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kotlin.Short is preferred to kotlin.Byte. Using Widen, we can
reduce this priority to subtyping: T is more preferred than U if
Widen(T ) <: Widen(U); this scheme allows to handle built-in inte-
ger types transparently when selecting the most specific overload
candidate.

For example, consider the following two functions:

fun foo(value: Int) = 1
fun foo(value: Short) = 2

...

foo(2)

As the integer literal 2 has a type that is applicable for both versions
of foo (see Overload resolution section for details) and the types
kotlin.Int and kotlin.Short are not related w.r.t. subtyping,
it would not be possible to select a more specific candidate
out of the two. However, if we consider Widen(kotlin.Int)
and Widen(kotlin.Short) respectively as the types of value,
first candidate becomes more specific than the second, because
Widen(kotlin.Int) <: Widen(kotlin.Short).

3.6 Built-in floating point arithmetic types
There are two built-in classifier types which represent floating-point numbers:
kotlin.Float and kotlin.Double. These types may or may not have different
runtime representations, depending on the used platform and/or implementation.
Consult the specific platform reference for further details.

kotlin.Float is the type of floating-point number that is able to contain all the
numbers as a IEEE 754 single-precision binary floating number with the same
precision. kotlin.Float is a subtype of kotlin.Comparable<kotlin.Float>.

kotlin.Double is the type of floating-point number that is able to
contain all the numbers as a IEEE 754 double-precision binary float-
ing number with the same precision. kotlin.Double is a subtype of
kotlin.Comparable<kotlin.Double>.

Platform implementations may give additional information on how these types
are represented on a particular platform.

3.7 kotlin.Char

kotlin.Char is the built-in classifier type which represents a single Unicode
symbol in UCS-2 character encoding. It is the type of character literals.

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://standards.iso.org/ittf/PubliclyAvailableStandards/c069119_ISO_IEC_10646_2017.zip
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Important: a platform implementation may extend the supported
character encodings, e.g., to UTF-16.

3.8 kotlin.String

kotlin.String is the built-in classifier type which represents a sequence of
Unicode symbol in UCS-2 character encoding. It is the type of the result of
string interpolation.

Important: a platform implementation may extend the supported
character encodings, e.g., to UTF-16.

3.9 kotlin.Enum

kotlin.Enum<T> is the built-in parameterized classifier type which is used as
a superclass for all enum classes: every enum class E is implicitly a subtype of
kotlin.Enum<E>.

kotlin.Enum<T> has the following characteristics.

• kotlin.Enum<T> is a subtype of kotlin.Comparable<T>

kotlin.Enum<T> provides the following properties.

• public final val name: String

Contains the name of this enumeration constant, exactly as declared in its
declaration.

• public final val ordinal: Int

Contains the ordinal of this enumeration constant, i.e., its position in the
declaration, starting from zero.

kotlin.Enum<T> provides the following member functions.

• public override final fun compareTo(other: T): Int

The implementation of kotlin.Comparable. The result of a.compareTo(b)
for enum class instances a and b is equivalent to a.ordinal.compareTo(b.ordinal).

• public override final fun equals(other: Any?): Boolean

• public override final fun hashCode(): Int

These member functions are defined to their default behaviour: only the
same entry of an enum class is equal to itself and no other object. Hash
implementation is required to be consistent, but unspecified.

Note: the presence of these final member functions ensures the
semantics of equality and comparison for the enumeration objects,
as they cannot be overridden by the user.

https://standards.iso.org/ittf/PubliclyAvailableStandards/c069119_ISO_IEC_10646_2017.zip
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• protected final fun clone(): Any

Throws an unspecified exception.

Note: the clone() implementation throws an exception, as
enumeration objects cannot be copied and on some platforms
clone function serves for copying.

3.10 Built-in array types
kotlin.Array<T> is the built-in parameterized classifier type which is used to
represent an indexed fixed-size collection of elements of type T.

It is final (i.e., cannot be inherited from) and has the following public constructor.

• public inline constructor(size: Int, init: (Int) -> T)

Creates a new array with the specified size, where each element is calculated
by calling the specified init function with the corresponding element’s
index. The function init is called for each array element sequentially
starting from the first one. This constructor is special in two ways: first,
it is inline and inline constructors are not generally allowed in Kotlin.
Second, it is required for the parameter T to be instantiated with a runtime-
available type.

kotlin.Array<T> provides the following methods and properties.

• public operator fun get(index: Int): T

Returns the array element at the specified index. If the [index] is out of
bounds of this array, throws an IndexOutOfBoundsException.

• public operator fun set(index: Int, value: T): Unit

Sets the array element at the specified index to the specified
value. If the [index] is out of bounds of this array, throws an
IndexOutOfBoundsException.

• public val size: Int

Returns the array size.

• public operator fun iterator(): Iterator<T>

Creates an iterator for iterating over the elements of the array.

3.10.1 Specialized array types
In addition to the general kotlin.Array<T> type, Kotlin also has the following
specialized array types:

• kotlin.DoubleArray (for kotlin.Array<kotlin.Double>)
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• kotlin.FloatArray (for kotlin.Array<kotlin.Float>)
• kotlin.LongArray (for kotlin.Array<kotlin.Long>)
• kotlin.IntArray (for kotlin.Array<kotlin.Int>)
• kotlin.ShortArray (for kotlin.Array<kotlin.Short>)
• kotlin.ByteArray (for kotlin.Array<kotlin.Byte>)
• kotlin.CharArray (for kotlin.Array<kotlin.Char>)
• kotlin.BooleanArray (for kotlin.Array<kotlin.Boolean>)

These array types are similar to the corresponding kotlin.Array<T> type; i.e.,
kotlin.IntArray has the same methods and properties as kotlin.Array<Int>,
with the following changes.

• public constructor(size: Int)

Creates a new array with the specified size, where each element is set to
the corresponding built-in type default value.

Note: default values are platform-specific.

• public operator fun iterator(): {TYPE}Iterator

Creates a specialized iterator for iterating over the elements of the array.

3.11 Iterator types
kotlin.Iterator<out T> is the built-in parameterized classifier type which is
used to represent a sequence of elements of type T, allowing for sequential access
to these elements.

It provides the following methods.

• public operator fun next(): T

Returns the next element in the sequence.

• public operator fun hasNext(): Boolean

Returns true if the sequence has more elements.

3.11.1 Specialized iterator types
Specialized iterator types are iterator types used for specialized array types. They
inherit kotlin.Iterator<out T> for their type (i.e., kotlin.CharIterator
inherits kotlin.Iterator<Char>) and provide the following methods.

• public operator fun next{TYPE}(): {TYPE}

Returns the next element in the sequence as a specific type.

Note: this additional method allows the compiler and/or de-
veloper to avoid unneeded platform-specific boxing/unboxing
conversions.



86 CHAPTER 3. BUILT-IN TYPES AND THEIR SEMANTICS

3.12 kotlin.Throwable

kotlin.Throwable is the built-in classifier type that is the base type of all
exception types. Any value that is used in a throw expression must have a static
type that is a subtype of kotlin.Throwable. Any type that is used in a catch
part of the try expression must be a subtype of (or equal to) kotlin.Throwable.

It provides at least the following properties:

• public val message: String?

An optional message depicting the cause of the throw.

• public val cause: Throwable?

An optional other value of type kotlin.Throwable allowing for nested
throwables to be constructed.

Other members may exist, please refer to the standard library documentation for
details. No subtype of kotlin.Throwable is allowed to have type parameters.
Declaring such a type is a compile-time error.

3.13 kotlin.Comparable

kotlin.Comparable<in T> is a built-in parameterized type which represents
values that may be compared for total ordering. It provides the following member
function:

public operator fun compareTo(other: T): Int

This function is used to implement comparison operators through overloadable
operator convention for standard library classes.

Note: a type is not required to be a subtype of kotlin.Comparable
in order to implement total ordering operations

3.14 kotlin.Function

kotlin.Function<out R> is the base classifier type of all function types. See
the relevant section for details.

3.15 Built-in annotation types
Kotlin has a number of built-in annotation types, which are covered in more
detail here.
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3.16 Reflection support builtin types

3.16.1 kotlin.reflect.KClass

kotlin.reflect.KClass<T: Any> is the class used to represent runtime type
information for runtime-available classifier types. It is also used in platform-
specific reflection facilities.

This is the type of class literals. This type is required to introduce equals and
hashCode member function implementations (see kotlin.Any) that allow for
comparison and hashing of runtime type information, e.g., that class literals are
equal if they represent the same runtime type and not equal otherwise. Platform
definitions, as well as particular implementations, may introduce additional
members for this type.

3.16.2 kotlin.reflect.KCallable

kotlin.reflect.KCallable<out R> is the class used to represent runtime in-
formation for callables (i.e. properties and functions). It is mainly used as base
type for other types described in this section. It provides at least the following
property:

public val name: String

This property contains the name of the callable. Other members or base types
for this class may be provided by platform and/or implementation.

3.16.3 kotlin.reflect.KProperty

kotlin.reflect.KProperty<out R> is the class used to represent runtime in-
formation for properties. It is the base type of property references. This type
is used in property delegation. kotlin.reflect.KProperty<R> is a subtype of
kotlin.reflect.KCallable<R>. Other members or base types for this class
may be provided by platform and/or implementation.

3.16.4 kotlin.reflect.KFunction

kotlin.reflect.KFunction<out R> is the class used to represent run-
time information for functions. It is the base type of function references.
kotlin.reflect.KFunction<R> is a subtype of kotlin.reflect.KCallable<R>
and kotlin.Function<R>. Other members or base types for this class may be
provided by platform and/or implementation.
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Chapter 4

Declarations

Glossary
Entity

Distinguishable part of a program
Identifier

Name of a program entity
Path

Sequence of identifiers which references a program entity in a given scope

Introduction
Declarations in Kotlin are used to introduce entities (values, types, etc.); most
declarations are named, i.e. they also assign an identifier to their own entity,
however, some declarations may be anonymous.

Every declaration is accessible in a particular scope, which is dependent both
on where the declaration is located and on the declaration itself. Every named
declaration introduces a binding for this name in the scope it is declared in. For
most of the declarations, this scope is the declaration scope introduced by the
parent declaration, e.g. the declaration this declaration is syntactically nested
in. See scoping section for details.

4.1 Classifier declaration
classDeclaration:

[modifiers]
('class' | (['fun' {NL}] 'interface'))
{NL}

89
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simpleIdentifier
[{NL} typeParameters]
[{NL} primaryConstructor]
[{NL} ':' {NL} delegationSpecifiers]
[{NL} typeConstraints]
[({NL} classBody) | ({NL} enumClassBody)]

objectDeclaration:
[modifiers]
'object'
{NL}
simpleIdentifier
[{NL} ':' {NL} delegationSpecifiers]
[{NL} classBody]

Classifier declarations introduce new types to the program, of the forms described
here. There are three kinds of classifier declarations:

• class declarations;
• interface declarations;
• object declarations.

Important: object literals are similar to object declarations and are
considered to be anonymous classifier declarations, despite being
expressions.

4.1.1 Class declaration
A simple class declaration consists of the following parts.

• Name c;
• Optional primary constructor declaration ptor ;
• Optional supertype specifiers S1, . . . , Ss;
• Optional body b, which may include the following:

– secondary constructor declarations stor1, . . . , storc;
– instance initialization blocks init1, . . . , initi;
– property declarations prop1, . . . , propp;
– function declarations md1, . . . , mdm;
– companion object declaration companionObj;
– nested classifier declarations nested.

and creates a simple classifier type c : S1, . . . , Ss.

Supertype specifiers are used to create inheritance relation between the declared
type and the specified supertype. You can use classes and interfaces as supertypes,
but not objects or inner classes.

Note: if supertype specifiers are absent, the declared type is consid-
ered to be implicitly derived from kotlin.Any.
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It is allowed to inherit from a single class only, i.e., multiple class inheritance is
not supported. Multiple interface inheritance is allowed.

Instance initialization block describes a block of code which should be executed
during object creation.

Property and function declarations in the class body introduce their respective
entities in this class’ scope, meaning they are available only on an entity of the
corresponding class.

Companion object declaration companion object CO { ... } for class C intro-
duces an object, which is available under this class’ name or under the path
C.CO. Companion object name may be omitted, in which case it is considered to
be equal to Companion.

Nested classifier declarations introduce new classifiers, available under this class’
name. Further details are available here.

A parameterized class declaration, in addition to what constitutes a simple class
declaration, also has a type parameter list T1, . . . , Tm and extends the rules for
a simple class declaration w.r.t. this type parameter list. Further details are
described here.

Examples:

// An open class with no supertypes
//
open class Base

// A class inherited from `Base`
//
// Has a single read-only property `i`
// declared in its primary constructor
//
class B(val i: Int) : Base()

// An open class with no superclasses
//
// Has a single read-only property `i`
// declared in its body
//
// Initial value for the property is calculated
// in the init block
//
open class C(arg: Int) {

val i: Int

init {
i = arg * arg
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}
}

// A class inherited from `C`
// Does not have a primary constructor,
// thus does not need to invoke the supertype constructor
//
// The secondary constructor delegates to the supertype constructor
class D : C {

constructor(s: String) : super(s.toInt())
}

// An open class inherited from `Base`
//
// Has a companion object with a mutable property `name`
class E : Base() {

companion object /* Companion */ {
var name = "I am a companion object of E!"

}
}

Example:

class Pair(val a: Int, val b: Int) : Comparable<Pair> {

fun swap(): Pair = Pair(b, a)

override fun compareTo(other: Pair): Int {
val f = a.compareTo(other.a)
if (f != 0) return f
return b.compareTo(other.b)

}

companion object {
fun duplet(a: Int) = Pair(a, a)

}
}

Constructor declaration

There are two types of class constructors in Kotlin: primary and secondary.

A primary constructor is a concise way of describing class properties together
with constructor parameters, and has the following form

ptor : (p1, . . . , pn)
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where each of pi may be one of the following:

• regular constructor parameter name : type;
• read-only property constructor parameter val name : type;
• mutable property constructor parameter var name : type.

Property constructor parameters, together with being regular constructor pa-
rameters, also declare class properties of the same name and type.

Important: if a property constructor parameter with type T is
specified as vararg, its corresponding class property type is the
result of array type specialization of type Array<out T>.

One can consider primary constructor parameters to have the following syntactic
expansion.

class Foo(i: Int, vararg val d: Double, var s: String) : Super(i, d, s) {}

class Foo(i: Int, vararg d_: Double, s_: String) : Super(i, d_, s_) {
val d = d_
var s = s_

}

When accessing property constructor parameters inside the class body, one
works with their corresponding properties; however, when accessing them in
the supertype specifier list (e.g., as an argument to a superclass constructor
invocation), we see them as actual parameters, which cannot be changed.

If a class declaration has a primary constructor and also includes a class supertype
specifier, that specifier must represent a valid invocation of the supertype
constructor.

A secondary constructor describes an alternative way of creating a class instance
and has only regular constructor parameters.

If a class has a primary constructor, any secondary constructor must dele-
gate to either the primary constructor or to another secondary constructor via
this(...).

If a class does not have a primary constructor, its secondary constructors must
delegate to either the superclass constructor via super(...) (if the superclass
is present in the supertype specifier list) or to another secondary constructor via
this(...). If the only superclass is kotlin.Any, delegation is optional.

In all cases, it is forbidden if two or more secondary constructors form a delegation
loop.

Class constructors (both primary and secondary) may have variable-argument
parameters and default parameter values, just as regular functions. Please refer
to the function declaration reference for details.
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If a class does not have neither primary, nor secondary constructors, it is assumed
to implicitly have a default parameterless primary constructor. This also means
that, if a class declaration includes a class supertype specifier, that specifier must
represent a valid invocation of the supertype constructor.

Examples:

open class Base

class POKO : Base() {}

class NotQuitePOKO : Base {
constructor() : super() {}

}

class Primary(val s: String) : Base() {
constructor(i: Int) : this(i.toString()) {}

constructor(d: Double) : this(d.toInt()) {}

// Error, has primary ctor,
// needs to delegate to primary or secondary ctor
// constructor() : super() {}

}

class Secondary : Base {
constructor(i: Int) : super() {}

constructor(s: String) : this(s.toInt()) {}

// Ok, no primary ctor,
// can delegate to `super(...)`
constructor() : super() {}

}

Constructor declaration scopes

Similar to function declarations, a constructor introduces two scopes: a con-
structor parameter scope and a constructor body scope, see function declaration
section for details. The constructor parameter scope is upward-linked to the
static classifier declaration scope of its classifier. In addition to this, primary
constructor parameter scope is downward-linked to the classifier initialization
scope. There is also no primary constructor body scope as primary constructor
has no body.

Nested and inner classifiers

If a classifier declaration ND is nested in another classifier declaration PD, it
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creates a nested classifier type — a classifier type available under the path
PD . ND. In all other aspects, nested classifiers are equivalent to regular ones.

Inner classes are a special kind of nested classifiers, which introduce types of
objects associated (linked) with other (parent) objects. An inner class declaration
ID nested in another classifier declaration PD may reference an object of type
ID associated with it.

This association happens when instantiating an object of type ID, as its con-
structor may be invoked only when a receiver of type PD is available, and this
receiver becomes associated with the new instantiated object of type ID.

Inner classes cannot be declared in interface declarations, as interfaces cannot
be instantiated.

Inner classes cannot be declared in a statement scope, as such scope does not
have an object to associate the inner class with.

Inner classes cannot be declared in object declarations, as object declarations
also create a single named value of their type, which makes additional association
unnecessary.

Note: for information on how type parameters of parent and nested
/ inner classifiers interoperate, we delegate you to the type system
section of the specification.

Note: unlike object declarations, in object literals only inner classes
are allowed, as types of object literals are anonymous, making their
nested classifiers available only through explicit receiver, effectively
forcing them to be inner.

Examples:

interface Quz {
interface Bar
class Nested
// Error: no parent object to reference,
// as interfaces cannot be instantiated
// inner class Inner

}

class Foo {
interface Bar
class Nested
inner class Inner

}

object Single {
interface Bar
class Nested
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// Error: value of type Single is available as-is,
// no reason to make an inner class
// inner class Inner

}

fun foo() {
// Error: interfaces cannot be local
// interface Bar

class Nested

// Error: inner classes cannot be local
// inner class Inner

}

fun test() {
val fooV = Foo()

Quz.Nested()
Foo.Nested()
fooV.Inner()

Single.Nested()

val anon = object {
// Error: cannot reference <anon>.Bar
// interface Bar
// Error: cannot reference <anon>.Nested
// class Nested
inner class Inner

}

anon.Inner()
}

Inheritance delegation

In a classifier (an object or a class) declaration C, any supertype I inheritance
may be delegated to an arbitrary value v if:

• The supertype I is an interface type;
• v has type T such that T <: I.

The inheritance delegation uses a syntax similar to property delegation using
the by keyword, but is specified in the classifier declaration header and is a very
different concept. If inherited using delegation, each method M of I (whether
they have a default implementation or not) is delegated to the corresponding
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method of v as if it was overridden in C with all the parameter values directly
passed to the corresponding method in v, unless the body of C itself has a
suitable override of M (see the method overriding section).

The particular means on how v is stored inside the classifier object is platform-
defined.

Due to the initialization order of a classifier object, the expression used to
construct v can not access any of the classifier object properties or methods
excluding the parameters of the primary constructor.

Example:

interface I {
fun foo(value: Int): Double
val bar: Long

}
interface J : I {

fun fee(): Int
}

class C(delegatee: I): I by delegatee

is expanded to

interface I {
fun foo(value: Int): Double
val bar: Long

}
interface J : I {

fun fee(): Int
}

class C(delegatee: I): I {
val I$delegate = delegate

override fun foo(value: Int): Double = I$delegate.foo(value)
override val bar: Long

get() = I$delegate.bar
}

Please note that the expression used as delegate is accessed exactly
once when creating the object, e.g. if the delegate expression contains
a mutable property access, this mutable property is accessed once
during object construction and its subsequent changes do not affect
the delegated interface functions. See classifier initialization section
for details on the evaluation order of classifier initialization entities.

For example (assuming interface I from the previous example is
defined):
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var mut = object: J {...}

class D: I by mut // D delegates I to mutable property

is expanded to

var mut = object: J {...}
class D: I {

val I$delegate = mut // mut is accessed only once

override fun foo(value: Int): Double = I$delegate.foo(value)
override val bar: Long

get() = I$delegate.bar
}

mut = x1
val d1 = D() // d1 methods are delegated to x1
mut = x2
val d2 = D() // d2 methods are delegated to x2
// but d1 methods are still delegated to x1

Abstract classes

A class declaration can be marked abstract. Such classes cannot be instantiated
directly; they are used as superclasses for other classes or objects.

Abstract classes may contain one or more abstract members: members without
implementation, which should be implemented in a subtype of this abstract
class.

4.1.2 Data class declaration
A data class dataClass is a special kind of class, which represents a product
type constructed from a number of data properties (dp1, . . . , dpm), described in
its primary constructor. Non-property constructor parameters are not allowed
in the primary constructor of a data class. As such, data classes allow Kotlin
to reduce the boilerplate and generate a number of additional data-relevant
functions.

• equals() / hashCode() / toString() functions compliant with their
contracts:

– equals(that) returns true iff:
∗ that has the same runtime type as this;
∗ this.prop == that.prop returns true for every data property

prop;
– hashCode() returns the same numbers for values A and B if they are

equal w.r.t. the generated equals;
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– toString() returns a string representations which is guaranteed to
include the class name along with all the data properties’ string
representations.

• A copy() function for shallow object copying with the following properties:
– It has the same number of parameters as the primary constructor

with the same names and types;
– It calls the primary constructor with the corresponding parameters

at the corresponding positions;
– It has defaults for all the parameters defaulting to the value of the

corresponding property in this object.
• A number of componentN() functions for destructuring declaration:

– For the data property at position N (starting from 1), the generated
componentN function has the same type as this property and returns
the value of this property;

– It has an operator modifier, allowing it to be used in destructuring
declarations;

– The number of these functions is the same as the number of data
properties.

All these functions consider only data properties {dpi}; e.g., your data class
may include regular property declarations in its body, however, they will not be
considered in the equals() implementation or have a componentN() generated
for them.

There are several rules as to how these generated functions may be explicified or
inherited.

Note: a generated function is explicified, if its implementation (with
matching function signature) is provided explicitly in the body of the
data class. A generated function is inherited, if its implementation
(with matching function signature) is taken from a supertype of the
data class.

The declarations of equals, hashCode and toString may be explicified similarly
to how overriding works in normal classes. If a correct explicit implementation is
available, no function is generated. Other functions (copy, componentN) cannot
be explicified.

The declarations of equals, hashCode and toString may be inherited from the
base class, if it provides a final version with a matching signature. If a correct
inherited implementation is available, no function is generated. Other functions
(copy, componentN) cannot be inherited.

In addition, for every generated function, if any of the base types provide an
open function with a matching signature, it is automatically overridden by the
generated function as if it was generated with an override modifier.

Note: data classes or their supertypes may also have functions which
have a matching name and/or signature with one of the generated
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functions. As expected, these cases result in either override or
overload conflicts the same way they would with a normal class
declaration, or they create two separate functions which follow the
rules of overloading.

Data classes have the following restrictions:

• Data classes are closed and cannot be inherited from;
• Data classes must have a primary constructor with property constructor

parameters only, which become data properties for the data class;
• There must be at least one data property in the primary constructor;
• Data properties cannot be specified as vararg constructor arguments.

For example, the following data class declaration

data class DC(val x: Int, val y: Double)

is equivalent to

class DC(val x: Int, val y: Double) {
override fun equals(other: Any?): Boolean {

if(other !is DC) return false
return x == other.x && y == other.y

}

override fun hashCode(): Int = x.hashCode() + 31 * y.hashCode()

override fun toString(): String = "DC(x=$x,y=$y)"

operator fun component1(): Int = x

operator fun component2(): Double = y

fun copy(x: Int = this.x, y: Double = this.y): DC = DC(x, y)
}

The following data class declaration

data class DC(val x: Int) {
override fun equals(other: Any?) = false
override fun toString(): String = super.toString()

}

may be equivalent to

class DC(val x: Int) {
override fun equals(other: Any?) = false

override fun hashCode(): Int = x.hashCode()

override fun toString(): String = super.toString()
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operator fun component1(): Int = x

fun copy(x: Int = this.x): DC = DC(x)
}

(note how equals and toString implementations are explicified in
the second declaration)

Disclaimer: the implementations of these methods given in this
examples are not guaranteed to exactly match the ones generated
by kotlin compiler, please refer to the descriptions of these methods
above for guarantees

Data object declaration

Note: as of Kotlin 1.9, this feature is experimental.

A data object dataObject is a special kind of object, which extends the data
class abstraction (product type of one or more data properties) to a case of unit
type: product type of zero data properties.

Note: unit type has only one possible value, thus it is also known as
singleton type.

Similarly to data classes, there are a number of functions with predefined
behaviour generated for data objects.

• equals() / hashCode() / toString() functions compliant with their
contracts:

– equals(that) returns true iff that has the same runtime type as
this;

– hashCode() returns the same numbers for values A and B if they are
equal w.r.t. the generated equals;

– toString() returns a string representations which is guaranteed to
include the object name.

Note: copy() and componentN() functions are not generated, as
they are not relevant for a unit type.

• copy() function is not needed as unit type has a single possible
value;

• componentN() functions are not needed as unit type has no
data properties.

Unlike data classes, however, for data objects the only generated function which
can be exemplified or inherited is toString(); equals() and hashCode() for a
data object always work as specified above. This is to ensure data objects do
not violate the unit type invariant of “being inhabited by only one value”, which
would be possible if one were to provide a custom equals() implementation.



102 CHAPTER 4. DECLARATIONS

If either equals() or hashCode() function would be exemplified or inherited by
a data object, it is a compile-time error.

Data objects have the same restrictions are regular objects.

Note: companion objects and object literals cannot be data objects.

4.1.3 Enum class declaration
Enum class E is a special kind of class with the following properties:

• It has a number of predefined values that are declared in the class itself
(enum entries);

• No other values of this class can be constructed;
• It implicitly inherits the built-in class kotlin.Enum<E> (and cannot have

any other base classes);
• It is implicitly final and cannot be inherited from;
• It cannot have type parameters of any kind;
• It has special syntax to accommodate for the properties described above.

Note: for the purposes of overload resolution, enum entries are
considered to be static member callables of the enum class type

Enum class body uses special kind of syntax (see grammar) to declare enum
entries in addition to all other declarations inside the class body. Enum entries
have their own bodies that may contain their own declarations, similar to object
declarations.

Note: an enum class can have zero enum entries. This makes objects
of this class impossible to construct.

Every enum entry of class E implicitly overrides members of kotlin.Enum<E> in
the following way:

• public final val name: String

defined to be the same as the name of the entry as declared in code;

• public final val ordinal: Int

defined to be the ordinal of the entry, e.g. the position of this entry in the
list of entries, starting with 0;

• public override final fun compareTo(other: E): Int

(a member of kotlin.Comparable<E>) defined by default to compare
entries by their ordinals, but may be overridden to have different behaviour
both in the enum class declaration and in entry declarations;

• public override fun toString(): String
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(a member of kotlin.Any) defined by default to return the entry name,
but may be overridden to have different behaviour both in the enum class
declaration and in entry declarations.

In addition to these, every enum class type E has the following static members
declared implicitly:

• public final static val entries: EnumEntries<E>

This property returns an instance of a special immutable EnumEntries<E>
list of all possible enum values in the order they are declared;

• public final static fun valueOf(value: String): E

This function returns an object corresponding to the entry with the name
equal to value parameter of the call or throws an exception otherwise.

Important: static is not a valid Kotlin keyword and is only used
here for clarity. The static members are handled differently by the
overload resolution.

Kotlin standard library also introduces a function to access all enum values for a
specific enum class called kotlin.enumEntries<T>. Please refer to the standard
library documentation for details.

Note: the entries property is available since Kotlin 1.9.

For backwards compatibility, in addition to the entries property, every enum
class type E has the following static member function declared implicitly.

• public final static fun values(): kotlin.Array<E>

This function returns an array of all possible enum values in the order
they are declared. Every invocation of this function returns a new array
to disallow changing its contents.

Important: values function is effectively deprecated and entries
property should be used instead.

Kotlin standard library also introduces another function to access all enum values
for a specific enum class called kotlin.enumValues<T> (which is deprecated for
subsequent removal). Please refer to the standard library documentation for
details.

Example:

enum class State { LIQUID, SOLID, GAS }

...
State.SOLID.name // "SOLID"
State.SOLID.ordinal // 1
State.GAS > State.LIQUID // true
State.SOLID.toString() // "SOLID"
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State.valueOf("SOLID") // State.SOLID
State.valueOf("Foo") // throws exception
State.values() // arrayOf(State.LIQUID, State.SOLID, State.GAS)

...

// enum class can have additional declarations that may be overridden in its values:
enum class Direction(val symbol: Char) {

UP('ˆ') {
override val opposite: Direction

get() = DOWN
},
DOWN('v') {

override val opposite: Direction
get() = UP

},
LEFT('<') {

override val opposite: Direction
get() = RIGHT

},
RIGHT('>') {

override val opposite: Direction
get() = LEFT

};
abstract val opposite: Direction

}

4.1.4 Annotation class declaration
Annotations class is a special kind of class that is used to declare annotations.
Annotation classes have the following properties:

• They cannot have any secondary constructors;
• All the primary constructor parameters must use the property syntax;
• They implicitly implement kotlin.Annotation interface (and cannot im-

plement additional interfaces);
• They cannot have any specified base classes;
• They are implicitly closed and cannot be inherited from;
• They may not have any member functions, properties not declared in the

primary constructor or any overriding declarations;
• They cannot have companion objects;
• They cannot have nested classes;
• The types of primary constructor parameters are limited to:

– kotlin.String;
– kotlin.KClass;
– Built-in number types;



4.1. CLASSIFIER DECLARATION 105

– Other annotation types;
– Arrays of any other allowed type.

Important: when we say “other annotation types”, we mean an
annotation type cannot reference itself, either directly or indirectly.
For example, if annotation type A references annotation type B which
references an array of A, it is prohibited and reported as a compile-
time error.

Note: annotation classes can have type parameters, but cannot use
them as types for their primary constructor parameters. Their main
use is for various annotation processing tools, which can access the
type arguments from the source code.

The main use of annotation classes is when specifying code annotations for other
entities. Additionally, annotation classes can be instantiated directly, for cases
when you require working with an annotation instance directly. For example,
this is needed for interoperability with some Java annotation APIs, as in Java
you can implement an annotation interface and then instantiate it.

Note: before Kotlin 1.6, annotation classes could not be instantiated
directly.

Examples:

// a couple annotation classes
annotation class Super(val x: Int, val f: Float = 3.14f)
annotation class Duper(val supers: Array<Super>)

// the same classes used as annotations
@Duper(arrayOf(Super(2, 3.1f), Super(3)))
class SuperClass {

@Super(4)
val x = 3

}

// annotation class without parameters
annotation class Transmogrifiable

@Transmogrifiable
fun f(): Int = TODO()

// variable argument properties are supported
annotation class WithTypes(vararg val classes: KClass<out Annotation>)

@WithTypes(Super::class, Transmogrifiable::class)
val x = 4



106 CHAPTER 4. DECLARATIONS

4.1.5 Value class declaration
A class may be declared a value class by using inline or value modifier in its
declaration. Value classes must adhere to the following limitations:

• Value classes are closed and cannot be inherited from;
• Value classes cannot be inner, data or enum classes;
• Value classes must have a primary constructor with a single property

constructor parameter, which is the data property of the class;
• This property cannot be specified as vararg constructor argument;
• This property must be declared public;
• They must not override equals and hashCode member functions of

kotlin.Any;
• They must not have any base classes besides kotlin.Any;
• No other properties of this class may have backing fields.

Note: inline modifier for value classes is supported as a legacy
feature for compatibility with Kotlin 1.4 experimental inline classes
and will be deprecated in the future.

Note: before Kotlin 1.8, value classes supported only properties of [a
runtime-available types].

Value classes implicitly override equals and hashCode member functions of
kotlin.Any by delegating them to their only data property. Unless toString
is overridden by the value class definition, it is also implicitly overridden by
delegating to the data property. In addition to these, an value class is allowed
by the implementation to be inlined where applicable, so that its data property
is operated on instead. This also means that the property may be boxed back
to the value class by using its primary constructor at any time if the compiler
decides it is the right thing to do.

Note: when inlining a data property of a non-runtime-available type
U (i.e., a non-reified type parameter), the property is considered to
be of type, which is the runtime-available upper bound of U .

Due to these restrictions, it is highly discouraged to use value classes with the
reference equality operators.

Note: in the future versions of Kotlin, value classes may be allowed
to have more than one data property.

4.1.6 Interface declaration
Interfaces differ from classes in that they cannot be directly instantiated in the
program, they are meant as a way of describing a contract which should be
satisfied by the interface’s subtypes. In other aspects they are similar to classes,
therefore we shall specify their declarations by specifying their differences from
class declarations.
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• An interface can be declared only in a declaration scope;
– Additionally, an interface cannot be declared in an object literal;

• An interface cannot have a class as its supertype;
– This also means it is not considered to have kotlin.Any as its super-

type for the purposes of inheriting and overriding callables;
– However, it is still considered to be a subtype of kotlin.Any w.r.t.

subtyping;
• An interface cannot have a constructor;
• Interface properties cannot have initializers or backing fields;
• Interface properties cannot be delegated;
• An interface cannot have inner classes;
• An interface and all its members are implicitly open;
• All interface member properties and functions are implicitly public;

– Trying to declare a non-public member property or function in an
interface is an compile-time error;

• Interface member properties and functions without implementation are
implicitly abstract.

Functional interface declaration

A functional interface is an interface with a single abstract function and no
other abstract properties or functions.

A function interface declaration is marked as fun interface. It has the following
additional restrictions compared to regular interface declarations.

• A functional interface can have only one abstract member function, which
must be non-parameterized;

• A functional interface cannot have any abstract member properties;

A functional interface has an associated function type, which is the same as the
function type of its single abstract member function.

Important: the associated function type of a functional interface is
different from the type of said functional interface.

If one needs an object of a functional interface type, they can use the regular
ways of implementing an interface, either via an anonymous object declaration
or as a complete class. However, as functional interface essentially represents
a single function, Kotlin supports the following additional ways of providing
a functional interface implementation from function values (expressions with
function type).

• If an expression L is used as an argument of functional type T in a function
call, and the type of L is a subtype of the associated function type of T,
this argument is considered as an instance of T with expression L used as
its abstract member function implementation.

Example:
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fun interface FI {
fun bar(s: Int): Int

}

fun doIt(fi: FI) {}

fun foo() {
doIt { it }
doIt { s: Int -> s + 42 }
doIt { s: Number -> s.toInt() }

doIt(fun(s): Int { return s; })

val l = { s: Number -> s.toInt() }

doIt(l)
}

• When encountered in a function call as the function being called, a functional
interface name T is considered to be representing a function of type (T)
-> T, which allows conversion-like function calls as in the examples below.

Example:

fun interface FI {
fun bar(s: Int): Int

}

fun foo() {
val fi = FI { it }
val fi2 = FI { s: Int -> s + 42 }
val fi3 = FI { s: Number -> s.toInt() }
val fi4 = FI({ it })

val lambda = { s: Int -> s + 42 }
val fi5 = FI(lambda)

}

Informally: this feature is known as “Single Abstract Method” (SAM)
conversion.

Note: in Kotlin version 1.3 and earlier, SAM conversion was not
available for Kotlin functional interfaces.

Note: SAM conversion is also available on Kotlin/JVM for Java
functional interfaces.
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4.1.7 Object declaration
Object declarations are similar to class declaration in that they introduce a new
classifier type, but, unlike class or interface declarations, they also introduce a
value of this type in the same declaration. No other values of this type may be
declared, making object a single existing value of its type.

Note: This is similar to singleton pattern common to object-oriented
programming in introducing a type which includes a single global
value.

Similarly to interfaces, we shall specify object declarations by highlighting their
differences from class declarations.

• An object can only be declared in a declaration scope;
– Additionally, an object cannot be declared in an object literal;

• An object type cannot be used as a supertype for other types;
• An object cannot have an explicit primary or secondary constructor;
• An object cannot have a companion object;
• An object cannot have inner classes;
• An object cannot be parameterized, i.e., cannot have type parameters.

Note: an object is assumed to implicitly have a default parameterless
primary constructor.

Note: this section is about declaration of named objects. Kotlin also
has a concept of anonymous objects, or object literals, which are
similar to their named counterparts, but are expressions rather than
declarations and, as such, are described in the corresponding section.

Note: besides regular object declarations, Kotlin supports data object
declarations.

4.1.8 Local class declaration
A class (but not an interface or an object) may be declared locally inside a
statement scope (namely, inside a function). Such declarations are similar to
object literals in that they may capture values available in the scope they are
declared in:

fun foo() {
val x = 2
class Local {

val y = x
}
Local().y // 2

}

Enum classes and annotation classes cannot be declared locally.
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4.1.9 Classifier initialization
When creating a class or object instance via one of its constructors ctor, it is
initialized in a particular order, which we describe here.

A primary pctor or secondary constructor ctor has a corresponding superclass
constructor sctor defined as follows.

• For primary constructor pctor, a corresponding superclass constructor
sctor is the one from the supertype specifier list;

• For secondary constructor ctor, a corresponding supertype constructor
sctor is the one ending the constructor delegation chain of ctor;

• If an explicit superclass constructor is not available, Any() is implicitly
used.

When a classifier type is initialized using a particular secondary constructor
ctor delegated to primary constructor pctor which, in turn, is delegated to
the corresponding superclass constructor sctor, the following happens, in this
initialization order :

• The superclass object is initialized as if created by invoking sctor with the
specified parameters;

• Interface delegation expressions are invoked and the result of each is stored
in the object to allow for interface delegation, in the order of appearance
of delegation declarations in the supertype specifier list;

• pctor is invoked using the specified parameters, initializing all the properties
declared by its property parameters in the order of appearance in the
constructor declaration;

• Each property initialization code as well as the initialization blocks in the
class body are invoked in the order of appearance in the class body;

• ctor body is invoked using the specified parameters.

Note: this means that if an init-block appears between two property
declarations in the class body, its body is invoked between the
initialization code of these two properties.

The initialization order stays the same if any of the entities involved are omitted,
in which case the corresponding step is also omitted (e.g., if the object is created
using the primary constructor, the body of the secondary one is not invoked).

If any step in the initialization order creates a loop, it results in unspecified
behaviour.

If any of the properties are accessed before they are initialized w.r.t initialization
order (e.g., if a method called in an initialization block accesses a property
declared after the initialization block), the value of the property is unspecified.
It stays unspecified even after the “proper” initialization is performed.

Note: this can also happen if a property is captured in a lambda
expression used in some way during subsequent initialization steps.
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Examples:

open class Base(val v: Any?) {
init {

println("2: $this")
}

}

interface I

class Init(val a: Number) : Base(0xC0FFEE) /* (2) */ ,
I by object : I {

init { println("2.5") }
} /* (2.5) */ {

init {
println("3: $this") /* (3) */

}

constructor(v: Int) : this(v as Number) {
println("10: $this") /* (10) */

}

val b: String = a.toString() /* (4) */

init {
println("5: $this") /* (5) */

}

var c: Any? = "b is $b" /* (6) */

init {
println("7: $this") /* (7) */

}

val d: Double = 42.0 /* (8) */

init {
println("9: $this") /* (9) */

}

override fun toString(): String {
return "Init(a=$a, b='$b', c=$c, d=$d)"

}
}
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fun main() {
Init(5)
// 2: Init(a=null, b='null', c=null, d=0.0)
// 3: Init(a=5, b='null', c=null, d=0.0)
// 5: Init(a=5, b='5', c=null, d=0.0)
// 7: Init(a=5, b='5', c=b is 5, d=0.0)
// 9: Init(a=5, b='5', c=b is 5, d=42.0)
// 10: Init(a=5, b='5', c=b is 5, d=42.0)

// Here we can see how the undefined values for
// uninitialized properties may leak outside

}

4.1.10 Classifier declaration scopes
Every classifier declaration introduces two declarations scope syntactically bound
by the classifier body, if any: the static classifier body scope and the actual
classifier body scope Every function, property or inner classifier declaration
contained within the classifier body are declared in the actual classifier body
scope of this classifier. All non-primary constructors of the classifier, as well as
any non-inner nested classifier, including the companion object declaration (if
it exists) and enum entries (if this is an enum class), are declared in the static
classifier body scope. Static classifier body scope is upwards-linked to the actual
classifier body scope. For an object declaration, static classifier body scope and
the actual classifier body scoped are one and the same.

In addition to this, objects and classes introduce a special object initialization
scope, which is not syntactically delimited. The scopes of each initialization
expression of every property in the class body, as well as the scopes of each
initialization block, is upward-linked to the object initialization scope, which
itself is upward-linked to the actual classifier body scope.

If a classifier declares a primary constructor, the parameters of this constructor
are bound in the special primary constructor parameter scope, which is downward-
linked to the initialization scope and upward-linked to the scope the classifier
is declared in. The interface delegation expressions (if any) are resolved in the
primary constructor parameter scope if it exists and in the scope the classifier is
declared in otherwise.

4.2 Function declaration
functionDeclaration:

[modifiers]
'fun'
[{NL} typeParameters]
[{NL} receiverType {NL} '.']
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{NL}
simpleIdentifier
{NL}
functionValueParameters
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

functionBody:
block
| ('=' {NL} expression)

Function declarations assign names to functions — blocks of code which may be
called by passing them a number of arguments. Functions have special function
types which are covered in more detail here.

A simple function declaration consists of four main parts:

• Name f ;
• Parameter list (p1 : P1[= v1], . . . , pn : Pn[= vn]);
• Return type R;
• Body b.

and has a function type f : (p1 : P1, . . . , pn : Pn) → R.

Parameter list (p1 : P1[= v1], . . . , pn : Pn[= vn]) describes function parameters,
i.e. inputs needed to execute the declared function. Each parameter pi : Pi = vi

introduces pi as a name of value with type Pi available inside function body b;
therefore, parameters are final and cannot be changed inside the function. A
function may have zero or more parameters.

A parameter may include a default value vi, which is used if the corresponding
argument is not specified in function invocation; vi must be an expression which
evaluates to type V <: Pi.

Return type R, if omitted, is calculated as follows.

• If function body b is present in the expression form and it may be inferred
to have a valid type B : B ̸≡ kotlin.Nothing, R ≡ B.

• If function body b is present in the block form, R ≡ kotlin.Unit.

In other cases return type R cannot be omitted and must be specified explicitly.

As type kotlin.Nothing has a special meaning in Kotlin type system,
it must be specified explicitly, to avoid spurious kotlin.Nothing
function return types.

Function body b is optional; if it is omitted, a function declaration creates an
abstract function, which does not have an implementation. This is allowed only
inside an abstract class or an interface. If a function body b is present, it should
evaluate to type B which should satisfy B <: R.
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A parameterized function declaration consists of five main parts.

• Name f ;
• Type parameter list T1, . . . , Tm;
• Parameter list (p1 : P1 = v1, . . . , pn : Pn = vn);
• Return type R;
• Body b.

and extends the rules for a simple function declaration w.r.t. type parameter
list. Further details are described here.

4.2.1 Function signature
In some cases we need to establish whether one function declaration matches
another, e.g., for checking overridability. To do that, we compare function
signatures, which consist of the following.

• Name f ;
• Type parameter list T1, . . . , Tm (if present);
• Parameter list P1, . . . , Pn.

Two function signatures A and B are considered matching, if the following is
true.

• Name of A is the same as the name of B;
• Formal parameter types of A are pairwise equal to the formal parameter

types of B w.r.t. possible type parameter substitutions;
• If the number of type parameters is the same, type parameters of A must

be pairwise equivalent to the type parameters of B.

Important: a platform implementation may change which function
signatures are considered matching, depending on the platform’s
specifics.

4.2.2 Named, positional and default parameters
Kotlin supports named parameters out-of-the-box, meaning one can bind an
argument to a parameter in function invocation not by its position, but by its
name, which is equal to the argument name.

fun bar(a: Int, b: Double, s: String): Double = a + b + s.toDouble()

fun main(args: Array<String>) {
println(bar(b = 42.0, a = 5, s = "13"))

}

Note: it is prohibited to bind the same named parameter to an
argument several times, such invocations should result in a compile-
time error.
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All the names of named parameters are resolved at compile-time, meaning
that performing a call with a parameter name not used at declaration-site is a
compile-time error.

If one wants to mix named and positional arguments, the argument list must
conform to the following form: PoN1, . . . , PoNM , N1, . . . , NQ, where PoNi is
an i-th argument in either positional or named form, Nj is a named argument
irregardless of its position.

Note: in Kotlin version 1.3 and earlier, PoNi were restricted to
positional arguments only.

If one needs to provide a named argument to a variable length parameter, it can
be achieved via either regular named argument arg = arr or a spread operator
expression form arg = *arr. In both cases type of arr must be a subtype of
ATS(kotlin.Array(out T )) for a variable length parameter of type T .

Note: in Kotlin version 1.3 and earlier, only the spread operator
expression form for named variable length arguments was supported.

Kotlin also supports default parameters — parameters which have a default
value used in function invocation, if the corresponding argument is missing.
Note that default parameters cannot be used to provide a value for positional
argument in the middle of the positional argument list; allowing this would
create an ambiguity of which argument for position i is the correct one: explicit
one provided by the developer or implicit one from the default value.

fun bar(a: Int = 1, b: Double = 42.0, s: String = "Hello"): Double =
a + b + s.toDouble()

fun main(args: Array<String>) {
// Valid call, all default parameters used
println(bar())
// Valid call, defaults for `b` and `s` used
println(bar(2))
// Valid call, default for `b` used
println(bar(2, s = "Me"))

// Invalid call, default for `b` cannot be used
println(bar(2, "Me"))

}

In summary, argument list should have the following form:

• Zero or more arguments in either positional or named form;
• Zero or more named arguments.

Missing arguments are bound to their default values, if they exist.

The evaluation order of argument list is described in Function calls and property
access section of this specification.
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4.2.3 Variable length parameters
One of the parameters may be designated as being variable length (aka vararg).
A parameter list (p1, . . . , vararg pi : Pi = vi, . . . , pn) means a function may be
called with any number of arguments in the i-th position. These arguments are
represented inside function body b as a value pi of type, which is the result of
array type specialization of type kotlin.Array(out Pi).

Important: we also consider variable length parameters to have
such types for the purposes of type inference and calls with named
parameters.

If a variable length parameter is not last in the parameter list, all subsequent
arguments in the function invocation should be specified as named arguments.

If a variable length parameter has a default value, it should be an expression
which evaluates to a value of type, which is the result of array type specialization
of type kotlin.Array(out Pi).

A value of type Q <: ATS(kotlin.Array(out Pi)) may be unpacked to a variable
length parameter in function invocation using spread operator; in this case array
elements are considered to be separate arguments in the variable length parameter
position.

Note: this means that, for variable length parameters corresponding
to specialized array types, unpacking is possible only for these special-
ized versions; for a variable length parameter of type Int, for example,
unpacking is valid only for IntArray, and not for Array<Int>.

A function invocation may include several spread operator expressions cor-
responding to the vararg parameter. These may also be freely mixed with
non-spread-expression arguments.

Examples

fun foo(vararg i: Int) { ... }
fun intArrayOf(vararg i: Int): IntArray = i
...
// i is [1, 2, 3]
foo(1, 2, 3)
// i is [1, 2, 3]
foo(*intArrayOf(1, 2, 3))
// i is [1, 2, 3, 4, 5]
foo(1, 2, *intArrayOf(3, 4), 5)
// i is [1, 2, 3, 4, 5, 6]
foo(*intArrayOf(1, 2, 3), 4, *intArrayOf(5, 6))

4.2.4 Extension function declaration
An extension function declaration is similar to a standard function declaration,
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but introduces an additional special function parameter, the receiver parameter.
This parameter is designated by specifying the receiver type (the type before
. in function name), which becomes the type of this receiver parameter. This
parameter is not named and must always be supplied (either explicitly or
implicitly), e.g. it cannot be a variable-argument parameter, have a default value,
etc.

Calling such a function is special because the receiver parameter is not supplied
as an argument of the call, but as the receiver of the call, be it implicit or explicit.
This parameter is available inside the scope of the function as the implicit receiver
or this-expression, while nested scopes may introduce additional receivers that
take precedence over this one. See the receiver section for details. This receiver
is also available (as usual) in nested scope using labeled this syntax using the
name of the declared function as the label.

For more information on how a particular receiver for each call is chosen, please
refer to the overloading section.

Note: when declaring extension functions inside classifier declarations,
this receiver takes precedence over the classifier object, which is
usually the current receiver inside nested functions

For all other purposes, extension functions are not different from non-extension
functions.

Examples:

fun Int.foo() { println(this + 1) } // this has type Int

fun main(args: Array<String>) {
2.foo() // prints "3"

}

class Bar {
fun foo() { println(this) } // this has type Bar
fun Int.foo() { println(this) } // this has type Int

}

4.2.5 Inlining
A function may be declared inline using a special inline modifier. This allows
the compiler to inline the function at call-site, replacing the call with the body
of the function with arguments mapped to corresponding parameters. It is
unspecified whether inlining will actually be performed, however.

Declaring a function inline has two additional effects:

• It allows type parameters of the function to be declared reified, making
them runtime-available and allowing usage of specific expressions involving
these parameters, such as type checks and class literals. Calling such a
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function is only allowed in a context where a particular type argument
provided for this type parameter is also a runtime-available type.

• Any parameter of this function of a function type is treated as inlined
parameter unless it has one of two special modifiers: crossinline or
noinline. If a particular argument corresponding to inline parameter is a
lambda literal, this lambda literal is considered inlined and, in particular,
affects the way the return expressions are handled in its body. See the
corresponding section for details.

Inlined parameters are not allowed to escape the scope of the function body,
meaning that they cannot be stored in variables, returned from the function or
captured by other values. They may only be called inside the function body or
passed to other functions as inline arguments.

Crossinline parameters may not be stored or returned from the function, but may
be captured (for example, by object literals or other noinline lambda literals).

Noinline parameters may be treated as any other values. They may also be
passed to other functions as noinline or crossinline arguments.

Particular platforms may introduce additional restrictions or guarantees for the
inlining mechanism.

Important: for extension functions, the extension receiver is consid-
ered to be effectively noinline.

Examples:

fun bar(value: Any?) {}

inline fun inlineParameter(arg: () -> Unit) { arg() }
inline fun noinlineParameter(noinline arg: () -> Unit) { arg() }
inline fun crossinlineParameter(crossinline arg: () -> Unit) { arg() }

inline fun foo(inl: () -> Unit,
crossinline cinl: () -> Unit,
noinline noinl: () -> Unit) {

// all arguments may be called
inl()
cinl()
noinl()
// all arguments may be passed as inline
inlineParameter(inl)
inlineParameter(cinl)
inlineParameter(noinl)
// only noinline arguments may be passed as noinline
noinlineParameter(inl) // not allowed
noinlineParameter(cinl) // not allowed
noinlineParameter(noinl)
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// noinline/crossinline arguments may be passed as crossinline
crossinlineParameter(inl) // not allowed
crossinlineParameter(cinl)
crossinlineParameter(noinl)
// only noinline arguments may be passed to non-inline functions
bar(inl) // not allowed
bar(cinl) // not allowed
bar(noinl)
// noinline/crossinline parameters may be captured in lambda literals
bar({ inl() }) // not allowed
bar({ cinl() })
bar({ noinl() })

}

4.2.6 Infix functions
A function may be declared as an infix function by using a special infix modifier.
An infix function can be called in an infix form, i.e., a foo b instead of a.foo(b).

To be a valid infix function, function F must satisfy the following requirements.

• F has a dispatch or an extension receiver
• F has exactly one parameter

4.2.7 Local function declaration
A function may be declared locally inside a statement scope (namely, inside
another function). Such declarations are similar to function literals in that they
may capture values available in the scope they are declared in. Otherwise they
are similar to regular function declarations.

fun foo() {
var x = 2

fun bar(): Int {
return x

}

println(bar()) // 2

x = 42
println(bar()) // 42

}

4.2.8 Tail recursion optimization
A function may be declared tail-recursive by using a special tailrec modifier.
A tail-recursive function that contains a recursive call to itself may be optimized
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to a non-recursive form by a particular platform in order to avoid problems of
recursion such as a possibility of stack overflows possible on some platforms.

In order to be applicable for such an optimization, the function must adhere
to tail recursive form: for all paths containing recursive calls the result of the
recursive call must also be the result of the function. If a function declaration
is marked with the tailrec modifier, but is not actually applicable for the
optimization, it must produce a compile-time warning.

Examples:

// this is not a tail-recursive function
// so tailrec modifier will produce a warning
tailrec fun factorial(i: Int): Int {

if (i == 0) return 1
return i * factorial(i - 1)

}
// this is a tail-recursive function
tailrec fun factorialTC(i: Int, result: Int = 1): Int {

if (i == 0) return result
return factorialTC(i - 1, i * result)

}

factorialTC declaration given above should be compiled to loop
form similar to the following declaration

fun factorialLoop(i: Int, result: Int = 1): Int {
var $i: Int = i
var $result: Int = result
while(true) {

if ($i == 0) return $result
else {

$i = $i - 1
$result = $i * $result

}
}

}

4.2.9 Function declaration scopes
Every function declaration body introduces a function body scope, which is a
statement scope containing everything declared inside the function body and is
delimited by the function body itself.

In addition to this scope, function parameters exist in a special function parameter
scope, which is upward-linked to the scope the function is declared in and
downward-linked to the function body scope.



4.3. PROPERTY DECLARATION 121

4.3 Property declaration
propertyDeclaration:

[modifiers]
('val' | 'var')
[{NL} typeParameters]
[{NL} receiverType {NL} '.']
({NL} (multiVariableDeclaration | variableDeclaration))
[{NL} typeConstraints]
[{NL} (('=' {NL} expression) | propertyDelegate)]
[{NL} ';']
{NL}
(([getter] [{NL} [semi] setter]) | ([setter] [{NL} [semi] getter]))

Kotlin uses properties to represent object-like entities, such as local variables,
class fields or top-level values.

Property declarations may create read-only (val) or mutable (var) entities in
their respective scope.

Properties may also have custom getter or setter — special functions which are
used to read or write the property value. Getters and setters cannot be called
directly, but rather define how the corresponding properties are evaluated when
accessed.

4.3.1 Read-only property declaration
A read-only property declaration val x: T = e introduces x as a name of the
result of e.

A read-only property declaration may include a custom getter in the form of

val x: T = e
get(): T { ... } // (1)

or

val x: T = e
get(): T = ... // (2)

in which case x is used as a synonym to the getter invocation. All of the right-
hand value e, the type T in both positions, and the getter are optional, however,
at least one of them must be specified. More so, if we cannot infer the resulting
property type from the type of e or from the type of getter in expression form
(2), the type T must be specified explicitly either as the property type, or as the
getter return type. In case both e and T are specified, the type of e must be a
subtype of T (see subtyping for more details).

The initializer expression e, if given, serves as the starting value for the property
backing field (see getters and setters section for details) and is evaluated when
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the property is created. Properties that are not allowed to have backing fields
(see getters and setters section for details) are also not allowed to have initializer
expressions.

Note: although a property with an initializer expression looks similar
to an assignment, it is different in several key ways: first, a read-only
property cannot be assigned, but may have an initializer expression;
second, the initializer expression never invokes the property setter,
but assigns the property backing field value directly.

4.3.2 Mutable property declaration
A mutable property declaration var x: T = e introduces x as a name of a
mutable variable with type T and initial value equals to the result of e. The
rules regarding the right-hand value e and the type T match those of a read-only
property declaration.

A mutable property declaration may include a custom getter and/or custom
setter in the form of

var x: T = e
get(): TG { ... }
set(value: TS) { ... }

in which case x is used as a synonym to the getter invocation when read from
and to the setter invocation when written to.

4.3.3 Local property declaration
If a property declaration is local, it creates a local entity which follows most
of the same rules as the ones for regular property declarations. However, local
property declarations cannot have custom getters or setters.

Local property declarations also support destructuring declaration in the form of

val (a: T, b: U, c: V, ...) = e

which is a syntactic sugar for the following expansion

val a: T = e.component1()
val b: U = e.component2()
val c: V = e.component3()
...

where componentN() should be a valid operator function available on the result
of e. Some of the entries in the destructuring declaration may be replaced
with an ignore marker _, which signifies that no variable is declared and no
componentN() function is called.

As with regular property declaration, type specification is optional, in which
case the type is inferred from the corresponding componentN() function. De-
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structuring declarations cannot use getters, setters or delegates and must be
initialized in-place.

4.3.4 Getters and setters
As mentioned before, a property declaration may include a custom getter and/or
custom setter (together called accessors) in the form of

var x: T = e
get(): TG { ... }
set(anyValidArgumentName: TS): RT { ... }

These functions have the following requirements

• TG ≡ T ;

• TS ≡ T ;

• RT ≡ kotlin.Unit;

• Types TG, TS and RT are optional and may be omitted from the declara-
tion;

• Read-only properties may have a custom getter, but not a custom setter;

• Mutable properties may have any combination of a custom getter and a
custom setter

• Setter argument may have any valid identifier as argument name.

Note: Regular coding convention recommends value as the name for
the setter argument

One can also omit the accessor body, in which case a default implementation is
used (also known as default accessor).

var x: T = e
get
set

This notation is usually used if you need to change some aspects of
an accessor (i.e., its visibility) without changing the default imple-
mentation.

Getters and setters allow one to customize how the property is accessed, and
may need access to the property’s backing field, which is responsible for actually
storing the property data. It is accessed via the special field property available
inside accessor body, which follows these conventions

• For a property declaration of type T, field has the same type T
• field is read-only inside getter body
• field is mutable inside setter body

However, the backing field is created for a property only in the following cases
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• A property has no custom accessors;
• A property has a default accessor;
• A property has a custom accessor, and it uses field property;
• A mutable property has a custom getter or setter, but not both.

In all other cases a property has no backing field. Properties without backing
fields are not allowed to have initializer expressions.

Read/write access to the property is replaced with getter/setter invocation
respectively. Getters and setters allow for some modifiers available for function
declarations (for example, they may be declared inline, see grammar for details).

Properties themselves may also be declared inline, meaning that both getter
and setter of said property are inline. Additionally, inline properties are not
allowed to have backing fields, i.e., they must have custom accessors which do
not use the field property.

4.3.5 Delegated property declaration
A delegated read-only property declaration val x: T by e introduces x as a
name for the delegation result of property x to the entity e or to the delegatee
of e provided by provideDelegate. For the former, one may consider these
properties as regular properties with a special delegating getters:

val x: T by e

is the same as

val x$delegate = e
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)

Here every access to such property (x in this case) becomes an overloadable form
which is expanded into the following:

e.getValue(thisRef, property)

where

• e is the delegating entity; the compiler needs to make sure that this is
accessible in any place x is accessible;

• getValue is a suitable operator function available on e;
• thisRef is the receiver object for the property. This argument is null for

local properties;
• property is an object of the type kotlin.KProperty<*> that contains

information relevant to x (for example, its name, see standard library
documentation for details).

A delegated mutable property declaration var x: T by e introduces x as a
name of a mutable entity with type T, access to which is delegated to the entity
e or to the delegatee of e provided by provideDelegate. As before, one may
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view these properties as regular properties with special delegating getters and
setters:

var x: T by e

is the same as

val x$delegate = e
var x: T

get(): T = x$delegate.getValue(thisRef, ::x)
set(value: T) { x$delegate.setValue(thisRef, ::x, value) }

Read access is handled the same way as for a delegated read-only property. Any
write access to x (using, for example, an assignment operator x = y) becomes
an overloadable form with the following expansion:

e.setValue(thisRef, property, y)

where

• e is the delegating entity; the compiler needs to make sure that this is
accessible in any place x is accessible;

• setValue is a suitable operator function available on e;
• thisRef is the receiver object for the property. This argument is null for

local properties;
• property is an object of the type kotlin.KProperty<*> that contains

information relevant to x (for example, its name, see standard library
documentation for details);

• y is the value x is assigned to. In case of complex assignments (see the
assignment section), as they are all overloadable forms, first the assignment
expansion is performed, and after that, the expansion of the delegated
property using normal assignment.

The type of a delegated property may be omitted at the declaration site, meaning
that it may be inferred from the delegating function itself, as it is with regular
getters and setters. If this type is omitted, it is inferred as if it was assigned the
value of its expansion. If this inference fails, it is a compile-time error.

If the delegate expression has a suitable operator function called provideDelegate,
a provided delegate is used instead. The provided delegate is accessed using the
following expansion:

val x: T by e

is the same as

val x$delegate = e.provideDelegate(thisRef, ::x)
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)

and

var x: T by e
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is the same as

val x$delegate = e.provideDelegate(thisRef, ::x)
val x: T

get(): T = x$delegate.getValue(thisRef, ::x)
set(value) { x$delegate.setValue(thisRef, ::x, value) }

where provideDelegate is a suitable operator function available using the re-
ceiver e, while getValue and setValue work the same way they do with normal
property delegation. As is the case withsetValue and getValue, thisRef is a ref-
erence to the receiver of the property or null for local properties, but there is also
a special case: for extension properties thisRef supplied to provideDelegate is
null, while thisRef provided to getValue and setValue is the actual receiver.
This is due to the fact that, during the creation of the property, no receiver is
available.

For both provided and standard delegates, the generated delegate value is placed
in the same context as its corresponding property. This means that for a class
member property it will be a synthetic member, for a local property it is a local
value in the same scope as the property and for top-level (both extension and
non-extension) properties it will be a top-level value. This affects this value’s
lifetime in the same way normal value lifetime works.

Example:

operator fun <V, R : V> Map<in String, V>.getValue(
thisRef: Any?, property: KProperty<*>): R =

getOrElse(property.name) {
throw NoSuchElementException()

} as R

operator fun <V> MutableMap<in String, V>.setValue(
thisRef: Any?, property: KProperty<*>, newValue: V) =

set(property.name, newValue)

fun handleConfig(config: MutableMap<String, Any?>) {
val parent by config // Any?
val host: String by config // String
var port: Int by config // Int

// Delegating property accesses to Map.getValue
// Throwing NSEE as there is no "port" key in the map
// println("$parent: going to $host:$port")

// Delegating property access to Map.setValue
port = 443
// Map now contains "port" key
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// Delegating property accesses to Map.getValue
// Not throwing NSEE as there is "port" key in the map
println("$parent: going to $host:$port")

}

fun main() {
handleConfig(mutableMapOf(

"parent" to "",
"host" to "https://kotlinlang.org/"

))
}

Example with provideDelegate:

operator fun <V> MutableMap<in String, V>.provideDelegate(
thisRef: Any?,
property: KProperty<*>): MutableMap<in String, V> =

if (containsKey(property.name)) this
else throw NoSuchElementException()

operator fun <V, R : V> Map<in String, V>.getValue(
thisRef: Any?, property: KProperty<*>): R = ...

operator fun <V> MutableMap<in String, V>.setValue(
thisRef: Any?, property: KProperty<*>, newValue: V) = ...

fun handleConfig(config: MutableMap<String, Any?>) {
val parent by config // Any?
val host: String by config // String
var port: Int by config // Int
// Throwing NSEE here as `provideDelegate`
// checks for "port" key in the map

...
}

fun main() {
handleConfig(mutableMapOf(

"parent" to "",
"host" to "https://kotlinlang.org/"

))
}

4.3.6 Extension property declaration
An extension property declaration is similar to a standard property declaration,
but, very much alike an extension function, introduces an additional parameter to
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the property called the receiver parameter. This is different from usual property
declarations, that do not have any parameters. There are other differences from
standard property declarations:

• Extension properties cannot have initializers;
• Extension properties cannot have backing fields;
• Extension properties cannot have default accessors.

Note: informally, on can say that extension properties have no state
of their own. Only properties that use other objects’ storage facilities
and/or uses constant data can be extension properties.

Aside from these differences, extension properties are similar to regular properties,
but, when accessing such a property one always need to supply a receiver , implicit
or explicit. Like for regular properties, the type of the receiver must be a subtype
of the receiver parameter, and the value that is supplied as the receiver is bound
to the receiver parameter. For more information on how a particular receiver for
each access is chosen, please refer to the overloading section.

The receiver parameter can be accessed inside getter and setter scopes of the
property as the implicit receiver or this. It may also be accessed inside nested
scopes using labeled this syntax using the name of the property declared as
the label. For delegated properties, the value passed into the operator functions
getValue and setValue as the receiver is the value of the receiver parameter,
rather than the value of the outer classifier. This is also true for local extension
properties: while regular local properties are passed null as the first argument
of these operator functions, local extension properties are passed the value of
the receiver argument instead.

Note: when declaring extension properties inside classifier declara-
tions, this receiver takes precedence over the classifier object, which
is usually the current receiver inside nested properties

For all other purposes, extension properties are not different from non-extension
properties.

Examples:

val Int.foo: Int get() = this + 1

fun main(args: Array<String>) {
println(2.foo.foo) // prints "4"

}

class Bar {
val foo get() = this // returns type Bar
val Int.foo get() = this // returns type Int

}
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4.3.7 Property initialization
All non-abstract properties must be definitely initialized before their first use.
To guarantee this, Kotlin compiler uses a number of analyses which are described
in more detail here.

4.3.8 Constant properties
A property may be declared constant, meaning that its value is known during
compilation, by using the special const modifier. In order to be declared const,
a property must meet the following requirements:

• Its type is one of the following:
– One of the the built-in integral types;
– One of the the built-in floating types;
– kotlin.Boolean;
– kotlin.Char;
– kotlin.String;

• It is declared in the top-level scope or inside an object declaration;
• It has an initializer expression and this initializer expression can be evalu-

ated at compile-time. Integer literals and string interpolation expressions
without evaluated expressions, as well as built-in arithmetic/comparison
operations and string concatenation operations on those are such expres-
sions, as well as other constant properties, but it is implementation-defined
which other expressions qualify for this;

• It does not have getters, setters or delegation specifiers.

Example:

// Correct constant properties
const val answer = 2 * 21
const val msg = "Hello World!"
const val calculated = answer + 45

// Incorrect constant property
const val emptyStringHashCode = "".hashCode()

4.3.9 Late-initialized properties
A mutable member property can be declared with a special lateinit modifier,
effectively turning off the property initialization checks for it. Such a property
is called late-initialized and may be used for values that are supposed to be
initialized not during object construction, but during some other time (for
example, a special initialization function). This means, among other things,
that it is the responsibility of the programmer to guarantee that the property is
initialized before its usage.

A property may be declared late-initialized if:
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• It has no custom getters, setters or delegation;
• It is a member or a top-level property;
• It is mutable;
• It has declared non-nullable type which is also not one of the following

types:
– One of the built-in integer types;
– One of the built-in floating types;
– kotlin.Boolean;
– kotlin.Char.

4.3.10 Property declaration scopes
Every property getter and setter introduce the same function parameter scope and
function body scope as a corresponding function would, see function declaration
scopes for details. Getter and setter parameter scopes are upward-linked to the
scope property is declared in. Property itself introduces a new binding in the
scope it is declared in.

Initialization expressions and delegate expressions for properties, however, are
special. If the property declaration resides in a classifier body scope, its initializa-
tion expression or delegate expression is resolved in the initialization scope of the
same classifier. If the property declaration is local or top-level, its initialization
expression or delegate expression is resolved in the scope the property is declared
in.

4.4 Type alias
typeAlias:

[modifiers]
'typealias'
{NL}
simpleIdentifier
[{NL} typeParameters]
{NL}
'='
{NL}
type

Type alias introduces an alternative name for the specified type and supports
both simple and parameterized types. If type alias is parameterized, its type
parameters must be unbounded and cannot specify variance. Bounds and
variance of these parameters is always defined to be the same as the corresponding
parameters in the type being aliased, unless they are not referenced in the aliased
type, in which case they are considered unbounded and invariant. Another
restriction is that recursive type aliases are forbidden — the type alias name
cannot be used in its own right-hand side.
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At the moment, Kotlin supports only top-level type aliases. The scope where it
is accessible is defined by its visibility modifiers.

Examples:

// simple typealias declaration
typealias IntList = List<Int>
// parameterized type alias declaration
// T has out variance implicitly
typealias IntMap<T> = Map<Int, T>
// type parameter may be unreferenced
typealias Strange<T> = String

4.5 Declarations with type parameters
Most declarations may be introduced as generic, introducing type parameters
that must be explicitly specified or inferred when the corresponding declaration
is used. For declarations that introduce new types this mechanism provides the
means of introducing a parameterized type. Please refer to the corresponding
section for details.

Type parameters may be used as types inside the scope introduced by the
declaration. When such a declaration is used, the parameters are substituted by
types available inside the scope the declaration is used in.

The following declarations are not allowed to have type parameters:

• Non-extension property declarations;
• Object declarations (including companion object declarations);
• Constructor declarations;
• Getters and setters of property declarations;
• Enum class declarations;
• Classifier declarations inheriting from kotlin.Throwable.

Type parameters are allowed to specify subtyping restrictions on them in the
form T : U, meaning T <: U where T is a type parameter and U is some other
type available in the scope the declaration is declared in. These either are
written directly at the parameter placement syntax or using a special where
syntax. Any number of restrictions is allowed on a single type, however, for a
given type parameter T, only one restriction T : U can have U to be another
type parameter.

These restrictions are turned into corresponding type constraints when the type
parameters are substituted with types and are employed during type inference
and overload resolution of any usage of the corresponding declaration. See the
corresponding sections for details.

Type parameters do not introduce runtime-available types unless declared
reified. Only type parameters of inline functions can be declared reified.
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4.5.1 Type parameter variance
The declaration-site variance of a particular type parameter for a classifier
declaration is specified using special keywords in (for covariant parameters) and
out (for contravariant parameters). If the variance is not specified, the parameter
is implicitly declared invariant. See the type system section for details.

A type parameter is used in covariant position in the following cases:

• It is used as an argument in another generic type and the corresponding
parameter in that type is covariant;

• It is the return type of a function;
• It is a type of a property.

A type parameter is used in contravariant position in the following cases:

• It is used as an argument in another generic type and the corresponding
parameter in that type is contravariant;

• It is a type of an parameter of a function;
• It is a type of a mutable property.

A type parameter is used in an invariant position if it is used as an argument in
another generic type and the corresponding parameter in that type is invariant.

A usage of a contravariant type parameter in a covariant or invariant position,
as well as usage of a covariant type parameter in a contravariant or invariant
position, results in variance conflict and a compiler error, unless the containing
declaration is private to the type parameter owner (in which case its visibility
is restricted, see the visibility section for details). This applies only to mem-
ber declarations of the corresponding class, extensions are not subject to this
limitation.

This restrictions may be lifted in particular cases by annotating the
corresponding type parameter usage with a special built-in annotation
kotlin.UnsafeVariance. By supplying this annotation the author of the code
explicitly declares that safety features that variance checks provide are not
needed in this particular declarations.

Examples:

class Inv<T> {
fun a(): T {...} // Ok, covariant usage
fun b(value: T) {...} // Ok, contravariant usage
fun c(p: Out<T>) {...} // Ok, covariant usage
fun d(): Out<T> {...} // Ok, covariant usage
fun e(p: In<T>) {...} // Ok, contravariant usage
fun f(): In<T> {...} // Ok, contravariant usage

}

class Out<out T> { // T is covariant
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fun a(): T {...} // Ok, covariant usage
fun b(value: T) {...} // ERROR, contravariant usage
fun c(p: Inv<T>) {...} // ERROR, invariant usage
fun d(): Inv<T> {...} // ERROR, invariant usage

}

class In<in T> { // T is contravariant
fun a(): T {...} // ERROR, covariant usage
fun b(value: T) {...} // Ok, contravariant usage
fun c(p: Inv<T>) {...} // ERROR, invariant usage
fun d(): Inv<T> {...} // ERROR, invariant usage

}

Any of these restrictions may be lifted using @UnsafeVariance an-
notation on the type argument:

class Out<out T> { // T is covariant
fun b(value: @UnsafeVariance T) {...} // Ok

}

class In<in T> { // T is contravariant
fun a(): @UnsafeVariance T {...} // Ok

}

Using @UnsafeVariance is inherently unsafe and should be used only
when the programmer can guarantee that variance violations would
not result in runtime errors. For example, receiving a value in a
contravariant position for a covariant class parameter is usually OK
if the function involved is guaranteed not to mutate internal state of
the class.

For examples on how restrictions are lifted for private visibility
(private-to-this), see visibility section

4.5.2 Reified type parameters
Type parameters of inline function or property declarations (and only those) can
be declared reified using the corresponding keyword. A reified type parameter
is a runtime-available type inside their declaration’s scope, see the corresponding
section for details. Reified type parameters can only be substituted by other
runtime-available types when using such declarations.

Example:

fun <T> foo(value: Any?) {
// ERROR, is-operator is only allowed for runtime-available types
if(value is T) ...

}
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inline fun <reified T> foo(value: Any?) {
if(value is T) ... // Ok

}

4.5.3 Underscore type arguments
In case one needs to explicitly specify some type parameters via type arguments,
but wants to use type inference for the rest, they can use an underscore type
argument.

An underscore type argument does not add any type information to the constraint
system besides the presence of a type parameter, i.e., parameterized declaration
with different number of type parameters could be distinguished by different
number of underscore type arguments.

If the type inference is successful, each underscore type argument is considered
to be equal to the inferred type for their respective type parameter. If the type
inference is not successful, it is a compile-time error.

Example:

fun <T> mk(): T = TODO()

interface MyRunnable<T> {
fun execute(): T

}

class StringRunnable : MyRunnable<String> {
override fun execute(): String = "test"

}

class IntRunnable : MyRunnable<Int> {
override fun execute(): Int = 42

}

inline fun <reified S : MyRunnable<T>, T> run(): T = mk<S>().execute()

fun main() {
val s = run<StringRunnable, _ /* inferred to String */ >()
assert(s == "test")

val i = run<IntRunnable, _ /* inferred to Int */ >()
assert(i == 42)

}

Example:

fun <T> foo(t: T): T = TODO() // (1)
fun <T, R : List<T>> foo(t: T, d: Double = 42.0): T = TODO() // (2)
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fun bar() {
val a: Boolean = foo(true)
// resolves to (1)
// per overload resolution rules

val b: Int = foo<_ /* U1 */ >(42)
// resolves to (1)
// with U1 inferred to Int

val c: Double = foo<_ /* U1 */ , _ /* U2 */ >(42.0)
// resolves to (2)
// with U1 inferred to Double and U2 inferred to List<Double>

}

4.6 Declaration visibility
Each declaration has a visibility property relative to the scope it is declared in.
By default, all the declarations are public, meaning that they can be accessed
from any other scope their outer scope can be accessed from. The only exception
to this rule are overriding declarations that by default inherit the visibility
from the declaration they override. Declarations may be also marked public
explicitly.

Declarations marked as private can only be accessed from the same scope they
are declared in. For example, all private top-level declarations in a file may
only be accessed by code from the same file.

Some private declarations are special in that they have an even more restricted
visibility, called “private to this”. These include declarations that are allowed
to lift certain variance rules in their types as long as they are never accessed
outside this object, meaning that they can be accessed using this as the receiver,
but are not visible on other instances of the same class even in the methods of
this class. For example, for a class declaration C with type parameter T it is not
allowed to introduce declarations involving T with conflicting variance, unless
they are declared private. That is, if T is declared as covariant, any declarations
with a type using T in a contravariant position (including properties with type T
itself if they are mutable) and if T is declared as contravariant, any declarations
with a type using T in a covariant position (including properties with type T
itself) are forbidden, unless they are declared using private visibility, in which
case they are instead treated as “private to this”.

Example:

class Foo<out T>(val t: T) { // T is a covariant parameter
// not allowed, T is in contravariant position
public fun set1(t: T) {}
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// allowed, set2 is private-to-this
private fun set2(t: T) {}
private fun bar(other: Foo<T>) {

// allowed, set2 is called on this
this.set2(t)
// not allowed, set2 is called on other
other.set2(t)

}
}

Note: the above does not account for @UnsafeVariance annotation
that lifts any variance restrictions on type parameters

Declarations marked as internal may only be accessed from the same module,
treated as public from inside the module and as private from outside the
module.

Declarations in classifier declaration scope can also be declared protected,
meaning that they can only be accessed from the same classifier type as well as
any types inheriting from this type regardless of the scope they are declared in.

There is a partial order of weakness between different visibility modifiers:

• protected and internal are weaker than private;
• public is weaker than protected and internal.

Note: there is a certain restriction regarding inline functions that
have a different visibility from entities they access. In particular,
an inline function cannot access entities with a stronger visibil-
ity (i.e. public inline function accessing a private property).
There is one exception to this: a public inline function can access
internal entities which are marked with a special builtin annotation
@PublishedApi.

Example:

class Foo<T>(internal val t: T) {
// not allowed, t is internal, getValue is public
inline fun getValue(): T = t

}
class Bar<T>(@PublishedApi internal val t: T) {

// allowed through @PublishedApi
inline fun getValue(): T = t

}
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Inheritance

Kotlin is an object-oriented language with its object model based on inheritance.

5.1 Classifier type inheritance
Classifier types may be inherited from each other: the type inherited from is
called the base type, while the type which inherits the base type is called the
derived type. The following limitations are imposed on the possible inheritance
structure.

A class or object type is allowed to inherit from only one class type (called its
direct superclass) and multiple interface types. As specified in the declaration
section, if the superclass of a class or object type is not specified, it is assumed
to be kotlin.Any. This means, among other things, that every class or object
type always has a direct superclass.

A class is called closed and cannot be inherited from if it is not explicitly
declared as either open or abstract.

Note: classes are neither open nor abstract by default.

A data class, enum class or annotation class cannot be declared open or
abstract, i.e., are always closed and cannot be inherited from. Declaring a class
sealed also implicitly declares it abstract.

An interface type may be inherited from any number of other interface types
(and only interface types), if the resulting type is well-formed.

Object types cannot be inherited from.

Inheritance is the primary mechanism of introducing subtyping relations between
user-defined types in Kotlin. When a classifier type A is declared with base types
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B1, . . . , Bm, it introduces subtyping relations A <: B1, . . . , A <: Bm, which are
then used in overload resolution and type inference mechanisms.

5.1.1 Abstract classes
A class declared abstract cannot be instantiated, i.e., an object of this class
cannot be created directly. Abstract classes are implicitly open and their primary
purpose is to be inherited from. Abstract classes (similarly to interfaces) allow
for abstract property and function declarations in their scope.

5.1.2 Sealed classes and interfaces
A class or interface (but not a functional interface) may be declared sealed,
making it special from the inheritance point-of-view.

• A sealed class is implicitly abstract (and these two modifiers are exclu-
sive);

• A sealed class or interface can only be inherited from by types declared
in the same package and in the same module, and which have a fully-
qualified name (meaning local and anonymous types cannon be inherited
from sealed types);

• Sealed classes and interfaces allow for exhaustiveness checking of when
expressions for values of such types. Any sealed type S is associated with
its direct non-sealed subtypes: a set of non-sealed types, which are either
direct subtypes of S or transitive subtypes of S via some number of other
sealed types. These direct non-sealed subtypes form the boundary for
exhaustiveness checks.

5.1.3 Inheritance from built-in types
Built-in types follow the same rules as user-defined types do. Most of them are
closed class types and cannot be inherited from. Function types are treated as
interfaces and can be inherited from as such.

5.2 Matching and subsumption of declarations
A callable declaration D matches to a callable declaration B if the following are
true.

• B and D have the same name;
• B and D are declarations of the same kind (property declarations or

function declarations);
• Function signature of D (if any) matches function signature of B (if any).

A callable declaration D subsumes a callable declaration B if the following are
true.
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• B and D match;
• The classifier of B (where it is declared) is a supertype of the classifier of

D.

The notions of matching and subsumption are used when talking about how
declarations are inherited and overridden.

5.3 Inheriting
A callable declaration (that is, a property or member function declaration) inside
a classifier declaration is said to be inheritable if:

• Its visibility (and the visibility of its getter and setter, if present) is not
private.

If the declaration B of the base classifier type is inheritable, no other inheritable
declaration from the base classifier types subsume B, no declarations in the
derived classifier type override B, then B is inherited by the derived classifier
type.

As Kotlin is a language with single inheritance (only one supertype can be a
class, any number of supertypes can be an interface), there are several additional
rules which refine how declarations are inherited.

• If a derived class type inherits a declaration from its superclass, no other
matching abstract declarations from its superinterfaces are inherited.

• If a derived classifier type inherits several matching concrete declarations
from its supertypes, it is a compile-time error (this means a derived classifier
type should override such declarations).

• If a derived concrete classifier type inherits an abstract declaration from
its supertypes, it is a compile-time error (this means a derived classifier
type should override such declaration).

• If a derived classifier type inherits both an abstract and a concrete dec-
laration from its superinterfaces, it is a compile-time error (this means a
derived classifier type should override such declarations).

5.4 Overriding
A callable declaration (that is, a property or member function declaration) inside
a classifier declaration is said to be overridable if:

• Its visibility (and the visibility of its getter and setter, if present) is not
private;

• It is declared as open, abstract or override (interface methods and
properties are implicitly abstract if they don’t have a body or open if
they do).
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It is illegal for a declaration to be both private and either open, abstract or
override, such declarations should result in a compile-time error.

If the declaration B of the base classifier type is overridable, the declaration
D of the derived classifier type subsumes B, and D has an override modifier,
then D is overriding the base declaration B.

A function declaration D which overrides function declaration B should satisfy
the following conditions.

• Return type of D is a subtype of return type of B;
• Suspendability of D and B must be the same.

A property declaration D which overrides property declaration B should satisfy
the following conditions.

• Mutability of D is not stronger than mutability of B (where read-only val
is stronger than mutable var);

• Type of D is a subtype of type of B; except for the case when both D and
B are mutable (var), then types of D and B must be equivalent.

Otherwise, it is a compile-time error.

If the base declaration is not overridable and/or the overriding declaration
does not have an override modifier, it is not permitted and should result in a
compile-time error.

If the overriding declaration does not have its visibility specified, its visibility is
implicitly set to be the same as the visibility of the overridden declaration.

If the overriding declaration does have its visibility specified, it must not be
stronger than the visibility of the overridden declaration.

Examples:

open class B {
protected open fun f() {}

}
class C : B() {

open override fun f() {}
// `f` is protected, as its visibility is
// inherited from the base declaration

}
class D : B() {

public open override fun f() {}
// this is correct, as public visibility is
// weaker that protected visibility
// from the base declaration

}

open class P {
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open fun g() {}
}

class Q : P() {
protected open override fun g() {}
// this is an error, as protected visibility is
// stronger that public visibility
// from the base declaration

}

Important: platforms may introduce additional cases of both overrid-
ability and subsumption of declarations, as well as limit the overriding
mechanism due to implementation limitations.

Note: Kotlin does not have a concept of full hiding (or shadowing)
of declarations.

Note: if a declaration binds a new function to the same name as was
introduced in the base class, but which does not subsume it, it is
neither a compile-time error nor an overriding declaration. In this
case these two declarations follow the normal rules of overloading.
However, these declarations may still result in a compile-time error
as a result of conflicting overload detection.
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Chapter 6

Scopes and identifiers

Kotlin program is logically divided into scopes.

A scope is a syntactically-delimited region of code which constitutes a context
in which entities and their names can be introduced. Scopes can be nested, with
entities introduced in outer scopes possibly available in the inner scopes if linked.

The top level of a Kotlin file is also a scope, containing all the scopes within a
file.

All the scopes are divided into two kinds: declaration scopes and statement
scopes. These two kinds of scopes differ in how the identifiers may refer to the
entities defined in the scopes.

Declaration scopes include:

• The project modules;
• The project packages;
• The top level scopes of non-script Kotlin files;
• The bodies of classifier declarations;
• The bodies of object literals;
• Function parameter scope containing the declared value parameters in a

function declaration or a non-primary constructor declaration;
• Primary constructor parameter scope containing the declared value param-

eters in a primary constructor.

Statement scopes include:

• The top level scopes of script Kotlin files;
• Scopes produced by control structure bodies of different expressions;
• The bodies of function declarations;
• The bodies of function literals;
• The bodies of getters and setters of properties;
• The bodies of constructors;
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• The bodies of instance initialization blocks in classifier declarations;
• Special initialization scope for a body of a classifier declaration.

All declarations in a particular scope introduce new bindings of identifiers in this
scope to their respective entities in the program. These entities may be types or
values, where values refer to objects, functions or properties (which may also be
delegated). Top-level scopes additionally allow to introduce new bindings using
import directives from other top-level scopes.

In most situations, it is not allowed to bind several values to the same identifier
in the same scope, but it is allowed to bind a value to an identifier already
available in the scope through linked scopes or imports.

An exception to this rule are function declarations, which are matched by
signatures and allow defining several functions with the same name in the
same scope. When calling functions, a process called overload resolution allows
for differentiating between such functions. Overload resolution also applies to
properties if they are used as functions through invoke-convention, but it does
not allow defining several properties with the same name and with the same
receivers in the same scope.

Note: platforms may introduce additional restrictions on which
identifiers may be declared together in the same or linked scopes.

The main difference between declaration scopes and statement scopes is that
names in the statement scope are bound in the order of appearance. It is not
allowed to access a value through an identifier in code which (syntactically)
precedes the binding itself. On the contrary, in declaration scopes it is fully
allowed, although initialization cycles may occur leading to unspecified behaviour.

Note: Kotlin compiler may attempt to detect and report such initial-
ization cycles as compile-time warnings or errors.

It also means that statement scopes nested inside declaration scopes may access
values declared afterwards in parent declaration scopes, but any values declared
inside a statement scope can be accessed only after their declaration point.

Examples:

• In declaration scope:

// x refers to the property defined below
// even if there is another property
// called x in outer scope or imported
fun foo() = x + 2
val x = 3

• In statement scope:

// x refers to another property
// defined in outer scope or imported
// or is a compile-time error
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fun foo() = x + 2
val x = 3

6.1 Linked scopes
Scopes A and B in a Kotlin program may be downwards-linked (A ~> B), meaning
identifiers from A can be used in B without the need for additional qualification.
If scopes A and B are downwards-linked, scopes B and A are considered upwards-
linked (B <~ A).

Note: link relation is transitive, unless specified otherwise.

Scopes are downwards-linked (DLD) or upwards-linked (ULD) as follows:

• A statement scope is DLD to any directly nested scope;
• An object declaration scope is DLD to any nested scopes;
• An object declaration scope is non-transitively ULD to the companion

object scopes of its superclasses;
• An object declaration scope is non-transitively ULD to the companion

object scopes of its parent classifier superclasses;
• An object declaration scope is ULD to the companion object declaration

scope of its parent classifier;
• A companion object declaration scope is DLD to any nested scopes;
• A companion object declaration scope is non-transitively ULD to the

companion object scopes of its superclasses;
• A companion object declaration scope is non-transitively ULD to the

companion object scopes of its parent classifier superclasses;
• A companion object declaration scope is ULD to the companion object

declaration scope of the parent of its parent classifier;
• A classifier or nested class declaration scope is DLD to any nested statement

scopes;
• A classifier or nested class declaration scope is ULD to its companion

object declaration scope;
• An inner class declaration scope is DLD to any nested statement scopes;
• An inner class declaration scope is ULD to the classifier declaration scope

of its parent classifier;
• A function or non-primary constructor parameter scope is ULD to the

scope containing the function declaration and DLD to the function body;
• A primary constructor parameter scope is ULD to the scope containing the

classifier declaration (but not the classifier declaration scope itself) and
DLD to the classifier initialization scope;

• The instance initialization blocks are ULD to the classifier initialization
scope.

Important: linked scopes do not cover cases when identifiers from
supertypes are used in subtypes, as this is covered by the inheritance
rules.
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6.2 Identifiers and paths
Kotlin program operates with different entities, such as classes, interfaces, values,
etc. An entity can be referenced using its path: a sequence of identifiers which
references this entity in a given scope.

Kotlin supports two kinds of paths.

• Simple paths P, which consist of a single identifier
• Qualified paths P.m, which consist of a path P and a member identifier m

Besides identifiers which are introduced by the developer (e.g., via declaring
classes or introducing variables), there are several predefined identifiers with
special semantics.

• this – an identifier which references the default receiver available in the
current scope, further details are available here

• this@label – an identifier which references the default receiver available
in the selected scope, further details are available here

• super<Klazz> – an identifier which references the supertype Klazz avail-
able in the current scope, further details are available here

• super<Klazz>@label – an identifier which references the supertype Klazz
available in the selected scope, further details are available here

6.3 Labels
Labels are special syntactic marks which allow one to reference certain code
fragments or elements. Lambda expressions and loop statements are allowed to
be labeled, with label identifier associated with the corresponding entity.

Note: in Kotlin version 1.3 and earlier, labels were allowed to be
placed on any expression or statement.

Labels can be redeclared, meaning that the same label identifier may be reused
with different parts of code (or even on the same expression/loop) several times.
Labels are scoped, meaning that they are only available in the scope they were
declared in.

Labels are used by certain expressions, such as break, continue and return,
to specify exactly what entity the expression corresponds to. Please refer to the
corresponding sections for details.

When resolving labels (determining which label an expression refers to), the
closest label with the matching identifier is chosen, i.e., a label in an innermost
scope syntactically closest to the point of its use.
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Statements

statements:
[statement {semis statement}] [semis]

statement:
{label | annotation} (declaration | assignment | loopStatement | expression)

Kotlin does not explicitly distinguish between statements, expressions and dec-
larations, i.e., expressions and declarations can be used in statement positions.
This section focuses only on those statements that are not expressions or decla-
rations. For information on those parts of Kotlin, please refer to the Expressions
and Declarations sections of the specification.

Example: Kotlin supports using conditionals both as expressions and
as statements. As their use as expressions is more general, detailed
information about conditionals is available in the Expressions section
of the specification.

7.1 Assignments
assignment:

((directlyAssignableExpression '=') | (assignableExpression assignmentAn-
dOperator)) {NL} expression

assignmentAndOperator:
'+='
| '-='
| '*='
| '/='
| '%='
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An assignment is a statement that writes a new value to some program entity, de-
noted by its left-hand side. Both left-hand and right-hand sides of an assignment
must be expressions, more so, there are several restrictions for the expression on
the left-hand side.

For an expression to be assignable, i.e. be allowed to occur on the left-hand side
of an assignment, it must be one of the following:

• An identifier referring to a mutable property;
• A navigation expression referring to a mutable property. If this navigation

operator is the safe navigation operator, this introduces a special case of
safe assignment;

• An indexing expression.

Note: Kotlin assignments are not expressions and cannot be used
as such.

7.1.1 Simple assignments
A simple assignment is an assignment which uses the assign operator =. If the
left-hand side of an assignment refers to a mutable property, a value of that
property is changed when an assignment is evaluated, using the following rules
(applied in order).

• If a property has a setter (including delegated properties), it is called using
the right-hand side expression as its argument;

• Otherwise, if a property is a mutable property, its value is changed to the
evaluation result of the right-hand side expression.

If the left-hand side of an assignment is an indexing expression, the whole
statement is treated as an overloaded operator with the following expansion:

A[B1, B2, B3, . . . , BN ] = C is the same as calling A.set(B1, B2, B3, . . . , BN , C)
where set is a suitable operator function.

7.1.2 Operator assignments
An operator assignment is a combined-form assignment which involves one of the
following operators: +=, -=, *=, /=, %=. All of these operators are overloadable
operator functions with the following expansions (applied in order):

• A += B is exactly the same as one of the following:
– A.plusAssign(B) if a suitable plusAssign operator function exists

and is available;
– A = A.plus(B) if a suitable plus operator function exists and is

available.
• A -= B is exactly the same as one of the following:

– A.minusAssign(B) if a suitable minusAssign operator function ex-
ists and is available;
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– A = A.minus(B) if a suitable minus operator function exists and is
available.

• A *= B is exactly the same as one of the following:
– A.timesAssign(B) if a suitable timesAssign operator function ex-

ists and is available;
– A = A.times(B) if a suitable times operator function exists and is

available.
• A /= B is exactly the same as one of the following:

– A.divAssign(B) if a suitable divAssign operator function exists
and is available;

– A = A.div(B) if a suitable div operator function exists and is
available;

• A %= B is exactly the same as one of the following:
– A.remAssign(B) if a suitable remAssign operator function exists

and is available;
– A = A.rem(B) if a suitable rem operator function exists and is

available.

Note: before Kotlin version 1.3, there were additional overloadable
functions for % called mod/modAssign

After the expansion, the resulting function call expression or simple assignment
is processed according to their corresponding rules, and overload resolution
and type checking are performed. If both expansion variants result in correctly
resolved and inferred code, this should be reported as an operator overloading
ambiguity. If only one of the expansion variants can be resolved correctly, this
variant is picked as the correct one. If neither of variants result in correct code,
the operator calls must be reported as unresolved.

Example: consider the following compound operator state-
ment: x[y] += z. The corresponding expansion variants are
x.get(y).plusAssign(z) and x.set(x.get(y).plus(z)) accord-
ing to expansion rules for corresponding operators. If, for example,
the call to set in the second variant results in resolution or inference
error, the whole corresponding expansion is deemed unresolved and
the first variant is picked if applicable.

Note: although for most real-world use cases operators ++ and --
are similar to operator assignments, in Kotlin they are expressions
and are described in the corresponding section of this specification.

7.1.3 Safe assignments
If the left-hand side of an assignment involves a safe-navigation operator, it is
treated as a special case of safe assignment. Safe assignments are expanded
similar to safe navigation operator expressions:

• a?.c is exactly the same as
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when(val $tmp = a) {
null -> null
else -> { $tmp.c }

}

For any right-hand combinations of operators present in c, which are
expanded further, as usual.

Example: The assignment

x?.y[0] = z

is expanded to

when(val $tmp = x) {
null -> null
else -> { $tmp.y[0] = z }

}

which, according to expansion rules for indexing assignments is, in
turn, expanded to

when(val $tmp = x) {
null -> null
else -> { $tmp.y.set(0, z) }

}

7.2 Loop statements
Loop statements describe an evaluation of a certain number of statements
repeatedly until a loop exit condition applies.

loopStatement:
forStatement
| whileStatement
| doWhileStatement

Loops are closely related to the semantics of jump expressions, as these expres-
sions, namely break and continue, are only allowed in a body of a loop. Please
refer to the corresponding sections for details.

7.2.1 While-loop statements
whileStatement:

'while'
{NL}
'('
expression
')'
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{NL}
(controlStructureBody | ';')

A while-loop statement is similar to an if expression in that it also has a condition
expression and a body consisting of zero or more statements. While-loop
statement evaluating its body repeatedly for as long as its condition expression
evaluates to true or a jump expression is evaluated to finish the loop.

Note: this also means that the condition expression is evaluated
before every evaluation of the body, including the first one.

The while-loop condition expression must be a subtype of kotlin.Boolean.

7.2.2 Do-while-loop statements
doWhileStatement:

'do'
{NL}
[controlStructureBody]
{NL}
'while'
{NL}
'('
expression
')'

A do-while-loop statement, similarly to a while-loop statement, also describes a
loop, with the following differences. First, it has a different syntax. Second, it
evaluates the loop condition expression after evaluating the loop body.

Note: this also means that the body is always evaluated at least
once.

The do-while-loop condition expression must be a subtype of kotlin.Boolean.

7.2.3 For-loop statements
forStatement:

'for'
{NL}
'('
{annotation}
(variableDeclaration | multiVariableDeclaration)
'in'
expression
')'
{NL}
[controlStructureBody]
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Note: unlike most other languages, Kotlin does not have a free-form
condition-based for loops. The only form of a for-loop available in
Kotlin is the “foreach” loop, which iterates over lists, arrays and
other data structures.

A for-loop statement is a special kind of loop statement used to iterate over some
data structure viewed as an iterable collection of elements. A for-loop statement
consists of a loop body, a container expression and an iteration variable
declaration.

The for-loop is actually an overloadable syntax form with the following expansion:

for(VarDecl in C) Body is the same as

when(val $iterator = C.iterator()) {
else -> while ($iterator.hasNext()) {

val VarDecl = __iterator.next()
<... all the statements from Body>

}
}

where iterator, hasNext, next are all suitable operator functions available in
the current scope. VarDecl here may be a variable name or a set of variable
names as per destructuring variable declarations.

Note: the expansion is hygienic, i.e., the generated iterator variable
never clashes with any other variable in the program and cannot be
accessed outside the expansion.

7.3 Code blocks
block:

'{'
{NL}
statements
{NL}
'}'

statements:
[statement {semis statement}] [semis]

A code block is a sequence of zero or more statements between curly braces
separated by newlines or/and semicolons. Evaluating a code block means
evaluating all its statements in the order they appear inside of it.

Note: Kotlin does not support code blocks as statements; a curly-
braces code block in a statement position is a lambda literal.

A last expression of a code block is the last statement in it (if any) if and only
if this statement is also an expression. A code block is said to contain no last
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expression if it does not contain any statements or its last statement is not an
expression (e.g., it is an assignment, a loop or a declaration).

Informally: you may consider the case of a missing last expression
as if a synthetic last expression with no runtime semantics and type
kotlin.Unit is introduced in its place.

A control structure body is either a single statement or a code block. A last
expression of a control structure body CSB is either the last expression of a
code block (if CSB is a code block) or the single expression itself (if CSB is an
expression). If a control structure body is not a code block or an expression, it
has no last expression.

Note: this is equivalent to wrapping the single expression in a new
synthetic code block.

In some contexts, a control structure body is expected to have a value and/or a
type. The value of a control structure body is:

• the value of its last expression if it exists;
• the singleton kotlin.Unit object otherwise.

The type of a control structure body is the type of its value.

7.3.1 Coercion to kotlin.Unit

When we expect the type of a control structure body to be kotlin.Unit, we
relax the type checking requirements for its type by coercing it to kotlin.Unit.
Specifically, we ignore the type mismatch between kotlin.Unit and the control
structure body type.

Examples:

fun foo() {
val a /* : () -> Unit */ = {

if (true) 42
// CSB with no last expression
// Type is defined to be `kotlin.Unit`

}

val b: () -> Unit = {
if (true) 42 else -42
// CSB with last expression of type `kotlin.Int`
// Type is expected to be `kotlin.Unit`
// Coercion to kotlin.Unit applied

}
}
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Chapter 8

Expressions

Glossary
CSB

Control structure body

Introduction
Expressions (together with statements) are one of the main building blocks of
any program, as they represent ways to compute program values or control the
program execution flow.

In Kotlin, an expression may be used as a statement or used as an expression
depending on the context. As all expressions are valid statements, standalone
expressions may be used as single statements or inside code blocks.

An expression is used as an expression, if it is encountered in any position where
a statement is not allowed, for example, as an operand to an operator or as an
immediate argument for a function call. An expression is used as a statement if
it is encountered in any position where a statement is allowed.

Some expressions are allowed to be used as statements, only if certain restrictions
are met; this may affect the semantics, the compile-time type information or/and
the safety of these expressions.

8.1 Constant literals
Constant literals are expressions which describe constant values. Every constant
literal is defined to have a single standard library type, whichever it is defined
to be on current platform. All constant literals are evaluated immediately.
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8.1.1 Boolean literals
BooleanLiteral

'true' | 'false'

Keywords true and false denote boolean literals of the same values. These are
strong keywords which cannot be used as identifiers unless escaped. Values true
and false always have the type kotlin.Boolean.

8.1.2 Integer literals
IntegerLiteral:

DecDigitNoZero {DecDigitOrSeparator} DecDigit
| DecDigit

HexLiteral
'0' ('x' | 'X') HexDigit {HexDigitOrSeparator} HexDigit
| '0' ('x' | 'X') HexDigit

BinLiteral
'0' ('b' | 'B') BinDigit {BinDigitOrSeparator} BinDigit
| '0' ('b' | 'B') BinDigit

DecDigitNoZero:
'1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

DecDigitOrSeparator:
DecDigit | '_'

HexDigitOrSeparator:
HexDigit | '_'

BinDigitOrSeparator
BinDigit | '_'

DecDigits:
DecDigit {DecDigitOrSeparator} DecDigit
| DecDigit

Decimal integer literals

A sequence of decimal digit symbols (0 though 9) is a decimal integer literal.
Digits may be separated by an underscore symbol, but no underscore can be
placed before the first digit or after the last one.

Note: unlike other languages, Kotlin does not support octal literals.
Even more so, any decimal literal starting with digit 0 and containing
more than 1 digit is not a valid decimal literal.
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Hexadecimal integer literals

A sequence of hexadecimal digit symbols (0 through 9, a through f, A through
F) prefixed by 0x or 0X is a hexadecimal integer literal. Digits may be separated
by an underscore symbol, but no underscore can be placed before the first digit
or after the last one.

Binary integer literals

A sequence of binary digit symbols (0 or 1) prefixed by 0b or 0B is a binary integer
literal. Digits may be separated by an underscore symbol, but no underscore
can be placed before the first digit or after the last one.

8.1.3 The types for integer literals
Any of the decimal, hexadecimal or binary literals may be suffixed by the long
literal mark (symbol L). An integer literal with the long literal mark has type
kotlin.Long. A literal without the mark has a special integer literal type
dependent on the value of the literal:

• If the value is greater than maximum kotlin.Long value (see built-in
integer types), it is an illegal integer literal and should be a compile-time
error;

• Otherwise, if the value is greater than maximum kotlin.Int value (see
built-in integer types), it has type kotlin.Long;

• Otherwise, it has an integer literal type containing all the built-in integer
types guaranteed to be able to represent this value.

Example: integer literal 0x01 has value 1 and therefore has type
ILT(kotlin.Byte, kotlin.Short, kotlin.Int, kotlin.Long). Inte-
ger literal 70000 has value 70000, which is not representable us-
ing types kotlin.Byte and kotlin.Short and therefore has type
ILT(kotlin.Int, kotlin.Long).

8.1.4 Real literals
RealLiteral:

FloatLiteral | DoubleLiteral

FloatLiteral:
DoubleLiteral ('f' | 'F')
| DecDigits ('f' | 'F')

DoubleLiteral:
[DecDigits] '.' DecDigits [DoubleExponent]
| DecDigits DoubleExponent

A real literal consists of the following parts: the whole-number part, the decimal
point (ASCII period character .), the fraction part and the exponent. Unlike
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other languages, Kotlin real literals may only be expressed in decimal numbers.
A real literal may also be followed by a type suffix (f or F).

The exponent is an exponent mark (e or E) followed by an optionally signed
decimal integer (a sequence of decimal digits).

The whole-number part and the exponent part may be omitted. The fraction
part may be omitted only together with the decimal point, if the whole-number
part and either the exponent part or the type suffix are present. Unlike other
languages, Kotlin does not support omitting the fraction part, but leaving the
decimal point in.

The digits of the whole-number part or the fraction part or the exponent may
be optionally separated by underscores, but an underscore may not be placed
between, before, or after these parts. It also may not be placed before or after
the exponent mark symbol.

A real literal without the type suffix has type kotlin.Double, a real literal with
the type suffix has type kotlin.Float.

Note: this means there is no special suffix associated with type
kotlin.Double.

8.1.5 Character literals
CharacterLiteral

''' (EscapeSeq | <any character excluding CR, LF, ''' or '\'>) '''

EscapeSeq
UniCharacterLiteral | EscapedIdentifier

UniCharacterLiteral
'\' 'u' HexDigit HexDigit HexDigit HexDigit

EscapedIdentifier
'\' ('t' | 'b' | 'r' | 'n' | ''' | '"' | '\' | '$')

A character literal defines a constant holding a Unicode character value. A
simply-formed character literal is any symbol between two single quotation
marks (ASCII single quotation character '), excluding newline symbols (CR and
LF), the single quotation mark itself and the escaping mark (ASCII backslash
character \).

All character literals have type kotlin.Char.

Escaped characters

A character literal may also contain an escaped symbol of two kinds: a simple
escaped symbol or a Unicode codepoint. Simple escaped symbols include:

• \t — the Unicode TAB symbol (U+0009);
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• \b — the Unicode BACKSPACE symbol (U+0008);
• \r — CR;
• \n — LF ;
• \' — the Unicode apostrophe symbol (U+0027);
• \" — the Unicode double quotation symbol (U+0028);
• \\ — the Unicode backslash symbol (U+005C);
• \$ — the Unicode DOLLAR sign (U+0024).

A Unicode codepoint escaped symbol is the symbol \u followed by exactly four
hexadecimal digits. It represents the Unicode symbol with the codepoint equal
to the number represented by these four digits.

Note: this means Unicode codepoint escaped symbols support only
Unicode symbols in range from U+0000 to U+FFFF.

8.1.6 String literals
Kotlin supports string interpolation which supersedes traditional string literals.
For further details, please refer to the corresponding section.

8.1.7 Null literal
The keyword null denotes the null reference, which represents an absence
of a value and is a valid value only for nullable types. Null reference has type
kotlin.Nothing? and is, by definition, the only value of this type.

8.2 Constant expressions
We use the term “constant expression” to refer to any expression constructed of
the following:

• constant literals
• access expressions to enum entries
• string interpolation over constant expressions
• an implementation-defined set of functions that can always be evaluated

at compile-time

8.3 String interpolation expressions
stringLiteral:

lineStringLiteral
| multiLineStringLiteral

lineStringLiteral:
'"' {lineStringContent | lineStringExpression} '"'
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multiLineStringLiteral:
'"""' {multiLineStringContent | multiLineStringExpression | '"'}
TRIPLE_QUOTE_CLOSE

lineStringContent:
LineStrText
| LineStrEscapedChar
| LineStrRef

lineStringExpression:
'${'
{NL}
expression
{NL}
'}'

multiLineStringContent:
MultiLineStrText
| '"'
| MultiLineStrRef

multiLineStringExpression:
'${'
{NL}
expression
{NL}
'}'

String interpolation expressions replace the traditional string literals and super-
sede them. A string interpolation expression consists of one or more fragments
of two different kinds: string content fragments (raw pieces of string content
inside the quoted literal) and interpolated expression fragments, specified by a
special syntax using the $ symbol.

Interpolated expressions support two different forms.

• $id, where id is a simple path available in the current scope;
• ${e}, where e is a valid Kotlin expression.

Note: the first form requires id to be a simple path; if you want to
reference a qualified path (e.g., foo.bar), you should use the second
form as ${foo.bar}.

In either case, the interpolated value is evaluated and converted into
kotlin.String by a process defined below. The resulting value of a string
interpolation expression is the concatenation of all fragments in the expression.

An interpolated value v is converted to kotlin.String according to the following
convention:

• If it is equal to the null reference, the result is "null";
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• Otherwise, the result is v.toString() where toString is the kotlin.Any
member function (no overloading resolution is performed to choose this
function in this context).

There are two kinds of string interpolation expressions: line interpolation ex-
pressions and multiline (or raw) interpolation expressions. The difference is that
some symbols (namely, newline symbols) are not allowed to be used inside line
interpolation expressions and they need to be escaped in the same way they
are escaped in character literals. On the other hand, multiline interpolation
expressions allow such symbols inside them, but do not allow single character
escaping of any kind.

Note: among other things, this means that escaping of the $ symbol
is impossible in multiline strings. If you need an escaped $ symbol,
use an interpolated expression "${'$'}" instead.

String interpolation expression always has type kotlin.String.

Examples:

The following code

val a = "Hello, $x is ${foo()}"
val b = """
Hello, $x
is "${foo()}"
"""

is equivalent to

val a = "Hello, " + (x?.toString() ?: "null") +
" is " + (foo()?.toString() ?: "null")

val b = "\nHello, " + (x?.toString() ?: "null") +
"\nis \"" + (foo()?.toString() ?: "null") + "\"\n"

8.4 Try-expressions
tryExpression:

'try' {NL} block ((({NL} catchBlock {{NL} catchBlock}) [{NL} finally-
Block]) | ({NL} finallyBlock))

catchBlock:
'catch'
{NL}
'('
{annotation}
simpleIdentifier
':'
type
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[{NL} ',']
')'
{NL}
block

finallyBlock:
'finally' {NL} block

A try-expression is an expression starting with the keyword try. It consists of a
code block (try body) and one or more of the following kinds of blocks: zero or
more catch blocks and an optional finally block. A catch block starts with the soft
keyword catch with a single exception parameter, which is followed by a code
block. A finally block starts with the soft keyword finally, which is followed
by a code block. A valid try-expression must have at least one catch or finally
block.

The try-expression evaluation evaluates its body; if any statement in the try body
throws an exception (of type E), this exception, rather than being immediately
propagated up the call stack, is checked for a matching catch block. If a catch
block of this try-expression has an exception parameter of type T :> E, this
catch block is evaluated immediately after the exception is thrown and the
exception itself is passed inside the catch block as the corresponding parameter.
If there are several catch blocks which match the exception type, the first one is
picked.

For an in-detail explanation on how exceptions and catch-blocks work, please
refer to the Exceptions section. For a low-level explanation, please refer to the
platform-specific parts of this document.

If there is a finally block, it is evaluated after the evaluation of all previous
try-expression blocks, meaning:

• If no exception is thrown during the evaluation of the try body, no catch
blocks are executed, the finally block is evaluated after the try body, and
the program execution continues as normal.

• If an exception was thrown, and one of the catch blocks matched its type,
the finally block is evaluated after the evaluation of the matching catch
block.

• If an exception was thrown, but no catch block matched its type, the finally
block is evaluated before propagating the exception up the call stack.

The value of the try-expression is the same as the value of the last expression of
the try body (if no exception was thrown) or the value of the last expression of
the matching catch block (if an exception was thrown and matched). All other
situations mean that an exception is going to be propagated up the call stack,
and the value of the try-expression is undefined.

Note: as described, the finally block (if present) is always executed,
but has no effect on the value of the try-expression.
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The type of the try-expression is the least upper bound of the types of the last
expressions of the try body and the last expressions of all the catch blocks.

Note: these rules mean the try-expression always may be used as an
expression, as it always has a corresponding result value.

8.5 Conditional expressions
ifExpression:

'if'
{NL}
'('
{NL}
expression
{NL}
')'
{NL}
(controlStructureBody | ([controlStructureBody] {NL} [';'] {NL} 'else'
{NL} (controlStructureBody | ';')) | ';')

Conditional expressions use a boolean value of one expression (condition) to
decide which of the two control structure bodies (branches) should be evaluated.
If the condition evaluates to true, the first branch (the true branch) is evaluated
if it is present, otherwise the second branch (the false branch) is evaluated if it
is present.

Note: this means the following branchless conditional expression,
despite being of almost no practical use, is valid in Kotlin

if (condition) else;

The value of the resulting expression is the same as the value of the chosen
branch.

The type of the resulting expression is the least upper bound of the types of two
branches, if both branches are present. If either of the branches are omitted, the
resulting conditional expression has type kotlin.Unit and may be used only as
a statement.

Example:

// x has type kotlin.Int and value 1
val x = if (true) 1 else 2
// illegal, as if expression without false branch
// cannot be used as an expression
val y = if (true) 1

The type of the condition expression must be a subtype of kotlin.Boolean,
otherwise it is a compile-time error.
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Note: when used as expressions, conditional expressions are special
w.r.t. operator precedence: they have the highest priority (the same
as for all primary expressions) when placed on the right side of any
binary expression, but when placed on the left side, they have the
lowest priority. For details, see Kotlin grammar.

Example:

x = if (true) 1 else 2

is the same as

x = (if (true) 1 else 2)

At the same time

if (true) x = 1 else x = 2

is the same as

if (true) (x = 1) else (x = 2)

8.6 When expressions
whenExpression:

'when'
{NL}
[whenSubject]
{NL}
'{'
{NL}
{whenEntry {NL}}
{NL}
'}'

whenEntry:
(whenCondition {{NL} ',' {NL} whenCondition} [{NL} ','] {NL} '->'
{NL} controlStructureBody [semi])
| ('else' {NL} '->' {NL} controlStructureBody [semi])

whenCondition:
expression
| rangeTest
| typeTest

rangeTest:
inOperator {NL} expression

typeTest:
isOperator {NL} type
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When expression is similar to a conditional expression in that it allows one of
several different control structure bodies (cases) to be evaluated, depending on
some boolean conditions. The key difference is that a when expressions may
include several different conditions with their corresponding control structure
bodies. When expression has two different forms: with bound value and without
it.

When expression without bound value (the form where the expression
enclosed in parentheses after the when keyword is absent) evaluates one of the
different CSBs based on its condition from the when entry. Each when entry
consists of a boolean condition (or a special else condition) and its corresponding
CSB. When entries are checked and evaluated in their order of appearance. If
the condition evaluates to true, the corresponding CSB is evaluated and the
value of when expression is the same as the value of the CSB. All remaining
conditions and expressions are not evaluated.

The else condition is a special condition which evaluates to true if none of the
branches above it evaluated to true. The else condition must also be in the
last when entry of when expression, otherwise it is a compile-time error.

Note: informally, you can always replace the else condition with an
always-true condition (e.g., boolean literal true) with no changes
to the result of when expression.

When expression with bound value (the form where the expression enclosed
in parentheses after the when keyword is present) is similar to the form without
bound value, but uses a different syntax and semantics for conditions. In fact, it
supports four different condition forms:

• Type test condition: type checking operator followed by a type (is T or
!is T). The resulting condition is a type check expression of the form
boundValue is T or boundValue !is T.

• Contains test condition: containment operator followed by an expression
(in Expr or !in Expr). The resulting condition is a containment check
expression of the form boundValue in Expr or boundValue !in Expr.

• Any other applicable expression (Expr) The resulting condition is an equal-
ity check of the form boundValue == Expr.

• The else condition, which is a special condition which evaluates to true
if none of the branches above it evaluated to true. The else condition
must also be in the last when entry of when expression, otherwise it is a
compile-time error.

Note: the rule for “any other expression” means that if a when expres-
sion with bound value contains a boolean condition, this condition is
checked for equality with the bound value, instead of being used
directly for when entry selection.

Note: in Kotlin version 1.3 and earlier, simple (unlabeled) break and
continue expressions were disallowed in when expressions.
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The type of the resulting when expression is the least upper bound of the types
of all its entries. If when expression is not exhaustive, it has type kotlin.Unit
and may be used only as a statement.

Examples:

val a = 42
val b = -1

when {
a == b -> {}
a != b -> {}

}

// Error, as it is a non-exhaustive when expression
val c = when {

a == b -> {}
a != b -> {}

}

val d = when {
a == b -> {}
a != b -> {}
else -> {}

}

when {
a == b || a != b -> {}
42 > 0 -> {}

}

val a = 42
val b = -1

val l = (1..10).toList()

when (a) {
is Int, !is Int -> {}
in l, !in l -> {}

}

// Error, as it is a non-exhaustive when expression
val c = when (a) {

is Int, !is Int -> {}
in l, !in l -> {}

}
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val d = when (a) {
is Int, !is Int -> {}
in l, !in l -> {}
else -> {}

}

When with bound value also allows for an in-place property declaration of the
form when (val V = E) { ... } inside the parentheses. This declares a new
property (see declaration sections for details) alongside the usual mechanics of
the when-expression. The scope of this property is limited to the when expression,
including both conditions and control structure bodies of the expression. As
its form is limited to a simple “assignment-like” declaration with an initializer,
this property does not allow getters, setters, delegation or destructuring. It
is also required to be immutable. Conceptually, it is very similar to declaring
such a property before the when-expression and using it as subject, but with a
difference in scoping of this property described above.

Example:

when(val a = b + c) {
!is Foo -> a + 1
else -> b

}

val y = a // illegal, a is not visible here anymore

8.6.1 Exhaustive when expressions
A when expression is called exhaustive if at least one of the following is true:

• It has an else entry;
• It has a bound value and at least one of the following is true:

– The bound expression is of type kotlin.Boolean and the conditions
contain both:

∗ A constant expression evaluating to true;
∗ A constant expression evaluating to false;

– The bound expression is of a sealed class or interface S and all of its
direct non-sealed subtypes T1, . . . , Tn are covered in this expression. A
subtype Ti is considered covered if when expression contains one of
the following:

∗ a type test condition is Sj , where Sj <: S, Ti <: Sj ;
∗ a type test condition !is Sj , where Sj <: S, Ti ��<: Sj , ∃k ≠ i :

Tk <: Sj .
Note: in case the set of direct non-sealed subtypes for sealed
type S is empty (i.e., its sealed hierarchy is uninhabited), the
exhaustiveness of when expression is implementation-defined.

Additionally, an enum subtype Ei is considered covered also if all its
enumerated values are checked for equality using constant expression;
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– The bound expression is of an enum class type and all its enumerated
values are checked for equality using constant expression;

– The bound expression is of a nullable type T? and one of the cases
above is met for its non-nullable counterpart T together with another
condition which checks the bound value for equality with null.

For object types, the type test condition may be replaced with equality check
with the object value.

Note: if one were to override equals for an object type incorrectly
(i.e., so that an object is not equal to itself), it would break the
exhaustiveness check. It is unspecified whether this situation leads
to an exception or an undefined value for this when expression.

sealed class Base
class Derived1: Base()
object Derived2: Base()

val b: Base = ...

val c = when(b) {
is Derived1 -> ...
Derived2 -> ...
// no else needed here

}

sealed interface I1
sealed interface I2
sealed interface I3

class D1 : I1, I2
class D2 : I1, I3

sealed class D3 : I1, I3

fun foo() {
val b: I1 = mk()

val c = when(a) {
!is I3 -> {} // covers D1
is D2 -> {} // covers D2
// D3 is sealed and does not take part
// in the exhaustiveness check

}
}

Informally: an exhaustive when expression is guaranteed to evaluate
one of its CSBs regardless of the specific when conditions.
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8.7 Logical disjunction expressions
disjunction:

conjunction {{NL} '||' {NL} conjunction}

Operator symbol || performs logical disjunction over two values of type
kotlin.Boolean. This operator is lazy, meaning that it does not evaluate the
right hand side argument unless the left hand side argument evaluated to false.

Both operands of a logical disjunction expression must have a type which is a
subtype of kotlin.Boolean, otherwise it is a compile-time error. The type of
logical disjunction expression is kotlin.Boolean.

8.8 Logical conjunction expressions
conjunction:

equality {{NL} '&&' {NL} equality}

Operator symbol && performs logical conjunction over two values of type
kotlin.Boolean. This operator is lazy, meaning that it does not evaluate
the right hand side argument unless the left hand side argument evaluated to
true.

Both operands of a logical conjunction expression must have a type which is a
subtype of kotlin.Boolean, otherwise it is a compile-time error. The type of
logical disjunction expression is kotlin.Boolean.

8.9 Equality expressions
equality:

comparison {equalityOperator {NL} comparison}

equalityOperator:
'!='
| '!=='
| '=='
| '==='

Equality expressions are binary expressions involving equality operators. There
are two kinds of equality operators: reference equality operators and value equality
operators.

8.9.1 Reference equality expressions
Reference equality expressions are binary expressions which use reference equality
operators: === and !==. These expressions check if two values are equal (===)
or non-equal (!==) by reference: two values are equal by reference if and only if
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they represent the same runtime value. In particular, this means that two values
acquired by the same constructor call are equal by reference, while two values
created by two different constructor calls are not equal by reference. A value
created by any constructor call is never equal by reference to a null reference.

There is an exception to these rules: values of value classes are not guaranteed
to be reference equal even if they are created by the same constructor invocation
as said constructor invocation is explicitly allowed to be inlined by the compiler.
It is thus highly discouraged to compare value classes by reference.

For special values created without explicit constructor calls, notably, constant
literals and constant expressions composed of those literals, and for values of
value classes, the following holds:

• If these values are non-equal by value, they are also non-equal by reference;
• Any instance of the null reference null is equal by reference to any other

instance of the null reference;
• Otherwise, equality by reference is implementation-defined and should not

be used as a means of comparing such values.

Reference equality expressions always have type kotlin.Boolean.

Kotlin checks the applicability of reference equality operators at compile-time
and may reject certain combinations of types for A and B. Specifically, it uses
the following basic principle.

If type of A and type of B are definitely distinct and not related by
subtyping, A === B is an invalid expression and should result in a
compile-time error.

Informally: this principle means “no two objects of different types
can be equal by reference”.

8.9.2 Value equality expressions
Value equality expressions are binary expressions which use value equality op-
erators: == and !=. These operators are overloadable, but are different from
other overloadable operators in that the expansion depends on the form of the
arguments.

Reference equality contract for the equals method implementation consists of
the following requirements imposed on kotlin.Any.equals override:

1. ∀A, B : A === B =⇒ A.equals(B)
2. ∀A, B : B === null =⇒ !A.equals(B)

The operators themselves have the following expansion:

• A != B is exactly the same as !(A == B);
• A == B has a more complex expansion:
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– If either of A or B is a null literal null, then A == B is exactly the
same as A === B;

– If both of A and B have compile-time types that are built-in floating
point arithmetic types or their nullable variants, then A == B is exactly
the same as (A === null && B === null) || (A !== null && B
!== null && ieee754Equals(A!!, B!!)) where ieee754Equals is
a special intrinsic function unavailable in user-side Kotlin which
performs equality comparison of two floating-point numbers according
to IEEE 754 equality specification;

– Otherwise, A == B is semantically equivalent to (A as? Any)?.equals(B
as Any?) ?: (B === null), assuming that operator equals
abides the reference equality contract. This means that if the
compiler implementation can prove that A === null or B === null
or A === B, this expansion may be optimized to never call equals
function at all.

Note: the expansion involving a call to equals operator function
always resolves to the member function of kotlin.Any as there is
no way to provide a more suitable overload candidate. Furthermore,
it is not possible to write an operator-qualified function with this
name that is not an override of this member function.

Note: the floating-point type expansion given above means that, in
some situations and on some platforms, A == B and (A as Any?) ==
(B as Any?) may produce different results if A and B are floating-
point numbers. For example, on JVM platform the overridden equals
implementation for floating-point numbers does not follow the IEEE
754 definition of equality, so A == A is false, while (A as Any?) ==
(A as Any?) is true if A has a NaN value.

Value equality expressions always have type kotlin.Boolean as does the equals
method in kotlin.Any.

Kotlin checks the applicability of value equality operators at compile-time and
may reject certain combinations of types for A and B. Specifically, it uses the
following basic principle.

If type of A and type of B are definitely distinct and not related by
subtyping, A == B is an invalid expression and should result in a
compile-time error.

Informally: this principle means “no two objects unrelated by sub-
typing can ever be considered equal by ==”.

8.10 Comparison expressions
comparison:

https://ieeexplore.ieee.org/document/8766229
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genericCallLikeComparison {comparisonOperator {NL} genericCallLike-
Comparison}

comparisonOperator:
'<'
| '>'
| '<='
| '>='

Comparison expressions are binary expressions which use the comparison op-
erators: <, >, <= and >=. These operators are overloadable with the following
expansion:

• If both A and B have the same compile-time type which is also one of the
built-in floating point arithmetic types, then:

– A < B is exactly the same as ieee754Less(A, B)
– A > B is exactly the same as ieee754Less(B, A)
– A <= B is exactly the same as ieee754Less(A, B) || ieee754Equals(A,

B)
– A >= B is exactly the same as ieee754Less(B, A) || ieee754Equals(A,

B)
• Otherwise:

– A < B is exactly the same as integerLess(A.compareTo(B), 0)
– A > B is exactly the same as integerLess(0, A.compareTo(B))
– A <= B is exactly the same as !integerLess(0, A.compareTo(B))
– A >= B is exactly the same as !integerLess(A.compareTo(B), 0)

where compareTo is a valid operator function available in the current scope,
integerLess is a special intrinsic function unavailable in user-side Kotlin which
performs integer “less-than” comparison of two integer numbers and ieee754Less
and ieee754Equals are special intrinsic functions unavailable in user-side Kotlin
which perform IEEE 754 compliant “less-than” and equality comparison respec-
tively.

The compareTo operator function must have return type kotlin.Int, otherwise
such declaration is a compile-time error.

All comparison expressions always have type kotlin.Boolean.

8.11 Type-checking and containment-checking
expressions

infixOperation:
elvisExpression {(inOperator {NL} elvisExpression) | (isOperator {NL}
type)}

inOperator:
'in'

https://ieeexplore.ieee.org/document/8766229
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| NOT_IN

isOperator:
'is'
| NOT_IS

8.11.1 Type-checking expressions
A type-checking expression uses a type-checking operator is or !is and has an
expression E as a left-hand side operand and a type name T as a right-hand
side operand. A type-checking expression checks whether the runtime type of E
is a subtype of T for is operator, or not a subtype of T for !is operator.

The type T must be runtime-available, otherwise it is a compile-time error.

If the type T is not a parameterized type, it must be runtime-available, otherwise
it is a compile-time error. If T is a parameterized type, the bare type argument
inference is performed for the compile-time known type of E and the type
constructor TC of T . After that, given the result arguments of this bare type
inference A0, A1 . . . AN , T must suffice the constraint T !! <: TC[A0, A1 . . . AN ],
checking each of its argument for conformance with the type of E.

Example:

interface Foo<A, B>
class Fee<T, U>: Foo<U, T>

fun f(foo: Foo<String, Int>) {
// valid: you can specify parameters
// as long as they correspond to base type
if(foo is Fee<Int, String>) { ... }
// invalid: Fee<String, Int> is not a subtype
// of Foo<String, Int>
if(foo is Fee<String, Int>) { ... }
// valid: may be specified partially
if(foo is Fee<Int, *>) { ... }

T may also be specified without arguments by using the bare type syntax in which
case the same process of bare type argument inference is performed, with the
difference being that the resulting arguments A0, A1 . . . AN are used as arguments
for T directly. If any of these arguments are inferred to be star-projections, this
is a compile-time error.

Example:

interface Foo<A, B>
class Fee<T, U>: Foo<U, T>

fun f(foo: Foo<String, Int>) {
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// valid: same as foo is Fee<Int, String>
if(foo is Fee) { ... }

Type-checking expression always has type kotlin.Boolean.

Note: the expression null is T? for any type T always evaluates to
true, as the type of the left-hand side (null) is kotlin.Nothing?,
which is a subtype of any nullable type T?.

Note: type-checking expressions may create smart casts, for further
details, refer to the corresponding section.

8.11.2 Containment-checking expressions
A containment-checking expression is a binary expression which uses a contain-
ment operator in or !in. These operators are overloadable with the following
expansion:

• A in B is exactly the same as B.contains(A);
• A !in B is exactly the same as !(B.contains(A)).

where contains is a valid operator function available in the current scope.

Note: this means that, contrary to the order of appearance in the code,
the right-hand side expression of a containment-checking expression
is evaluated before its left-hand side expression

The contains function must have a return type kotlin.Boolean, otherwise it
is a compile-time error. Containment-checking expressions always have type
kotlin.Boolean.

8.12 Elvis operator expressions

elvisExpression:
infixFunctionCall {{NL} elvis {NL} infixFunctionCall}

An elvis operator expression is a binary expression which uses an elvis operator
(?:). It checks whether the left-hand side expression is reference equal to null,
and, if it is, evaluates and return the right-hand side expression.

This operator is lazy, meaning that if the left-hand side expression is not
reference equal to null, the right-hand side expression is not evaluated.

The type of elvis operator expression is the least upper bound of the non-nullable
variant of the type of the left-hand side expression and the type of the right-hand
side expression.
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8.13 Range expressions
rangeExpression:

additiveExpression {('..' | '..<') {NL} additiveExpression}

A range expression is a binary expression which uses a range operator .. or a
range-until operator ..<. These are overloadable operators with the following
expansions:

• A..B is exactly the same as A.rangeTo(B)
• A..<B is exactly the same as A.rangeUntil(B)

where rangeTo or rangeUntil is a valid operator function available in the current
scope.

The return type of these functions is not restricted. A range expression has the
same type as the return type of the corresponding operator function overload
variant.

8.14 Additive expressions
additiveExpression:

multiplicativeExpression {additiveOperator {NL} multiplicativeExpression}

additiveOperator:
'+'
| '-'

An additive expression is a binary expression which uses an addition (+) or
subtraction (-) operators. These are overloadable operators with the following
expansions:

• A + B is exactly the same as A.plus(B)
• A - B is exactly the same as A.minus(B)

where plus or minus is a valid operator function available in the current scope.

The return type of these functions is not restricted. An additive expression has
the same type as the return type of the corresponding operator function overload
variant.

8.15 Multiplicative expressions
multiplicativeExpression:

asExpression {multiplicativeOperator {NL} asExpression}

multiplicativeOperator:
'*'
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| '/'
| '%'

A multiplicative expression is a binary expression which uses a multiplication
(*), division (/) or remainder (%) operators. These are overloadable operators
with the following expansions:

• A * B is exactly the same as A.times(B)
• A / B is exactly the same as A.div(B)
• A % B is exactly the same as A.rem(B)

where times, div, rem is a valid operator function available in the current scope.

Note: in Kotlin version 1.3 and earlier, there was an additional
overloadable operator for % called mod, which has been removed in
Kotlin 1.4.

The return type of these functions is not restricted. A multiplicative expression
has the same type as the return type of the corresponding operator function
overload variant.

8.16 Cast expressions
asExpression:

prefixUnaryExpression {{NL} asOperator {NL} type}

asOperator:
'as'
| 'as?'

A cast expression is a binary expression which uses cast operators as or as? and
has the form E as/as? T, where E is an expression and T is a type name.

An as cast expression E as T is called an unchecked cast expression. This
expression perform a runtime check whether the runtime type of E is a subtype
of T and throws an exception otherwise. If type T is a runtime-available type
without generic parameters, then this exception is thrown immediately when
evaluating the cast expression, otherwise it is implementation-defined whether
an exception is thrown at this point.

An unchecked cast expression result always has the same type as the type T
specified in the expression.

An as? cast expression E as? T is called a checked cast expression. This
expression is similar to the unchecked cast expression in that it also does a
runtime type check, but does not throw an exception if the types do not match,
it returns null instead. If type T is not a runtime-available type, then the
check is not performed and null is never returned, leading to potential runtime
errors later in the program execution. This situation should be reported as a
compile-time warning.
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If type T is a runtime-available type with generic parameters, type parameters
are not checked w.r.t. subtyping. This is another potentially erroneous situation,
which should be reported as a compile-time warning.

Similarly to type checking expressions, some type arguments may be excluded
from this check if they are known from the supertype of E and, if all type
arguments of T can be inferred, they may be omitted altogether using the bare
type syntax. See type checking section for explanation.

The checked cast expression result has the type which is the nullable variant of
the type T specified in the expression.

Note: cast expressions may create smart casts, for further details,
refer to the corresponding section.

8.17 Prefix expressions
prefixUnaryExpression:

{unaryPrefix} postfixUnaryExpression

unaryPrefix:
annotation
| label
| (prefixUnaryOperator {NL})

prefixUnaryOperator:
'++'
| '--'
| '-'
| '+'
| excl

8.17.1 Annotated expressions
Any expression in Kotlin may be prefixed with any number of annotations. These
do not change the value of the expression and can be used by external tools and
for implementing platform-dependent features. See annotations chapter of this
document for further information and examples of annotations.

8.17.2 Prefix increment expressions
A prefix increment expression is an expression which uses the prefix form of
operator ++. It is an overloadable operator with the following expansion:

• ++A is exactly the same as when(val $tmp = A.inc()) { else -> A =
$tmp; $tmp } where inc is a valid operator function available in the
current scope.
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Informally: ++A assigns the result of A.inc() to A and also returns
it as the result.

For a prefix increment expression ++A expression A must be an assignable expres-
sion. Otherwise, it is a compile-time error.

As the result of inc is assigned to A, the return type of inc must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A prefix increment expression has the same type as the return type of the
corresponding inc overload variant.

8.17.3 Prefix decrement expressions
A prefix decrement expression is an expression which uses the prefix form of
operator --. It is an overloadable operator with the following expansion:

• --A is exactly the same as when(val $tmp = A.dec()) { else -> A =
$tmp; $tmp } where dec is a valid operator function available in the
current scope.

Informally: --A assigns the result of A.dec() to A and also returns
it as the result.

For a prefix decrement expression --A expression A must be an assignable
expression. Otherwise, it is a compile-time error.

As the result of dec is assigned to A, the return type of dec must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A prefix decrement expression has the same type as the return type of the
corresponding dec overload variant.

8.17.4 Unary minus expressions
An unary minus expression is an expression which uses the prefix form of operator
-. It is an overloadable operator with the following expansion:

• -A is exactly the same as A.unaryMinus() where unaryMinus is a valid
operator function available in the current scope.

No additional restrictions apply.

8.17.5 Unary plus expressions
An unary plus expression is an expression which uses the prefix form of operator
+. It is an overloadable operator with the following expansion:

• +A is exactly the same as A.unaryPlus() where unaryPlus is a valid
operator function available in the current scope.

No additional restrictions apply.
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8.17.6 Logical not expressions
A logical not expression is an expression which uses the prefix operator !. It is
an overloadable operator with the following expansion:

• !A is exactly the same as A.not() where not is a valid operator function
available in the current scope.

No additional restrictions apply.

8.18 Postfix operator expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix

postfixUnaryOperator:
'++'
| '--'
| ('!' excl)

8.18.1 Postfix increment expressions
A postfix increment expression is an expression which uses the postfix form of
operator ++. It is an overloadable operator with the following expansion:

• A++ is exactly the same as when(val $tmp = A) { else -> A =
$tmp.inc(); $tmp } where inc is a valid operator function available in
the current scope.

Informally: A++ stores the value of A to a temporary variable, assigns
the result of A.inc() to A and then returns the temporary variable
as the result.

For a postfix increment expression A++ expression A must be assignable expres-
sions. Otherwise, it is a compile-time error.

As the result of inc is assigned to A, the return type of inc must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A postfix increment expression has the same type as its operand expression (for
our examples, the type of A).
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8.18.2 Postfix decrement expressions
A postfix decrement expression is an expression which uses the postfix form of
operator --. It is an overloadable operator with the following expansion:

• A-- is exactly the same as when(val $tmp = A) { else -> A =
$tmp.dec(); $tmp } where dec is a valid operator function available in
the current scope.

Informally: A-- stores the value of A to a temporary variable, assigns
the result of A.dec() to A and then returns the temporary variable
as the result.

For a postfix decrement expression A-- expression A must be assignable expres-
sions. Otherwise, it is a compile-time error.

As the result of dec is assigned to A, the return type of dec must be a subtype
of A. Otherwise, such declaration is a compile-time error.

A postfix decrement expression has the same type as its operand expression (for
our examples, the type of A).

8.19 Not-null assertion expressions
A not-null assertion expression is a postfix expression which uses an operator !!.
For an expression e!!, if the type of e is nullable, a not-null assertion expression
checks whether the evaluation result of e is equal to null and, if it is, throws a
runtime exception. If the evaluation result of e is not equal to null, the result
of e!! is the evaluation result of e.

If the type of e is non-nullable, not-null assertion expression e!! has no effect.

The type of not-null assertion expression is the non-nullable variant of the type
of e.

Note: this type may be non-denotable in Kotlin and, as such, may
be approximated in some situations with the help of type inference.

8.20 Indexing expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix



8.21. CALL AND PROPERTY ACCESS EXPRESSIONS 181

indexingSuffix:
'['
{NL}
expression
{{NL} ',' {NL} expression}
[{NL} ',']
{NL}
']'

An indexing expression is a suffix expression which uses one or more subexpres-
sions as indices between square brackets ([ and ]).

It is an overloadable operator with the following expansion:

• A[I_0,I_1,...,I_N] is exactly the same as A.get(I_0,I_1,...,I_N),
where get is a valid operator function available in the current scope.

An indexing expression has the same type as the corresponding get expression.

Indexing expressions are assignable, for a corresponding assignment form, see
here.

8.21 Call and property access expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

postfixUnarySuffix:
postfixUnaryOperator
| typeArguments
| callSuffix
| indexingSuffix
| navigationSuffix

navigationSuffix:
memberAccessOperator {NL} (simpleIdentifier | parenthesizedExpression |
'class')

callSuffix:
[typeArguments] (([valueArguments] annotatedLambda) | valueArguments)

annotatedLambda:
{annotation} [label] {NL} lambdaLiteral

valueArguments:
'(' {NL} [valueArgument {{NL} ',' {NL} valueArgument} [{NL} ',']
{NL}] ')'

typeArguments:
'<'
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{NL}
typeProjection
{{NL} ',' {NL} typeProjection}
[{NL} ',']
{NL}
'>'

typeProjection:
([typeProjectionModifiers] type)
| '*'

typeProjectionModifiers:
typeProjectionModifier {typeProjectionModifier}

memberAccessOperator:
({NL} '.')
| ({NL} safeNav)
| '::'

8.21.1 Navigation operators
Expressions which use the navigation binary operators (., ?. or ::) are
syntactically similar, but, in fact, may have very different semantics.

a.c may have one of the following semantics when used as an expression:

• A fully-qualified type, property or object name. The left side of . must be
a value available in the current scope, while the right side corresponds to
a declaration in the scope of that value.

Note: qualification uses operator . only.

• A property access. Here a is a value available in the current scope and c is
a property name.

Note: the navigation operator . is closely related to the concept of
paths.

If followed by the call suffix (arguments in parentheses), a.c() may have one of
the following semantics when used as an expression:

• A function call; here a is a value available in the current scope and c is a
function name;

• A property access with invoke-convention; here a is a value available in
the current scope and c is a property name.

These expressions follow the overloading rules.

a::c may have one of the following semantics when used as an expression:

• A class literal expression if, instead of an identifier, c is the keyword class;
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• A property reference. Here a may be either a value available in the current
scope or a type name, and c is a property name.

• A function reference. Here a may be either a value available in the current
scope or a type name, and c is a function name.

a?.c is a safe navigation operator, which has the following expansion:

• a?.c is exactly the same as

when (val $tmp = a) {
null -> null
else -> { $tmp.c }

}

for any right-hand combinations of operators present in c, which are
expanded further, as usual.

The type of a?.c is the nullable variant of the type of a.c.

Note: safe navigation expression may also include the call suffix as
a?.c()and is expanded in a similar fashion.

8.21.2 Callable references
Callable references are a special kind of expressions used to refer to callables
(properties and functions) without actually calling/accessing them. They are not
to be confused with class literals which use similar syntax, but with the keyword
class instead of an identifier.

A callable reference A::c where A is a type name and c is a name of a callable
available for type A is a callable reference for type A. A callable reference e::c
where e is an expression of type E and c is a name of a callable available for
type E is a callable reference for expression e. The exact callable selected when
using this syntax is based on overload resolution much like when accessing the
value of a property using the . navigation operator. However, in some cases
there are important differences which we cover in the corresponding paragraphs.

Depending on the meaning of the left-hand and right-hand sides of a callable
reference lhs::rhs, the value of the whole expression is defined as follows.

• If lhs is a type, but not a value (an example of a type which can also
be used as a value is an object type), while rhs is resolved to refer to a
property of lhs, lhs::rhs is a type-property reference;

• If lhs is a type, but not a value (an example of a type which can also
be used as a value is an object type), while rhs is resolved to refer to a
function available on rhs, lhs::rhs is a type-function reference;

• If lhs is a value, while rhs is resolved to refer to a property of lhs,
lhs::rhs is a value-property reference;

• If lhs is a value, while rhs is resolved to refer to a function available on
rhs, lhs::rhs is a value-function reference.
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Important: callable references to callables which are a member and
an extension (that is, an extension to one type declared as a member
of a classifier) are forbidden

Examples:

class A {
val a: Int = 42

fun a(): String = "TODO()"

companion object {
val bProp: Int = 42

fun bFun(): String = "TODO()"
}

}

object O {
val a: Int = 42

fun a(): String = "TODO()"
}

fun main() {
// Error: ambiguity between two possible callables
// val errorAmbiguity = A::a

// Error: cannot reference companion object implicitly
// val errorCompanion = A::bFun

val aTypePropRef: (A) -> Int = A::a

val aTypeFunRef: (A) -> String = A::a

val aValPropRef: () -> Int = A()::a

val aValFunRef: () -> String = A()::a

// Error: object type behave as values
// val oTypePropRef: (O) -> Int = O::a

// Error: object types behave as values
// val oTypeFunRef: (O) -> String = O::a

val oValPropRef: () -> Int = O::a
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val oValFunRef: () -> String = O::a
}

The types of these expressions are implementation-defined, but the following
constraints must hold:

• The type of any property reference is a subtype of kotlin.reflect.KProperty<T>,
where the type parameter T is fixed to the type of the property;

• The type of any function reference is a subtype of kotlin.reflect.KFunction<T>,
where the type parameter T is fixed to the return type of the function;

• The type of any callable reference is a subtype of function type which
allows the corresponding callable to be accessed/called accordingly.

– For a type-callable reference lhs::rhs, it is a function type (O, Arg0
... ArgN) -> R, where O is a receiver type (type of lhs), Arg0, ...
, ArgN are either empty (for a property reference) or the types of
function formal parameters (for a function reference), and R is the
result type of the callable;

– For a value-callable reference lhs::rhs, it is a function type (Arg0
... ArgN) -> R, where Arg0, ... , ArgN are either empty (for a
property reference) or the types of function formal parameters (for
a function reference), and R is the result type of the callable. The
receiver of such callable reference is bound to lhs.

Being of a function type also means callable references are valid callables them-
selves, with an appropriate operator invoke overload, which allows using call
syntax to evaluate such callable with the suitable arguments.

Informally: one may say that any callable reference is essentially the
same as a lambda literal with the corresponding number of arguments,
delegating to the callable being referenced.

Please note that the above holds for resolved callable references, where it is
known what entity a particular reference references. In the general case, however,
it is unknown as the overload resolution must be performed first. Please refer to
the corresponding section for details.

8.21.3 Class literals
A class literal is similar in syntax to a callable reference, with the difference
being that it uses the keyword class. Similar to callable references, there are
two forms of class literals: type and value class literals.

Note: class literals are one of the few cases where a parameterized
type may (and actually must) be used without its type parameters.

All class literals lhs::class are of type kotlin.KClass<T> and produce a
platform-defined object associated with type T, which, in turn, is either the
lhs type or the runtime type of the lhs value. In both cases, T must be a
runtime-available non-nullable type. As the runtime type of any expression
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cannot be known at compile time, the compile-time type of a class literal is
kotlin.KClass<U> where T <: U and U is the compile-time type of lhs.

A class literal can be used to access platform-specific capabilities of the runtime
type information available on the current platform, either directly or through
reflection facilities.

8.21.4 Function calls and property access
Function call expression is an expression used to invoke functions. Property
access expression is an expression used to access properties.

There are two kinds of both: with and without explicit receiver (the left-hand
side of the . operator). For details on how a particular candidate and receiver
for a particular call / property access is chosen, please refer to the Overload
resolution section.

Important: in some cases function calls are syntactically indistin-
guishable from property accesses with invoke-convention call suffix.

From this point on in this section we well refer to both as function calls. As
described in the function declaration section, function calls receive arguments of
several different kinds:

• Explicit receiver argument, used in calls with explicit receivers;
• Normal arguments, provided directly inside the parentheses part of the

call;
• Named arguments in the form identifier = value, where identifier

is a parameter name used at declaration-site of the function;
• Variable length arguments, provided the same way as normal arguments;
• A trailing lambda literal argument, specified outside the parentheses (see

lambda literal section for details).

In addition to these, a function declaration may specify a number of default
parameters, which allow one to omit specifying them at call-site, in which case
their default value is used during the evaluation.

The evaluation of a function call begins with the evaluation of its explicit receiver,
if it is present. Function arguments are then evaluated in the order of their
appearance in the function call left-to-right, with no consideration on how
the parameters of the function were specified during function declaration. This
means that, even if the order at declaration-site was different, arguments at call-
site are evaluated in the order they are given. Default arguments not specified
in the call are all evaluated after all provided arguments, in the order of their
appearance in function declaration. Afterwards, the function itself is invoked.

Note: this means default argument expressions which are used (i.e.,
for which the call-site does not provide explicit arguments) are reeval-
uated at every such call-site. Default argument expressions which
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are not used (i.e., for which the call-site provides explicit arguments)
are not evaluated at such call-sites.

Examples: we use a notation similar to the control-flow section to
illustrate the evaluation order.

fun f(x: Int = h(), y: Int = g())
...
f() // $1 = h(); $2 = g(); $result = f($1, $2)
f(m(), n()) // $1 = m(); $2 = n(); $result = f($1, $2)
f(y = n(), x = m()) // $1 = n(); $2 = m(); $result = f($2, $1)
f(y = n()) // $1 = n(); $2 = h(); $result = f($2, $1)

fun f(x: Int = h(), y: () -> Int)
...
f(y = {2}) // $1 = {2}; $2 = h(); $result = f($2, $1)
f { 2 } // $1 = {2}; $2 = h(); $result = f($2, $1)
f(m()) { 2 } // $1 = m(); $2 = {2}; $result = f($1, $2)

Operator calls work in a similar way: every operator evaluates in the same order
as its expansion does, unless specified otherwise.

Note: this means that the containment-checking operators are effec-
tively evaluated right-to-left w.r.t. their expansion.

8.21.5 Spread operator expressions
postfixUnaryExpression:

primaryExpression {postfixUnarySuffix}

Spread operator expression is a special kind of expression which is only applicable
in the context of calling a function with variable length parameters. For a spread
operator expression *E it is required that E is of an array type and the expression
itself is used as a value argument to a function call. This allows passing an array
as a spread value argument, providing the elements of an array as the variable
length argument of a callable. It is allowed to mix spread arguments with regular
arguments, all fitting into the same variable length argument slot, with elements
of all spread arguments supplied in sequence.

Example:

fun foo(vararg c: String) { ... }
...
val a: String = "a"
val b: Array<String> = arrayOf("b", "c", "d")
val c: String = "e"
val d: Array<String> = arrayOf()
val e: Array<String> = arrayOf("f", "g")
...
foo(a, *b, c, *d, *e)



188 CHAPTER 8. EXPRESSIONS

// is equivalent to
foo("a", "b", "c", "d", "e", "f", "g")

Spread operator expressions are not allowed in any other context. See Variable
length parameter section for details.

The type of a spread argument must be a subtype of ATS(kotlin.Array(out T ))
for a variable length parameter of type T .

Example: for parameter vararg a: Int the type of a corresponding
spread argument must be a subtype of IntArray, for parameter
vararg b: T where T is a classifier type the type of a corresponding
spread argument must be a subtype of Array<out T>.

8.22 Function literals
Kotlin supports using functions as values. This includes, among other things,
being able to use named functions (via function references) as parts of expres-
sions. However, sometimes it does not make much sense to provide a separate
function declaration, when one would rather define a function in-place. This is
implemented using function literals.

There are two types of function literals in Kotlin: lambda literals and anonymous
function declarations. Both of these provide a way of defining a function in-place,
but have a number of differences which we discuss in their respective sections.

8.22.1 Anonymous function declarations
anonymousFunction:

['suspend']
{NL}
'fun'
[{NL} type {NL} '.']
{NL}
parametersWithOptionalType
[{NL} ':' {NL} type]
[{NL} typeConstraints]
[{NL} functionBody]

Anonymous function declarations, despite their name, are not declarations per
se, but rather expressions which resemble function declarations. They have a
syntax very similar to function declarations, with the following key differences:

• Anonymous functions do not have a name;
• Anonymous functions cannot have type parameters;
• Anonymous functions cannot have default parameters;
• Anonymous functions may have variable length parameters, but they are au-

tomatically decayed to non-variable length parameters of the corresponding
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array type via array type specialization;
• Anonymous functions may omit formal parameter types and return type,

if they can be inferred from the context.

Anonymous function declaration can declare an anonymous extension function
by following the extension function declaration convention.

Note: as anonymous functions may not have type parameters, you
cannot declare an anonymous extension function on a parameterized
receiver type.

The type of an anonymous function declaration is the function type constructed
similarly to a named function declaration.

8.22.2 Lambda literals
lambdaLiteral:

'{'
{NL}
[[lambdaParameters] {NL} '->' {NL}]
statements
{NL}
'}'

lambdaParameters:
lambdaParameter {{NL} ',' {NL} lambdaParameter} [{NL} ',']

lambdaParameter:
variableDeclaration
| (multiVariableDeclaration [{NL} ':' {NL} type])

Lambda literals are similar to anonymous function declarations in that they
define a function with no name. Unlike them, however, lambdas use very different
syntax, similar to control structure bodies of other expressions.

Every lambda literal consists of an optional lambda parameter list, specified
before the arrow (->) operator, and a body, which is everything after the arrow
operator.

Lambda body introduces a new statement scope.

Lambda literals have the same restrictions as anonymous function declarations,
but additionally cannot have vararg parameters.

Lambda literals can introduce destructuring parameters. Lambda parameter
of the form (a, b, ..., n) (note the parenthesis) declares a destructuring
formal parameter, which references the actual argument and its componentN()
functions as follows (see the operator overloading section for details).

val plus: (Pair<Int, Double>) -> String = { (i, d) ->
"$i + $d = ${i + d}"
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}

val plus: (Pair<Int, Double>) -> String = { p ->
val i = p.component1()
val d = p.component2()
"$i + $d = ${i + d}"

}

If a lambda expression has no parameter list, it can be defining a function with
either zero or one parameter, the exact case dependent on the use context of
this lambda. The selection of number of parameters in this case is performed
during type inference.

If a lambda expression has no explicit parameter list, but does have one parameter,
this parameter can be accessed inside the lambda body using a special property
called it.

Note: having no explicit parameter list (no arrow operator) in a
lambda is different from having zero parameters (nothing preceding
the arrow operator).

Any lambda may define either a normal function or an extension function, the
exact case dependent on the use context of the lambda. If a lambda expression
defines an extension function, its extension receiver may be accessed using the
standard this syntax inside the lambda body.

Lambda literals are different from other forms of function declarations in that
non-labeled return expressions inside lambda body refer to the outer non-lambda
function the expression is used in rather than the lambda expression itself. Such
non-labeled returns are only allowed if the lambda and all its parent lambdas (if
present) are guaranteed to be inlined, otherwise it is a compile-time error.

If a lambda expression is labeled, it can be returned from using a labeled return
expression.

If a non-labeled lambda expression is used as a parameter to a function call,
the name of the function called may be used as a label.

If a labeled return expression is used when there are several matching labels
available (e.g., inside several nested function calls with the same name), this is
resolved as return to the nearest matching label.

Example:

// kotlin.run is a standard library inline function
// receiving a lambda parameter

fun foo() { // (1)
run b@ { // (2)

run b@ { // (3)
return; // returns from (1)
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}
}

}

fun bar() { // (1)
run b@ { // (2)

run b@ { // (3)
return@b; // returns from (3)

}
}

}

fun baz() { // (1)
run b@ { // (2)

run c@ { // (3)
return@b; // returns from (2)

}
}

}

fun qux() { // (1)
run { // (2)

run { // (3)
return@run; // returns from (3)

}
}

}

fun quux() { // (1)
run { // (2)

run b@ { // (3)
return@run; // returns from (2)

}
}

}

fun quz() { // (1)
run b@ { // (2)

run b@ { // (3)
return@run; // illegal: both run invocations are labeled

}
}

}

Any properties used inside the lambda body are captured by the lambda
expression and, depending on whether it is inlined or not, affect how these
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properties are processed by other mechanisms, e.g. smart casts. See corresponding
sections for details.

8.23 Object literals
objectLiteral:

['data']
{NL}
'object'
[{NL} ':' {NL} delegationSpecifiers {NL}]
[{NL} classBody]

Object literals are used to define anonymous objects in Kotlin. Anonymous
objects are similar to regular objects, but they (obviously) have no name and
thus can be used only as expressions.

Note: in object literals, only inner classes are allowed; interfaces,
objects or nested classes are forbidden.

Anonymous objects, just like regular object declarations, can have at most one
base class and zero or more base interfaces declared in its supertype specifiers.

The main difference between a regular object declaration and an anonymous
object is its type. The type of an anonymous object is a special kind of type
which is usable (and visible) only in the scope where it is declared. It is similar
to a type of a regular object declaration, but, as it cannot be used outside the
declaring scope, has some interesting effects.

When a value of an anonymous object type escapes current scope:

• If the type has only one declared supertype, it is implicitly downcasted to
this declared supertype;

• If the type has several declared supertypes, there must be an implicit or
explicit cast to any suitable type visible outside the scope, otherwise it is
a compile-time error.

Note: an implicit cast may arise, for example, from the results of
type inference.

Note: in this context “escaping current scope” is performed im-
mediately if the corresponding value is declared as a non-private
global- or classifier-scope property, as those are parts of an externally
accessible interface.

Example:

open class Base
interface I

class M {
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fun bar() = object : Base(), I {}
// Error, as public return type of `bar`
// cannot be anonymous

fun baz(): Base = object : Base(), I {}
// OK, as an anonymous type is implicitly
// cast to Base

private fun qux() = object : Base(), I {}
// OK, as an anonymous type does not escape
// via private functions

private fun foo() = object {
fun bar() { println("foo.bar") }

}

fun test1() = foo().bar()

fun test2() = foo()
// OK, as an anonymous type is implicitly
// cast to Any

}

fun main() {
M().test1() // OK
M().test2().bar() // Error: Unresolved reference: bar

}

8.23.1 Functional interface lambda literals
If a lambda literal is preceded with a functional interface name, this expression
defines an anonymous object, implementing the specified functional interface
via the provided lambda literal (which becomes the implementation of its single
abstract method).

To be a well-formed functional interface lambda literal, the type of lambda literal
must be a subtype of the associated function type of the specified functional
interface.

8.24 This-expressions
thisExpression:

'this'
| THIS_AT

This-expressions are special kind of expressions used to access receivers available
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in the current scope. The basic form of this expression, denoted by a non-
labeled this keyword, is used to access the default implicit receiver according
to the receiver priority. In order to access other implicit receivers, labeled this
expressions are used. These may be any of the following:

• this@type, where type is a name of any classifier currently being declared
(that is, this-expression is located in the inner scope of the classifier
declaration), refers to the implicit object of the type being declared;

• this@function, where function is a name of any extension function
currently being declared (that is, this-expression is located in the function
body), refers to the implicit receiver object of the extension function;

• this@lambda, where lambda is a label provided for a lambda literal cur-
rently being declared (that is, this-expression is located in the lambda
expression body), refers to the implicit receiver object of the lambda
expression;

• this@outerFunction, where outerFunction is the name of a function
which takes lambda literal currently being declared as an immediate argu-
ment (that is, this-expression is located in the lambda expression body),
refers to the implicit receiver object of the lambda expression.

Note: this@outerFunction notation is mutually exclusive with
this@lambda notation, meaning if a lambda literal is labeled
this@outerFunction cannot be used.

Note: this@outerFunction and this@label notations can be
used only in lambda literals which have an extension function
type, i.e., have an implicit receiver.

Important: any other forms of this-expression are illegal and
should result in a compile-time error.

In case there are several entities with the same label, labeled this refers to the
closest label.

Example:

interface B
object C

class A/* receiver (1) */ {
fun B/* receiver (2) */ .foo() {

// `run` is a standard library function
// with an extension lambda parameter
C/* receiver (3) */ .run {

this // refers to receiver (3) of type C
this@A // refers to receiver (1) of type A
// this@B // illegal: B is not being declared
this@foo // refers to receiver (2) of type B
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this@run // refers to receiver (3) of type C
}
C/* receiver (4) */ .run label@{

this // refers to receiver (4) of type C
this@A // refers to receiver (1) of type A
// this@B // illegal: B is not being declared
this@foo // refers to receiver (2) of type B
this@label // refers to receiver (4) of type C
// this@run // illegal: lambda literal is labeled

}
}

}

8.25 Super-forms
superExpression:

('super' ['<' {NL} type {NL} '>'] [AT_NO_WS simpleIdentifier])
| SUPER_AT

Super-forms are special kind of expression which can only be used as receivers
in a call or property access expression. Any use of super-form expression in any
other context is a compile-time error.

Super-forms are used in classifier declarations to access implementations from
the immediate supertypes without invoking overriding behaviour.

If an implementation is not available (e.g., one attempts to access an abstract
method of a supertype in this fashion), this is a compile-time error.

The basic form of this expression, denoted by super keyword, is used to access
the immediate supertype of the currently declared classifier selected as a part
of overload resolution. In order to access a specific supertype implementations,
extended super expressions are used. These may be any of the following:

• super<Klazz>, where Klazz is a name of one of the immediate super-
types of the currently declared classifier, refers to that supertype and its
implementations;

• super<Klazz>@type, where type is a name of any currently declared
classifier and Klazz is a name of one of the immediate supertypes of the
type classifier, refers to that supertype and its implementations.

Note: super<Klazz>@type notation can be used only in inner
classes, as only inner classes can have access to supertypes of
other classes, i.e., supertypes of their parent class.

Example:

interface A {
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fun foo() { println("A") }
}
interface B {

fun foo() { println("B") }
}

open class C : A {
override fun foo() { println("C") }

}

class E : C() {
init {

super.foo() // "C"
super<C>.foo() // "C"

}
}

class D : C(), A, B {
init {

// Error: ambiguity as several immediate supertypes
// with callable `foo` are available here
// super.foo()
super<C>.foo() // "C"
super<B>.foo() // "B"
// Error: A is *not* an immediate supertype,
// as C inherits from A and is considered
// to be "more immediate"
// super<A>.foo()

}

inner class Inner {
init {

// Error: C is not available
// super<C>.foo()
super<C>@D.foo() // "C"
super<B>@D.foo() // "B"

}
}

override fun foo() { println("D") }
}

8.26 Jump expressions
jumpExpression:
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('throw' {NL} expression)
| (('return' | RETURN_AT) [expression])
| 'continue'
| CONTINUE_AT
| 'break'
| BREAK_AT

Jump expressions are expressions which redirect the evaluation of the program to
a different program point. All these expressions have several things in common:

• They all have type kotlin.Nothing, meaning that they never produce
any runtime value;

• Any code which follows such expressions is never evaluated.

8.26.1 Throw expressions
Throw expression throw e allows throwing exception objects. A valid throw
expression throw e requires that:

• e is a value of a runtime-available type;
• e is a value of an exception type.

Throwing an exception results in checking active try-blocks. See the Exceptions
section for details.

8.26.2 Return expressions
A return expression, when used inside a function body, immediately stops
evaluating the current function and returns to its caller, effectively making the
function call expression evaluate to the value specified in this return expression
(if any). A return expression with no value implicitly returns the kotlin.Unit
object.

There are two forms of return expression: a simple return expression, specified
using the non-labeled return keyword, which returns from the innermost function
declaration (or anonymous function declaration), and a labeled return expression
of the form return@Context which works as follows.

• If return@Context is used inside a named function declaration, the name
of the declared function may be used as Context to refer to that function.
If several declarations match the same name, the return@Context is
considered to be from the nearest matching function;

• If return@Context is used inside a non-labeled lambda literal, the name
of the function using this lambda expression as its argument may be used
as Context to refer to the lambda literal;

• If return@Context is used inside a labeled lambda literal, the label may
be used as Context to refer to the lambda literal.
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If a return expression is used in the context of a lambda literal which is not
inlined in the current context and refers to any function scope declared outside
this lambda literal, it is disallowed and should result in a compile-time error.

Note: these rules mean a simple return expression inside a lambda
expression returns from the innermost function in which this
lambda expression is defined. They also mean such return expression
is allowed only inside inlined lambda expressions.

8.26.3 Continue expressions
A continue expression is a jump expression allowed only within loop bodies.
When evaluated, this expression passes the control to the start of the next loop
iteration (aka “continue-jumps”).

There are two forms of continue expressions:

• A simple continue expression, specified using the continue keyword, which
continue-jumps to the innermost loop statement in the current scope;

• A labeled continue expression, denoted continue@Loop, where Loop is a
label of a labeled loop statement L, which continue-jumps to the loop L.

If a continue expression is used in the context of a lambda literal which refers to
any loop scope outside this lambda literal, it is disallowed and should result in a
compile-time error.

8.26.4 Break expressions
A break expression is a jump expression allowed only within loop bodies. When
evaluated, this expression passes the control to the next program point immedi-
ately after the loop (aka “break-jumps”).

There are two forms of break expressions:

• A simple break expression, specified using the break keyword, which
break-jumps to the innermost loop statement in the current scope;

• A labeled break expression, denoted break@Loop, where Loop is a label of
a labeled loop statement L, which break-jumps to the loop L.

If a break expression is used in the context of a lambda literal which refers to
any loop scope outside this lambda literal, it is disallowed and should result in a
compile-time error.
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Operator overloading

Some syntax forms in Kotlin are defined by convention, meaning that their
semantics are defined through syntactic expansion of one syntax form into
another syntax form.

Particular cases of definition by convention include:

• Arithmetic and comparison operators;
• invoke convention;
• Operator-form assignments;
• For-loop statements;
• Delegated properties;
• Destructuring declarations.

Important: another case of definition by convention is safe navigation,
which is covered in more detail in its respective section.

There are several points shared among all the syntax forms defined using definition
by convention:

• The expansions are hygienic: if they introduce new identifiers that were not
present in original syntax, all such identifiers are not accessible outside the
expansion and cannot clash with any other declarations in the program;

• The expressions captured by an expansion are using call-by-need evaluation
strategy, meaning that they are evaluated only once during first usage
specified in the expansion even if the expansion itself has more than one
usage of such an expression;

• An expansion may lead to another expansion, following the same rules;
• All call expressions that are produced by expansion are only allowed to

use operator functions.

This expansion of a particular syntax form to a different piece of code is usually
defined in the terms of operator functions.

199
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Operator functions are function which are declared with a special keyword
operator and are not different from regular functions when called via function
calls. However, operator functions can also be used in definition by convention.

Note: it is not important whether an operator function is a member
or an extension, nor whether it is suspending or not. The only
requirements are the ones listed in the respected sections.

For example, for an operator form a + b where a is of type A and b
is of type B any of the following function definitions are applicable:

class A {
// member function
operator fun plus(b: B) = ...
// suspending member function
suspend operator fun plus(b: B) = ...

}

// extension function
operator fun A.plus(b: B) = ...
// suspending extension function
suspend operator fun A.plus(b: B) = ...

Assuming additional implicit receiver of this type is available, it may
also be an extension defined in another type:

object Ctx {
// extension that is a member of some context type
operator fun A.plus(b: B) = ...

fun add(a: A, b: B) = a + b
}

Note: different platforms may add additional criteria on whether a
function may be considered a suitable candidate for operator conven-
tion.

The details of individual expansions are available in the sections of their respective
operators, here we would like to describe how they interoperate.

For example, take the following declarations:

class A {
operator fun inc(): A { ... }

}

object B {
operator fun get(i: Int): A { ... }
operator fun set(i: Int, value: A) { ... }

}
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object C {
operator fun get(i: Int): B { ... }

}

The expression C[0][0]++ is expanded (see the Expressions section for details)
using the following rules:

• The operations are expanded in order of their priority.

• First, the increment operator is expanded, resulting in:

C[0][0] = C[0][0].inc()

• Second, the assignment to an indexing expression (produced by the previous
expansion) is expanded, resulting in:

C[0].set(C[0][0].inc())

• Third, the indexing expressions are expanded, resulting in:

C.get(0).set(C.get(0).get(0).inc())

Important: although the resulting expression contains several in-
stances of the subexpression C.get(0), as all these instances were
created from the same original syntax form, the subexpression is
evaluated only once, making this code roughly equivalent to:

val $tmp = C.get(0)
$tmp.set($tmp.get(0).inc())

9.1 Destructuring declarations
A special case of definition by convention is the destructuring declaration of
properties, which is available for local properties, parameters of lambda literals
and the iteration variable of for-loops. See the corresponding sections for
particular syntax.

This convention allows to introduce a number (one or more) of properties in
the place of one by immediately destructuring the property during construction.
The immediate value (that is, the initializing expression of the local property,
the value acquired from the operator convention of a for-loop statement, or an
argument passed into a lambda body) is assigned to a number of placeholders
p0, . . . , pN where each placeholder is either an identifier or a special ignoring
placeholder _ (note that _ is not a valid identifier in Kotlin). For each identifier
the corresponding operator function componentK with K being equal to the
position of the placeholder in the declaration (starting from 1) is called
without arguments and the result is assigned to a fresh value referred to as the
identifier used. For each ignoring placeholder, no calls are performed and nothing
is assigned. Each placeholder may be provided with an optional type signature
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TM which is used in type inference as any property type would. Note that an
ignoring placeholder may also be provided with a type signature, in which case
although the call to corresponding componentM function is not performed, it still
must be checked for function applicability during type inference.

Examples:

val (x: A, _, z) = f()

is expanded to

val $tmp = f()
val x: A = $tmp.component1()
val z = $tmp.component3()

where component1 and component3 are suitable operator functions
available on the value returned by f()

for((x: A, _, z) in f()) { ... }

is expanded to (as per for-loop expansion)

when(val $iterator = f().iterator()) {
else -> while ($iterator.hasNext()) {

val $tmp = $iterator.next()
val x: A = $tmp.component1()
val z = $tmp.component3()
...

}
}

where iterator(), next(), hasNext(), component1() and
component3 are all suitable operator functions available on their
respective receivers.

foo { (x: A, _, z) -> ... }

is expanded to

foo { $tmp ->
val x: A = $tmp.component1()
val z = $tmp.component3()
...

}

where component1() and component3 are all suitable operator func-
tions available on the value of lambda argument.
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Packages and imports

A Kotlin project is structured into packages. A package contains one or more
Kotlin files, with files linked to a package using a package header. A file may
contain exactly one or zero package headers, meaning each file belongs to exactly
one package.

Note: an absence of a package header in a file means it belongs to
the special root package.

packageHeader:
['package' identifier [semi]]

Note: Packages are orthogonal from modules. A module may contain
many packages, and a single package can be spread across several
modules.

The name of a package is a simple or a qualified path, which creates a package
hierarchy.

Note: unlike many other languages, Kotlin packages do not require
files to have any specific locations w.r.t. itself; the connection between
a file and its package is established only via a package header. It
is strongly recommended, however, that the folder structure of a
project does correspond to the package hierarchy.

10.1 Importing
Program entities declared in one package may be freely used in any file in
the same package with the only two restrictions being module boundaries and
visibility constraints. In order to use an entity from a file belonging to a different
package, the programmer must use import directives.
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importList:
{importHeader}

importHeader:
'import' identifier [('.' '*') | importAlias] [semi]

importAlias:
'as' simpleIdentifier

An import directive contains a simple or a qualified path, with the name of an
imported entity as its last component. A path may include not only a package,
but also an object or a type, in which case it refers to the companion object of
that type. The last component may reference any named declaration within that
scope (that is, top-level scope of all files in the package or an object declaration
scope) may be imported using their names.

There are two special kinds of imports: star-imports ending in an asterisk (*)
and renaming imports employing the as operator.

Star-imports import all named entities inside the corresponding scope, but have
lesser priority during overload resolution of functions and properties.

Renaming imports work just like regular imports, but introduce the entity into
the current file with the specified name, such that an unqualified access to this
entity is possible only using the newly specified name. This means that renaming
imports of entities from the same package effectively change their unqualified
name.

Example:

package foo

import foo.foo as baz

fun foo() {} // (1)
fun bar() {} // (2)

fun test() {
// Qualified access is unchanged by the renaming import
foo.foo() // resolves to (1)
foo.bar() // resolved to (2)

// Unqualified access considers the rename of `foo` to `baz`
foo() // Unresolved reference
bar() // resolves to (2)
baz() // resolves to (1)

}

Imports from objects have certain limitations: only object members may be
imported and star-imports are not allowed.
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Imports are local to their files, meaning if an entity is introduced into file A.kt
from package foo.bar, it does not introduce that entity to any other file from
package foo.bar.

There are some packages which have all their entities implicitly imported into any
Kotlin file, meaning one can access such entity without explicitly using import
directives.

Note: one may, however, import these entities explicitly if they choose
to do so.

The following packages of the standard library are implicitly imported:

• kotlin
• kotlin.annotation
• kotlin.collections
• kotlin.comparisons
• kotlin.io
• kotlin.ranges
• kotlin.sequences
• kotlin.text
• kotlin.math

Note: platform implementations may introduce additional implic-
itly imported packages, for example, to extend Kotlin code with
the platform-specific functionality. An example of this would be
java.lang package implicitly imported on the JVM platform.

Importing certain entities may be disallowed by their visibility modifiers.

• public entities can be imported anywhere
• internal entities can be imported only within the same module
• protected entities cannot be imported
• top-level private entities can be imported within their declaring file
• other private entities cannot be imported

10.2 Modules
A module is a concept on the boundary between the code itself and the resulting
application, thus it depends on and influences both of them. A Kotlin module
is a set of Kotlin files which are considered to be interdependent and must be
handled together during compilation.

In a simple case, a module is a set of files compiled at the same time in a given
project.

• A set of files being compiled with a single Kotlin compiler invocation
• A Maven module
• A Gradle project
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In a more complicated case involving multi-platform projects, a module may be
distributed across several compilations, projects and/or platforms.

For the purposes of Kotlin/Core, modules are important for internal visibility.
How modules influence particular platforms is described in their respective
sections of this specification.



Chapter 11

Overload resolution

Glossary
type(e)

Type of expression e

Introduction
Kotlin supports overloading for callables and properties, that is, the ability for
several callables (functions or function-like properties) or properties with the
same name to coexist in the same scope, with the compiler picking the most
suitable one when such entity is referenced. This section describes overload
resolution process in detail.

Note: most of this section explains the overload resolution process for
callables, as the overload resolution process for properties uses the
same framework. Important differences w.r.t. properties are covered
in the corresponding section.

Unlike many object-oriented languages, Kotlin does not have only regular class
methods, but also top-level functions, local functions, extension functions and
function-like values, which complicate the overload resolution process quite a
bit. Additionally, Kotlin has infix functions, operator and property overloading,
which add their own specifics to this process.

11.1 Basics

11.1.1 Receivers
Every function or property that is defined as a method or an extension has one
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or more special parameters called receiver parameters. When calling such a
callable using navigation operators (. or ?.) the left hand side value is called
an explicit receiver of this particular call. In addition to the explicit receiver,
each call may indirectly access zero or more implicit receivers.

Implicit receivers are available in a syntactic scope according to the following
rules:

• Any receiver available in a scope is available in its downwards-linked scopes;
• In a classifier declaration scope (including object and companion object

declarations), the declared object is available as implicit this;
• In a classifier declaration scope (including object and companion object

declarations), the static callables of the declared object are available on a
phantom static implicit this;

• If a function or a property is an extension, this parameter of the extension
is also available inside the extension declaration;

• If a lambda expression has an extension function type, this argument
of the lambda expression is also available inside the lambda expression
declaration.

Important: a phantom static implicit this is a special receiver, which
is included in the receiver chain for the purposes of handling static
functions from enum classes. It may also be used on platforms to
handle their static-like entities, e.g., static methods on JVM platform.

The available receivers are prioritized in the following way:

• Receivers provided in the most inner scope have higher priority as ordered
w.r.t. link relation;

• The implicit this receiver has higher priority than phantom static implicit
this;

• The phantom static implicit this receiver has higher priority than the
current class companion object receiver;

• Current class companion object receiver has higher priority than any of
the superclass companion objects;

• Superclass companion object receivers are prioritized according to the
inheritance order.

Important: these rules mean implicit receivers are always totally
ordered w.r.t. their priority, as no two implicit receivers can have
the same priority.

Important: DSL-specific annotations (marked with kotlin.DslMarker
annotation) change the availability of implicit receivers in the
following way: for all types marked with a particular DSL-specific
annotation, only the highest priority implicit receiver is available in
a given scope.

The implicit receiver having the highest priority is also called the default implicit
receiver. The default implicit receiver is available in a scope as this. Other
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available receivers may be accessed using labeled this-expressions.

If an implicit receiver is available in a given scope, it may be used to call callables
implicitly in that scope without using the navigation operator.

For extension callables, the receiver used as the extension receiver parameter
is called extension receiver, while the implicit receiver associated with the
declaration scope the extension is declared in is called dispatch receiver. For a
particular callable invocation, any or both receivers may be involved, but, if an
extension receiver is involved, the dispatch receiver must be implicit.

Note: by definition, local extension callables do not have a dispatch
receiver, as they are declared in a statement scope.

Note: there may be situations in which the same implicit receiver is
used as both the dispatch receiver and the extension receiver for a
particular callable invocation, for example:

interface Y

class X : Y {
fun Y.foo() {} // `foo` is an extension for Y,

// needs extension receiver to be called

fun bar() {
foo() // `this` reference is both

// the extension and the dispatch receiver
}

}

fun <T> mk(): T = TODO()

fun main() {
val x: X = mk()
val y: Y = mk()

// y.foo()
// Error, as there is no implicit receiver
// of type X available

with (x) {
y.foo() // OK!

}
}

11.1.2 The forms of call-expression
Any function in Kotlin may be called in several different ways:
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• A fully-qualified call without receiver: package.foo();
• A call with an explicit receiver: a.foo();
• An infix function call: a foo b;
• An overloaded operator call: a + b;
• A call without an explicit receiver: foo().

Although syntactically similar, there is a difference between the first two kinds
of calls: in the first case, package is a name of a Kotlin package, while in the
second case a is a value or a type.

For each of these cases, a compiler should first pick a number of overload
candidates, which form a set of possibly intended callables (overload candidate
set, OCS), and then choose the most specific function to call based on the types
of the function and the call arguments.

Important: the overload candidates are picked before the most
specific function is chosen.

11.1.3 Callables and invoke convention
A callable X for the purpose of this section is one of the following:

• Function-like callables:
– A function named X at its declaration site;
– A constructor of a type named X at its declaration site;
– Any of the above named Y at its declaration site, but imported into

the current scope using a renaming import as X.
• Property-like callables with an operator function invoke available as a

member or an extension in the current scope:
– A property named X at its declaration site;
– An object or a companion object named X at its declaration site;
– A companion object of a classifier type named X at its declaration

site;
– An enum entry named X at its declaration site;
– Any of the above named Y at its declaration site, but imported into

the current scope using a renaming import as X.

For property-like callables, a call X(Y0, . . . , YN ) is an overloadable operator which
is expanded to X.invoke(Y0, . . . , YN ). The call may contain type parameters,
named parameters, variable argument parameter expansion and trailing lambda
parameters, all of which are forwarded as-is to the corresponding invoke function.

The set of implicit receivers itself (denoted by this expression) may also be used
as a property-like callable using this as the left-hand side of the call expression.
As with normal property-like callables, this@A(Y0, . . . , YN ) is an overloadable
operator which is expanded to this@A.invoke(Y0, . . . , YN ).

A member callable is one of the following:

• a member function-like callable (including constructors);
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• a member property-like callable with a member operator invoke.

An extension callable is one of the following:

• an extension function-like callable;
• a member property-like callable with an extension operator invoke;
• an extension property-like callable with a member operator invoke;
• an extension property-like callable with an extension operator invoke.

Informally: the mnemonic rule to remember this order is “functions
before properties, members before extensions”.

A local callable is any callable which is declared in a statement scope.

11.1.4 c-level partition
When calculating overload candidate sets, member callables produce the following
sets, considered separately, ordered by higher priority first:

• Member function-like callables;
• Member property-like callables.

Extension callables produce the following sets, considered separately, ordered by
higher priority first:

• Extension function-like callables;
• Member property-like callables with extension invoke;
• Extension property-like callables with member invoke;
• Extension property-like callables with extension invoke.

Let us define this partition of callables to overload candidate sets as c-level
partition (callable-level partition). As this partition is the most fine-grained
of all other steps of partitioning resolution candidates into sets, it is always
performed last, after all other applicable steps.

11.2 Building the overload candidate set

11.2.1 Fully-qualified call
If a call is fully-qualified (that is, it contains a complete package path), then
the overload candidate set S simply contains all the top-level callables with the
specified name in the specified package. As a package name can never clash with
any other declared entity, after performing c-level partition on S, the resulting
sets are the only ones available for further processing.

Example:

package a.b.c

fun foo(a: Int) {}
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fun foo(a: Double) {}
fun foo(a: List<Char>) {}
val foo = {}
. . .
a.b.c.foo()

Here the resulting overload candidate set contains all the callables
named foo from the package a.b.c.

Important: a fully-qualified callable name has the form P.n(), where
n is a simple callable name and P is a complete package path refer-
encing an existing package.

11.2.2 Call with an explicit receiver
If a call is done via a navigation operator (. or ?.), but is not a fully-qualified
call, then the left hand side value of the call is the explicit receiver of this call.

A call of callable f with an explicit receiver e is correct if at least one of the
following holds:

1. f is an accessible member callable of the classifier type type(e) or any of
its supertypes;

2. f is an accessible extension callable of the classifier type type(e) or any
of its supertypes, including top-level, local and imported extensions.

3. f is an accessible static member callable of the classifier type e.

Important: callables for case 2 include not only regular extension
callables, but also extension callables from any of the available implicit
receivers. For example, if class P contains a member extension
function f for another class T and an object of class P is available as
an implicit receiver, extension function f may be used for such call if
T conforms to the type type(e).

If a call is correct, for a callable f with an explicit receiver e of type T the
following sets are analyzed (in the given order):

1. Non-extension member callables named f of type T;
2. Extension callables named f, whose receiver type U conforms to type T, in

the current scope and its upwards-linked scopes, ordered by the size of the
scope (smallest first), excluding the package scope;

• First, we assume there is no implicit receiver available for the
dispatch receiver of f (i.e., we analyze local extension callables only);

• Second, we consider each implicit receiver available for the dispatch
receiver of f in the order of the implicit receiver priority;

3. Explicitly imported extension callables named f, whose receiver type U
conforms to type T;

4. Extension callables named f, whose receiver type U conforms to type T,
declared in the package scope;
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5. Star-imported extension callables named f, whose receiver type U conforms
to type T;

6. Implicitly imported extension callables named f (either from the Kotlin
standard library or platform-specific ones), whose receiver type U conforms
to type T.

Note: here type U conforms to type T, if T <: U .

There is a important special case here, however, as a callable may be a property-
like callable with an operator function invoke, and these may belong to different
sets (e.g., the property itself may be star-imported, while the invoke operator
on it is a local extension). In this situation, such callable belongs to the lowest
priority set of its parts (e.g., for the above case, priority 5 set).

Example: when trying to resolve between an explicitly imported
extension property (priority 3) with a member invoke (priority 1)
and a local property (priority 2) with a star-imported extension
invoke (priority 5), the first one wins (max(3, 1) < max(2, 5)).

When analyzing these sets, the first set which contains any applicable callable
is picked for c-level partition, which gives us the resulting overload candidate set.

Important: this means, among other things, that if the set constructed
on step Y contains the overall most suitable candidate function, but
the set constructed on step X < Y is not empty, the callables from set
X will be picked despite them being less suitable overload candidates.

After we have fixed the overload candidate set, we search this set for the most
specific callable.

Call with an explicit type receiver

A call with an explicit receiver may be performed not only on a value receiver,
but also on a type receiver.

Note: type receivers can appear when working with enum classes or
interoperating with platform-dependent code.

They mostly follow the same rules as calls with an explicit value receiver. However,
for a callable f with an explicit type receiver T the following sets are analyzed
(in the given order):

1. Static member callables named f of type T;
2. Static member callables named f of type T declared implicitly;
3. The overload candidate sets for call T.f(), where T is a companion object

of type T.

Call with an explicit super-form receiver

A call with an explicit receiver may be performed not only on a value receiver,
but also on a super-form receiver.
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They mostly follow the same rules as calls with an explicit value receiver. However,
there are some differences which we outline below.

For a callable f with an explicit basic super-form receiver super in a classifier
declaration with supertypes A1, A2, . . . , AN the following sets are considered for
non-emptiness:

1. Non-extension member callables named f of type A1;
2. Non-extension member callables named f of type A2;
3. . . . ;

n. Non-extension member callables named f of type AN.

If at least two of these sets are non-empty, this is a compile-time error. Otherwise,
the non-empty set (if any) is analyzed as usual.

For a callable f with an explicit extended super-form receiver super<A> the
following sets are analyzed (in the given order):

1. Non-extension member callables named f of type A.

Additionally, in either case, abstract callables are not considered valid candidates
for the overload resolution process.

11.2.3 Infix function call
Infix function calls are a special case of function calls with explicit receiver in
the left hand side position, i.e., a foo b may be an infix form of a.foo(b).

However, there is an important difference: during the overload candidate set
construction the only callables considered for inclusion are the ones with the
infix modifier. This means we consider only function-like callables with infix
modifier and property-like callables with an infix operator function invoke.
All other callables are not considered for inclusion. Aside from this difference,
candidates are selected using the same rules as for normal calls with explicit
receiver.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for calls with explicit receiver.

Different platform implementations may extend the set of functions considered
as infix functions for the overload candidate set.

11.2.4 Operator call
According to the operator overloading section, some operator expressions in
Kotlin can be overloaded using definition-by-convention via specifically-named
functions. This makes operator expressions semantically equivalent to function
calls with explicit receiver, where the receiver expression is selected based on
the operator used.
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However, there is an important difference: during the overload candidate set
construction the only functions considered for inclusion are the ones with the
operator modifier. All other functions (and any properties) are not considered
for inclusion. Aside from this difference, candidates are selected using the same
rules as for normal calls with explicit receiver.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for calls with explicit receiver.

Note: this also means that all the properties available through the
invoke convention are non-eligible for operator calls, as there is no
way of specifying the operator modifier for them; even though the
invoke callable is required to always have such modifier. As invoke
convention itself is an operator call, it is impossible to use more than
one invoke convention in a single call.

Different platform implementations may extend the set of functions considered
as operator functions for the overload candidate set.

Note: these rules are valid not only for dedicated operator expres-
sions, but also for other operator-based defined-by-convention calls,
e.g., for-loop iteration conventions, operator-form assignments or
property delegation.

11.2.5 Call without an explicit receiver
A call which is performed with a simple path is a call without an explicit
receiver. As such, it may either have one or more implicit receivers or reference
a top-level function.

Note: this case does not include calls using the invoke operator
function where the left-land side of the call is not an identifier, but
some other kind of expression (as this is not a simple path). These
cases are handled the same way as operator calls and need no further
special treatment.

Example:

fun foo(a: Foo, b: Bar) {
(a + b)(42)
// Such a call is handled as if it is
// (a + b).invoke(42)

}

As with calls with explicit receiver, we first pick an overload candidate set and
then search this set for the most specific function to match the call.

For an identifier named f the following sets are analyzed (in the given order):

1. Local non-extension callables named f in the current scope and its upwards-
linked scopes, ordered by the size of the scope (smallest first), excluding
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the package scope;
2. The overload candidate sets for each pair of implicit receivers e and d

available in the current scope, calculated as if e is the explicit receiver, in
order of the receiver priority;

3. Top-level non-extension functions named f, in the order of:
a. Callables explicitly imported into the current file;
b. Callables declared in the same package;
c. Callables star-imported into the current file;
d. Implicitly imported callables (either from the Kotlin standard library

or platform-specific ones).

Similarly to how it works for calls with explicit receiver, a property-like callable
with an invoke function belongs to the lowest priority set of its parts.

When analyzing these sets, the first set which contains any callable with the
corresponding name and conforming types is picked for c-level partition, which
gives us the resulting overload candidate set.

After we have fixed the overload candidate set, we search this set for the most
specific callable.

11.2.6 Call with named parameters
Calls in Kotlin may use named parameters in call expressions, e.g., f(a = 2),
where a is a parameter specified in the declaration of f. Such calls are treated
the same way as normal calls, but the overload resolution sets are filtered to only
contain callables which have matching formal parameter names for all named
parameters from the call.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for the respective type of call.

Note: for properties called via invoke convention, the named pa-
rameters must be present in the declaration of the invoke operator
function.

Unlike positional arguments, named arguments are matched by name directly to
their respective formal parameters; this matching is performed separately for
each function candidate.

While the number of defaults does affect resolution process, the fact that some
argument was or was not mapped as a named argument does not affect this
process in any way.

11.2.7 Call with trailing lambda expressions
A call expression may have a single lambda expression placed outside of the
argument list or even completely replacing it (see this section for further details).
This has no effect on the overload resolution process, aside from the argument



11.3. DETERMINING FUNCTION APPLICABILITY FOR A SPECIFIC CALL217

reordering which may happen because of variable length parameters or parameters
with defaults.

Example: this means that calls f(1, 2) { g() } and f(1, 2, body
= { g() }) are completely equivalent w.r.t. the overload resolution,
assuming body is the name of the last formal parameter of f.

11.2.8 Call with specified type parameters
A call expression may have a type argument list explicitly specified before the
argument list (see this section for further details). Such calls are treated the same
way as normal calls, but the overload resolution sets are filtered to only contain
callables which contain exactly the same number of formal type parameters at
declaration site. In case of a property-like callable with invoke, type parameters
must be present at the invoke operator function declaration instead.

Important: this filtering is done before we perform selection of the
overload candidate set w.r.t. rules for the respective type of call.

11.3 Determining function applicability for a
specific call

11.3.1 Rationale
A function is applicable for a specific call if and only if the function parameters
may be assigned the arguments values specified at the call site and all type
constraints of the function type parameters hold w.r.t. supplied or inferred type
arguments.

11.3.2 Description
Determining function applicability for a specific call is a type constraint problem.

First, for every non-lambda argument of the function called, type inference is
performed. Lambda arguments are excluded, as their type inference needs the
results of overload resolution to finish.

Second, the following constraint system is built:

• For every non-lambda argument inferred to have type Ti, corresponding to
the function parameter of type Uj , a constraint Ti <: Uj is constructed;

• All declaration-site type constraints for the function are also added to the
constraint system;

• For every lambda argument with the number of lambda arguments known
to be K, corresponding to the function parameter of type Um, a special con-
straint of the form (FT(L1, . . . , LK) → R & FTR(RT, L1, . . . , Ln) → R) <:
Um is added to the constraint system, where R, RT, L1, . . . , LK are fresh
type variables;
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• For each lambda argument with an unknown number of lambda
arguments (that is, being equal to 0 or 1), corresponding to the
function parameter of type Un, a special constraint of the form
(FT() → R & FT(L) → R & FTR(RT) → R & FTR(RT, L) → R) <: Um

is added to the constraint system, where R, RT, L are fresh type variables;

If this constraint system is sound, the function is applicable for the call. Only
applicable functions are considered for the next step: choosing the most specific
candidate from the overload candidate set.

Receiver parameters are handled in the same way as other parameters in this
mechanism, with one important exception: any receiver of type kotlin.Nothing
is deemed not applicable for any member callables, regardless of other parameters.
This is due to the fact that, as kotlin.Nothing is the subtype of any other
type in Kotlin type system, it would have allowed all member callables of all
available types to participate in the overload resolution, which is theoretically
possible, but very resource-consuming and does not make much sense from the
practical point of view. Extension callables are still available, because they are
limited to the declarations available or imported in the current scope.

Note: although it is impossible to create a value of type
kotlin.Nothing directly, there may be situations where performing
overload resolution on such value is necessary; for example,
it may occur when doing safe navigation on values of type
kotlin.Nothing?.

11.4 Choosing the most specific candidate from
the overload candidate set

11.4.1 Rationale
The main rationale for choosing the most specific candidate from the overload
candidate set is the following:

The most specific callable can forward itself to any other callable
from the overload candidate set, while the opposite is not true.

If there are several functions with this property, none of them are the most
specific and an overload resolution ambiguity error should be reported by the
compiler.

Consider the following example.

fun f(arg: Int, arg2: String) {} // (1)
fun f(arg: Any?, arg2: CharSequence) {} // (2)
...
f(2, "Hello")
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Both functions (1) and (2) are applicable for the call, but function (1) could
easily call function (2) by forwarding both arguments into it, and the reverse is
impossible. As a result, function (1) is more specific of the two.

fun f1(arg: Int, arg2: String) {
f2(arg, arg2) // VALID: can forward both arguments

}
fun f2(arg: Any?, arg2: CharSequence) {

f1(arg, arg2) // INVALID: function f1 is not applicable
}

The rest of this section will describe how the Kotlin compiler checks for this
property in more detail.

11.4.2 Algorithm of MSC selection
When an overload resolution set S is selected and it contains more than one
callable, we need to choose the most specific candidate from these callables. The
selection process uses the type constraint facilities of Kotlin, in a way similar to
the process of determining function applicability.

For every two distinct members of the candidate set F1 and F2, the following
constraint system is constructed and solved:

• For every non-default argument of the call and their corresponding
declaration-site parameter types X1, . . . , XN of F1 and Y1, . . . , YN of F2, a
type constraint XK <: YK is built unless both XK and YK are built-in
integer types. If both XK and YK are built-in integer types, a type
constraint Widen(XK) <: Widen(YK) is built instead, where Widen is the
integer type widening operator. During construction of these constraints,
all declaration-site type parameters T1, . . . , TM of F1 are considered bound
to fresh type variables T ∼

1 , . . . , T ∼
M , and all type parameters of F2 are

considered free;
• If F1 and F2 are extension callables, their extension receivers are also

considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

• All declaration-site type constraints of X1, . . . , XN and Y1, . . . , YN are also
added to the constraint system.

Note: this constraint system checks whether F1 can forward itself to
F2.

If the resulting constraint system is sound, it means that F1 is equally or more
applicable than F2 as an overload candidate (aka applicability criteria). The
check is then repeated with F1 and F2 swapped.

This check may result in one of the following outcomes:
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1. Only one of the two candidates is more applicable than the other;
2. Neither of the two candidates is more applicable than the other;
3. Both F1 and F2 are more applicable than the other.

In case 1, the more applicable candidate of the two is found and no additional
steps are needed.

In case 2, an additional step is performed.

• Any non-parameterized callable is a more specific candidate than any
parameterized callable; If there are several non-parameterized candidates,
further steps are limited to those candidates.

In case 3, several additional steps are performed in order.

• Any non-parameterized callable is a more specific candidate than any pa-
rameterized callable (same as case 2). If there are several non-parameterized
candidates, further steps are limited to those candidates;

• For each candidate we count the number of default parameters not specified
in the call (i.e., the number of parameters for which we use the default
value). The candidate with the least number of non-specified default
parameters is a more specific candidate;

• For all candidates, the candidate having any variable-argument parameters
is less specific than any candidate without them.

Note: it may seem strange to process built-in integer types in a
way different from other types, but it is needed for cases when the
call argument is an integer literal with an integer literal type. In
this particular case, several functions with different built-in integer
types for the corresponding parameter may be applicable, and the
kotlin.Int overload is selected to be the most specific.

Important: compiler implementations may extend these steps with
additional checks, if they deem necessary to do so.

If after these additional steps there are still several candidates which are equally
applicable for the call, we may attempt to use the lambda return type to refine
function applicability. If there are still more than one most specific candidate
afterwards, this is an overload ambiguity which must be reported as a compile-
time error.

Note: unlike the applicability test, the candidate comparison con-
straint system is not based on the actual call, meaning that, when
comparing two candidates, only constraints visible at declaration site
apply.

If the callables in check are properties with available invoke, the same process
is applied in two steps:

• First, the properties are compared for applicability and the most applicable
property is chosen as described above. If several properties are equally
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applicable, this is an overload ambiguity as usual;
• Second, for the property selected at first step, the most applicable operator

invoke overload is chosen.

11.4.3 Using lambda return type to refine function appli-
cability

If the most specific candidate set C is ambiguous (has more than one callable) and
contains at least one callable marked with kotlin.OverloadResolutionByLambdaReturnType,
several additional checks and steps are performed to reduce it, by attempting to
infer a single lambda return type and use it to refine function applicability.

First, we perform the following checks.

1. We check if the function call contains exactly one lambda argument A
which requires type inference (which does not have an explicitly defined
type).

2. For every function in C we collect parameters Pi corresponding to argument
A and check their function types Ti to be structurally equal excluding
return types (SEERT).

Informally: SEERT checks whether function types have the exactly
same input parameters.

Examples: the following two function types are considered SEERT.

• (Int, String) -> Int
• (Int, String) -> Double

The following two function types are not considered SEERT.

• Int.(String) -> Int
• (Int, String) -> Double

If all checks succeed, we can perform the type inference for the lambda argument
A, as in all cases its parameter types are known (corollary from check 2 succeeding)
and their corresponding constraints can be added to the constraint system. The
constraint system solution gives us the inferred lambda return type Rinf, which
may be used to refine function applicability, by removing overload candidates
with incompatible lambda return types.

This is performed by repeating the function applicability test on the most
specific candidate set C, with the additional constraint R ≡ Rinf added for the
corresponding lambda argument A. Candidates which remain applicable with
this additional constraint are added to the refined set C ′.

Note: If any of the checks described above fails, we continue with
the set C ′ = C.

If set C ′ contains more than one candidate, we attempt to prefer candidates with-
out kotlin.OverloadResolutionByLambdaReturnType annotation. If there
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are any, they are included in the resulting most specific candidate set Cres, with
which we finish the MSC selection. Otherwise, we finish the MSC selection with
the set C ′.

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testOk01() {
foo { 42 }
// Both (1) and (2) are applicable
// (2) is preferred by the lambda return type

}

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: Unit.() -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testError01() {
val take = Unit
// Overload ambiguity
foo { 42 }
// Both (1) and (2) are applicable
// None is preferred by the lambda return type
// as their parameters are not SEERT

}

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: Unit.() -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> Int) = Unit // (2)

fun testOk02() {
val take = Unit
foo { a -> 42 }
// Only (2) is applicable
// as its lambda takes one parameter

}



11.5. RESOLVING PROPERTY ACCESS 223

Example:

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> String) = Unit // (1)

@OverloadResolutionByLambdaReturnType
fun foo(cb: (Unit) -> CharSequence) = Unit // (2)

fun testError02() {
// Error: required String, found CharSequence
foo { a ->

val a: CharSequence = "42"
a

}
// Both (1) and (2) are applicable
// (1) is the only most specific candidate
// We do not attempt refinement by the lambda return type

}

11.5 Resolving property access
As properties in Kotlin can have custom getters and setters, be extension or
delegated, they are also subject to overload resolution. Overload resolution for
property access works similarly to how it works for callables, i.e., it consists of
two steps: building the overload candidate set of applicable candidates, and then
choosing the most specific candidate from the overload candidate set.

Important: this section concerns only properties accessed using prop-
erty access syntax a.x or just x without call suffix. If a property is
accessed with a call suffix, it is treated as any other callable and is
required to have a suitable invoke overload available, see the rest of
this part for details

There are two variants of property access syntax: read-only property access and
property assignment.

Note: there is also safe navigation syntax for both assignment and
read-only access, but that is expanded to non-safe navigation syntax
covered by this section. Please refer to corresponding sections for
details.

Read-only property access a.x is resolved the same way as if the property access
in question was a special function call a.x$get() and each property val/var x:
T was replaced with corresponding function fun x$get(): T having all the same
extension receivers, context receivers, type parameters and scope as the original
property and providing direct access to the property getter. For different flavors
of property declarations and getters, refer to corresponding section. Please
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note that this excludes any possibility to employ invoke-convention as these
ephemeral functions cannot be properties themselves.

Example: one may consider property access in class A to be resolved
as if it has been transformed to class AA.

class A {
val a: Int = 5 // (1)

val Double.a: Boolean // (2)
get() = this != 42.0

fun test() {

println(a) // Resolves to (1)

with(42.0) {
println(this@A.a) // Resolves to (1)
println(this.a) // Resolves to (2)
println(a) // Resolves to (2)

}
}

}

class AA {
fun a$get(): Int = 5 // (1)

fun Double.a$get(): Boolean // (2)
= this != 42.0

fun test() {

println(a$get()) // Resolves to (1)

with(42.0) {
println(this@AA.a$get()) // Resolves to (1)
println(this.a$get()) // Resolves to (2)
println(a$get()) // Resolves to (2)

}
}

}

Property assignment a.x = y is resolved the same way as if it was replaced with
a special function call a.x$set(y) and each property var/val x: T was re-
placed with a corresponding function fun x$set(value: T) having all the same
extension receiver parameters, context receiver parameters, type parameters and
scope as the original property and providing direct access to the property setter.
For different flavors of property declarations and setters, refer to corresponding
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section. Please note that, although a read-only property declaration (using the
keyword val) does not allow for assignment or having a setter, it still takes part
in overload resolution for property assignment and may still be picked up as a
candidate. Such a candidate (in case it is selected as the final candidate) will
result in compiler error at later stages of compilation.

Note: informally, one may look at property assignment resolution
as a sub-kind of read-only property resolution described above, first
resolving the property as if it was accessed in a read-only fashion,
and then using the setter. Read-only property access and property
assignment syntax used in the same position never resolve to different
property candidates

Example: one may consider property access in class B to be resolved
as if it has been transformed to class BB. Declaration bodies for
ephemeral functions are omitted to avoid confusion

class B {
var b: Int = 5 // (1)

val Double.b: Int // (2)
get() = this.toInt()

fun test() {
b = 5 // Resolves to (1)

with(42.0) {
// Resolves to (1)
this@B.b = 5
// Resolves to (2) and compiler error: cannot assign read-only property
this.b = 5
// Resolves to (2) and compiler error: cannot assign read-only property
b = 5

}
}

}

class BB {
fun b$get(): Int // (1, getter)
fun b$set(value: Int) // (1, setter)

fun Double.b$get(): Int // (2, getter)
fun Double.b$set(value: Int) // (2, setter)

fun test() {
b$set(5) // Resolves to (1)

with(42.0) {
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// Resolves to (1)
this@B.b$set(5)
// Resolves to (2)
this.b$set(5)
// Resolves to (2)
this.b$set(5)

}
}

}

The overload resolution for properties has the following features distinct from
overload resolution for callables.

• Properties without getter or setter are assumed to have default implemen-
tations for accessors (ones which get or set its backing field);

• The overload resolution takes into account the kind of property, meaning
an extension read-only property is considered to have an extension getter,
an extension mutable property is considered to have an extension getter
and setter, etc.;

• Object declarations and enumeration entries may be accessed using the
property access syntax given that they may be resolved in the current
scope.

11.6 Resolving callable references
Callable references introduce a special case of overload resolution which is
somewhat similar to how regular calls are resolved, but different in several
important aspects.

First, property and function references are treated equally, as both kinds of
references have a type which is a subtype of a function type. Second, the type
information needed to perform the resolution steps is acquired from expected type
of the reference itself, rather than the types of arguments and/or result. The
invoke operator convention does not apply to callable reference candidates.
Third, and most important, is that, in the case of a call with a callable reference
as a parameter, the resolution is bidirectional, meaning that both the callable
being called and the callable being referenced are to be resolved simultaneously.

11.6.1 Resolving callable references not used as arguments
to a call

In a simple case when the callable reference is not used as an argument to an
overloaded call, its resolution is performed as follows:

• For each callable reference candidate, we perform the following steps:
– We build its type constraints and add them to the constraint system

of the expression the callable reference is used in;



11.6. RESOLVING CALLABLE REFERENCES 227

– A callable reference is deemed applicable if the constraint system is
sound;

• For all applicable candidates, the resolution sets are built according to the
same rules as building OCS for regular calls;

• If the highest priority set contains more than one callable, this is an
overload ambiguity and should be reported as a compile-time error.

• Otherwise, the single callable in the set is chosen as the result of the
resolution process.

Note: this is different from the overload resolution for regular calls in
that no most specific candidate selection process is performed inside
the sets

Important: when the callable reference resolution for T::f requires
building overload candidate sets for both type and value receiver
candidates, they are considered in the following order.

1. Static member callables named f of type T;
2. The overload candidate sets for call t::f, where t is a value of

type T;
3. The overload candidate sets for call T::f, where T is a companion

object of type T.

Callable references to members of companion objects are deprioritized,
as you could always use the T.Companion::f syntax to reference
them.

Important: when building the OCS for a callable reference, invoke
operator convention does not apply, and all property references are
treated equally as function references, being placed in the same sets.
For example, consider the following code:

fun foo() = 1
val foo = 2
...
val y = ::foo

Here both function foo and property foo are valid candidates for
the callable reference and are placed in the same candidate set, thus
producing an overload ambiguity. It is not important whether there
is a suitable invoke operator available for the type of property foo.

Example: consider the following two functions:

fun foo(i: Int): Int = 2 // (1)
fun foo(d: Double): Double = 2.0 // (2)

In the following case:

val x: (Int) -> Int = ::foo
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candidate (1) is picked, because (assuming CRT is the type of
the callable reference) the constraint CRT <: FT(kotlin.Int) →
kotlin.Int is built and only candidate (1) is applicable w.r.t. this
constraint.

In another case:

fun bar(f: (Double) -> Double) {}

bar(::foo)

candidate (2) is picked, because (assuming CRT is the type of the
callable reference) the constraint CRT <: FT(kotlin.Double) →
kotlin.Double is built and only candidate (2) is applicable w.r.t.
this constraint.

Please note that no bidirectional resolution is performed here as there
is only one candidate for bar. If there were more than one candidate,
the bidirectional resolution process would apply, possibly resulting
in an overload resolution failure.

11.6.2 Bidirectional resolution for callable calls
If a callable reference (or several callable references) is itself an argument to an
overloaded function call, the resolution process is performed for both callables
simultaneously.

Assume we have a call f(::g, b, c).

1. For each overload candidate f, a separate overload resolution process is
completed as described in other parts of this section, up to the point of
picking the most specific candidate. During this process, the only constraint
for the callable reference ::g is that it is an argument of a function type;

2. For the most specific candidate f found during the previous step, the
overload resolution process for ::g is performed as described here and the
most specific candidate for ::g is selected.

Note: this may result in selecting the most specific candidate for f
which has no available candidates for ::g, meaning the bidirectional
resolution process fails when resolving ::g.

When performing bidirectional resolution for calls with multiple callable reference
arguments, the algorithm is exactly the same, with each callable reference resolved
separately in step 2. This ensures the overload resolution process for every callable
being called is performed only once.

11.7 Type inference and overload resolution
Type inference in Kotlin is a very complicated process, and it is performed
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after overload resolution is done; meaning type inference may not affect the way
overload resolution candidate is picked in any way.

Note: if we had allowed interdependence between type inference and
overload resolution, we would have been able to create an infinitely
oscillating behaviour, leading to an infinite compilation.

Important: an exception to this limitation is when a lambda return
type is used to refine function applicability. By limiting the scope of
interdependence between type inference and overload resolution to a
single step, we avoid creating an oscillating behaviour.

11.8 Conflicting overloads
In cases when it is known two callables are definitely interlinked in overload
resolution (e.g., two member function-like callables declared in the same classifier),
meaning they will always be considered together for overload resolution, Kotlin
compiler performs conflicting overload detection for such callables.

Two callables f and g are definitely interlinked in overload resolution, if the
following are true.

• f is not overriding g (and vice versa);
• f and g belong to the same level of c-level partition;
• f and g are declared in the same scope.

Different platform implementations may extend which callables are considered
as definitely interlinked.

Two definitely interlinked callables f and g may create a overload conflict, if
they could result in an overload ambiguity on most regular call sites.

To check whether such situation is possible, we compare f and g w.r.t. their
applicability for a phantom call site with a fully specified argument list (i.e.,
with no used default arguments). If both f and g are equally or more specific
to each other and neither of them is selected by the additional steps of MSC
selection, we have an overload conflict.

Different platform implementations may extend which callables are considered
as conflicting overloads.
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Chapter 12

Control- and data-flow
analysis

Several Kotlin features such as variable initialization analysis and smart cast-
ing analysis require performing control- and data-flow analyses. This section
describes them and their applications.

12.1 Control flow graph
We define all control-flow analyses for Kotlin on a classic model called a control-
flow graph (CFG). A CFG of a program is a graph which loosely defines all
feasible paths the flow of a particular program can take during execution. All
CFGs given in this section are intraprocedural, meaning that they describe the
flow inside a single function, not taking function calls into account. CFG may,
however, include multiple function bodies if said functions are declared inside
each other (as is the case for lambdas).

The following sections describe CFG fragments associated with a particular Kotlin
code construct. These fragments are introduced using visual notation rather
than relational notation to simplify the understanding of the graph structure.
To represent intermediate values created during computation, we use implicit
registers, denoted $1, $2, $3, etc. These are considered to be unique in each
CFG fragment (assigning the same register twice in the same CFG may only
occur in unrelated program paths) and in the complete CFG, too. The numbers
given are only notational.

We introduce special eval nodes, represented in dashed lines, to connect CFG
fragments into bigger fragments. eval x here means that this node must be
replaced with the whole CFG fragment associated with x. When this replacement
is performed, the value produced by eval is the same value that the meta-register

231
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$result holds in the corresponding fragment. All incoming edges of a fragment
are connected to the incoming edges of the eval node, while all outgoing edges of
a fragment are connected to the outgoing edges of the eval node. It is important,
however, that, if such edges are absent either in the fragment or in the eval
node, they (edges) are removed from the CFG.

We also use the eval b notation where b is not a single statement, but rather
a control structure body. The fragment for a control structure body is the
sequence of fragments for its statements, connected in the program order.

Some of the fragments have two kinds of outgoing edges, labeled t and f on the
pictures. In a similar fashion, some eval nodes have two outgoing edges with
the same labels. If such a fragment is inserted into such a node, only edges with
matching labels are merged into each other. If either the fragment or the node
have only unlabeled outgoing edges, the process is performed same as above.

For some types of analyses, it is important which boolean conditions hold on a
control flow path. We use special assume nodes to introduce these conditions.
assume x means that boolean condition x is always true when program flow
passes through this particular node.

Some nodes are labeled, similarly to how statements may be labeled in Kotlin.
Labeled nodes are considered CFG-unique and are handled as follows: if a
fragment mentions a particular labeled node, this node is the same as any other
node with this label in the complete CFG (i.e., a singular actual node is shared
between all its labeled references). This is important when building graphs
representing loops.

There are two other special kinds of nodes: unreachable nodes, signifying
unreachable code, and backedge nodes, important for some kinds of analyses.

12.1.1 Expressions

Simple expressions, like literals and references, do not affect the control-flow of
the program in any way and are irrelevant w.r.t. CFG.

Function calls and operators

Note: we do not consider operator calls as being different from func-
tion calls, as they are just special types of function calls. Henceforth,
they are not treated separately.

x.f(arg1,..., argN)
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$2 = eval x

$1 = eval arg1

...

$N = eval argN

$result = $2.f($1,...,$N)

f(arg1,..., argN)

$1 = eval arg1

...

$N = eval argN

$result = f($1,...,$N)

Conditional expressions

Note: to simplify the notation, we consider only if-expressions with
both branches present. Any if-statement in Kotlin may be trivially
turned into such an expression by replacing the missing else branch
with a kotlin.Unit object expression.

if(c) tt else ff
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$1 = eval c

t f

assume $1 assume !$1

$2 = eval tt $2 = eval ff

$result = $2

when {
c1 -> b1
else -> bE

}

$1 = eval c1

t f

assume $1 assume !$1

$2 = eval b1 $2 = eval bE

$result = $2

Important: we only consider when expressions having exactly two
branches for simplicity. A when expression with more than two
branches may be trivially desugared into a series of nested when
expression as follows:

when {
<entry1>
<entries...>
else -> bE

}

is the same as
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when {
<entry1>
else -> {

when {
<entries...>
else -> bE

}
}

}

Boolean operators

!x

$1 = eval x

t f

assume $1 assume !$1

$result = false $result = true

f t

x || y

$1 = eval x

t f

assume $1 assume !$1

$2 = eval y

t f

assume $2 assume !$2

$result = true $result = false

t f
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x && y

$1 = eval x

t f

assume $1 assume !$1

$2 = eval y

t f

assume $2 assume !$2

$result = true $result = false

t f

Other expressions

x ?: y

$1 = eval x

assume ($1 === null) assume ($1 !== null)

$2 = eval y $3 = $1

$3 = $2

$result = $3

x?.y
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$1 = eval x

assume ($1 === null) assume ($1 !== null)

$3 = null $3 = $1.y

$result = $3

try { a... }
catch (e1: T1) { b1... }
...
catch (eN: TN) { bN... }
finally { c... }

$1 = eval a

$1 = eval b1 ... $1 = eval bN

$result = $1

(2) : (1) :
eval c eval c

Important: in this diagram we consider finally block twice. The (1)
block is used when handling the finally block and its body. The
(2) block is used when considering the finally block w.r.t. rest of
the CFG.

a!!
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$1 = eval a

assume ($1 !== null) unreachable

$result = $1

a as T

$1 = eval a

assume ($1 is T) unreachable

$result = $1

a as? T

$1 = eval a

assume ($1 is T) assume ($1 !is T)

$2 = $1 $2 = null

$result = $2

{ a: T ... -> body... }
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$result = $literal eval body

return
return@label

unreachable

return a
return@label a
throw a

eval a

unreachable

break@loop

@loop:exit

continue@loop

backedge

@loop:entry

12.1.2 Statements
Note: to simplify the notation, we consider only labeled loops, as
unlabeled loops may be trivially turned into labeled ones by assigning
them a unique label.

loop@ while(c) { b... }
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@loop.entry

backedge $1 = eval c

t f

assume $1 assume !$1

eval b @loop.exit

loop@ do { b... } while(c)

@loop.entry

backedge eval b

$1 = eval c

t f

assume $1 assume !$1

@loop.exit

12.1.3 Declarations

var a = b
var a by b
val a = b
val a by b
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$1 = eval b

a = $1

fun f() { body... }

$1 = eval body

class A (...) {
'declaration 1'
'declaration 2'
'init-block 1'
'declaration 3'
'init-block 2'
...

}

For every declaration and init block in a class body, the control flow is propagated
through every element in the order of their appearance. Here we give a simplified
example.
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eval 'declaration 1'

eval 'declaration 2'

eval 'init-block 1'

eval 'declaration 3'

eval 'init-block 2'

...

eval 'declaration n'

12.1.4 Examples

fun f() = listOf(1, 2).map { it + 2 }.filter { it > 0 }
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$1 = 1

$2 = 2

$3 = listOf($1, $2)

$4 = { it + 2 } $5 = it

$8 = $3.map($4) $6 = 2

$7 = $5 + $2
$9 = { it > 0 } $10 = it

$result = $8.filter($9) $11 = 0

$12 = $10 > $11

fun f(x: Int) {
var y = x
loop@ while(y != 500) {

y++
if(y % 20 == 3) break@loop

}
}
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$1 = x

y = $1

@loop.entry

backedge

$2 = y

$3 = 500

$4 = $2.equals($3)

assume $4 assume !$4

$5 = false $5 = true

assume !$5 assume $5

@loop.exit $6 = y

$7 = $6.inc()

y = $7

$8 = y

$9 = 20

$10 = $8.rem($9)

$11 = 3

$12 = $10.equals($11)

assume $12 assume !$12
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12.1.5 kotlin.Nothing and its influence on the CFG

As discussed in the type system section of this specification, kotlin.Nothing is
an uninhabited type, meaning an instance of this type can never exist at runtime.
For the purposes of control-flow graph (and related analyses) this means, as
soon as an expression is known statically to have kotlin.Nothing type, all
subsequent code is unreachable.

Important: each specific analysis may decide to either use this in-
formation or ignore it for a given program. If unreachability from
kotlin.Nothing is used, it can be represented in different ways, e.g.,
by changing the CFG structure or via killDataFlow instructions.

12.2 Performing analyses on the control-flow
graph

The analyses defined in this document follow the pattern of analyses based
on monotone frameworks, which work by modeling abstract program states as
elements of lattices and joining these states using standard lattice operations.
Such analyses may achieve limited path sensitivity via the analysis of conditions
used in the assume nodes.

In short, an analysis is defined on the CFG by introducing:

• A lattice S (a partially ordered set that has both a greatest lower bound
and a least upper bound defined for every pair of its elements) of values,
called abstract states;

• A transfer function for mapping CFG nodes to the elements of S, essentially
a set of rules on how to calculate an abstract state for each node of the
CFG either directly or by using abstract states of other nodes.

The result of an analysis is a fixed point of the transfer function for each node
of the given CFG, i.e., an abstract state for each node such that the transfer
function maps the state to itself. For the particular shapes of the transfer
function used in program analyses, given a finite S, the fixed point always exists,
although the details of how this works go out of scope of this document.

12.2.1 Types of lattices

• Flat lattice over set A = {a1, . . . , ai, . . . , an} of incomparable elements is
built by adding a top element ⊤, which is greater than other elements, and
a bottom element ⊥, which is less than other elements. This forms the
following lattice structure.
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⊤

a1 ... ai ... an

⊥

The flat lattice is usually used for analyses interested in exact facts, such as
definite (un)assignment or constant propagation, as the fixed point results
are either exact elements from the set A, or top/bottom elements.

• Map lattice of a set A = {a1, . . . , an} to a lattice L is a lattice with sets of
functions from A to L as its elements.

A → L = {[a1 → l1, . . . , an → ln] |∀i : ai ∈ A, li ∈ L}
f ≤ g ⇔ ∀ai ∈ A : f(ai) ≤ g(ai), where f, g ∈ A → L

The map lattice is usually used as the “top-level” lattice for bootstrapping
the monotone framework analysis, by providing a way to represent the
mapping from program entities (e.g., variables or expressions) to interesting
facts (e.g., their initialization or availability) as a lattice.

12.2.2 Preliminary analysis and killDataFlow instruction

Some analyses described further in this document are based on special instruction
called killDataFlow(υ) where υ is a program variable. These are not present in
the graph representation described above and need to be inferred before such
analyses may actually take place.

killDataFlow inference is based on a standard control-flow analysis with the
lattice of natural numbers over “min” and “max” operations. That is, for every
assignable property x an element of this lattice is a natural number N , with
the least upper bound of two numbers defined as maximum function and the
greatest lower bound as minimum function.

Note: such lattice has 0 as its bottom element and does not have a
top element.

We assume the following transfer functions for our analysis.



12.2. PERFORMING ANALYSES ON THE CONTROL-FLOW GRAPH 247

[[x = y]] (s) = s[x → s(x) + 1]

[[backedge]] (s) = {⋆ → 0}

[[l]] (s) =
⊔

p∈predecessor(l)

[[p]] (s)

After running this analysis, for every backedge b and every variable x present
in s, if ∃bp, bs : bp ∈ predecessors(b) ∧ bs ∈ successors(b) ∧ [[bp]] (x) > [[bs]] (x), a
killDataFlow(x) instruction must be inserted after b.

Informally: this somewhat complicated condition matches variables
which have been assigned to in the loop body w.r.t. this loop’s
backedge.

Note: this analysis does involve a possibly infinite lattice (a lattice of
natural numbers) and may seem to diverge on some graphs. However,
if we assume that every backedge in an arbitrary CFG is marked
with a backedge instruction, it is trivial to prove that no number
in the lattice will ever exceed the number of assignments (which is
finite) in the analyzed program as any loop in the graph will contain
at least one backedge.

As an example, consider the following Kotlin code:

var x: Int = 0
var y: Int = 0
while (b1) {

y = f()
do {

x = g()
} while (b2)

}

which results in the following CFG diagram (annotated with the analysis results
where it is important):
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$1 = 0

x = $1 {x -> 1, y -> 0}

$2 = 0

y = $2 {x -> 1, y -> 1}

@loop1:entry

{* -> 0} backedge $3 = b1 {x -> 1, y -> 1}

assume $3 assume !$3
{x -> 2, y -> 2}

$4 = f() @loop1:exit

{x -> 1, y -> 2} y = $4

@loop2.entry

{* -> 0}

backedge $6 = g() {x -> 1, y -> 2}

x = $6 {x -> 2, y -> 2}

$5 = b2

assume $5 assume !$5

@loop2.exit {x -> 2, y -> 2}
{x -> 2, y -> 2}

There are two backedges: one for the inner loop (the inner backedge) and one
for the outer loop (the outer backedge). The inner backedge has one predecessor
with state {x → 2, y → 2} and one successor with state {x → 1, y → 2} with
the value for x being less in the successor, meaning that we need to insert
killDataFlow(x) after the backedge. The outer backedge has one predecessor
with state {x → 2, y → 2} and one successor with state {x → 1, y → 1} with
values for both variables being less in the successor, meaning we need to insert
killDataFlow(x) and killDataFlow(y) after the backedge.
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12.2.3 Variable initialization analysis
Kotlin allows non-delegated properties to not have initializers in their declaration
as long as the property is definitely assigned before its first usage. This property
is checked by the variable initialization analysis (VIA). VIA operates on abstract
values from the assignedness lattice, which is a flat lattice constructed over
the set {Assigned, Unassigned}. The analysis itself uses abstract values from a
map lattice of all property declarations to their abstract states based on the
assignedness lattice. The abstract states are propagated in a forward manner
using the standard join operation to merge states from different paths.

The CFG nodes relevant to VIA include only property declarations and direct
property assignments. Every property declaration adds itself to the domain by
setting the Unassigned value to itself. Every direct property assignment changes
the value for this property to Assigned.

The results of the analysis are interpreted as follows. For every property, any
usage of the said property in any statement is a compile-time error unless the
abstract state of this property at this statement is Assigned. For every read-only
property (declared using val keyword), any assignment to this property is a
compile-time error unless the abstract state of this property is Unassigned.

As an example, consider the following Kotlin code:

/* 1 */ val x: Int // {x → Unassigned, ⋆ → ⊥}
/* 2 */ var y: Int // {x → Unassigned, y → Unassigned, ⋆ → ⊥}
/* 3 */ if (c) { //
/* 4 */ x = 40 // {x → Assigned, y → Unassigned, ⋆ → ⊥}
/* 5 */ y = 4 // {x → Assigned, y → Assigned, ⋆ → ⊥}
/* 6 */ } else { //
/* 7 */ x = 20 // {x → Assigned, y → Unassigned, ⋆ → ⊥}
/* 8 */ } // {x → Assigned, y → ⊤, ⋆ → ⊥}
/* 9 */ y = 5 // {x → Assigned, y → Assigned, ⋆ → ⊥}
/* 10 */ val z = x + y // {x → Assigned, y → Assigned, z → Assigned}

There are no incorrect operations in this example, so the code does not produce
any compile-time errors.

Let us consider another example:

/* 1 */ val x: Int // {x → Unassigned, ⋆ → ⊥}
/* 2 */ var y: Int // {x → Unassigned, y → Unassigned, ⋆ → ⊥}
/* 3 */ while (c) { // {x → ⊤, y → ⊤, ⋆ → ⊥} Error!
/* 4 */ x = 40 // {x → ⊤, y → ⊤, ⋆ → ⊥}
/* 5 */ y = 4 // {x → ⊤, y → ⊤, ⋆ → ⊥}
/* 6 */ } //
/* 7 */ val z = x + y // {x → ⊤, y → ⊤, ⋆ → ⊥} More errors!
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In this example, the state of both properties at line 3 is ⊤, as it is the least
upper bound of the states from lines 5 and 2 (from the while loop), which is
derived to be ⊤. This leads to a compile-time error at line 4 for x, because one
cannot reassign a read-only property.

At line 7 there is another compile-time error when both properties are used, as
there are paths in the CFG which reach line 7 when the properties have not
been assigned (i.e., the case when the while loop body was skipped).

12.2.4 Smart casting analysis

See the corresponding section for details.

12.2.5 Function contracts

Note: as of Kotlin 1.9, contracts for user-defined functions are an
experimental feature and, thus, not described here

Some standard-library functions in Kotlin are defined in such a way that they
adhere to a specific call contract that affects the way calls to such functions are
analyzed from the perspective of the caller’s control flow graph. A function’s
call contract consists of one or more effects.

There are several kinds of effects:

• Calls-in-place effect for a function-type parameter of the function;
• Returns-implies-condition effect for a boolean parameter of the function;
• Particular implementations may introduce other types of effects.

Calls-in-place effect of function F for a function-type parameter P specifies
that for every call of F parameter P will be also invoked as a function. This
effect may also have one of the three invocation types:

• At-least-once, meaning that P will be invoked at least once;
• Exactly-once, meaning that P will be invoked exactly once;
• At-most-once, meaning that P will be invoked at most once.

These effects change the call graph that is produced for a function call of F
when supplied a lambda-expression parameter for P . Without any effect, the
graph looks like this:

For a function call

f(..., { lambda-body... }, ...)
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$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

Please note that control flow information is passed inside the lambda body,
but no information is extracted from it. If the corresponding parameter P is
introduced with exactly-once effect, this changes to:

$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

If the corresponding parameter P is introduced with at-least-once effect, this
changes to:

$N = { lambda-body...} eval lambda-body... backedge

...

$result = f(...,$N,..)

If the corresponding parameter P is introduced with at-most-once effect, this
changes to:

$N = { lambda-body...} eval lambda-body...

...

$result = f(...,$N,..)

This allows the control-flow information to be extracted from lambda expression
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according to the policy of its invocation.

Returns-implies-condition effect of function F for a boolean parameter P
specifies that if, when invoked normally, a call to F returns, P is assumed to be
true. For a function call

f(..., p, ...)

this changes normal call graph that looks like this:

$N = eval p

...

$result = f(...,$N,..)

to look like this:

$N = eval p

...

$result = f(...,$N,..)

assume $N

The following standard library functions have contracts with the
following effects:

• kotlin.run, kotlin.with, kotlin.let, kotlin.apply,
kotlin.also (all overloads): calls-in-place effect with
invocation kind “exactly-once” for its functional argument;

• kotlin.check, kotlin.require (all overloads): returns-
implies-condition effect on the boolean parameter.

Examples:

This code would result in a initialized variable analysis violation if
run was not a standard function with corresponding contract:

val x: Int
run { // run invokes its argument exactly once
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x = 4
}
// could be error: x is not initialized
// but is ok
println(x)

Several examples of contract-introduced smart-cast:

val x: Any = ...
check(x is Int)
// x is known to be Int thanks to assume introduced by
// the contract of check
val y = x + 4 // would be illegal without contract

val x: Int? = ...
// x is known to be non-null thanks to assume introduced by
// the contract of require
require(x != null)
val y = x + 4 // would be illegal without contract
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Chapter 13

Kotlin type constraints

Some complex tasks that need to be solved when compiling Kotlin code are
formulated best using constraint systems over Kotlin types. These are solved
using constraint solvers.

13.1 Type constraint definition
A type constraint in general is an inequation of the following form: T <: U where
T and U are concrete Kotlin types. As Kotlin has parameterized types, T and
U may be free type variables: unknown types which may be substituted by any
other type in Kotlin.

Please note that, in general, not all type parameters are considered as free type
variables in a constraint system. Some type variables may be fixed in a constraint
system; for example, type parameters of a parameterized class inside its body
are unknown types, but are not free type variables either. A fixed type variable
describes an unknown, but fixed type which is not to be substituted.

We will use the notation Ti for a type variable and T̃i for a fixed type variable.
The main difference between fixed type variables and concrete types is that
different concrete types may not be equal, but a fixed type variable may be equal
to another fixed type variable or a concrete type.

Examples of valid type constraints:

• List<X̃> <: Y
• List<X̃> <: List<List<Int>>
• X̃ <: Y

Every constraint system has general implicit constraints Tj <: kotlin.Any? and
kotlin.Nothing <: Tj for every type Tj mentioned in the system, including
type variables.

255
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13.2 Type constraint solving
There are two tasks which a type constraint solver may perform: checking
constraint system for soundness, i.e., if a solution exists, and solving constraint
system, i.e., inferring a satisfying substitution of concrete types for all free type
variables.

Checking a constraint system for soundness can be viewed as a much simpler
case of solving that constraint system: if there is a solution, the system is sound,
meaning there are only two possible outcomes. Solving a constraint system, on
the other hand, may have multiple possible outcomes, as there may be multiple
valid solutions.

Example: constraint systems which are sound yet no relevant solu-
tions exist.

• X <: Y
• List<X> <: Collection<X>

13.2.1 Checking constraint system soundness
Checking constraint system soundness is a satisfiability problem. That is, given
a number of constraints in the form S <: T containing zero or more free type
variables (also called inference type variables), it needs to determine if these
constraints are non-contradictory, i.e., if there exists a possible instantiation of
these free variables to concrete types which makes all given constraints valid.

This problem can be reduced to finding a set of lower and upper bounds for
each of these variables and determining if these bounds are non-contradictory.
The algorithm of finding these bounds is implementation-defined and is not
guaranteed to prove the satisfiability of given constraints in all possible cases.

A sample bound inference algorithm

The algorithm given in this section is just an example of a family of algorithms
that may be applied to the problem given above. A particular implementation
is not guaranteed to follow this algorithm, but one may use it as a reference on
how this problem may be approached.

Note: a well-informed reader may notice this algorithm to be similar
to the one used by Java. This is not a coincidence: our sample
inference algorithm has indeed been inspired by Java’s.

The algorithm works in two phases: reduction and incorporation which are
applied to the constraint system and its current solution in turns until a fixpoint
or an error is reached (aka reduction-incorporation procedure or RIP). The
reduction phase is used to produce bounds for inference variables based on
constraints; this phase is also responsible for eliminating the constraints which
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are no longer needed. The incorporation phase is used to introduce new bounds
and constraints from existing bounds.

A bound is similar to a constraint in that it has the form S <: T , at least one of
S or T is an inference variable. Thus, the current (and also the final) solution is
a set of upper and lower bounds for each inference variable. A resolved type in
this context is any type which does not contain inference variables.

Reduction phase: for each constraint S <: T in the constraint system the
following rules are applied:

• If S and T are resolved types and:
– If S <: T , this constraint is eliminated;
– Otherwise, this is an inference error;

• Otherwise, if S is an inference variable α, a new bound α <: T is added to
current solution;

• Otherwise, if T is an inference variable β, a new bound S <: β is added to
current solution;

• Otherwise, if S is a flexible type of the form (α..α?) where α is an inference
variable, a new bound α <: (T..T?) is added to current solution;

• Otherwise, if T is a flexible type of the form (α..α?) where α is an inference
variable, a new bound (S..S?) <: α is added to current solution;

• Otherwise, if S is a nullable type of the form A? and:
– If T is a known non-nullable type (a classifier type, a nullability-

asserted type B!!, a type variable with a known non-nullable lower
bound, or an intersection type containing a known non-nullable type),
this is an inference error;

– Otherwise, the constraint is reduced to A <: T . Also, if T is also a
nullable type of the form B?, an additional constraint A!! <: B is
introduced;

• Otherwise, if S is a flexible type of the form (B..A?) and:
– If T is a nullable type of form C?, the constraint is reduced to

(B..A) <: C, or to A <: C if A ≡ B;
– Otherwise, the constraint is reduced to (B..A) <: T , or to A <: T if

A ≡ B;
• Otherwise, if T is a parameterized type G[A1, . . . , AN ], among all super-

types of S the one of the form G[B1, . . . , BN ] is chosen.
– If no such supertype exists, this is an inference error;
– Otherwise, for each M ∈ [1, N ], a type argument constraint for

containment AM ⪯ BM is introduced (see below);
• Otherwise, if T is any other classifier type and T is among supertypes for

S, the constraint is eliminated; otherwise, this is an inference error;
• Otherwise, if T is a type variable and:

– If S is an intersection type containing T , this constraint is eliminated;
– Otherwise, if T has a lower bound B, the constraint is reduced to

S <: B;
– Otherwise, this is an inference error;
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• Otherwise, if T is an intersection type A1 & . . . & AN , the constraint is
reduced to N constraints S <: AM for each M ∈ [1, N ];

• Otherwise, if T is a nullable type of the form B? and:
– If S is a known non-nullable type (a classifier type, a nullability-

asserted type A!!, a type variable with a known non-nullable lower
bound, or an intersection type containing a known non-nullable type),
the constraint is reduced to S <: B;

– Otherwise, this is an inference error.

Type argument constraints for a containment relation Q ⪯ F are constructed as
follows:

Important: for the purposes of this algorithm, declaration-site vari-
ance type arguments are considered to be their equivalent use-site
variance versions.

• If either Q or F is a special bivariant type argument ⋆, no constraints are
produced;

• If F has the form F ′ (is invariant):
– If Q is also invariant and of the form Q′, two constraints are produced:

F ′ <: Q′ and Q′ <: F ′;
– If Q has any other variance, this is an inference error;

• If F has the form out F ′ (is covariant):
– If Q has the form out Q′ or Q′, the following constraint is produced:

Q′ <: F ′;
– If Q has the form in Q′, the following constraint is produced:

kotlin.Any? <: F ′;
• If F has the form in F ′ (is contravariant):

– If Q has the form in Q′ or Q′, the following constraint is produced:
F ′ <: Q′;

– If Q has the form out Q′, the following constraint is produced: F ′ <:
kotlin.Nothing.

Incorporation phase: for each bound and particular bound combinations
in the current solution, new constraints are produced as follows (it is safe to
assume that each constraint is introduced into the system only once, so if this
step produces constraints that have already been reduced, they are not added
into the system):

• For each inference variable α, for each pair of bounds S <: α and α <: T ,
a new constraint is produced: S <: T ;

• For each inference variable α, if there is a pair of bounds S <: α and
α <: S (i.e., α is equivalent to S), for each bound Q <: P where Q or P
contains α, a new constraint is produced: Q[α := S] <: P [α := S];

• For each inference variable α, for each pair of bounds α <: S and α <: T
where S has a supertype of the form G[A1, . . . , AN ] and T has a matching
supertype of the form G[B1, . . . , BN ], for each matching supertype G and
each M ∈ [1, N ], if both AM and BM are invariant and have forms A′

M and
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B′
M respectively, the following new constraints are produced: A′

M <: B′
M

and B′
M <: A′

M .

13.2.2 Finding optimal constraint system solution
As any constraint system may have multiple valid solutions, finding one which
is “optimal” in some sense is not possible in general, because the notion of the
best solution for a task depends on the said task. To deal with this, a constraint
system allows two additional types of constraints:

• A pull-up constraint for type variable T , denoted ↑ T , signifying that when
finding a substitution for this variable, the optimal solution is the largest
one according to subtyping relation;

• A push-down constraint for type variable T , denoted ↓ T , signifying that
when finding a substitution for this variable, the optimal solution is the
smallest one according to subtyping relation.

If a variable has no constraints of these kinds associated with it, it is assumed to
have a pull-up implicit constraint. The process of instantiating the free variables
of a constraint system starts by finding the bounds for each free variable (as
mentioned in the previous section) and then, given these bounds, continues to
pick the right type from them. Excluding other free variables, this boils down to:

• For a variable with a push-down constraint, the solution is the greatest
lower bound of all upper bounds for this variable, excluding other free
variables;

• For a variable with a pull-up constraint, the solution is the least upper
bound of all lower bounds for this variable, excluding other free variables;

• For a variable with both or none, the solution is also the least upper bound
of all lower bounds for this variable, excluding other free variables.

If there are inference variables dependent on other inference variables (α is
dependent on β iff there is a bound α <: T or T <: α where T contains β), this
process is performed in stages.

During each stage a set of inference variables not dependent on other inference
variables (but possibly dependent on each other) is selected, the solutions for
these variables are found using existing bounds, and after that these variables
are resolved in the current bound set by replacing all of their instances in other
bounds by the solution. This may trigger a new RIP.

After that, a new independent set of inference variables is picked and this process
is repeated until an inference error occurs or a solution for each inference variable
is found.

13.2.3 The relations on types as constraints
In other sections (for example, Expressions and Statements) the relations between
types may be expressed using the type operations found in the type system
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section of this document.

The greatest lower bound of two types is converted directly as-is, as the greatest
lower bound is always an intersection type.

The least upper bound of two types is converted as follows. If type T is defined
to be the least upper bound of A and B, the following constraints are produced:

• A <: T
• B <: T
• ↓ T
• ↑ A
• ↑ B

Important: the results of finding GLB or LUB via a constraint system
may be different from the results of finding them via a normalization
procedure (i.e., imprecise); however, they are sound w.r.t. bound,
meaning a constraint system GLB is still a lower bound and a
constraint system LUB is still an upper bound.

Example:

Let’s assume we have the following code:

val e = if (c) a else b

where a, b, c are some expressions with unknown types (having no
other type constraints besides the implicit ones).

Assume the type variables generated for them are A, B and C
respectively, the type variable for e is E. According to the conditional
expression rules, this produces the following relations:

• C <: kotlin.Boolean
• E = LUB(A, B)

These, in turn, produce the following explicit constraints:

• C <: kotlin.Boolean
• A <: E
• B <: E
• ↓ E
• ↑ A
• ↑ B

which, w.r.t. general and pull-up implicit constraints, produce the
following solution:

• C → kotlin.Boolean
• A → kotlin.Any?
• B → kotlin.Any?
• E → kotlin.Any?
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Type inference

Kotlin has a concept of type inference for compile-time type information, meaning
some type information in the code may be omitted, to be inferred by the compiler.
There are two kinds of type inference supported by Kotlin.

• Local type inference, for inferring types of expressions locally, in state-
ment/expression scope;

• Function signature type inference, for inferring types of function return
values and/or parameters.

Type inference is a type constraint problem, and is usually solved by a type
constraint solver. For this reason, type inference is applicable in situations when
the type context contains enough information for the type constraint solver to
create an optimal constraint system solution w.r.t. type inference problem.

Note: for the purposes of type inference, an optimal solution is the
one which does not contain any free type variables with no explicit
constraints on them.

Kotlin also supports flow-sensitive types in the form of smart casts, which have
direct effect on type inference. Therefore, we will discuss them first, before
talking about type inference itself.

14.1 Smart casts
Kotlin introduces a limited form of flow-sensitive typing called smart casts. Flow-
sensitive typing means some expressions in the program may introduce changes
to the compile-time types of variables. This allows one to avoid unneeded explicit
casting of values in cases when their runtime types are guaranteed to conform
to the expected compile-time types.

261
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Flow-sensitive typing may be considered a specific instance of traditional data-
flow analysis. Therefore, before we discuss it further, we need to establish the
data-flow framework, which we will use for smart casts.

14.1.1 Data-flow framework

Smart cast lattices

We assume our data-flow analysis is run on a classic control-flow graph (CFG)
structure, where most non-trivial expressions and statements are simplified
and/or desugared.

Our data-flow domain is a map lattice SmartCastData = Expression →
SmartCastType, where Expression is any Kotlin expression and SmartCastType =
Type × Type sublattice is a product lattice of smart cast data-flow facts of the
following kind.

• First component describes the type, which an expression definitely has
• Second component describes the type, which an expression definitely does

not have

The sublattice order, join and meet are defined as follows.

P1 × N1 ⊑ P2 × N2 ⇔ P1 <: P2 ∧ N1 :> N2

P1 × N1 ⊔ P2 × N2 = LUB(P1, P2) × GLB(N1, N2)
P1 × N1 ⊓ P2 × N2 = GLB(P1, P2) × LUB(N1, N2)

Note: a well-informed reader may notice the second component is
behaving very similarly to a negation type.

(P1 & ¬N1) | (P2 & ¬N2) ⊑ (P1 | P2) & (¬N1 | ¬N2)
= (P1 | P2) & ¬(N1 & N2)

(P1 & ¬N1) & (P2 & ¬N2) = (P1 & P2) & (¬N1 & ¬N2)
= (P1 & P2) & ¬(N1 | N2)

This is as intended, as “type which an expression definitely does
not have” is exactly a negation type. In smart casts, as Kotlin type
system does not have negation types, we overapproximate them when
needed.

Smart cast transfer functions

The data-flow information uses the following transfer functions.
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[[assume(x is T )]] (s) = s[x → s(x) ⊓ (T × ⊤)]
[[assume(x !is T )]] (s) = s[x → s(x) ⊓ (⊤ × T )]

[[x as T ]] (s) = s[x → s(x) ⊓ (T × ⊤)]
[[x !as T )]] (s) = s[x → s(x) ⊓ (⊤ × T )]

[[assume(x == null)]] (s) = s[x → s(x) ⊓ (kotlin.Nothing? ×⊤)]
[[assume(x != null)]] (s) = s[x → s(x) ⊓ (⊤ × kotlin.Nothing?)]

[[assume(x === null)]] (s) = s[x → s(x) ⊓ (kotlin.Nothing? ×⊤)]
[[assume(x !== null)]] (s) = s[x → s(x) ⊓ (⊤ × kotlin.Nothing?)]

[[assume(x == y)]] (s) = s[x → s(x) ⊓ s(y),
y → s(x) ⊓ s(y)]

[[assume(x != y)]] (s) = s[x → s(x) ⊓ swap(isNullable(s(y))),
y → s(y) ⊓ swap(isNullable(s(x)))]

[[assume(x === y)]] (s) = s[x → s(x) ⊓ s(y),
y → s(x) ⊓ s(y)]

[[assume(x !== y)]] (s) = s[x → s(x) ⊓ swap(isNullable(s(y))),
y → s(y) ⊓ swap(isNullable(s(x)))]

[[x = y]] (s) = s[x → s(y)]

[[killDataFlow(x)]] (s) = s[x → (⊤ × ⊤)]

[[l]] (s) =
⊔

p∈predecessor(l)

[[p]] (s)

where

swap(P × N) = N × P

isNullable(s) =
{

(kotlin.Nothing? ×⊤) if s ⊑ (kotlin.Nothing? ×⊤)
(⊤ × ⊤) otherwise

Important: transfer functions for == and != are used only if the
corresponding equals implementation is known to be equivalent to
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reference equality check. For example, generated equals implemen-
tation for data classes is considered to be equivalent to reference
equality check.

Note: in some cases, after the CFG simplification a program location
l may be duplicated and associated with several locations l1, . . . , lN in
the resulting CFG. If so, the data-flow information for l is calculated
as

[[l]] =
N⊔

i=1
[[li]]

Note: a killDataFlow instruction is used to reset the data-flow in-
formation in cases, when a compiler deems necessary to stop its
propagation. For example, it may be used in loops to speed up
data-flow analysis convergence. This is the current behaviour of the
Kotlin compiler.

After the data-flow analysis is done, for a program location l we have its data-flow
information [[l]], which contains data-flow facts [[l]] [e] = (P ×N) for an expression
e.

14.1.2 Smart cast types
The data-flow information is used to produce the smart cast type as follows.

First, smart casts may influence the compile-time type of an expression e (called
smart cast sink) only if the sink is stable.

Second, for a stable smart cast sink e we calculate the overapproximation of its
possible type.

[[l]] [e] = (P×N) ⇒ smartCastTypeOf (e) = typeOf (e)&P&approxNegationType(N)

approxNegationType(N) =
{

kotlin.Any if kotlin.Nothing? <: N

kotlin.Any? otherwise

As a result, smartCastTypeOf (e) is used as a compile-time type of e for most
purposes (including, but not limited to, function overloading and type inference
of other values).

Note: the most important exception to when smart casts are used in
type inference is direct property declaration.
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fun noSmartCastInInference() {
var a: Any? = null

if (a == null) return

var c = a // Direct property declaration

c // Declared type of `c` is Any?
// However, here it's smart casted to Any

}

fun <T> id(a: T): T = a

fun smartCastInInference() {
var a: Any? = null

if (a == null) return

var c = id(a)

c // Declared type of `c` is Any
}

Smart casts are introduced by the following Kotlin constructions.

• Conditional expressions (if)
• When expressions (when);
• Elvis operator (operator ?:);
• Safe navigation operator (operator ?.);
• Logical conjunction expressions (operator &&);
• Logical disjunction expressions (operator ||);
• Not-null assertion expressions (operator !!);
• Cast expressions (operator as);
• Type-checking expressions (operator is);
• Simple assignments;
• Platform-specific cases: different platforms may add other kinds of expres-

sions which introduce additional smart cast sources.

Note: property declarations are not listed here, as their types are
derived from initializers.

Note: for the purposes of smart casts, most of these constructions are
simplified and/or desugared, when we are building the program CFG
for the data-flow analysis. We informally call such constructions
smart cast sources, as they are responsible for creating smart cast
specific instructions.
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14.1.3 Smart cast sink stability
A smart cast sink is stable for smart casting if its value cannot be changed via
means external to the CFG; this guarantees the smart cast conditions calculated
by the data-flow analysis still hold at the sink. This is one of the necessary
conditions for smart cast to be applicable to an expression.

Smart cast sink stability breaks in the presence of the following aspects.

• concurrent writes;
• mutable value capturing;
• separate module compilation;
• custom getters;
• delegation.

The following smart cast sinks are considered stable.

1. Immutable local or classifier-scope properties without delegation or custom
getters;

2. Mutable local properties without delegation or custom getters, if the
compiler can prove that they are effectively immutable, i.e., cannot be
changed by external means;

3. Immutable properties of immutable stable properties without delegation
or custom getters, if they are declared in the current module.

Effectively immutable smart cast sinks

We will call redefinition of e direct redefinition, if it happens in the same
declaration scope as the definition of e. If e is redefined in a nested declaration
scope (w.r.t. its definition), this is a nested redefinition.

Note: informally, a nested redefinition means the property has been
captured in another scope and may be changed from that scope in a
concurrent fashion.

We define direct and nested smart cast sinks in a similar way.

Example:

fun example() {
// definition
var x: Int? = null

if (x != null) {
run {

// nested smart cast sink
x.inc()

// nested redefinition
x = ...
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}
// direct smart cast sink
x.inc()

}

// direct redefinition
x = ...

}

A mutable local property P defined at D is considered effectively immutable at
a direct sink S, if there are no nested redefinitions on any CFG path between D
and S.

A mutable local property P defined at D is considered effectively immutable at a
nested sink S, if there are no nested redefinitions of P and all direct redefinitions
of P precede S in the CFG.

Example:

fun directSinkOk() {
var x: Int? = 42 // definition
if (x != null) // smart cast source

x.inc() // direct sink
run {

x = null // nested redefinition
}

}

fun directSinkBad() {
var x: Int? = 42 // definition
run {

x = null // nested redefinition
// between a definition
// and a sink

}
if (x != null) // smart cast source

x.inc() // direct sink
}

fun nestedSinkOk() {
var x: Int? = 42 // definition
x = getNullableInt() // direct redefinition
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
}
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fun nestedSinkBad01() {
var x: Int? = 42 // definition
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
x = getNullableInt() // direct redefinition

// after the nested sink
}

fun nestedSinkBad02() {
var x: Int? = 42 // definition
run {

x = null // nested redefinition
}
run {

if (x != null) // smart cast source
x.inc() // nested sink

}
}

14.1.4 Loop handling
As mentioned before, a compiler may use killDataFlow instructions in loops to
avoid slow data-flow analysis convergence. In the general case, a loop body may be
evaluated zero or more times, which, combined with killDataFlow instructions,
causes the smart cast sources from the loop body to not propagate to the
containing scope. However, some loops, for which we can have static guarantees
about how their body is evaluated, may be handled differently. For the following
loop configurations, we consider their bodies to be definitely evaluated one or
more times.

• while (true) { ... }
• do { ... } while (condition)

Note: in the current implementation, only the exact while (true)
form is handled as described; e.g., while (true == true) does not
work.

Note: one may extend the number of loop configurations, which are
handled by smart casts, if the compiler implementation deems it
necessary.

Example:

fun breakFromInfiniteLoop() {
var a: Any? = null



14.1. SMART CASTS 269

while (true) {
if (a == null) return

if (randomBoolean()) break
}

a // Smart cast to Any
}

fun doWhileAndSmartCasts() {
var a: Any? = null

do {
if (a == null) return

} while (randomBoolean())

a // Smart cast to Any
}

fun doWhileAndSmartCasts2() {
var a: Any? = null

do {
println(a)

} while (a == null)

a // Smart cast to Any
}

14.1.5 Bound smart casts
In some cases, it is possible to introduce smart casting between properties if it
is known at compile-time that these properties are bound to each other. For
instance, if a variable a is initialized as a copy of variable b and both are stable,
they are guaranteed to reference the same runtime value and any assumption
about a may be also applied to b and vice versa.

Example:

val a: Any? = ...
val b = a

if (b is Int) {
// as a and b point to the same value,
// a also is Int
a.inc()

}
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In more complex cases, however, it may not be trivial to deduce that two (or
more) properties point to the same runtime object. This relation is known as
must-alias relation between program references and it is implementation-defined
in which cases a particular Kotlin compiler may safely assume this relation holds
between two particular properties at a particular program point. However, it
must guarantee that if two properties are considered bound, it is impossible for
these properties to reference two different values at runtime.

One way of implementing bound smart casts would be to divide the space of
stable program properties into disjoint alias sets of properties, and the analysis
described above links the smart cast data flow information to sets of properties
instead of single properties.

Such view could be further refined by considering special alias sets separately;
e.g., an alias set of definitely non-null properties, which would allow the compiler
to infer that a?.b !== null implies a !== null (for non-nullable b).

14.2 Local type inference
Local type inference in Kotlin is the process of deducing the compile-time types
of expressions, lambda expression parameters and properties. As previously
mentioned, type inference is a type constraint problem, and is usually solved by
a type constraint solver.

In addition to the types of intermediate expressions, local type inference also
performs deduction and substitution for generic type parameters of functions
and types involved in every expression. You can use the Expressions part of this
specification as a reference point on how the types for different expressions are
constructed.

Important: additional effects of smart casts are considered in local
type inference, if applicable.

Type inference in Kotlin is bidirectional; meaning the types of expressions may
be derived not only from their arguments, but from their usage as well. Note
that, albeit bidirectional, this process is still local, meaning it processes one
statement at a time, strictly in the order of their appearance in a scope; e.g.,
the type of property in statement S1 that goes before statement S2 cannot be
inferred based on how S1 is used in S2.

As solving a type constraint system is not a definite process (there may be
more than one valid solution for a given constraint system), type inference may
create several valid solutions. In particular, one may always derive a constraint
A <: T <: B for every free type variable T , where types A and B are both valid
solutions.

Note: this is valid even if T is a free type variable without any
explicit constraints, as every type in Kotlin has an implicit constraint
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kotlin.Nothing <: T <: kotlin.Any?.

In these cases an optimal constraint system solution is picked w.r.t. local type
inference.

Note: for the purposes of local type inference, an optimal solution
is the one which does not contain any free type variables with no
explicit constraints on them.

14.3 Function signature type inference
Function signature type inference is a variant of local type inference, which is
performed for function declarations, lambda literals and anonymous function
declarations.

14.3.1 Named and anonymous function declarations
As described here, a named function declaration body may come in two forms:
an expression body (a single expression) or a control structure body. For the
latter case, an expected return type must be provided or is assumed to be
kotlin.Unit and no special kind of type inference is needed. For the former
case, an expected return type may be provided or can be inferred using local
type inference from the expression body. If the expected return type is provided,
it is used as an expected constraint on the result type of the expression body.

Example:

fun <T> foo(): T { ... }
fun bar(): Int = foo() // an expected constraint T' <: Int
// allows the result of `foo` to be inferred automatically.

14.3.2 Statements with lambda literals
Complex statements involving one or more lambda literals introduce an additional
level of complexity to type inference and overload resolution mechanisms. As
mentioned in the overload resolution section, the overload resolution of callables
involved in such statements is performed regardless of the contents of the lambda
expressions and before any processing of their bodies is performed (including
local type inference).

For a complex statement S involving (potentially overloaded) callables
C1, . . . , CN and lambda literals L1, . . . , LM , excluding the bodies of these
literals, they are processed as follows.

1. An empty type constraint system Q is created;

2. The overload resolution, if possible, picks candidates for C1, . . . , CN ac-
cording to the overload resolution rules;
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3. For each lambda literal with unspecified number of parameters, we decide
whether it has zero or one parameter based on the form of the callables
and/or the expected type of the lambda literal. If there is no way to
determine the number of parameters, it is assumed to be zero. If the
number of parameters is determined to be one, the phantom parameter it
is proceeded in further steps as if it was a named lambda parameter;

Important: the presence or absence of the phantom parameter
it in the lambda body does not influence this process in any
way.

4. For each lambda body L1, . . . , LN , the expected constraints on the lambda
arguments and/or lambda result type from the selected overload candidates
(if any) are added to Q, and the overload resolution for all statements in
these bodies is performed w.r.t. updated type constraint system Q. This
may result in performing steps 1-3 in a recursive top-down fashion for
nested lambda literals;

Important: in some cases overload resolution may fail to pick a
candidate, e.g., because the expected constraints are incomplete,
causing the constraint system to be unsound. If this happens, it
is implementation-defined whether the compiler continues the
top-down analysis or stops abruptly.

5. When the top-down analysis is done and the overload candidates are fixed,
local type inference is performed on each lambda body and each statement
bottom-up, from the most inner lambda literals to the outermost ones,
processing one lambda literal at a time, with the following additions.

• When inferring type of the return value (the last expression of a
lambda body and/or the subjects for return expressions referring
to this lambda literal), the additional constraints introduced on the
result type of this lambda literal are added to Q;

• If inference with these constraints fails, but the result type is a subtype
of kotlin.Unit, the inference is repeated without the additional
constraints on the return value;

• The type of each lambda literal is considered to be the functional type
FT(P1, . . . , PS) → R, where P1, . . . , PS are the types of its parameters
inferred from external constraints or specified in the lambda literal
itself and R is the inferred type of its return value in the presence of
external constraints.

The external constraints on lambda parameters, return value and body may
come from the following sources:

• The (possibly overloaded) callable which uses the lambda literal as an
argument;

Note: as overload resolution is performed before any lambda
literal inference takes place, this candidate is always known
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before external constraints are needed;

• The expected type of the declaration which uses the lambda literal as its
body or initializer.

Examples:

fun <T> foo(): T { ... }
fun <R> run(body: () -> R): R { ... }

fun bar() {
val x = run {

run {
run {

foo<Int>() // last expression inferred to be of type Int
} // this lambda is inferred to be of type () -> Int

} // this lambda is inferred to be of type () -> Int
} // this lambda is inferred to be of type () -> Int
// x is inferred to be of type Int

val y: Double = run { // this lambda has an external constraint R' <: Double
run { // this lambda has an external constraint R'' <: Double

foo() // this call has an external constraint T' <: Double
// allowing to infer T to be Double in foo

}
}

}

14.4 Bare type argument inference
Bare type argument inference is a special kind of type inference where, given
a type T and a constructor TC, the type arguments A0, A1 . . . AN are inferred
such that TC[A0, A1 . . . AN ] <: T . It is used together with bare types syntax
sugar that can be employed in type checking and casting operators. The process
is performed as follows.

First, let’s consider the simple case of T being non-nullable, non-intersection type.
Then, a simple type constraint system is constructed by introducing type variables
for A0, A1 . . . AN and then solving the constraint TC[A0, A1 . . . AN ] <: T .

If T is an intersection type, the same process is performed for every member of
the intersection type individually and then the resulting type argument values
for each parameter AK are merged using the following principle:

• If all values for a particular parameters are star-projections, the result is a
star-projection;

• If some of the values are not star-projections and are strictly equal to each
other, the result is one of their values;
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• Else, the result is a star-projection.

If T is a nullable type U?, the steps given above are performed for its non-nullable
counterpart type U .

14.5 Builder-style type inference
Note: before Kotlin 1.7, builder-style type inference required using the
@BuilderInference annotation on lambda parameters. Currently,
for simple cases when there is a single lambda parameter which
requires builder-style inference, this annotation may be omitted.

When working with DSLs that have generic builder functions, one may want
to infer the generic builder type parameters using the information from the
builder’s lambda body. Kotlin supports special kind of type inference called
builder-style type inference to allow this in some cases.

In order to allow builder-style inference for a generic builder function and its
type parameter P, it should satisfy the following requirements:

• It has a lambda parameter of function type with receiver, with receiver
type T

• The receiver type T uses type parameter P in its type arguments
• The receiver type T can be used as receiver for callables which can provide

information about P via their use

Note: using the type parameter P directly as the receiver type
T (e.g., fun <Q /* P */> myBuilder(builder: Q /* T */.() ->
Unit)) is not yet supported.

In essence, the builder-style inference allows the type of the lambda parameter
receiver to be inferred from its usage in the lambda body. This is performed
only if the standard type inference cannot infer the required types, meaning one
could provide additional type information to help with the inference, e.g., via
explicit type arguments, and avoid the need for builder-style inference.

If the builder-style inference is needed, for a call to an eligible function with
a lambda parameter, the inference is performed as described above, but the
type arguments of the lambda parameter receiver are viewed as postponed type
variables till the body of the lambda expression is proceeded.

Note: during the builder-style inference process, a postponed type
variable is not required to be inferred to a concrete type.

After the inference of statements inside the lambda is complete, these postponed
type variables are inferred using an additional type inference step, which takes
the resulting type constraint system and tries to find the instantiation of the
postponed type variables to concrete types.

If the system cannot be solved, it is a compile-time error.
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Builder-style inference has the following important restrictions.

• Any attempt to use an expression with type which is a postponed type
variable is a compile-time error.

• If a call needs builder-style inference for more than one lambda parameter,
they all should be marked with @BuilderInference annotation. Otherwise,
it is a compile-time error.

Note: notable examples of builder-style inference-enabled functions
are kotlin.sequence and kotlin.iterator. See standard library
documentation for details.

Example:

fun <K, V> buildMap(action: MutableMap<K, V>.() -> Unit): Map<K, V> { ... }

interface Map<K, out V> : Map<K, V> { ... }
interface MutableMap<K, V> : Map<K, V> {

fun put(key: K, value: V): V?
fun putAll(from: Map<out K, V>): Unit

}

fun addEntryToMap(baseMap: Map<String, Number>,
additionalEntry: Pair<String, Int>?) {

val myMap = buildMap/* <?, ?> */ { // cannot infer type arguments
// needs builder-style inference

putAll(baseMap)
// provides information about String <: K, Number <: V

if (additionalEntry != null) {
put(additionalEntry.first, additionalEntry.second)
// provides information about String <: K, Int <: V

}
}
// solves to String =:= K, Number =:= V
// ...

}
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Chapter 15

Runtime type information

The runtime type information (RTTI) is the information about Kotlin types of
values available from these values at runtime. RTTI affects the semantics of
certain expressions, changing their evaluation depending on the amount of RTTI
available for particular values, implementation, and platform:

• The type checking operator
• The cast expression, especially the as? operator
• Class literals and the values they evaluate to

Runtime types are particular instances of RTTI for a particular value at runtime.
These model a subset of the Kotlin type system. Namely, the runtime types are
limited to classifier types, function types and a special case of kotlin.Nothing?
which is the type of null reference and the only nullable runtime type. This
includes the classifier types created by anonymous object literals. There is a
slight distinction between a Kotlin type system type and its runtime counterpart:

• On some platforms, some particular types may have the same runtime
type representation. This means that checking or casting values of these
types works the same way as if they were the same type

• Generic types with the same classifier are not required to have different
runtime representations. One cannot generally rely on them having the
same representation outside of a particular platform. Platform specifica-
tions must clarify whether some or all types on these platforms have this
feature.

RTTI is also the source of information for platform-specific reflection facilities
in the standard library.

The types actual values may have are limited to class and object types and func-
tion types as well as kotlin.Nothing? for the null reference. kotlin.Nothing
(not to be confused with its nullable variant kotlin.Nothing?) is special in the
way that this type is never encountered as a runtime type even though it may
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have a platform-specific representation. The reason for this is that this type is
used to signify non-existent values.

15.1 Runtime-available types
Runtime-available types are the types that can be guaranteed (during compilation)
to have a concrete runtime counterpart. These include all the runtime types,
their nullable variants as well as reified type parameters, that are guaranteed
to inline to a runtime type during type parameter substitution. Only runtime-
available types may be passed (implicitly or explicitly) as substitutions to reified
type parameters, used for type checks and safe casts. During these operations,
the nullability of the type is checked using reference-equality to null, while the
rest is performed by accessing the runtime type of a value and comparing it to
the supplied runtime-available type.

For all generic types that are not expected to have RTTI for their generic
arguments, only “raw” variants of generic types (denoted in code using the
star-projected type notation or a special parameter-less notation) are runtime-
available.

Note: one may say that classifier generics are partially runtime
available due to them having information about only the classifier
part of the type

Exception types must be runtime-available to enable type checks that the catch
clause of try-expression performs.

Only non-nullable runtime types may be used in class literal expressions. These
include reified type parameters with non-nullable upper bounds, as well as all
classifier and function types.

15.2 Reflection
Particular platforms may provide more complex facilities for runtime type
introspection through the means of reflection — special platform-provided part
of the standard library that allows to access more detailed information about
types and declarations at runtime. It is, however, platform-specific and one must
refer to particular platform documentation for details.
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Exceptions

An exception type declaration is any type declaration that meets the following
criteria:

• It is a class or object declaration;
• It has kotlin.Throwable as one of its supertypes (either explicitly or

implicitly);
• It has no type parameters.

Any object of an exception type may be thrown or caught.

16.1 Catching exceptions
A try-expression becomes active once the execution of the program enters it
and stops being active once the execution of the program leaves it. If there
are several active try-expressions, the one that became active last is currently
active.

If an exception is thrown while a try-expression is currently active and this try-
expression has any catch-blocks, those catch-blocks are checked for applicability
for this exception. A catch-block is applicable for an exception object if the
runtime type of this expression object is a subtype of the bound exception
parameter of the catch-block.

Note: the applicability check is subject to Kotlin runtime type
information limitations and may be dependent on the platform imple-
mentation of runtime type information, as well as the implementation
of exception classes.

If a catch-block is applicable for the exception thrown, the code inside the
block is evaluated and the value of the block is returned as the value of a
try-expression. If the try-expression contains a finally-block, the body of
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this block is evaluated after the body of the selected catch block. If these
evaluations results in throwing other exceptions (including the one caught by the
catch-block), they are propagated as if none of the catch-blocks were applicable.

Important: the try-expression itself is not considered active inside
its own catch and finally blocks.

If none of the catch-blocks of the currently active try-expression are applicable
for the exception, the finally block (if any) is still evaluated, and the exception
is propagated, meaning the next active try-expression becomes currently active
and is checked for applicability.

If there are no active try-blocks, the execution of the program finishes, signaling
that the exception has reached top level.

16.2 Throwing exceptions
Throwing an exception object is done using throw-expression. A valid throw
expression throw e requires that:

• e is a value of a runtime-available type;
• e is a value of an exception type.

Throwing an exception results in checking active try-blocks.

Note: Kotlin does not specify whether throwing exceptions involves
construction of a program stack trace and how the actual exception
handling is implemented. This is a platform-dependent mechanism.
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Annotations

Annotations are a form of syntactically-defined metadata which may be associated
with different entities in a Kotlin program. Annotations are specified in the
source code of the program and may be accessed on a particular platform using
platform-specific mechanisms both by the compiler (and source-processing tools)
and at runtime (using reflection facilities). Values of annotation types can also
be created directly, but are usually operated on using platform-specific facilities.

Note: before Kotlin 1.6, annotation types could not be created
directly.

17.1 Annotation values
An annotation value is a value of a special annotation type. An annotation type
is a special kind of class type which is allowed to include read-only properties of
the following types:

• Integer types;
• Enum types;
• String type;
• Other annotation types;
• Arrays of any type listed above.

Important: when we say “other annotation types”, we mean an
annotation type cannot reference itself, either directly or indirectly.
For example, if annotation type A references annotation type B which
references an array of A, it is prohibited and reported as a compile-
time error.

Annotation classes are not allowed to have any member functions, constructors
or mutable properties. They are also not allowed to have declared supertypes
and are considered to be implicitly derived from kotlin.Annotation.
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17.2 Annotation retention
The retention level of an annotation declares which compilation artifacts (for
a particular compiler on a particular platform) retain this kind of annotation.
There are the following types of retention available:

• Source retention (accessible by source-processing tools);

• Binary retention (retained in compilation artifacts);

• Runtime retention (accessible at runtime).

Each subsequent level inherits what is accessible on the previous
levels.

For availability and particular ways of accessing the metadata specified by these
annotations please refer to the corresponding platform-specific documentation.

17.3 Annotation targets
The target of a particular type of annotations is the kind of program entity which
this annotations may be placed on. There are the following targets available:

• A class declaration (including annotation classes);
• An annotation class declaration;
• A type parameter;
• A property declaration;
• A property backing field;
• A property getter;
• A property setter;
• A local property declaration;
• A value parameter in function or constructor declaration;
• A constructor;
• A function declaration;
• A type usage;
• An arbitrary expression;
• A Kotlin file;
• A type alias declaration.

17.4 Annotation declarations
Annotations are declared using annotation class declarations. See the corre-
sponding section for details.

Annotations may be declared repeatable (meaning that the same annotation may
be applied to the same entity more than once) or non-repeatable (meaning that
only one annotation of a particular type may be applied to the same entity).
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17.5 Built-in annotations

17.5.1 kotlin.annotation.Retention

kotlin.annotation.Retention is an annotation which is only used on annota-
tion classes to specify their annotation retention level. It has the following single
field:

• val value: AnnotationRetention = AnnotationRetention.RUNTIME

The retention level of the annotated annotation.

kotlin.annotation.AnnotationRetention is an enum class with the following
values (see Annotation retention section for details):

• SOURCE;
• BINARY;
• RUNTIME.

17.5.2 kotlin.annotation.Target

kotlin.annotation.Target is an annotation which is only used on annotation
classes to specify targets those annotations are valid for. It has the following
single field:

• vararg val allowedTargets: AnnotationTarget

The allowed annotation targets of the annotated annotation.

kotlin.annotation.AnnotationTarget is an enum class with the following
values (see Annotation targets section for details):

• CLASS;
• ANNOTATION_CLASS;
• TYPE_PARAMETER;
• PROPERTY;
• FIELD;
• LOCAL_VARIABLE;
• VALUE_PARAMETER;
• CONSTRUCTOR;
• FUNCTION;
• PROPERTY_GETTER;
• PROPERTY_SETTER;
• TYPE;
• EXPRESSION;
• FILE;
• TYPEALIAS.
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17.5.3 kotlin.annotation.Repeatable

kotlin.annotation.Repeatable is an annotation which is only used on an-
notation classes to specify whether this particular annotation is repeatable.
Annotations are non-repeatable by default.

17.5.4 kotlin.RequiresOptIn / kotlin.OptIn

kotlin.RequiresOptIn is an annotation class with two fields:

• val message: String = ""

The message describing the particular opt-in requirements.

• val level: Level = Level.ERROR

The severity level of the experimental status with two possible values:
Level.WARNING and Level.ERROR.

This annotation is used to introduce implementation-defined experimental lan-
guage or standard library features.

kotlin.OptIn is an annotation class with a single field:

• vararg val markerClass: KClass<out Annotation>

The classes which this annotation allows to use.

This annotation is used to explicitly mark declarations which use experimental
features marked by kotlin.RequiresOptIn.

It is implementation-defined how this annotation is processed.

Note: before Kotlin 1.4.0, there were two other built-in annota-
tions: @Experimental (now replaced by @RequiresOptIn) and
@UseExperimental (now replaced by @OptIn) serving the same
purpose which are now deprecated.

17.5.5 kotlin.Deprecated / kotlin.ReplaceWith

kotlin.Deprecated is an annotation class with the following fields:

• val message: String

A message supporting the deprecation.

• val replaceWith: ReplaceWith = ReplaceWith("")

An optional replacement for the deprecated code.

• val level: DeprecationLevel = DeprecationLevel.WARNING

The deprecation level with three possible values: DeprecationLevel.WARNING,
DeprecationLevel.ERROR and DeprecationLevel.HIDDEN.
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kotlin.ReplaceWith is itself an annotation class containing the information on
how to perform the replacement in case it is provided. It has the following fields:

• val expression: String

The replacement code.

• vararg val imports: String

An array of imports needed for the replacement code to work correctly.

kotlin.Deprecated is a built-in annotation supporting the deprecation cycle for
declarations: marking some declarations as outdated, soon to be replaced with
other declarations, or not recommended for use. It is implementation-defined
how this annotation is processed, with the following recommendations:

• Attempting to use a declaration with deprecation level of DeprecationLevel.WARNING
should produce a compile-time warning;

• Attempting to use a declaration with deprecation level of DeprecationLevel.ERROR
should produce a compile-time error.

17.5.6 kotlin.Suppress

kotlin.Suppress is an annotation class with the following single field:

• vararg val names: String

The names of features this annotation is suppressing.

kotlin.Suppress is used to optionally mark any piece of code as suppressing
some language feature, such as a compiler warning, an IDE mechanism or a
language feature. The names of features which one can suppress with this
annotation are implementation-defined, as is the processing of this annotation
itself.

17.5.7 kotlin.SinceKotlin

kotlin.SinceKotlin is an annotation class with the following single field:

• val version: String

The version of Kotlin language.

kotlin.SinceKotlin is used to mark a declaration which is only available since
a particular version of the language. These mostly refer to standard library
declarations. It is implementation-defined how this annotation is processed.

17.5.8 kotlin.UnsafeVariance

kotlin.UnsafeVariance is an annotation class with no fields which is only
applicable to types. Any type instance marked by this annotation explicitly
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states that the variance errors arising for this particular type instance are to be
ignored by the compiler.

17.5.9 kotlin.DslMarker

kotlin.DslMarker is an annotation class with no fields which is applicable
only to other annotation classes. An annotation class annotated with
kotlin.DslMarker is marked as a marker of a specific DSL (domain-specific
language). Any type annotated with such a marker is said to belong to that
specific DSL. This affects overload resolution in the following way: no two
implicit receivers with types belonging to the same DSL are available in the
same scope. See Overload resolution section for details.

17.5.10 kotlin.PublishedApi

kotlin.PublishedApi is an annotation class with no fields which is applicable
to any declaration. It may be applied to any declaration with internal visibility
to make it available to public inline declarations. See Declaration visibility
section for details.

17.5.11 kotlin.BuilderInference

Marks the annotated function of function argument as eligible for builder-style
type inference. See corresponding section for details.

Note: as of Kotlin 1.9, this annotation is experimental and, in order
to use it in one’s code, one must explicitly enable it using opt-in
annotations given above. The particular marker class used to perform
this is implementation-defined.

17.5.12 kotlin.RestrictSuspension

In some cases we may want to limit which suspending functions can be called in
another suspending function with an extension receiver of a specific type; i.e., if
we want to provide a coroutine-enabled DSL, but disallow the use of arbitrary
suspending functions. To do so, the type T of that extension receiver needs to
be annotated with kotlin.RestrictSuspension, which enables the following
limitations.

• Suspending functions with an extension receiver of type T are restricted
from calling other suspending functions besides those accessible on this
receiver.

• Suspending functions of type T can be called only on an extension receiver.

17.5.13 kotlin.OverloadResolutionByLambdaReturnType

This annotation is used to allow using lambda return type to refine function
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applicability during overload resolution. Further details are available in the
corresponding section.

Note: as of Kotlin 1.9, this annotation is experimental and, in order
to use it in one’s code, one must explicitly enable it using opt-in
annotations given above. The particular marker class used to perform
this is implementation-defined.
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Chapter 18

Asynchronous programming
with coroutines

18.1 Suspending functions
Most functions in Kotlin may be marked suspending using the special suspend
modifier. There are almost no additional restrictions: regular functions, extension
functions, top-level functions, local functions, lambda literals, all these may be
suspending functions.

Note: the following functions and function values cannot be marked
as suspending.

• anonymous function declarations;
• constructors;
• property getter/setters;
• delegation-related operator functions.

Note: platform-specific implementations may extend the restrictions
on which kinds of functions may be suspending.

Suspending functions have a suspending function type, also marked using the
suspend modifier.

A suspending function is different from non-suspending functions by potentially
having zero or more suspension points — statements in its body which may
pause the function execution to be resumed at a later moment in time. The
main source of suspension points are calls to other suspending functions which
represent possible suspension points.

Note: suspension points are important because at these points another
function may start in the same flow of execution, leading to potential
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changes in the shared state.

Non-suspending functions may not call suspending functions directly, as they do
not support suspension points. Suspending functions may call non-suspending
functions without any limitations; such calls do not create suspension points.
This restriction is also known as “function colouring”.

Important: an exception to this rule are non-suspending inlined
lambda parameters: if the higher-order function invoking such a
lambda is called from a suspending function, this lambda is allowed
to also have suspension points and call other suspending functions.

Note: suspending functions interleaving each other in this manner
are not dissimilar to how functions from different threads interact
on platforms with multi-threading support. There are, however,
several key differences. First, suspending functions may pause only
at suspension points, i.e., they cannot be paused at an arbitrary
execution point. Second, this interleaving may happen on a single
platform thread.

In a multi-threaded environment suspending functions may also be
interleaved by the platform-dependent concurrent execution, inde-
pendent of the interleaving of coroutines.

The implementation of suspending functions is platform-dependent. Please refer
to the platform documentation for details.

18.2 Coroutines
A coroutine is a concept similar to a thread in traditional concurrent program-
ming, but based on cooperative multitasking, e.g., the switching between different
execution contexts is done by the coroutines themselves rather than the operating
system or a virtual machine.

In Kotlin, coroutines are used to implement suspending functions and can switch
contexts only at suspension points.

A call to a suspending function creates and starts a coroutine. As one can call a
suspending function only from another suspending function, we need a way to
bootstrap this process from a non-suspending context.

Note: this is required as most platforms are unaware of coroutines or
suspending functions, and do not provide a suspending entry point.
However, a Kotlin compiler may elect to provide a suspending entry
point on a specific platform.

One of the ways of starting suspending function from a non-suspending context
is via a coroutine builder : a non-suspending function which takes a suspending

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
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function type argument (e.g., a suspending lambda literal) and handles the
coroutine lifecycle.

The implementation of coroutines is platform-dependent. Please refer to the
platform documentation for details.

18.3 Implementation details
Despite being platform-dependent, there are several aspects of coroutine imple-
mentation in Kotlin, which are common across all platforms and belong to the
Kotlin/Core. We describe these details below.

18.3.1 kotlin.coroutines.Continuation<T>

Interface kotlin.coroutines.Continuation<T> is the main supertype of all
coroutines and represents the basis upon which the coroutine machinery is
implemented.

public interface Continuation<in T> {
public val context: CoroutineContext
public fun resumeWith(result: Result<T>)

}

Every suspending function is associated with a generated Continuation subtype,
which handles the suspension implementation; the function itself is adapted
to accept an additional continuation parameter to support the Continuation
Passing Style. The return type of the suspending function becomes the type
parameter T of the continuation.

CoroutineContext represents the context of the continuation and is an indexed
set from CoroutineContext.Key to CoroutineContext.Element (e.g., a special
kind of map). It is used to store coroutine-local information, and takes important
part in Continuation interception.

resumeWith function is used to propagate the results in between suspension
points: it is called with the result (or exception) of the last suspension point and
resumes the coroutine execution.

To avoid the need to explicitly create the Result<T> when calling resumeWith,
the coroutine implementation provides the following extension functions.

fun <T> Continuation<T>.resume(value: T)
fun <T> Continuation<T>.resumeWithException(exception: Throwable)

18.3.2 Continuation Passing Style
Each suspendable function goes through a transformation from normally invoked
function to continuation passing style (CPS). For a suspendable function with
parameters p1, p2, . . . , pN and result type T a new function is generated, with an
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additional parameter pN+1 of type kotlin.coroutines.Continuation<T> and
return type changed to kotlin.Any?. The calling convention for such function
is different from regular functions as a suspendable function may either suspend
or return.

• If the function returns a result, it is returned directly from the function as
normal;

• If the function suspends, it returns a special marker value COROUTINE_SUSPENDED
to signal its suspended state.

The calling convention is maintained by the compiler during the CPS transforma-
tion, which prevents the user from manually returning COROUTINE_SUSPENDED.
If the user wants to suspend a coroutine, they need to perform the following
steps.

• Access the coroutine’s continuation object by calling suspendCoroutineUninterceptedOrReturn
intrinsic or any of its wrappers;

• Store the continuation object to resume it later;
• Pass the COROUTINE_SUSPENDED marker to the intrinsic, which is then

returned from the function.

As Kotlin does not currently support denotable union types, the return type
is changed to kotlin.Any?, so it can hold both the original return type T and
COROUTINE_SUSPENDED.

18.3.3 Coroutine state machine
Kotlin implements suspendable functions as state machines, since such imple-
mentation does not require specific runtime support. This dictates the explicit
suspend marking (function colouring) of Kotlin coroutines: the compiler has to
know which function can potentially suspend, to turn it into a state machine.

Each suspendable lambda is compiled to a continuation class, with fields rep-
resenting its local variables, and an integer field for current state in the state
machine. Suspension point is where such lambda can suspend: either a sus-
pending function call or suspendCoroutineUninterceptedOrReturn intrinsic
call. For a lambda with N suspension points and M return statements, which
are not suspension points themselves, N + M states are generated (one for each
suspension point plus one for each non-suspending return statement).

Example:

// Lambda body with multiple suspension points
val a = a()
val y = foo(a).await() // suspension point #1
b()
val z = bar(a, y).await() // suspension point #2
c(z)
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// State machine code for the lambda after CPS transformation
// (written in pseudo-Kotlin with gotos)
class <anonymous> private constructor(

completion: Continuation<Any?>
): SuspendLambda<...>(completion) {

// The current state of the state machine
var label = 0

// local variables of the coroutine
var a: A? = null
var y: Y? = null

fun invokeSuspend(result: Any?): Any? {
// state jump table
if (label == 0) goto L0
if (label == 1) goto L1
if (label == 2) goto L2
else throw IllegalStateException()

L0:
// result is expected to be `null` at this invocation

a = a()
label = 1
// 'this' is passed as a continuation
result = foo(a).await(this)
// return if await had suspended execution
if (result == COROUTINE_SUSPENDED)

return COROUTINE_SUSPENDED
L1:

// error handling
result.throwOnFailure()
// external code has resumed this coroutine
// passing the result of .await()
y = (Y) result
b()
label = 2
// 'this' is passed as a continuation
result = bar(a, y).await(this)
// return if await had suspended execution
if (result == COROUTINE_SUSPENDED)

return COROUTINE_SUSPENDED
L2:

// error handling
result.throwOnFailure()
// external code has resumed this coroutine
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// passing the result of .await()
Z z = (Z) result
c(z)
label = -1 // No more steps are allowed
return Unit

}

fun create(completion: Continuation<Any?>): Continuation<Any?> {
<anonymous>(completion)

}

fun invoke(completion: Continuation<Any?>): Any? {
create(completion).invokeSuspend(Unit)

}
}

18.3.4 Continuation interception
Asynchronous computations in many cases need to control how they are executed,
with varying degrees of precision. For example, in typical user interface (UI)
applications, updates to the interface should be executed on a special UI thread;
in server-side applications, long-running computations are often offloaded to a
separate thread pool, etc.

Continuation interceptors allow us to intercept the coroutine execution be-
tween suspension points and perform some operations on it, usually wrapping
the coroutine continuation in another continuation. This is done using the
kotlin.coroutines.ContinuationInterceptor interface.

interface ContinuationInterceptor : CoroutineContext.Element {
companion object Key : CoroutineContext.Key<ContinuationInterceptor>
fun <T> interceptContinuation(continuation: Continuation<T>): Continuation<T>
fun releaseInterceptedContinuation(continuation: Continuation<*>)

}

As seen from the declaration, ContinuationInterceptor is a CoroutineContext.Element,
and to perform the continuation interception, an instance of ContinuationInterceptor
should be available in the coroutine context, where it is used similarly to the
following line of code.

val intercepted = continuation.context[ContinuationInterceptor]?.interceptContinuation(continuation) ?: continuation

When the cached intercepted continuation is no longer needed, it is released
using ContinuationInterceptor.releaseInterceptedContinuation(...).

Note: this machinery is performed “behind-the-scenes” by the corou-
tine framework implementation.
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18.3.5 Coroutine intrinsics
Accessing the low-level continuations is performed using a limited number
of built-in intrinsic functions, which form the complete coroutine API. The
rest of asynchronous programming support is provided as a Kotlin library
kotlinx.coroutines.

The complete built-in API for working with coroutines is shown below (all of
these are declared in package kotlin.coroutines.intrinsics of the standard
library).

fun <T> (suspend () -> T).createCoroutineUnintercepted(
completion: Continuation<T>

): Continuation<Unit>

suspend fun <T>
suspendCoroutineUninterceptedOrReturn(

block: (Continuation<T>) -> Any?): T

fun <T> (suspend () -> T).
startCoroutineUninterceptedOrReturn(

completion: Continuation<T>): Any?

fun <T> Continuation<T>.intercepted(): Continuation<T>

// Additional functions for types with explicit receiver

fun <R, T> (suspend R.() -> T).createCoroutineUnintercepted(
completion: Continuation<T>

): Continuation<Unit>

fun <T> (suspend R.() -> T).
startCoroutineUninterceptedOrReturn(

completion: Continuation<T>): Any?

Function createCoroutineUnintercepted is used to create a coroutine
corresponding to its extension receiver suspending function, which invokes
the passed completion continuation upon completion. This function
does not start the coroutine, however; to do that, one have to call
Continuation<T>.resumeWith function on the created continuation object.
Suspending function suspendCoroutineUninterceptedOrReturn provides
access to the current continuation (similarly to how call/cc works in Scheme).
If its lambda returns the COROUTINE_SUSPENDED marker, it also suspends
the coroutine. Together with Continuation<T>.resumeWith function, which
resumes or starts a coroutine, these functions form a complete coroutine API
built into the Kotlin compiler.

https://github.com/Kotlin/kotlinx.coroutines


296CHAPTER 18. ASYNCHRONOUS PROGRAMMING WITH COROUTINES



Chapter 19

Concurrency

Kotlin Core does not specify the semantics of the code running in concurrent
environments. For information on threading APIs, memory model, supported
synchronization and other concurrency-related capabilities of Kotlin on your
platform, please refer to platform documentation.

297



298 CHAPTER 19. CONCURRENCY


	I Kotlin/Core
	Introduction
	Compatibility
	Experimental features
	Acknowledgments
	Feedback
	Reference

	Syntax and grammar
	Notation
	Lexical grammar
	Whitespace and comments
	Keywords and operators
	Literals
	Identifiers
	String mode grammar
	Tokens

	Syntax grammar
	Documentation comments

	Type system
	Glossary
	Introduction
	Type kinds
	Built-in types
	kotlin.Any
	kotlin.Nothing
	kotlin.Function
	Built-in integer types
	Array types

	Classifier types
	Simple classifier types
	Parameterized classifier types

	Type parameters
	Function type parameters
	Mixed-site variance
	Declaration-site variance
	Use-site variance

	Type capturing
	Type containment
	Function types
	Suspending function types

	Flexible types
	Dynamic type
	Platform types

	Nullable types
	Nullability lozenge
	Definitely non-nullable types

	Intersection types
	Integer literal types
	Union types

	Type contexts and scopes
	Inner and nested type contexts

	Subtyping
	Subtyping rules
	Subtyping for flexible types
	Subtyping for intersection types
	Subtyping for integer literal types
	Subtyping for nullable types

	Upper and lower bounds
	Least upper bound
	Greatest lower bound

	Type approximation
	Type decaying
	References

	Built-in types and their semantics
	kotlin.Any
	kotlin.Nothing
	kotlin.Unit
	kotlin.Boolean
	Built-in integer types
	Integer type widening

	Built-in floating point arithmetic types
	kotlin.Char
	kotlin.String
	kotlin.Enum
	Built-in array types
	Specialized array types

	Iterator types
	Specialized iterator types

	kotlin.Throwable
	kotlin.Comparable
	kotlin.Function
	Built-in annotation types
	Reflection support builtin types
	kotlin.reflect.KClass
	kotlin.reflect.KCallable
	kotlin.reflect.KProperty
	kotlin.reflect.KFunction


	Declarations
	Glossary
	Introduction
	Classifier declaration
	Class declaration
	Constructor declaration
	Constructor declaration scopes

	Nested and inner classifiers
	Inheritance delegation
	Abstract classes

	Data class declaration
	Data object declaration

	Enum class declaration
	Annotation class declaration
	Value class declaration
	Interface declaration
	Functional interface declaration

	Object declaration
	Local class declaration
	Classifier initialization
	Classifier declaration scopes

	Function declaration
	Function signature
	Named, positional and default parameters
	Variable length parameters
	Extension function declaration
	Inlining
	Infix functions
	Local function declaration
	Tail recursion optimization
	Function declaration scopes

	Property declaration
	Read-only property declaration
	Mutable property declaration
	Local property declaration
	Getters and setters
	Delegated property declaration
	Extension property declaration
	Property initialization
	Constant properties
	Late-initialized properties
	Property declaration scopes

	Type alias
	Declarations with type parameters
	Type parameter variance
	Reified type parameters
	Underscore type arguments

	Declaration visibility

	Inheritance
	Classifier type inheritance
	Abstract classes
	Sealed classes and interfaces
	Inheritance from built-in types

	Matching and subsumption of declarations
	Inheriting
	Overriding

	Scopes and identifiers
	Linked scopes
	Identifiers and paths
	Labels

	Statements
	Assignments
	Simple assignments
	Operator assignments
	Safe assignments

	Loop statements
	While-loop statements
	Do-while-loop statements
	For-loop statements

	Code blocks
	Coercion to kotlin.Unit


	Expressions
	Glossary
	Introduction
	Constant literals
	Boolean literals
	Integer literals
	Decimal integer literals
	Hexadecimal integer literals
	Binary integer literals

	The types for integer literals
	Real literals
	Character literals
	Escaped characters

	String literals
	Null literal

	Constant expressions
	String interpolation expressions
	Try-expressions
	Conditional expressions
	When expressions
	Exhaustive when expressions

	Logical disjunction expressions
	Logical conjunction expressions
	Equality expressions
	Reference equality expressions
	Value equality expressions

	Comparison expressions
	Type-checking and containment-checking expressions
	Type-checking expressions
	Containment-checking expressions

	Elvis operator expressions
	Range expressions
	Additive expressions
	Multiplicative expressions
	Cast expressions
	Prefix expressions
	Annotated expressions
	Prefix increment expressions
	Prefix decrement expressions
	Unary minus expressions
	Unary plus expressions
	Logical not expressions

	Postfix operator expressions
	Postfix increment expressions
	Postfix decrement expressions

	Not-null assertion expressions
	Indexing expressions
	Call and property access expressions
	Navigation operators
	Callable references
	Class literals
	Function calls and property access
	Spread operator expressions

	Function literals
	Anonymous function declarations
	Lambda literals

	Object literals
	Functional interface lambda literals

	This-expressions
	Super-forms
	Jump expressions
	Throw expressions
	Return expressions
	Continue expressions
	Break expressions


	Operator overloading
	Destructuring declarations

	Packages and imports
	Importing
	Modules

	Overload resolution
	Glossary
	Introduction
	Basics
	Receivers
	The forms of call-expression
	Callables and invoke convention
	c-level partition

	Building the overload candidate set
	Fully-qualified call
	Call with an explicit receiver
	Call with an explicit type receiver
	Call with an explicit super-form receiver

	Infix function call
	Operator call
	Call without an explicit receiver
	Call with named parameters
	Call with trailing lambda expressions
	Call with specified type parameters

	Determining function applicability for a specific call
	Rationale
	Description

	Choosing the most specific candidate from the overload candidate set
	Rationale
	Algorithm of MSC selection
	Using lambda return type to refine function applicability

	Resolving property access
	Resolving callable references
	Resolving callable references not used as arguments to a call
	Bidirectional resolution for callable calls

	Type inference and overload resolution
	Conflicting overloads

	Control- and data-flow analysis
	Control flow graph
	Expressions
	Function calls and operators
	Conditional expressions
	Boolean operators
	Other expressions

	Statements
	Declarations
	Examples
	kotlin.Nothing and its influence on the CFG

	Performing analyses on the control-flow graph
	Types of lattices
	Preliminary analysis and \operatorname{\mathit{killDataFlow}} instruction
	Variable initialization analysis
	Smart casting analysis
	Function contracts

	References

	Kotlin type constraints
	Type constraint definition
	Type constraint solving
	Checking constraint system soundness
	A sample bound inference algorithm

	Finding optimal constraint system solution
	The relations on types as constraints


	Type inference
	Smart casts
	Data-flow framework
	Smart cast lattices
	Smart cast transfer functions

	Smart cast types
	Smart cast sink stability
	Effectively immutable smart cast sinks

	Loop handling
	Bound smart casts

	Local type inference
	Function signature type inference
	Named and anonymous function declarations
	Statements with lambda literals

	Bare type argument inference
	Builder-style type inference

	Runtime type information
	Runtime-available types
	Reflection

	Exceptions
	Catching exceptions
	Throwing exceptions

	Annotations
	Annotation values
	Annotation retention
	Annotation targets
	Annotation declarations
	Built-in annotations
	kotlin.annotation.Retention
	kotlin.annotation.Target
	kotlin.annotation.Repeatable
	kotlin.RequiresOptIn / kotlin.OptIn
	kotlin.Deprecated / kotlin.ReplaceWith
	kotlin.Suppress
	kotlin.SinceKotlin
	kotlin.UnsafeVariance
	kotlin.DslMarker
	kotlin.PublishedApi
	kotlin.BuilderInference
	kotlin.RestrictSuspension
	kotlin.OverloadResolutionByLambdaReturnType


	Asynchronous programming with coroutines
	Suspending functions
	Coroutines
	Implementation details
	kotlin.coroutines.Continuation<T>
	Continuation Passing Style
	Coroutine state machine
	Continuation interception
	Coroutine intrinsics


	Concurrency


