
Kotlin	Language	Documentation	1.9.20

Table of Contents

Kotlin Docs

Get started with Kotlin

Install Kotlin

Create your powerful application with Kotlin

Is anything missing?

Welcome to our tour of Kotlin!

Hello world

Variables

String templates

Practice

Next step

Basic types

Practice

Next step

Collections

List

Set

Map

Practice

Next step

Control flow

Conditional expressions

Ranges

Loops

Practice

Next step

61

61

61

61

63

63

63

64

64

65

65

65

66

67

67

67

68

69

71

72

72

72

74

74

75

77

2

Functions

Named arguments

Default parameter values

Functions without return

Single-expression functions

Functions practice

Lambda expressions

Lambda expressions practice

Next step

Classes

Properties

Create instance

Access properties

Member functions

Data classes

Practice

Next step

Null safety

Nullable types

Check for null values

Use safe calls

Use Elvis operator

Practice

What's next?

Kotlin Multiplatform

Kotlin Multiplatform use cases

Code sharing between platforms

Get started

Kotlin for server side

77
78

78

79

79

79

80

83

84

84

84

84

85

85

85

87

88

88

88

89

89

90

90

90

90

91

91

92

92

3

Frameworks for server-side development with Kotlin

Deploying Kotlin server-side applications

Products that use Kotlin on the server side

Next steps

Kotlin for Android

Kotlin Wasm

Browser support

Interoperability

Compose Multiplatform for Web

How to get started

Libraries support

Feedback

Kotlin Native

Why Kotlin/Native?

Target platforms

Interoperability

Sharing code between platforms

How to get started

Kotlin for JavaScript

Kotlin/JS IR compiler

Kotlin/JS frameworks

Join the Kotlin/JS community

Kotlin for data science

Interactive editors

Libraries

Kotlin for competitive programming

Simple example: Reachable Numbers problem

92

93

93

93

93

94

94

94

94

94

94

95

95

95

95

95

95

96

96

96

96

97

97

97

100

101

102

4

Functional operators example: Long Number problem

More tips and tricks

Learning Kotlin

What's new in Kotlin 1.9.20

IDE support

New Kotlin K2 compiler updates

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform

Kotlin/Wasm

Gradle

Standard library

Documentation updates

Install Kotlin 1.9.20

What's new in Kotlin 1.9.0

IDE support

New Kotlin K2 compiler updates

Language

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform

Kotlin/Wasm

Kotlin/JS

Gradle

Standard library

Documentation updates

Install Kotlin 1.9.0

Compatibility guide for Kotlin 1.9.0

103

104

105

105

105

106

107

107

110

118

119

120

121

122

122

123

123

125

126

127

129

130

132

133

136

141

141

141

5

What's new in Kotlin 1.9.20-RC2

IDE support

New Kotlin K2 compiler updates

Kotlin Multiplatform

Kotlin/Native

Kotlin/Wasm

How to update to Kotlin 1.9.20-RC2

What's new in Kotlin 1.8.20

IDE support

New Kotlin K2 compiler updates

Language

New Kotlin/Wasm target

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform

Kotlin/JavaScript

Gradle

Standard library

Serialization updates

Documentation updates

Install Kotlin 1.8.20

What's new in Kotlin 1.8.0

IDE support

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform: A new Android source set layout

Kotlin/JS

Gradle

Standard library

142

142

142

143

147

149

150

150

151

151

152

156

157

158

160

163

164

167

169

170

170

170

170

171

171

173

175

176

179

6

Documentation updates

Install Kotlin 1.8.0

Compatibility guide for Kotlin 1.8.0

What's new in Kotlin 1.7.20

Support for Kotlin K2 compiler plugins

Language

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Gradle

Standard library

Documentation updates

Install Kotlin 1.7.20

What's new in Kotlin 1.7.0

New Kotlin K2 compiler for the JVM in Alpha

Language

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Standard library

Gradle

Migrating to Kotlin 1.7.0

What's new in Kotlin 1.6.20

Language

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform

Kotlin/JS

182

182

182

182

183

184

188

189

191

191

192

193

194

194

195

196

197

198

200

201

204

209

209

210

211

213

216

218

7

Security

Gradle

What's new in Kotlin 1.6.0

Language

Supporting previous API versions for a longer period

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Kotlin Gradle plugin

Standard library

Tools

Coroutines 1.6.0-RC

Migrating to Kotlin 1.6.0

What's new in Kotlin 1.5.30

Language features

Kotlin/JVM

Kotlin/Native

Kotlin Multiplatform

Kotlin/JS

Gradle

Standard library

Serialization 1.3.0-RC

What's new in Kotlin 1.5.20

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Gradle

Standard library

219

221

222

222

225

225

226

228

229

229

232

233

233

233

234

237

238

240

242

242

245

247

248

248

249

250

251

251

8

What's new in Kotlin 1.5.0

Language features

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Kotlin Multiplatform

Standard library

kotlin-test library

kotlinx libraries

Migrating to Kotlin 1.5.0

What's new in Kotlin 1.4.30

Language features

Kotlin/JVM

Kotlin/Native

Kotlin/JS

Gradle project improvements

Standard library

Serialization updates

What's new in Kotlin 1.4.20

Kotlin/JVM

Kotlin/JS

Kotlin/Native

Kotlin Multiplatform

Standard library

Kotlin Android Extensions

What's new in Kotlin 1.4.0

Language features and improvements

New tools in the IDE

252

252

254

256

257

257

257

261

264

265

265

265

268

268

269

269

269

271

271

271

272

274

275

276

276

277

277

280

9

New compiler

Kotlin/JVM

Kotlin/JS

Kotlin/Native

Kotlin Multiplatform

Gradle project improvements

Standard library

Stable JSON serialization

Scripting and REPL

Migrating to Kotlin 1.4.0

What's new in Kotlin 1.3

Coroutines release

Kotlin/Native

Multiplatform projects

Contracts

Capturing when subject in a variable

@JvmStatic and @JvmField in companions of interfaces

Nested declarations in annotation classes

Parameterless main

Functions with big arity

Progressive mode

Inline classes

Unsigned integers

@JvmDefault

Standard library

Tooling

What's new in Kotlin 1.2

Table of contents

Multiplatform projects (experimental)

283

285

287

287

289

292

293

299

299

300

300

300

301

301

301

302

302

303

303

303

304

304

304

305

305

307

307

307

308

10

Other language features

Standard library

JVM backend

JavaScript backend

Tools

What's new in Kotlin 1.1

Table of contents

JavaScript

Coroutines (experimental)

Other language features

Standard library

JVM Backend

JavaScript backend

Kotlin releases

Update to a new release

IDE support

Release details

Kotlin roadmap

Key priorities

Kotlin roadmap by subsystem

What's changed since December 2022

Basic syntax

Package definition and imports

Program entry point

Print to the standard output

Functions

Variables

Creating classes and instances

308

311

313

313

313

314

314

314

314

315

319

322

322

323

323

324

324

330

330

331

332

333

333

334

334

334

335

336

11

Comments

String templates

Conditional expressions

for loop

while loop

when expression

Ranges

Collections

Nullable values and null checks

Type checks and automatic casts

Idioms

Create DTOs (POJOs/POCOs)

Default values for function parameters

Filter a list

Check the presence of an element in a collection

String interpolation

Instance checks

Read-only list

Read-only map

Access a map entry

Traverse a map or a list of pairs

Iterate over a range

Lazy property

Extension functions

Create a singleton

Instantiate an abstract class

If-not-null shorthand

If-not-null-else shorthand

Execute a statement if null

336

336

337

337

337

338

338

339

339

340

341

341

342

342

342

342

342

342

342

343

343

343

343

343

343

343

344

344

344

12

Get first item of a possibly empty collection

Execute if not null

Map nullable value if not null

Return on when statement

try-catch expression

if expression

Builder-style usage of methods that return Unit

Single-expression functions

Call multiple methods on an object instance (with)

Configure properties of an object (apply)

Java 7's try-with-resources

Generic function that requires the generic type information

Swap two variables

Mark code as incomplete (TODO)

What's next?

Coding conventions

Configure style in IDE

Source code organization

Naming rules

Formatting

Documentation comments

Avoid redundant constructs

Idiomatic use of language features

Coding conventions for libraries

Basic types

Numbers

Integer types

Floating-point types

Literal constants for numbers

344

344

344

344

345

345

345

345

345

346

346

346

346

346

347

347

347

347

349

350

357

358

358

362

362

362

362

363

364

13

Numbers representation on the JVM

Explicit number conversions

Operations on numbers

Unsigned integer types

Unsigned arrays and ranges

Unsigned integers literals

Use cases

Booleans

Characters

Strings

String literals

String templates

Arrays

When to use arrays

Create arrays

Access and modify elements

Work with arrays

Primitive-type arrays

What's next?

Type checks and casts

is and !is operators

Smart casts

"Unsafe" cast operator

"Safe" (nullable) cast operator

Conditions and loops

If expression

When expression

364

365

365

367

367

368

368

368

369

369

370

371

371

371

372

373

373

375

376

376

376

377

378

378

378

378

379

14

For loops

While loops

Break and continue in loops

Returns and jumps

Break and continue labels

Return to labels

Exceptions

Exception classes

Checked exceptions

The Nothing type

Java interoperability

Packages and imports

Default imports

Imports

Visibility of top-level declarations

Classes

Constructors

Creating instances of classes

Class members

Inheritance

Abstract classes

Companion objects

Inheritance

Overriding methods

Overriding properties

Derived class initialization order

Calling the superclass implementation

Overriding rules

380

381

381

381

382

382

383

383

384

384

385

385

385

386

386

386

386

388

389

389

389

389

389

390

390

391

391

392

15

Properties

Declaring properties

Getters and setters

Compile-time constants

Late-initialized properties and variables

Overriding properties

Delegated properties

Interfaces

Implementing interfaces

Properties in interfaces

Interfaces Inheritance

Resolving overriding conflicts

Functional (SAM) interfaces

SAM conversions

Migration from an interface with constructor function to a functional interface

Functional interfaces vs. type aliases

Visibility modifiers

Packages

Class members

Modules

Extensions

Extension functions

Extensions are resolved statically

Nullable receiver

Extension properties

Companion object extensions

Scope of extensions

Declaring extensions as members

392

392

393

394

394

395

395

395

395

396

396

396

397

397

398

398

398

399

399

400

400

400

401

402

402

402

402

403

16

Note on visibility

Data classes

Properties declared in the class body

Copying

Data classes and destructuring declarations

Standard data classes

Sealed classes and interfaces

Location of direct subclasses

Sealed classes and when expression

Generics: in, out, where

Variance

Type projections

Generic functions

Generic constraints

Definitely non-nullable types

Type erasure

Underscore operator for type arguments

Nested and inner classes

Inner classes

Anonymous inner classes

Enum classes

Anonymous classes

Implementing interfaces in enum classes

Working with enum constants

Inline value classes

Members

Inheritance

Representation

404

404

405

405

405

406

406

406

407

407

407

409

410

411

411

412

413

413

414

414

414

415

415

415

417

417

418

418

17

Inline classes vs type aliases

Inline classes and delegation

Object expressions and declarations

Object expressions

Object declarations

Delegation

Overriding a member of an interface implemented by delegation

Delegated properties

Standard delegates

Delegating to another property

Storing properties in a map

Local delegated properties

Property delegate requirements

Translation rules for delegated properties

Providing a delegate

Type aliases

Functions

Function usage

Function scope

Generic functions

Tail recursive functions

Higher-order functions and lambdas

Higher-order functions

Function types

Lambda expressions and anonymous functions

Inline functions

noinline

419

419

420

420

421

424

425

425

426

427

428

428

429

429

431

432

433

433

436

437

437

438

438

439

440

443

443

18

Non-local returns

Reified type parameters

Inline properties

Restrictions for public API inline functions

Operator overloading

Unary operations

Binary operations

Infix calls for named functions

Type-safe builders

How it works

Scope control: @DslMarker

Full definition of the com.example.html package

Using builders with builder type inference

Writing your own builders

How builder inference works

Null safety

Nullable types and non-nullable types

Checking for null in conditions

Safe calls

Nullable receiver

Elvis operator

The !! operator

Safe casts

Collections of a nullable type

What's next?

Equality

Structural equality

Referential equality

444

444

445

446

446

446

447

450

450

451

453

453

455

455

456

458

458

459

460

460

461

461

461

461

461

461

462

462

19

Floating-point numbers equality

Array equality

This expressions

Qualified this

Implicit this

Asynchronous programming techniques

Threading

Callbacks

Futures, promises, and others

Reactive extensions

Coroutines

Coroutines

How to start

Sample projects

Annotations

Usage

Constructors

Instantiation

Lambdas

Annotation use-site targets

Java annotations

Repeatable annotations

Destructuring declarations

Example: returning two values from a function

Example: destructuring declarations and maps

Underscore for unused variables

Destructuring in lambdas

Reflection

462

462

462

462

463

463

463

464

464

465

465

466

466

466

466

467

467

468

468

468

469

470

471

471

472

472

472

473

20

JVM dependency

Class references

Callable references

Get started with Kotlin Multiplatform

Start from scratch

Dive deep into Kotlin Multiplatform

Get help

The basics of Kotlin Multiplatform project structure

Common code

Targets

Source sets

Integration with tests

What's next?

Set up targets for Kotlin Multiplatform

Distinguish several targets for one platform

Share code on platforms

Share code on all platforms

Share code on similar platforms

Share code in libraries

Connect platform-specific libraries

What's next?

Expected and actual declarations

Rules for expected and actual declarations

Different approaches for using expected and actual declarations

Advanced use cases

What's next?

Hierarchical project structure

Default hierarchy template

473

473

474

477

477

477

478

478

478

479

479

482

482

483

483

483

484

484

484

485

485

485

486

486

490

492

492

493

21

Manual configuration

Adding dependencies on multiplatform libraries

Dependency on a Kotlin library

Dependency on Kotlin Multiplatform libraries

Dependency on another multiplatform project

What's next?

Adding Android dependencies

What's next?

Adding iOS dependencies

With CocoaPods

Without CocoaPods

What's next?

Configure compilations

Configure all compilations

Configure compilations for one target

Configure one compilation

Create a custom compilation

Use Java sources in JVM compilations

Configure interop with native languages

Compilation for Android

Compilation of the source set hierarchy

Build final native binaries (Experimental DSL)

Declare binaries

Configure binaries

Build final native binaries

Declare binaries

Access binaries

Export dependencies to binaries

497

498

498

500

501

502

502

503

503

503

504

506

506

507

508

508

508

509

510

511

512

512

513

514

517

518

519

520

22

Build universal frameworks

Build XCFrameworks

Customize the Info.plist file

Publishing multiplatform libraries

Structure of publications

Avoid duplicate publications

Publish an Android library

Disable sources publication

Introduce cross-platform development to your team

Start with empathy

Explain how it works

Show the value

Offer proof

Prepare for questions

Be supportive

Multiplatform Gradle DSL reference

Id and version

Top-level blocks

Targets

Source sets

Compilations

Dependencies

Language settings

Android source set layout

Check the compatibility

Rename Kotlin source sets

Move source files

Move the AndroidManifest.xml file

522

522

523

524

524

525

525

526

527

527

527

527

528

528

529

529

529

529

530

536

538

541

542

543

543

543

544

544

23

Check the relationship between Android and common tests

Adjust the implementation of Android flavors

Compatibility guide for Kotlin Multiplatform

Version compatibility

New approach to auto-generated targets

Changes in Gradle input and output compile tasks

New configuration names for dependencies on the compilation

Deprecated Gradle properties for hierarchical structure support

Deprecated support of multiplatform libraries published in the legacy mode

Deprecated API for adding Kotlin source sets directly to the Kotlin compilation

Migration from kotlin-js Gradle plugin to kotlin-multiplatform Gradle plugin

Rename of android target to androidTarget

Declaring several similar targets

Deprecated jvmWithJava preset

Deprecated legacy Android source set layout

Deprecated commonMain and commonTest with custom dependsOn

Deprecated target presets API

Kotlin Multiplatform Mobile plugin releases

Update to the new release

Release details

Get started with Kotlin/JVM

Create a project

Create an application

Run the application

What's next?

Comparison to Java

Some Java issues addressed in Kotlin

What Java has that Kotlin does not

545

545

545

545

546

546

547

547

548

549

549

551

551

553

554

554

554

555

555

555

560

560

562

562

564

564

564

564

24

What Kotlin has that Java does not

What's next?

Calling Java from Kotlin

Getters and setters

Java synthetic property references

Methods returning void

Escaping for Java identifiers that are keywords in Kotlin

Null-safety and platform types

Mapped types

Java generics in Kotlin

Java arrays

Java varargs

Operators

Checked exceptions

Object methods

Inheritance from Java classes

Accessing static members

Java reflection

SAM conversions

Using JNI with Kotlin

Using Lombok-generated declarations in Kotlin

Calling Kotlin from Java

Properties

Package-level functions

Instance fields

Static fields

Static methods

Default methods in interfaces

Visibility

564

565

565

565

566

566

567

567

571

574

574

575

575

575

575

576

576

576

577

577

577

577

577

578

579

579

580

581

582

25

KClass

Handling signature clashes with @JvmName

Overloads generation

Checked exceptions

Null-safety

Variant generics

Get started with Spring Boot and Kotlin

Next step

Join the community

Create a Spring Boot project with Kotlin

Before you start

Create a Spring Boot project

Explore the project Gradle build file

Explore the generated Spring Boot application

Create a controller

Run the application

Next step

Add a data class to Spring Boot project

Update your application

Run the application

Next step

Add database support for Spring Boot project

Add database support

Update the MessageController class

Update the MessageService class

Configure the database

Add messages to database via HTTP request

Retrieve messages by id

583

583

583

584

584

584

585

586

586

586

586

586

589

590

591

592

593

593

593

595

595

596

596

597

597

598

598

600

26

Run the application

Next step

Use Spring Data CrudRepository for database access

Update your application

Run the application

Next step

Test code using JUnit in JVM – tutorial

Add dependencies

Add the code to test it

Create a test

Run a test

What's next

Mixing Java and Kotlin in one project – tutorial

Adding Java source code to an existing Kotlin project

Adding Kotlin source code to an existing Java project

Converting an existing Java file to Kotlin with J2K

Using Java records in Kotlin

Using Java records from Kotlin code

Declare records in Kotlin

Further discussion

Strings in Java and Kotlin

Concatenate strings

Build a string

Create a string from collection items

Set default value if the string is blank

Replace characters at the beginning and end of a string

Replace occurrences

Split a string

601

602

603

603

604

604

605

605

605

606

606

608

608

608

609

610

611

612

612

612

612

613

613

613

614

614

615

615

27

Take a substring

Use multiline strings

What's next?

Collections in Java and Kotlin

Operations that are the same in Java and Kotlin

Operations that differ a bit

Operations that don't exist in Java's standard library

Mutability

Covariance

Ranges and progressions

Comparison by several criteria

Sequences

Removal of elements from a list

Traverse a map

Get the first and the last items of a possibly empty collection

Create a set from a list

Group elements

Filter elements

Collection transformation operations

What's next?

Nullability in Java and Kotlin

Support for nullable types

Platform types

Support for definitely non-nullable types

Checking the result of a function call

Default values instead of null

Functions returning a value or null

Aggregate operations

Casting types safely

615

616

617

617

617

619

620

621

622

622

623

624

624

625

625

625

626

626

627

628

628

629

630

630

631

631

632

632

632

28

What's next?

Introduction

Cognitive complexity

What's next?

Readability

API consistency

Use a builder DSL

Use constructor-like functions where applicable

Use member and extension functions appropriately

Avoid using Boolean arguments in functions

What's next?

Predictability

Use sealed interfaces

Hide implementations with sealed classes

Validate your inputs and state

Avoid arrays in public signatures

Avoid varargs

What's next?

Debuggability

Always provide a toString() method

What's next?

Backward compatibility

Definition of backward compatibility

"Don't do" recommendations

The @PublishedApi annotation

The @RequiresOptIn annotation

Explicit API mode

Tools designed to enforce backward compatibility

633

633

634

634

634

634

635

636

637

637

638

638

638

639

639

640

640

640

641

641

643

643

643

644

647

647

647

647

29

Get started with Kotlin/Native in IntelliJ IDEA

Before you start

Build and run the application

Update the application

What's next?

Get started with Kotlin/Native using Gradle

Create project files

Build and run the application

Open the project in an IDE

What's next?

Get started with Kotlin/Native using the command-line compiler

Obtain the compiler

Write "Hello Kotlin/Native" program

Compile the code from the console

Interoperability with C

Platform libraries

Simple example

Create bindings for a new library

Bindings

Mapping primitive data types from C – tutorial

Types in C language

Example C library

Inspect generated Kotlin APIs for a C library

Primitive types in kotlin

Fix the code

Next steps

Mapping struct and union types from C – tutorial

Mapping struct and union C types

648

649

649

650

651

651

652

653

653

653

653

653

653

654

654

654

654

655

657

661

661

662

662

664

664

665

665

665

30

Inspect Generated Kotlin APIs for a C library

Struct and union types in Kotlin

Use struct and union types from Kotlin

Run the code

Next steps

Mapping function pointers from C – tutorial

Mapping function pointer types from C

Inspect generated Kotlin APIs for a C library

C function pointers in Kotlin

Pass Kotlin function as C function pointer

Use the C function pointer from Kotlin

Fix the code

Next Steps

Mapping Strings from C – tutorial

Working with C strings

Inspect generated Kotlin APIs for a C library

Strings in Kotlin

Pass Kotlin string to C

Read C Strings in Kotlin

Receive C string bytes from Kotlin

Fix the Code

Next steps

Create an app using C Interop and libcurl – tutorial

Before you start

Create a definition file

Add interoperability to the build process

Write the application code

Compile and run the application

665
667

667

669

669

670

670

670

672

672

672

672

673

673

673

674

675

676

676

676

676

677

677

677

678

679

680

680

31

Interoperability with Swift/Objective-C

Usage

Mappings

Casting between mapped types

Subclassing

C features

Export of KDoc comments to generated Objective-C headers

Unsupported

Kotlin/Native as an Apple framework – tutorial

Create a Kotlin library

Generated framework headers

Garbage collection and reference counting

Use the code from Objective-C

Use the code from Swift

Xcode and framework dependencies

Next steps

CocoaPods overview and setup

Set up an environment to work with CocoaPods

Add and configure Kotlin CocoaPods Gradle plugin

Update Podfile for Xcode

Possible issues and solutions

Add dependencies on a Pod library

From the CocoaPods repository

On a locally stored library

From a custom Git repository

From a custom Podspec repository

With custom cinterop options

Use a Kotlin Gradle project as a CocoaPods dependency

681

681

682

688

688

689

689

690

690

690

692

695

695

695

696

696

696

697

698

699

699

700

701

701

702

703

703

705

32

Xcode project with one target

Xcode project with several targets

CocoaPods Gradle plugin DSL reference

Enable the plugin

cocoapods block

pod() function

Kotlin/Native libraries

Kotlin compiler specifics

cinterop tool specifics

klib utility

Several examples

Advanced topics

Platform libraries

POSIX bindings

Popular native libraries

Availability by default

Kotlin/Native as a dynamic library – tutorial

Create a Kotlin library

Generated headers file

Use generated headers from C

Compile and run the example on Linux and macOS

Compile and run the example on Windows

Next steps

Kotlin/Native memory management

Garbage collector

Memory consumption

Unit tests in the background

What's next

705

706

706

707

707

709

710

710

710

710

711

712

713

713

713

713

713

714

715

718

719

719

719

720

720

720

721

722

33

iOS integration

Threads

Garbage collection and lifecycle

Support for background state and App Extensions

Migrate to the new memory manager

Update Kotlin

Update dependencies

Update your code

Support both new and legacy memory managers

What's next

Debugging Kotlin/Native

Produce binaries with debug info with Kotlin/Native compiler

Breakpoints

Stepping

Variable inspection

Known issues

Symbolicating iOS crash reports

Producing .dSYM for release Kotlin binaries

Make frameworks static when using rebuild from bitcode

Decode inlined stack frames

Kotlin/Native target support

Tier 1

Tier 2

Tier 3

For library authors

Tips for improving Kotlin/Native compilation times

General recommendations

Gradle configuration

722

722

723

725

725

726

726

726

727

727

727

728

728

729

729

730

730

730

731

731

732

732

732

733

734

734

734

734

34

Windows OS configuration

License files for the Kotlin/Native binaries

Kotlin/Native FAQ

How do I run my program?

What is Kotlin/Native memory management model?

How do I create a shared library?

How do I create a static library or an object file?

How do I run Kotlin/Native behind a corporate proxy?

How do I specify a custom Objective-C prefix/name for my Kotlin framework?

How do I rename the iOS framework?

How do I enable bitcode for my Kotlin framework?

Why do I see InvalidMutabilityException?

How do I make a singleton object mutable?

How can I compile my project with unreleased versions of Kotlin/Native?

Get started with Kotlin/Wasm in IntelliJ IDEA

Before you start

Run the application

Update your application

What's next?

Add dependencies on Kotlin libraries to Kotlin/Wasm project

Supported Kotlin libraries for Kotlin/Wasm

Enable libraries in your project

What's next?

Interoperability with JavaScript

Use JavaScript code from Kotlin

Use Kotlin code from JavaScript

Kotlin types in JavaScript

Exception handling

735

735

736

736

736

737

737

737

737

737

738

738

738

738

739

739

739

741

743

743

743

744

745

745

745

747

747

748

35

Workarounds for Kotlin/JS features non-supported in Kotlin/Wasm

Set up a Kotlin/JS project

Execution environments

Dependencies

run task

test task

webpack bundling

CSS

Node.js

Yarn

Distribution target directory

Module name

package.json customization

Troubleshooting

Run Kotlin/JS

Run the Node.js target

Run the browser target

Development server and continuous compilation

Debug Kotlin/JS code

Debug in browser

Debug in the IDE

Debug in Node.js

What's next?

If you run into any problems

Run tests in Kotlin/JS

Kotlin/JS dead code elimination

Exclude declarations from DCE

Disable DCE

748

749

750

750

752

753

754

755

756

757

759

760

760

760

760

761

762

763

765

765

766

769

769

769

769

773

773

774

36

Kotlin/JS IR compiler

Lazy initialization of top-level properties

Incremental compilation for development binaries

Output .js files: one per module or one for the whole project

Ignoring compilation errors

Minification of member names in production

Preview: generation of TypeScript declaration files (d.ts)

Current limitations of the IR compiler

Migrating existing projects to the IR compiler

Authoring libraries for the IR compiler with backwards compatibility

Migrating Kotlin/JS projects to the IR compiler

Convert JS- and React-related classes and interfaces to external interfaces

Convert properties of external interfaces to var

Convert functions with receivers in external interfaces to regular functions

Create plain JS objects for interoperability

Replace toString() calls on function references with .name

Explicitly specify binaries.executable() in the build script

Additional troubleshooting tips when working with the Kotlin/JS IR compiler

Browser and DOM API

Interaction with the DOM

Use JavaScript code from Kotlin

Inline JavaScript

external modifier

Dynamic type

Use dependencies from npm

Use Kotlin code from JavaScript

Isolating declarations in a separate JavaScript object in plain mode

774

775

775

775

775

776

776

777

777

777

777

778

778

778

779

779

779

780

780

780

781

781

781

783

784

785

785

37

Package structure

Kotlin types in JavaScript

JavaScript modules

Browser targets

JavaScript libraries and Node.js files

@JsModule annotation

Kotlin/JS reflection

Class references

KType and typeOf()

Example

Typesafe HTML DSL

Build a web application with React and Kotlin/JS — tutorial

Before you start

Create a web app draft

Design app components

Compose components

Add more components

Use packages from npm

Use an external REST API

Deploy to production and the cloud

What's next

Get started with Kotlin custom scripting – tutorial

Project structure

Before you start

Create a project

Add scripting modules

Create a script definition

Create a scripting host

786

787

787

788

788

788

790

790

790

791

791

792

792

795

800

804

805

807

810

813

814

815

815

815

815

816

818

820

38

Run scripts

What's next?

Collections overview

Collection types

Constructing collections

Construct from elements

Create with collection builder functions

Empty collections

Initializer functions for lists

Concrete type constructors

Copy

Invoke functions on other collections

Iterators

List iterators

Mutable iterators

Ranges and progressions

Progression

Sequences

Construct

Sequence operations

Sequence processing example

Collection operations overview

Extension and member functions

Common operations

Write operations

Collection transformation operations

Map

821

822

822

822

826

826

827

827

827

827

828

828

829

830

830

830

831

832

832

833

833

835

835

835

836

836

837

39

Zip

Associate

Flatten

String representation

Filtering collections

Filter by predicate

Partition

Test predicates

Plus and minus operators

Grouping

Retrieve collection parts

Slice

Take and drop

Chunked

Windowed

Retrieve single elements

Retrieve by position

Retrieve by condition

Retrieve with selector

Random element

Check element existence

Ordering

Natural order

Custom orders

Reverse order

Random order

Aggregate operations

837

838

839

839

840

840

841

841

842

842

843

843

843

844

844

845

845

845

846

846

846

847

848

848

849

849

849

40

Fold and reduce

Collection write operations

Adding elements

Removing elements

Updating elements

List-specific operations

Retrieve elements by index

Retrieve list parts

Find element positions

List write operations

Set-specific operations

Map-specific operations

Retrieve keys and values

Filter

Plus and minus operators

Map write operations

Opt-in requirements

Opt in to using API

Require opt-in for API

Opt-in requirements for pre-stable APIs

Scope functions

Function selection

Distinctions

Functions

takeIf and takeUnless

Time measurement

Calculate duration

850

851

851

852

853

853

853

853

854

855

857

858

858

858

859

859

860

861

863

864

864

865

866

868

871

872

872

41

Measure time

Time sources

Coroutines guide

Table of contents

Additional references

Coroutines basics

Your first coroutine

Extract function refactoring

Scope builder

Scope builder and concurrency

An explicit job

Coroutines are light-weight

Coroutines and channels − tutorial

Before you start

Blocking requests

Callbacks

Suspending functions

Coroutines

Concurrency

Structured concurrency

Showing progress

Channels

Testing coroutines

What's next

Cancellation and timeouts

Cancelling coroutine execution

Cancellation is cooperative

Making computation code cancellable

875

877

878

878

878

878

879

879

880

880

881

881

882

882

884

887

891

892

894

897

900

902

905

908

908

908

909

910

42

Closing resources with finally

Run non-cancellable block

Timeout

Asynchronous timeout and resources

Composing suspending functions

Sequential by default

Concurrent using async

Lazily started async

Async-style functions

Structured concurrency with async

Coroutine context and dispatchers

Dispatchers and threads

Unconfined vs confined dispatcher

Debugging coroutines and threads

Jumping between threads

Job in the context

Children of a coroutine

Parental responsibilities

Naming coroutines for debugging

Combining context elements

Coroutine scope

Asynchronous Flow

Representing multiple values

Flows are cold

Flow cancellation basics

Flow builders

Intermediate flow operators

Terminal flow operators

Flows are sequential

910

911

911

912

913

914

914

915

916

917

918

918

919

920

921

922

922

923

923

924

924

926

926

928

929

929

930

931

932

43

Flow context

Buffering

Composing multiple flows

Flattening flows

Flow exceptions

Exception transparency

Flow completion

Imperative versus declarative

Launching flow

Flow and Reactive Streams

Channels

Channel basics

Closing and iteration over channels

Building channel producers

Pipelines

Prime numbers with pipeline

Fan-out

Fan-in

Buffered channels

Channels are fair

Ticker channels

Coroutine exceptions handling

Exception propagation

CoroutineExceptionHandler

Cancellation and exceptions

Exceptions aggregation

Supervision

Shared mutable state and concurrency

933

934

937

938

940

941

943

945

945

948

948

948

948

949

949

950

951

952

953

953

954

955

955

956

956

958

959

961

44

The problem

Volatiles are of no help

Thread-safe data structures

Thread confinement fine-grained

Thread confinement coarse-grained

Mutual exclusion

Select expression (experimental)

Selecting from channels

Selecting on close

Selecting to send

Selecting deferred values

Switch over a channel of deferred values

Debug coroutines using IntelliJ IDEA – tutorial

Create coroutines

Debug coroutines

Debug Kotlin Flow using IntelliJ IDEA – tutorial

Create a Kotlin flow

Debug the coroutine

Add a concurrently running coroutine

Debug a Kotlin flow with two coroutines

Serialization

Libraries

Formats

Example: JSON serialization

Lincheck guide

Add Lincheck to your project

Explore Lincheck

Additional references

961

962

962

963

964

964

965

965

966

968

969

969

971

971

972

975

975

976

979

979

980

980

981

981

982

983

983

983

45

Write your first test with Lincheck

Create a project

Add required dependencies

Write a concurrent counter and run the test

Trace the invalid execution

Test the Java standard library

Next step

See also

Stress testing and model checking

Stress testing

Model checking

Which testing strategy is better?

Configure the testing strategy

Scenario minimization

Logging data structure states

Next step

Operation arguments

Next step

Data structure constraints

Next step

Progress guarantees

Next step

Sequential specification

Keywords and operators

Hard keywords

Soft keywords

Modifier keywords

983

983

983

984

985

986

987

987

987

987

988

989

989

990

990

991

991

993

993

995

995

996

996

997

997

999

999

46

Special identifiers

Operators and special symbols

Gradle

What's next?

Get started with Gradle and Kotlin/JVM

Create a project

Explore the build script

Run the application

What's next?

Configure a Gradle project

Apply the plugin

Targeting the JVM

Targeting multiple platforms

Targeting Android

Targeting JavaScript

Triggering configuration actions with the KotlinBasePlugin interface

Configure dependencies

What's next?

Compiler options in the Kotlin Gradle plugin

How to define options

All compiler options

What's next?

Compilation and caches in the Kotlin Gradle plugin

Incremental compilation

Gradle build cache support

Gradle configuration cache support

The Kotlin daemon and how to use it with Gradle

The new Kotlin compiler

1000

1000

1001

1002

1002

1002

1003

1004

1005

1005

1005

1006

1012

1013

1013

1013

1014

1019

1019

1020

1021

1025

1025

1025

1027

1027

1027

1029

47

Defining Kotlin compiler execution strategy

Kotlin compiler fallback strategy

Build reports

What's next?

Support for Gradle plugin variants

Troubleshooting

What's next?

Maven

Configure plugin and versions

Set dependencies

Compile Kotlin-only source code

Compile Kotlin and Java sources

Enable incremental compilation

Configure annotation processing

Create JAR file

Create self-contained JAR file

Specify compiler options

Use BOM

Generate documentation

Enable OSGi support

Ant

Getting the Ant tasks

Targeting JVM with Kotlin-only source

Targeting JVM with Kotlin-only source and multiple roots

Targeting JVM with Kotlin and Java source

Targeting JavaScript with single source folder

Targeting JavaScript with Prefix, PostFix and sourcemap options

Targeting JavaScript with single source folder and metaInfo option

References

1029

1031

1031

1033

1033

1034

1035

1035

1035

1036

1036

1037

1038

1038

1038

1038

1039

1040

1041

1041

1041

1041

1041

1041

1042

1042

1042

1042

1043

48

Introduction

Community

Get started with Dokka

Gradle

Apply Dokka

Generate documentation

Build javadoc.jar

Configuration examples

Configuration options

Maven

Apply Dokka

Generate documentation

Build javadoc.jar

Configuration example

Configuration options

CLI

Get started

Generate documentation

Command line options

JSON configuration

HTML

Generate HTML documentation

Configuration

Customization

Markdown

GFM

Jekyll

1044

1044

1044

1046

1046

1046

1049

1050

1054

1065

1065

1065

1066

1066

1067

1072

1072

1073

1074

1077

1084

1084

1085

1087

1089

1089

1090

49

Javadoc

Generate Javadoc documentation

Dokka plugins

Apply Dokka plugins

Configure Dokka plugins

Notable plugins

Module documentation

File format

Pass files to Dokka

IDEs for Kotlin development

IntelliJ IDEA

Android Studio

Eclipse

Compatibility with the Kotlin language versions

Other IDEs support

What's next?

Migrate to Kotlin code style

Kotlin coding conventions and IntelliJ IDEA formatter

Differences between "Kotlin coding conventions" and "IntelliJ IDEA default code style"

Migration to a new code style discussion

Migration to a new code style

Store old code style in project

Run code snippets

IDE: scratches and worksheets

Browser: Kotlin Playground

Command line: ki shell

Kotlin and continuous integration with TeamCity

Gradle, Maven, and Ant

1091
1092

1093

1094

1095

1096

1097

1097

1098

1098

1098

1098

1098

1099

1099

1099

1099

1099

1099

1100

1100

1101

1101

1102

1103

1105

1107

1108

50

IntelliJ IDEA Build System

Other CI servers

Document Kotlin code: KDoc

KDoc syntax

Inline markup

What's next?

Kotlin and OSGi

Maven

Gradle

FAQ

Kotlin command-line compiler

Install the compiler

Create and run an application

Compile a library

Run the REPL

Run scripts

Kotlin compiler options

Compiler options

Common options

Kotlin/JVM compiler options

Kotlin/JS compiler options

Kotlin/Native compiler options

All-open compiler plugin

Gradle

Maven

Spring support

Command-line compiler

No-arg compiler plugin

1108

1110

1110

1110

1111

1112

1112

1112

1112

1113

1113

1113

1114

1114

1114

1115

1115

1115

1116

1117

1118

1119

1121

1121

1122

1122

1123

1123

51

In your Kotlin file

Gradle

Maven

JPA support

Command-line compiler

SAM-with-receiver compiler plugin

Gradle

Maven

Command-line compiler

kapt compiler plugin

Use in Gradle

Try Kotlin K2 compiler

Annotation processor arguments

Gradle build cache support

Improve the speed of builds that use kapt

Compile avoidance for kapt

Incremental annotation processing

Java compiler options

Non-existent type correction

Use in Maven

Use in IntelliJ build system

Use in CLI

Generate Kotlin sources

AP/Javac options encoding

Keep Java compiler's annotation processors

Lombok compiler plugin

Supported annotations

Gradle

Maven

1123

1124

1124

1124

1125

1125

1125

1126

1126

1126

1126

1127

1127

1128

1128

1129

1130

1130

1130

1130

1131

1131

1132

1132

1132

1132

1133

1133

1134

52

Using with kapt

Command-line compiler

Kotlin Symbol Processing API

Overview

How KSP looks at source files

SymbolProcessorProvider: the entry point

Resources

Supported libraries

KSP quickstart

Create a processor of your own

Use your own processor in a project

Pass options to processors

Make IDE aware of generated code

Why KSP

KSP makes creating lightweight compiler plugins easier

Comparison to kotlinc compiler plugins

Comparison to reflection

Comparison to kapt

Limitations

KSP examples

Get all member functions

Check whether a class or function is local

Find the actual class or interface declaration that the type alias points to

Collect suppressed names in a file annotation

How KSP models Kotlin code

Type and resolution

Java annotation processing to KSP reference

1134

1135

1135

1135

1136

1136

1137

1137

1139

1139

1140

1141

1141

1143

1143

1143

1143

1143

1144

1144

1144

1144

1144

1144

1145

1145

1146

53

Program elements

Types

Misc

Details

Incremental processing

Aggregating vs Isolating

Example 1

Example 2

How file dirtiness is determined

Reporting bugs

Multiple round processing

Changes to your processor

Multiple round behavior

Advanced

KSP with Kotlin Multiplatform

Compilation and processing

Avoid the ksp(...) configuration on KSP 1.0.1+

Running KSP from command line

KSP FAQ

Why KSP?

Why is KSP faster than kapt?

Is KSP Kotlin-specific?

How to upgrade KSP?

Can I use a newer KSP implementation with an older Kotlin compiler?

How often do you update KSP?

Besides Kotlin, are there other version requirements to libraries?

What is KSP's future roadmap?

1146

1146

1147

1148

1154

1155

1156

1156

1156

1156

1157

1157

1157

1158

1158

1159

1159

1159

1160

1160

1160

1160

1160

1161

1161

1161

1161

54

Learning materials overview

Kotlin Koans

Kotlin hands-on

Building Reactive Spring Boot applications with Kotlin coroutines and RSocket

Building web applications with React and Kotlin/JS

Building web applications with Spring Boot and Kotlin

Creating HTTP APIs with Ktor

Creating a WebSocket chat with Ktor

Creating an interactive website with Ktor

Introduction to Kotlin coroutines and channels

Introduction to Kotlin/Native

Kotlin Multiplatform: networking and data storage

Targeting iOS and Android with Kotlin Multiplatform

Kotlin tips

null + null in Kotlin

Deduplicating collection items

The suspend and inline mystery

Unshadowing declarations with their fully qualified name

Return and throw with the Elvis operator

Destructuring declarations

Operator functions with nullable values

Timing code

Improving loops

Strings

Doing more with the Elvis operator

Kotlin collections

What's next?

Kotlin books

1161

1162

1162

1162

1162

1162

1163

1163

1163

1163

1163

1163

1163

1163

1163

1164

1164

1165

1165

1166

1166

1167

1167

1168

1168

1169

1169

1169

55

Advent of Code puzzles in idiomatic Kotlin

Advent of Code 2021

Advent of Code 2020

What's next?

Learning Kotlin with JetBrains Academy plugin

Teaching Kotlin with JetBrains Academy plugin

Participate in the Kotlin Early Access Preview

How the EAP can help you be more productive with Kotlin

Build details

Install the EAP Plugin for IntelliJ IDEA or Android Studio

If you run into any problems

Configure your build for EAP

Configure in Gradle

Configure in Maven

FAQ

What is Kotlin?

What is the current version of Kotlin?

Is Kotlin free?

Is Kotlin an object-oriented language or a functional one?

What advantages does Kotlin give me over the Java programming language?

Is Kotlin compatible with the Java programming language?

What can I use Kotlin for?

Can I use Kotlin for Android development?

Can I use Kotlin for server-side development?

Can I use Kotlin for web development?

Can I use Kotlin for desktop development?

Can I use Kotlin for native development?

1172

1173

1175

1180

1180

1180

1180

1181

1181

1181

1183

1183

1183

1184

1185

1185

1185

1185

1185

1185

1186

1186

1186

1186

1186

1186

1186

56

What IDEs support Kotlin?

What build tools support Kotlin?

What does Kotlin compile down to?

Which versions of JVM does Kotlin target?

Is Kotlin hard?

What companies are using Kotlin?

Who develops Kotlin?

Where can I learn more about Kotlin?

Are there any books on Kotlin?

Are any online courses available for Kotlin?

Does Kotlin have a community?

Are there Kotlin events?

Is there a Kotlin conference?

Is Kotlin on social media?

Any other online Kotlin resources?

Where can I get an HD Kotlin logo?

Kotlin Evolution

Principles of Pragmatic Evolution

Incompatible changes

Decision making

Feature releases and incremental releases

Libraries

Compiler keys

Compatibility tools

Stability of Kotlin components

Stability levels explained

GitHub badges for Kotlin components

Stability of subcomponents

Current stability of Kotlin components

1186

1186

1186

1187

1187

1187

1187

1187

1187

1187

1187

1188

1188

1188

1188

1188

1188

1188

1189

1189

1190

1190

1191

1191

1191

1191

1192

1192

1192

57

Stability of Kotlin components (pre 1.4)

Compatibility guide for Kotlin 1.9

Basic terms

Language

Standard library

Tools

Compatibility guide for Kotlin 1.8

Basic terms

Language

Standard library

Tools

Compatibility guide for Kotlin 1.7.20

Basic terms

Language

Compatibility guide for Kotlin 1.7

Basic terms

Language

Standard library

Tools

Compatibility guide for Kotlin 1.6

Basic terms

Language

Standard library

Tools

Compatibility guide for Kotlin 1.5

Basic terms

Language and stdlib

1194

1195

1195

1196

1203

1205

1206

1206

1206

1215

1216

1217

1218

1218

1218

1219

1219

1223

1225

1228

1228

1228

1233

1236

1239

1239

1239

58

Tools

Compatibility guide for Kotlin 1.4

Basic terms

Language and stdlib

Tools

Compatibility guide for Kotlin 1.3

Basic terms

Incompatible changes

Compatibility modes

What is cross-platform mobile development?

Cross-platform mobile development: definition and solutions

Is cross-platform mobile development right for you?

The most popular cross-platform solutions

Conclusion

Native and cross-platform app development: how to choose?

What is native mobile app development?

What is cross-platform app development?

Six key aspects to help you choose between cross-platform app development and the native

approachWhen should you choose cross-platform app development?

When should you choose native app development?

The Six Most Popular Cross-Platform App Development Frameworks

What is a cross-platform app development framework?

Popular cross-platform app development frameworks

How do you choose the right cross-platform app development framework for your project?

Key takeaways

Google Summer of Code with Kotlin

Kotlin contributor guidelines for Google Summer of Code (GSoC)

1246

1247

1247

1247

1261

1262

1262

1262

1270

1270

1271

1272

1274

1275

1275

1275

1275

1277

1279

1279

1279

1280

1280

1282

1283

1283

1284

59

Project ideas

Security

Kotlin documentation as PDF

Contribution

Participate in Early Access Preview

Contribute to the compiler and standard library

Contribute to the Kotlin IDE plugin

Contribute to other Kotlin libraries and tools

Contribute to the documentation

Create tutorials or videos

Translate documentation to other languages

Hold events and presentations

KUG guidelines

How to run a KUG?

Support for KUGs from JetBrains

Support from JetBrains for other tech communities

Kotlin Night guidelines

Event guidelines

Event requirements

JetBrains support

Kotlin brand assets

Kotlin Logo

Kotlin mascot

Kotlin User Group brand assets

Kotlin Night brand assets

1284

1287

1288

1288

1288

1288

1288

1288

1288

1289

1289

1289

1289

1289

1290

1290

1290

1290

1290

1291

1291

1291

1292

1293

1296

60

Kotlin
Docs

Get
started
with
Kotlin
Kotlin is a modern but already mature programming language designed to make developers happier. It's concise, safe, interoperable with Java and other
languages, and provides many ways to reuse code between multiple platforms for productive programming.

To start, why not take our tour of Kotlin? This tour covers the fundamentals of the Kotlin programming language.

Start the Kotlin tour

Install
Kotlin
Kotlin is included in each IntelliJ IDEA and Android Studio release. Download and install one of these IDEs to start using Kotlin.

Create
your
powerful
application
with
Kotlin

Backend app

Here is how you can take the first steps in developing Kotlin server-side applications.

1. Create your first backend application:

To start from scratch, create a basic JVM application with the IntelliJ IDEA project wizard.

If you prefer more robust examples, choose one of the frameworks below and create a project:

Spring Ktor

A mature family of frameworks with an established ecosystem that is used by millions of

developers worldwide.

Create a RESTful web service with Spring Boot.

Build web applications with Spring Boot and Kotlin.

Use Spring Boot with Kotlin and RSocket.

A lightweight framework for those who value freedom in making architectural decisions.

Create HTTP APIs with Ktor.

Create a WebSocket chat with Ktor.

Create an interactive website with Ktor.

Publish server-side Kotlin applications: Ktor on Heroku.

2. Use Kotlin and third-party libraries in your application. Learn more about adding library and tool dependencies to your project.

The Kotlin standard library offers a lot of useful things such as collections or coroutines.

Take a look at the following third-party frameworks, libs and tools for Kotlin.

3. Learn more about Kotlin for server-side:

How to write your first unit test.

How to mix Kotlin and Java code in your application.

4. Join the Kotlin server-side community:

 Slack: get an invite and join the #getting-started, #server, #spring, or #ktor channels.

 StackOverflow: subscribe to the "kotlin", "spring-kotlin", or "ktor" tags.

5. Follow Kotlin on Twitter, Reddit, and Youtube, and don't miss any important ecosystem updates.

If you've encountered any difficulties or problems, report an issue to our issue tracker.

Cross-platform mobile app

Here you'll learn how to develop and improve your cross-platform mobile application using Kotlin Multiplatform.

1. Set up your environment for cross-platform development.

2. Create your first application for iOS and Android:

61

https://www.jetbrains.com/idea/download/
https://developer.android.com/studio
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://spring.io/guides/tutorials/spring-webflux-kotlin-rsocket/
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-web-socket-chat.html
https://ktor.io/docs/creating-interactive-website.html
https://ktor.io/docs/heroku.html
https://kotlinlang.org/api/latest/jvm/stdlib/
https://blog.jetbrains.com/kotlin/2020/11/server-side-development-with-kotlin-frameworks-and-libraries/
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C0B8MA7FA
https://kotlinlang.slack.com/archives/C0B8RC352
https://kotlinlang.slack.com/archives/C0B8ZTWE4
https://kotlinlang.slack.com/archives/C0A974TJ9
https://stackoverflow.com/questions/tagged/kotlin
https://stackoverflow.com/questions/tagged/spring-kotlin
https://stackoverflow.com/questions/tagged/ktor
https://twitter.com/kotlin
https://www.reddit.com/r/Kotlin/
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw
https://youtrack.jetbrains.com/issues/KT
https://kotlinlang.org/lp/multiplatform/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-setup.html

To start from scratch, create a basic cross-platform mobile application with the project wizard.

If you have an existing Android application and want to make it cross-platform, complete the Make your Android application work on iOS tutorial.

If you prefer real-life examples, clone and play with an existing project, for example the networking and data storage project from the Create a multiplatform app using Ktor and

SQLdelight tutorial or any sample project.

3. Use a wide set of multiplatform libraries to implement the required business logic only once in the shared module. Learn more about adding dependencies.

Library Details

Ktor Docs

Serialization Docs and sample

Coroutines Docs and sample

DateTime Docs

SQLDelight Third-party library.

Docs

4. Learn more about Kotlin Multiplatform:

Learn more about Kotlin Multiplatform.

Look through samples projects.

Publish a multiplatform library.

Learn how Kotlin Multiplatform is used at Netflix, VMware, Yandex, and many other companies.

5. Join the Kotlin Multiplatform community:

 Slack: get an invite and join the #getting-started and #multiplatform channels.

 StackOverflow: Subscribe to the "kotlin-multiplatform" tag.

6. Follow Kotlin on Twitter, Reddit, and Youtube, and don't miss any important ecosystem updates.

If you've encountered any difficulties or problems, report an issue to our issue tracker.

Android app

If you want to start using Kotlin for Android development, read Google's recommendation for getting started with Kotlin on Android.

If you're new to Android and want to learn to create applications with Kotlin, check out this Udacity course.

Follow Kotlin on Twitter, Reddit, and Youtube, and don't miss any important ecosystem updates.

Multiplatform library

Support for multiplatform programming is one of Kotlin's key benefits. It reduces time spent writing and maintaining the same code for different platforms while retaining the flexibility

and benefits of native programming.

Here you'll learn how to develop and publish a multiplatform library:

1. Publish a multiplatform library:

See Publish a multiplatform library to learn more.

2. Use libraries in your application:

Ktor

Serialization

Coroutines

You can also find a multiplatform library in the community-driven list.

62

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-create-first-app.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-integrate-in-existing-app.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-samples.html
https://ktor.io/docs/client.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html#create-an-application-data-model
https://github.com/Kotlin/kotlinx-datetime#readme
https://cashapp.github.io/sqldelight/
https://libs.kmp.icerock.dev/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-samples.html
https://netflixtechblog.com/netflix-android-and-ios-studio-apps-kotlin-multiplatform-d6d4d8d25d23
https://kotlinlang.org/lp/multiplatform/case-studies/vmware/
https://kotlinlang.org/lp/multiplatform/case-studies/yandex/
https://kotlinlang.org/lp/multiplatform/case-studies/
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C0B8MA7FA
https://kotlinlang.slack.com/archives/C3PQML5NU
https://stackoverflow.com/questions/tagged/kotlin-multiplatform
https://twitter.com/kotlin
https://www.reddit.com/r/Kotlin/
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw
https://youtrack.jetbrains.com/issues/KT
https://developer.android.com/kotlin/get-started
https://www.udacity.com/course/developing-android-apps-with-kotlin--ud9012
https://twitter.com/kotlin
https://www.reddit.com/r/Kotlin/
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw
https://ktor.io/docs/

DateTime

3. Learn more about Kotlin Multiplatform programming:

Introduction to Kotlin Multiplatform.

Kotlin Multiplatform supported platforms.

Kotlin Multiplatform programming benefits.

4. Join the Kotlin Multiplatform community:

 Slack: get an invite and join the #getting-started and #multiplatform channels.

 StackOverflow: Subscribe to the "kotlin-multiplatform" tag.

5. Follow Kotlin on Twitter, Reddit, and Youtube, and don't miss any important ecosystem updates.

If you've encountered any difficulties or problems, report an issue to our issue tracker.

Is
anything
missing?
If anything is missing or seems confusing on this page, please share your feedback.

Welcome
to
our
tour
of
Kotlin!

Each chapter in this tour contains:

Theory to introduce key concepts of the language with examples.

Practice with exercises to test your understanding of what you have learned.

Solutions for your reference.

In this tour you will learn about:

Variables

Basic types

Collections

Control flow

Functions

Classes

Null safety

To have the best experience, we recommend that you read through these chapters in order. But if you want, you can choose which chapters you want to read.

Ready to go?

Start the Kotlin tour

Hello
world

Learn more about adding dependencies on libraries. You can also find a multiplatform library in the community-driven list.

This tour covers the fundamentals of the Kotlin programming language and can be completed entirely within your browser. There is no installation
required.

63

https://github.com/Kotlin/kotlinx-datetime#readme
https://libs.kmp.icerock.dev/
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C0B8MA7FA
https://kotlinlang.slack.com/archives/C3PQML5NU
https://stackoverflow.com/questions/tagged/kotlin-multiplatform
https://twitter.com/kotlin
https://www.reddit.com/r/Kotlin/
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw
https://youtrack.jetbrains.com/issues/KT
https://surveys.hotjar.com/d82e82b0-00d9-44a7-b793-0611bf6189df

Here is a simple program that prints "Hello, world!":

fun	main()	{
				println("Hello,	world!")
				//	Hello,	world!
}

In Kotlin:

fun is used to declare a function

the main() function is where your program starts from

the body of a function is written within curly braces {}

println() and print() functions print their arguments to standard output

Variables
All programs need to be able to store data, and variables help you to do just that. In Kotlin, you can declare:

read-only variables with val

mutable variables with var

To assign a value, use the assignment operator =.

For example:

fun	main()	{	
//sampleStart
				val	popcorn	=	5				//	There	are	5	boxes	of	popcorn
				val	hotdog	=	7					//	There	are	7	hotdogs
				var	customers	=	10	//	There	are	10	customers	in	the	queue
				
				//	Some	customers	leave	the	queue
				customers	=	8
				println(customers)
				//	8
//sampleEnd
}

As customers is a mutable variable, its value can be reassigned after declaration.

String
templates
It's useful to know how to print the contents of variables to standard output. You can do this with string templates. You can use template expressions to access
data stored in variables and other objects, and convert them into strings. A string value is a sequence of characters in double quotes ". Template expressions
always start with a dollar sign $.

To evaluate a piece of code in a template expression, place the code within curly braces {} after the dollar sign $.

For example:

fun	main()	{	

Functions are discussed in more detail in a couple of chapters. Until then, all examples use the main() function.

Variables can be declared outside the main() function at the beginning of your program. Variables declared in this way are said to be declared at top level.

We recommend that you declare all variables as read-only (val) by default. Declare mutable variables (var) only if necessary.

64

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/println.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/print.html

//sampleStart
				val	customers	=	10
				println("There	are	$customers	customers")
				//	There	are	10	customers
				
				println("There	are	${customers	+	1}	customers")
				//	There	are	11	customers
//sampleEnd
}

For more information, see String templates.

You will notice that there aren't any types declared for variables. Kotlin has inferred the type itself: Int. This tour explains the different Kotlin basic types and how to
declare them in the next chapter.

Practice

Exercise
Complete the code to make the program print "Mary is 20 years old" to standard output:

fun	main()	{
				val	name	=	"Mary"
				val	age	=	20
				//	Write	your	code	here
}

fun main() { val name = "Mary" val age = 20 println("$name is $age years old") }

Next
step
Basic types

Basic
types
Every variable and data structure in Kotlin has a data type. Data types are important because they tell the compiler what you are allowed to do with that variable or
data structure. In other words, what functions and properties it has.

In the last chapter, Kotlin was able to tell in the previous example that customers has type: Int. Kotlin's ability to infer the data type is called type inference.
customers is assigned an integer value. From this, Kotlin infers that customers has numerical data type: Int. As a result, the compiler knows that you can perform
arithmetic operations with customers:

fun	main()	{
//sampleStart
				var	customers	=	10

				//	Some	customers	leave	the	queue
				customers	=	8

				customers	=	customers	+	3	//	Example	of	addition:	11
				customers	+=	7												//	Example	of	addition:	18
				customers	-=	3												//	Example	of	subtraction:	15
				customers	*=	2												//	Example	of	multiplication:	30
				customers	/=	3												//	Example	of	division:	10

				println(customers)	//	10
//sampleEnd
}

+=, -=, *=, /=, and %= are augmented assignment operators. For more information, see Augmented assignments.

65

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-int/

In total, Kotlin has the following basic types:

Category Basic types

Integers Byte, Short, Int, Long

Unsigned integers UByte, UShort, UInt, ULong

Floating-point numbers Float, Double

Booleans Boolean

Characters Char

Strings String

For more information on basic types and their properties, see Basic types.

With this knowledge, you can declare variables and initialize them later. Kotlin can manage this as long as variables are initialized before the first read.

To declare a variable without initializing it, specify its type with :.

For example:

fun	main()	{
//sampleStart
				//	Variable	declared	without	initialization
				val	d:	Int
				//	Variable	initialized
				d	=	3

				//	Variable	explicitly	typed	and	initialized
				val	e:	String	=	"hello"

				//	Variables	can	be	read	because	they	have	been	initialized
				println(d)	//	3
				println(e)	//	hello
//sampleEnd
}

Now that you know how to declare basic types, it's time to learn about collections.

Practice

Exercise
Explicitly declare the correct type for each variable:

fun	main()	{
				val	a	=	1000
				val	b	=	"log	message"
				val	c	=	3.14
				val	d	=	100_000_000_000_000
				val	e	=	false
				val	f	=	'\n'
}

66

fun main() { val a: Int = 1000 val b: String = "log message" val c: Double = 3.14 val d: Long = 100_000_000_000 val e: Boolean = false val f:
Char = '\n' }

Next
step
Collections

Collections
When programming, it is useful to be able to group data into structures for later processing. Kotlin provides collections for exactly this purpose.

Kotlin has the following collections for grouping items:

Collection type Description

Lists Ordered collections of items

Sets Unique unordered collections of items

Maps Sets of key-value pairs where keys are unique and map to only one value

Each collection type can be mutable or read only.

List
Lists store items in the order that they are added, and allow for duplicate items.

To create a read-only list (List), use the listOf() function.

To create a mutable list (MutableList), use the mutableListOf() function.

When creating lists, Kotlin can infer the type of items stored. To declare the type explicitly, add the type within angled brackets <> after the list declaration:

fun	main()	{	
//sampleStart
				//	Read	only	list
				val	readOnlyShapes	=	listOf("triangle",	"square",	"circle")
				println(readOnlyShapes)
				//	[triangle,	square,	circle]
				
				//	Mutable	list	with	explicit	type	declaration
				val	shapes:	MutableList<String>	=	mutableListOf("triangle",	"square",	"circle")
				println(shapes)
				//	[triangle,	square,	circle]
//sampleEnd
}

Lists are ordered so to access an item in a list, use the indexed access operator []:

To prevent unwanted modifications, you can obtain read-only views of mutable lists by assigning them to a List:

val	shapes:	MutableList<String>	=	mutableListOf("triangle",	"square",	"circle")
val	shapesLocked:	List<String>	=	shapes

This is also called casting.

67

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/list-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-list-of.html

fun	main()	{	
//sampleStart
				val	readOnlyShapes	=	listOf("triangle",	"square",	"circle")
				println("The	first	item	in	the	list	is:	${readOnlyShapes[0]}")
				//	The	first	item	in	the	list	is:	triangle
//sampleEnd
}

To get the first or last item in a list, use .first() and .last() functions respectively:

fun	main()	{	
//sampleStart
				val	readOnlyShapes	=	listOf("triangle",	"square",	"circle")
				println("The	first	item	in	the	list	is:	${readOnlyShapes.first()}")
				//	The	first	item	in	the	list	is:	triangle
//sampleEnd
}

To get the number of items in a list, use the .count() function:

fun	main()	{	
//sampleStart
				val	readOnlyShapes	=	listOf("triangle",	"square",	"circle")
				println("This	list	has	${readOnlyShapes.count()}	items")
				//	This	list	has	3	items
//sampleEnd
}

To check that an item is in a list, use the in operator:

fun	main()	{
//sampleStart
				val	readOnlyShapes	=	listOf("triangle",	"square",	"circle")
				println("circle"	in	readOnlyShapes)
				//	true
//sampleEnd
}

To add or remove items from a mutable list, use .add() and .remove() functions respectively:

fun	main()	{	
//sampleStart
				val	shapes:	MutableList<String>	=	mutableListOf("triangle",	"square",	"circle")
				//	Add	"pentagon"	to	the	list
				shapes.add("pentagon")	
				println(shapes)		
				//	[triangle,	square,	circle,	pentagon]

				//	Remove	the	first	"pentagon"	from	the	list
				shapes.remove("pentagon")	
				println(shapes)		
				//	[triangle,	square,	circle]
//sampleEnd
}

Set
Whereas lists are ordered and allow duplicate items, sets are unordered and only store unique items.

To create a read-only set (Set), use the setOf() function.

To create a mutable set (MutableSet), use the mutableSetOf() function.

.first() and .last() functions are examples of extension functions. To call an extension function on an object, write the function name after the object
appended with a period .

For more information about extension functions, see Extension functions. For the purposes of this tour, you only need to know how to call them.

68

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/count.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/add.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/remove.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-set/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/set-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-set/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-set-of.html

When creating sets, Kotlin can infer the type of items stored. To declare the type explicitly, add the type within angled brackets <> after the set declaration:

fun	main()	{
//sampleStart
				//	Read-only	set
				val	readOnlyFruit	=	setOf("apple",	"banana",	"cherry",	"cherry")
				//	Mutable	set	with	explicit	type	declaration
				val	fruit:	MutableSet<String>	=	mutableSetOf("apple",	"banana",	"cherry",	"cherry")
				
				println(readOnlyFruit)
				//	[apple,	banana,	cherry]
//sampleEnd
}

You can see in the previous example that because sets only contain unique elements, the duplicate "cherry" item is dropped.

To get the number of items in a set, use the .count() function:

fun	main()	{	
//sampleStart
				val	readOnlyFruit	=	setOf("apple",	"banana",	"cherry",	"cherry")
				println("This	set	has	${readOnlyFruit.count()}	items")
				//	This	set	has	3	items
//sampleEnd
}

To check that an item is in a set, use the in operator:

fun	main()	{
//sampleStart
				val	readOnlyFruit	=	setOf("apple",	"banana",	"cherry",	"cherry")
				println("banana"	in	readOnlyFruit)
				//	true
//sampleEnd
}

To add or remove items from a mutable set, use .add() and .remove() functions respectively:

fun	main()	{	
//sampleStart
				val	fruit:	MutableSet<String>	=	mutableSetOf("apple",	"banana",	"cherry",	"cherry")
				fruit.add("dragonfruit")				//	Add	"dragonfruit"	to	the	set
				println(fruit)														//	[apple,	banana,	cherry,	dragonfruit]
				
				fruit.remove("dragonfruit")	//	Remove	"dragonfruit"	from	the	set
				println(fruit)														//	[apple,	banana,	cherry]
//sampleEnd
}

Map
Maps store items as key-value pairs. You access the value by referencing the key. You can imagine a map like a food menu. You can find the price (value), by
finding the food (key) you want to eat. Maps are useful if you want to look up a value without using a numbered index, like in a list.

To prevent unwanted modifications, obtain read-only views of mutable sets by casting them to Set:

val	fruit:	MutableSet<String>	=	mutableSetOf("apple",	"banana",	"cherry",	"cherry")
val	fruitLocked:	Set<String>	=	fruit

As sets are unordered, you can't access an item at a particular index.

69

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/count.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/add.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/remove.html

To create a read-only map (Map), use the mapOf() function.

To create a mutable map (MutableMap), use the mutableMapOf() function.

When creating maps, Kotlin can infer the type of items stored. To declare the type explicitly, add the types of the keys and values within angled brackets <> after
the map declaration. For example: MutableMap<String, Int>. The keys have type String and the values have type Int.

The easiest way to create maps is to use to between each key and its related value:

fun	main()	{
//sampleStart
				//	Read-only	map
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println(readOnlyJuiceMenu)
				//	{apple=100,	kiwi=190,	orange=100}

				//	Mutable	map	with	explicit	type	declaration
				val	juiceMenu:	MutableMap<String,	Int>	=	mutableMapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println(juiceMenu)
				//	{apple=100,	kiwi=190,	orange=100}
//sampleEnd
}

To access a value in a map, use the indexed access operator [] with its key:

fun	main()	{
//sampleStart
				//	Read-only	map
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println("The	value	of	apple	juice	is:	${readOnlyJuiceMenu["apple"]}")
				//	The	value	of	apple	juice	is:	100
//sampleEnd
}

To get the number of items in a map, use the .count() function:

fun	main()	{
//sampleStart
				//	Read-only	map
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println("This	map	has	${readOnlyJuiceMenu.count()}	key-value	pairs")
				//	This	map	has	3	key-value	pairs
//sampleEnd
}

To add or remove items from a mutable map, use .put() and .remove() functions respectively:

fun	main()	{
//sampleStart
				val	juiceMenu:	MutableMap<String,	Int>	=	mutableMapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				juiceMenu.put("coconut",	150)	//	Add	key	"coconut"	with	value	150	to	the	map
				println(juiceMenu)
				//	{apple=100,	kiwi=190,	orange=100,	coconut=150}

				juiceMenu.remove("orange")				//	Remove	key	"orange"	from	the	map

Every key in a map must be unique so that Kotlin can understand which value you want to get.

You can have duplicate values in a map.

To prevent unwanted modifications, obtain read-only views of mutable maps by casting them to Map:

val	juiceMenu:	MutableMap<String,	Int>	=	mutableMapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
val	juiceMenuLocked:	Map<String,	Int>	=	juiceMenu

70

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-map-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/count.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/put.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/remove.html

				println(juiceMenu)
				//	{apple=100,	kiwi=190,	coconut=150}
//sampleEnd
}

To check if a specific key is already included in a map, use the .containsKey() function:

fun	main()	{
//sampleStart
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println(readOnlyJuiceMenu.containsKey("kiwi"))
				//	true
//sampleEnd
}

To obtain a collection of the keys or values of a map, use the keys and values properties respectively:

fun	main()	{
//sampleStart
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println(readOnlyJuiceMenu.keys)
				//	[apple,	kiwi,	orange]
				println(readOnlyJuiceMenu.values)
				//	[100,	190,	100]
//sampleEnd
}

To check that a key or value is in a map, use the in operator:

fun	main()	{
//sampleStart
				val	readOnlyJuiceMenu	=	mapOf("apple"	to	100,	"kiwi"	to	190,	"orange"	to	100)
				println("orange"	in	readOnlyJuiceMenu.keys)
				//	true
				println(200	in	readOnlyJuiceMenu.values)
				//	false
//sampleEnd
}

For more information on what you can do with collections, see Collections.

Now that you know about basic types and how to manage collections, it's time to explore the control flow that you can use in your programs.

Practice

Exercise
1
You have a list of “green” numbers and a list of “red” numbers. Complete the code to print how many numbers there are in total.

fun	main()	{
				val	greenNumbers	=	listOf(1,	4,	23)
				val	redNumbers	=	listOf(17,	2)
				//	Write	your	code	here
}

fun main() { val greenNumbers = listOf(1, 4, 23) val redNumbers = listOf(17, 2) val totalCount = greenNumbers.count() + redNumbers.count()
println(totalCount) }

keys and values are examples of properties of an object. To access the property of an object, write the property name after the object appended with a
period .

Properties are discussed in more detail in the Classes chapter. At this point in the tour, you only need to know how to access them.

71

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/contains-key.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/keys.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/values.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/keys.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/values.html

Exercise
2
You have a set of protocols supported by your server. A user requests to use a particular protocol. Complete the program to check whether the requested protocol
is supported or not (isSupported must be a Boolean value).

fun	main()	{
				val	SUPPORTED	=	setOf("HTTP",	"HTTPS",	"FTP")
				val	requested	=	"smtp"
				val	isSupported	=	//	Write	your	code	here	
				println("Support	for	$requested:	$isSupported")
}

Hint
Make sure that you check the requested protocol in upper case. You can use the .uppercase() function to help you with this.

fun main() { val SUPPORTED = setOf("HTTP", "HTTPS", "FTP") val requested = "smtp" val isSupported = requested.uppercase() in
SUPPORTED println("Support for $requested: $isSupported") }

Exercise
3
Define a map that relates integer numbers from 1 to 3 to their corresponding spelling. Use this map to spell the given number.

fun	main()	{
				val	number2word	=	//	Write	your	code	here
				val	n	=	2
				println("$n	is	spelt	as	'${<Write	your	code	here	>}'")
}

fun main() { val number2word = mapOf(1 to "one", 2 to "two", 3 to "three") val n = 2 println("$n is spelt as '${number2word[n]}'") }

Next
step
Control flow

Control
flow
Like other programming languages, Kotlin is capable of making decisions based on whether a piece of code is evaluated to be true. Such pieces of code are called
conditional expressions. Kotlin is also able to create and iterate through loops.

Conditional
expressions
Kotlin provides if and when for checking conditional expressions.

If
To use if, add the conditional expression within parentheses () and the action to take if the result is true within curly braces {}:

fun	main()	{
//sampleStart
				val	d:	Int
				val	check	=	true

				if	(check)	{
								d	=	1
				}	else	{
								d	=	2
				}

If you have to choose between if and when, we recommend using when as it leads to more robust and safer programs.

72

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/uppercase.html

				println(d)
				//	1
//sampleEnd
}

There is no ternary operator condition ? then : else in Kotlin. Instead, if can be used as an expression. When using if as an expression, there are no curly braces {}:

fun	main()	{	
//sampleStart
				val	a	=	1
				val	b	=	2

				println(if	(a	>	b)	a	else	b)	//	Returns	a	value:	2
//sampleEnd
}

When
Use when when you have a conditional expression with multiple branches. when can be used either as a statement or as an expression.

Here is an example of using when as a statement:

Place the conditional expression within parentheses () and the actions to take within curly braces {}.

Use -> in each branch to separate each condition from each action.

fun	main()	{
//sampleStart
				val	obj	=	"Hello"

				when	(obj)	{
								//	Checks	whether	obj	equals	to	"1"
								"1"	->	println("One")
								//	Checks	whether	obj	equals	to	"Hello"
								"Hello"	->	println("Greeting")
								//	Default	statement
								else	->	println("Unknown")					
				}
				//	Greeting
//sampleEnd
}

Here is an example of using when as an expression. The when syntax is assigned immediately to a variable:

fun	main()	{
//sampleStart				
				val	obj	=	"Hello"				
				
				val	result	=	when	(obj)	{
								//	If	obj	equals	"1",	sets	result	to	"one"
								"1"	->	"One"
								//	If	obj	equals	"Hello",	sets	result	to	"Greeting"
								"Hello"	->	"Greeting"
								//	Sets	result	to	"Unknown"	if	no	previous	condition	is	satisfied
								else	->	"Unknown"
				}
				println(result)
				//	Greeting
//sampleEnd
}

If when is used as an expression, the else branch is mandatory, unless the compiler can detect that all possible cases are covered by the branch conditions.

The previous example showed that when is useful for matching a variable. when is also useful when you need to check a chain of Boolean expressions:

fun	main()	{
//sampleStart
				val	temp	=	18

Note that all branch conditions are checked sequentially until one of them is satisfied. So only the first suitable branch is executed.

73

				val	description	=	when	{
								//	If	temp	<	0	is	true,	sets	description	to	"very	cold"
								temp	<	0	->	"very	cold"
								//	If	temp	<	10	is	true,	sets	description	to	"a	bit	cold"
								temp	<	10	->	"a	bit	cold"
								//	If	temp	<	20	is	true,	sets	description	to	"warm"
								temp	<	20	->	"warm"
								//	Sets	description	to	"hot"	if	no	previous	condition	is	satisfied
								else	->	"hot"													
				}
				println(description)
				//	warm
//sampleEnd
}

Ranges
Before talking about loops, it's useful to know how to construct ranges for loops to iterate over.

The most common way to create a range in Kotlin is to use the .. operator. For example, 1..4 is equivalent to 1, 2, 3, 4.

To declare a range that doesn't include the end value, use the ..< operator. For example, 1..<4 is equivalent to 1, 2, 3.

To declare a range in reverse order, use downTo. For example, 4 downTo 1 is equivalent to 4, 3, 2, 1.

To declare a range that increments in a step that isn't 1, use step and your desired increment value. For example, 1..5 step 2 is equivalent to 1, 3, 5.

You can also do the same with Char ranges:

'a'..'d' is equivalent to 'a', 'b', 'c', 'd'

'z' downTo 's' step 2 is equivalent to 'z', 'x', 'v', 't'

Loops
The two most common loop structures in programming are for and while. Use for to iterate over a range of values and perform an action. Use while to continue an
action until a particular condition is satisfied.

For
Using your new knowledge of ranges, you can create a for loop that iterates over numbers 1 to 5 and prints the number each time.

Place the iterator and range within parentheses () with keyword in. Add the action you want to complete within curly braces {}:

fun	main()	{
//sampleStart
				for	(number	in	1..5)	{	
								//	number	is	the	iterator	and	1..5	is	the	range
								print(number)
				}
				//	12345
//sampleEnd
}

Collections can also be iterated over by loops:

fun	main()	{	
//sampleStart
				val	cakes	=	listOf("carrot",	"cheese",	"chocolate")

				for	(cake	in	cakes)	{
								println("Yummy,	it's	a	$cake	cake!")
				}
				//	Yummy,	it's	a	carrot	cake!
				//	Yummy,	it's	a	cheese	cake!
				//	Yummy,	it's	a	chocolate	cake!
//sampleEnd
}

74

While
while can be used in two ways:

To execute a code block while a conditional expression is true. (while)

To execute the code block first and then check the conditional expression. (do-while)

In the first use case (while):

Declare the conditional expression for your while loop to continue within parentheses ().

Add the action you want to complete within curly braces {}.

fun	main()	{
//sampleStart
				var	cakesEaten	=	0
				while	(cakesEaten	<	3)	{
								println("Eat	a	cake")
								cakesEaten++
				}
				//	Eat	a	cake
				//	Eat	a	cake
				//	Eat	a	cake
//sampleEnd
}

In the second use case (do-while):

Declare the conditional expression for your while loop to continue within parentheses ().

Define the action you want to complete within curly braces {} with the keyword do.

fun	main()	{
//sampleStart
				var	cakesEaten	=	0
				var	cakesBaked	=	0
				while	(cakesEaten	<	3)	{
								println("Eat	a	cake")
								cakesEaten++
				}
				do	{
								println("Bake	a	cake")
								cakesBaked++
				}	while	(cakesBaked	<	cakesEaten)
				//	Eat	a	cake
				//	Eat	a	cake
				//	Eat	a	cake
				//	Bake	a	cake
				//	Bake	a	cake
				//	Bake	a	cake
//sampleEnd
}

For more information and examples of conditional expressions and loops, see Conditions and loops.

Now that you know the fundamentals of Kotlin control flow, it's time to learn how to write your own functions.

Practice

Exercise
1
Using a when expression, update the following program so that when you input the names of GameBoy buttons, the actions are printed to output.

Button Action

The following examples use the increment operator ++ to increment the value of the cakesEaten variable.

75

A Yes

B No

X Menu

Y Nothing

Other There is no such button

Button Action

fun	main()	{
				val	button	=	"A"

				println(
								//	Write	your	code	here
)
}

fun main() { val button = "A" println(when (button) { "A" -> "Yes" "B" -> "No" "X" -> "Menu" "Y" -> "Nothing" else -> "There is no such
button" }) }

Exercise
2
You have a program that counts pizza slices until there’s a whole pizza with 8 slices. Refactor this program in two ways:

Use a while loop.

Use a do-while loop.

fun	main()	{
				var	pizzaSlices	=	0
				//	Start	refactoring	here
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				println("There's	only	$pizzaSlices	slice/s	of	pizza	:(")
				pizzaSlices++
				//	End	refactoring	here
				println("There	are	$pizzaSlices	slices	of	pizza.	Hooray!	We	have	a	whole	pizza!	:D")
}

fun main() { var pizzaSlices = 0 while (pizzaSlices < 7) { pizzaSlices++ println("There's only $pizzaSlices slice/s of pizza :(") } pizzaSlices++
println("There are $pizzaSlices slices of pizza. Hooray! We have a whole pizza! :D") }

fun main() { var pizzaSlices = 0 pizzaSlices++ do { println("There's only $pizzaSlices slice/s of pizza :(") pizzaSlices++ } while (pizzaSlices < 8
) println("There are $pizzaSlices slices of pizza. Hooray! We have a whole pizza! :D") }

Exercise
3

76

Write a program that simulates the Fizz buzz game. Your task is to print numbers from 1 to 100 incrementally, replacing any number divisible by three with the word
"fizz", and any number divisible by five with the word "buzz". Any number divisible by both 3 and 5 must be replaced with the word "fizzbuzz".

Hint
Use a for loop to count numbers and a when expression to decide what to print at each step.

fun	main()	{
				//	Write	your	code	here
}

fun main() { for (number in 1..100) { println(when { number % 15 == 0 -> "fizzbuzz" number % 3 == 0 -> "fizz" number % 5 == 0 -> "buzz"
else -> number.toString() }) } }

Exercise
4
You have a list of words. Use for and if to print only the words that start with the letter l.

Hint
Use the .startsWith() function for String type.

fun	main()	{
				val	words	=	listOf("dinosaur",	"limousine",	"magazine",	"language")
				//	Write	your	code	here
}

fun main() { val words = listOf("dinosaur", "limousine", "magazine", "language") for (w in words) { if (w.startsWith("l")) println(w) } }

Next
step
Functions

Functions
You can declare your own functions in Kotlin using the fun keyword.

fun	hello()	{
				return	println("Hello,	world!")
}

fun	main()	{
				hello()
				//	Hello,	world!
}

In Kotlin:

function parameters are written within parentheses ().

each parameter must have a type, and multiple parameters must be separated by commas ,.

the return type is written after the function's parentheses (), separated by a colon :.

the body of a function is written within curly braces {}.

the return keyword is used to exit or return something from a function.

In the following example:

x and y are function parameters.

If a function doesn't return anything useful, the return type and return keyword can be omitted. Learn more about this in Functions without return.

77

https://en.wikipedia.org/wiki/Fizz_buzz
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/starts-with.html

x and y have type Int.

the function's return type is Int.

the function returns a sum of x and y when called.

fun	sum(x:	Int,	y:	Int):	Int	{
				return	x	+	y
}

fun	main()	{
				println(sum(1,	2))
				//	3
}

Named
arguments
For concise code, when calling your function, you don't have to include parameter names. However, including parameter names does make your code easier to
read. This is called using named arguments. If you do include parameter names, then you can write the parameters in any order.

fun	printMessageWithPrefix(message:	String,	prefix:	String)	{
				println("[$prefix]	$message")
}

fun	main()	{
				//	Uses	named	arguments	with	swapped	parameter	order
				printMessageWithPrefix(prefix	=	"Log",	message	=	"Hello")
				//	[Log]	Hello
}

Default
parameter
values
You can define default values for your function parameters. Any parameter with a default value can be omitted when calling your function. To declare a default
value, use the assignment operator = after the type:

fun	printMessageWithPrefix(message:	String,	prefix:	String	=	"Info")	{
				println("[$prefix]	$message")
}

fun	main()	{
				//	Function	called	with	both	parameters
				printMessageWithPrefix("Hello",	"Log")	
				//	[Log]	Hello
				
				//	Function	called	only	with	message	parameter
				printMessageWithPrefix("Hello")								
				//	[Info]	Hello
				
				printMessageWithPrefix(prefix	=	"Log",	message	=	"Hello")
				//	[Log]	Hello
}

We recommend in our coding conventions that you name functions starting with a lowercase letter and use camel case with no underscores.

In the following example, string templates ($) are used to access the parameter values, convert them to String type, and then concatenate them into a
string for printing.

You can skip specific parameters with default values, rather than omitting them all. However, after the first skipped parameter, you must name all
subsequent parameters.

78

Functions
without
return
If your function doesn't return a useful value then its return type is Unit. Unit is a type with only one value – Unit. You don't have to declare that Unit is returned
explicitly in your function body. This means that you don't have to use the return keyword or declare a return type:

fun	printMessage(message:	String)	{
				println(message)
				//	`return	Unit`	or	`return`	is	optional
}

fun	main()	{
				printMessage("Hello")
				//	Hello
}

Single-expression
functions
To make your code more concise, you can use single-expression functions. For example, the sum() function can be shortened:

fun	sum(x:	Int,	y:	Int):	Int	{
				return	x	+	y
}

fun	main()	{
				println(sum(1,	2))
				//	3
}

You can remove the curly braces {} and declare the function body using the assignment operator =. And due to Kotlin's type inference, you can also omit the return
type. The sum() function then becomes one line:

fun	sum(x:	Int,	y:	Int)	=	x	+	y

fun	main()	{
				println(sum(1,	2))
				//	3
}

Functions
practice

Exercise
1
Write a function called circleArea that takes the radius of a circle in integer format as a parameter and outputs the area of that circle.

import	kotlin.math.PI

fun	circleArea()	{
				//	Write	your	code	here
}
fun	main()	{
				println(circleArea(2))
}

import kotlin.math.PI fun circleArea(radius: Int): Double { return PI * radius * radius } fun main() { println(circleArea(2)) // 12.566370614359172
}

Omitting the return type is only possible when your function has no body ({}). Unless your function's return type is Unit.

In this exercise, you import a package so that you can access the value of pi via PI. For more information about importing packages, see Packages and
imports.

79

Exercise
2
Rewrite the circleArea function from the previous exercise as a single-expression function.

import	kotlin.math.PI

//	Write	your	code	here

fun	main()	{
				println(circleArea(2))
}

import kotlin.math.PI fun circleArea(radius: Int): Double = PI * radius * radius fun main() { println(circleArea(2)) // 12.566370614359172 }

Exercise
3
You have a function that translates a time interval given in hours, minutes, and seconds into seconds. In most cases, you need to pass only one or two function
parameters while the rest are equal to 0. Improve the function and the code that calls it by using default parameter values and named arguments so that the code is
easier to read.

fun	intervalInSeconds(hours:	Int,	minutes:	Int,	seconds:	Int)	=
				((hours	*	60)	+	minutes)	*	60	+	seconds

fun	main()	{
				println(intervalInSeconds(1,	20,	15))
				println(intervalInSeconds(0,	1,	25))
				println(intervalInSeconds(2,	0,	0))
				println(intervalInSeconds(0,	10,	0))
				println(intervalInSeconds(1,	0,	1))
}

fun intervalInSeconds(hours: Int = 0, minutes: Int = 0, seconds: Int = 0) = ((hours * 60) + minutes) * 60 + seconds fun main() {
println(intervalInSeconds(1, 20, 15)) println(intervalInSeconds(minutes = 1, seconds = 25)) println(intervalInSeconds(hours = 2))
println(intervalInSeconds(minutes = 10)) println(intervalInSeconds(hours = 1, seconds = 1)) }

Lambda
expressions
Kotlin allows you to write even more concise code for functions by using lambda expressions.

For example, the following uppercaseString() function:

fun	uppercaseString(string:	String):	String	{
				return	string.uppercase()
}
fun	main()	{
				println(uppercaseString("hello"))
				//	HELLO
}

Can also be written as a lambda expression:

fun	main()	{
				println({	string:	String	->	string.uppercase()	}("hello"))
				//	HELLO
}

Lambda expressions can be hard to understand at first glance so let's break it down. Lambda expressions are written within curly braces {}.

Within the lambda expression, you write:

the parameters followed by an ->.

the function body after the ->.

In the previous example:

string is a function parameter.

80

string has type String.

the function returns the result of the .uppercase() function called on string.

Lambda expressions can be used in a number of ways. You can:

assign a lambda to a variable that you can then invoke later

pass a lambda expression as a parameter to another function

return a lambda expression from a function

invoke a lambda expression on its own

Assign
to
variable
To assign a lambda expression to a variable, use the assignment operator =:

fun	main()	{
				val	upperCaseString	=	{	string:	String	->	string.uppercase()	}
				println(upperCaseString("hello"))
				//	HELLO
}

Pass
to
another
function
A great example of when it is useful to pass a lambda expression to a function, is using the .filter() function on collections:

fun	main()	{
				//sampleStart
				val	numbers	=	listOf(1,	-2,	3,	-4,	5,	-6)
				val	positives	=	numbers.filter	{	x	->	x	>	0	}
				val	negatives	=	numbers.filter	{	x	->	x	<	0	}
				println(positives)
				//	[1,	3,	5]
				println(negatives)
				//	[-2,	-4,	-6]
				//sampleEnd
}

The .filter() function accepts a lambda expression as a predicate:

{ x -> x > 0 } takes each element of the list and returns only those that are positive.

{ x -> x < 0 } takes each element of the list and returns only those that are negative.

Another good example, is using the .map() function to transform items in a collection:

fun	main()	{
				//sampleStart
				val	numbers	=	listOf(1,	-2,	3,	-4,	5,	-6)
				val	doubled	=	numbers.map	{	x	->	x	*	2	}
				val	tripled	=	numbers.map	{	x	->	x	*	3	}
				println(doubled)
				//	[2,	-4,	6,	-8,	10,	-12]
				println(tripled)

If you declare a lambda without parameters, then there is no need to use ->. For example:

{	println("Log	message")	}

If a lambda expression is the only function parameter, you can drop the function parentheses (). This is an example of a trailing lambda, which is
discussed in more detail at the end of this chapter.

81

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/uppercase.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map.html

				//	[3,	-6,	9,	-12,	15,	-18]
				//sampleEnd
}

The .map() function accepts a lambda expression as a transform function:

{ x -> x * 2 } takes each element of the list and returns that element multiplied by 2.

{ x -> x * 3 } takes each element of the list and returns that element multiplied by 3.

Function
types
Before you can return a lambda expression from a function, you first need to understand function types.

You have already learned about basic types but functions themselves also have a type. Kotlin's type inference can infer a function's type from the parameter type.
But there may be times when you need to explicitly specify the function type. The compiler needs the function type so that it knows what is and isn't allowed for
that function.

The syntax for a function type has:

each parameter's type written within parentheses () and separated by commas ,.

the return type written after ->.

For example: (String) -> String or (Int, Int) -> Int.

This is what a lambda expression looks like if a function type for upperCaseString() is defined:

val	upperCaseString:	(String)	->	String	=	{	string	->	string.uppercase()	}

fun	main()	{
				println(upperCaseString("hello"))
				//	HELLO
}

If your lambda expression has no parameters then the parentheses () are left empty. For example: () -> Unit

Return
from
a
function
Lambda expressions can be returned from a function. So that the compiler understands what type the lambda expression returned is, you must declare a function
type.

In the following example, the toSeconds() function has function type (Int) -> Int because it always returns a lambda expression that takes a parameter of type Int and
returns an Int value.

This example uses a when expression to determine which lambda expression is returned when toSeconds() is called:

fun	toSeconds(time:	String):	(Int)	->	Int	=	when	(time)	{
				"hour"	->	{	value	->	value	*	60	*	60	}
				"minute"	->	{	value	->	value	*	60	}
				"second"	->	{	value	->	value	}
				else	->	{	value	->	value	}
}

fun	main()	{
				val	timesInMinutes	=	listOf(2,	10,	15,	1)
				val	min2sec	=	toSeconds("minute")
				val	totalTimeInSeconds	=	timesInMinutes.map(min2sec).sum()
				println("Total	time	is	$totalTimeInSeconds	secs")
				//	Total	time	is	1680	secs
}

You must declare parameter and return types either in the lambda expression or as a function type. Otherwise, the compiler won't be able to know what
type your lambda expression is.

For example, the following won't work:

val upperCaseString = { str -> str.uppercase() }

82

Invoke
separately
Lambda expressions can be invoked on their own by adding parentheses () after the curly braces {} and including any parameters within the parentheses:

fun	main()	{
				//sampleStart
				println({	string:	String	->	string.uppercase()	}("hello"))
				//	HELLO
				//sampleEnd
}

Trailing
lambdas
As you have already seen, if a lambda expression is the only function parameter, you can drop the function parentheses (). If a lambda expression is passed as the
last parameter of a function, then the expression can be written outside the function parentheses (). In both cases, this syntax is called a trailing lambda.

For example, the .fold() function accepts an initial value and an operation:

fun	main()	{
				//sampleStart
				//	The	initial	value	is	zero.	
				//	The	operation	sums	the	initial	value	with	every	item	in	the	list	cumulatively.
				println(listOf(1,	2,	3).fold(0,	{	x,	item	->	x	+	item	}))	//	6

				//	Alternatively,	in	the	form	of	a	trailing	lambda
				println(listOf(1,	2,	3).fold(0)	{	x,	item	->	x	+	item	})		//	6
				//sampleEnd
}

For more information on lambda expressions, see Lambda expressions and anonymous functions.

The next step in our tour is to learn about classes in Kotlin.

Lambda
expressions
practice

Exercise
1
You have a list of actions supported by a web service, a common prefix for all requests, and an ID of a particular resource. To request an action title over the
resource with ID: 5, you need to create the following URL: https://example.com/book-info/5/title. Use a lambda expression to create a list of URLs from the list of
actions.

fun	main()	{
				val	actions	=	listOf("title",	"year",	"author")
				val	prefix	=	"https://example.com/book-info"
				val	id	=	5
				val	urls	=	//	Write	your	code	here
								println(urls)
}

fun main() { val actions = listOf("title", "year", "author") val prefix = "https://example.com/book-info" val id = 5 val urls = actions.map { action
-> "$prefix/$id/$action" } println(urls) }

Exercise
2
Write a function that takes an Int value and an action (a function with type () -> Unit) which then repeats the action the given number of times. Then use this function
to print “Hello” 5 times.

fun	repeatN(n:	Int,	action:	()	->	Unit)	{
				//	Write	your	code	here
}

fun	main()	{
				//	Write	your	code	here
}

83

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/fold.html

fun repeatN(n: Int, action: () -> Unit) { for (i in 1..n) { action() } } fun main() { repeatN(5) { println("Hello") } }

Next
step
Classes

Classes
Kotlin supports object-oriented programming with classes and objects. Objects are useful for storing data in your program. Classes allow you to declare a set of
characteristics for an object. When you create objects from a class, you can save time and effort because you don't have to declare these characteristics every
time.

To declare a class, use the class keyword:

class	Customer

Properties
Characteristics of a class's object can be declared in properties. You can declare properties for a class:

Within parentheses () after the class name.

class	Contact(val	id:	Int,	var	email:	String)

Within the class body defined by curly braces {}.

class	Contact(val	id:	Int,	var	email:	String)	{
				val	category:	String	=	""
}

We recommend that you declare properties as read-only (val) unless they need to be changed after an instance of the class is created.

You can declare properties without val or var within parentheses but these properties are not accessible after an instance has been created.

Just like with function parameters, class properties can have default values:

class	Contact(val	id:	Int,	var	email:	String	=	"example@gmail.com")	{
				val	category:	String	=	"work"
}

Create
instance
To create an object from a class, you declare a class instance using a constructor.

By default, Kotlin automatically creates a constructor with the parameters declared in the class header.

For example:

class	Contact(val	id:	Int,	var	email:	String)

fun	main()	{
				val	contact	=	Contact(1,	"mary@gmail.com")

The content contained within parentheses () is called the class header.

You can use a trailing comma when declaring class properties.

84

}

In the example:

Contact is a class.

contact is an instance of the Contact class.

id and email are properties.

id and email are used with the default constructor to create contact.

Kotlin classes can have many constructors, including ones that you define yourself. To learn more about how to declare multiple constructors, see Constructors.

Access
properties
To access a property of an instance, write the name of the property after the instance name appended with a period .:

class	Contact(val	id:	Int,	var	email:	String)

fun	main()	{
				val	contact	=	Contact(1,	"mary@gmail.com")
				
				//	Prints	the	value	of	the	property:	email
				println(contact.email)											
				//	mary@gmail.com

				//	Updates	the	value	of	the	property:	email
				contact.email	=	"jane@gmail.com"
				
				//	Prints	the	new	value	of	the	property:	email
				println(contact.email)											
				//	jane@gmail.com
}

Member
functions
In addition to declaring properties as part of an object's characteristics, you can also define an object's behavior with member functions.

In Kotlin, member functions must be declared within the class body. To call a member function on an instance, write the function name after the instance name
appended with a period .. For example:

class	Contact(val	id:	Int,	var	email:	String)	{
				fun	printId()	{
								println(id)
				}
}

fun	main()	{
				val	contact	=	Contact(1,	"mary@gmail.com")
				//	Calls	member	function	printId()
				contact.printId()											
				//	1
}

Data
classes
Kotlin has data classes which are particularly useful for storing data. Data classes have the same functionality as classes, but they come automatically with
additional member functions. These member functions allow you to easily print the instance to readable output, compare instances of a class, copy instances, and

To concatenate the value of a property as part of a string, you can use string templates ($). For example:

println("Their	email	address	is:	${contact.email}")

85

more. As these functions are automatically available, you don't have to spend time writing the same boilerplate code for each of your classes.

To declare a data class, use the keyword data:

data	class	User(val	name:	String,	val	id:	Int)

The most useful predefined member functions of data classes are:

Function Description

.toString() Prints a readable string of the class instance and its properties.

.equals() or == Compares instances of a class.

.copy() Creates a class instance by copying another, potentially with some different properties.

See the following sections for examples of how to use each function:

Print as string

Compare instances

Copy instance

Print
as
string
To print a readable string of a class instance, you can explicitly call the .toString() function, or use print functions (println() and print()) which automatically call
.toString() for you:

data	class	User(val	name:	String,	val	id:	Int)

fun	main()	{
				val	user	=	User("Alex",	1)
				
				//sampleStart
				//	Automatically	uses	toString()	function	so	that	output	is	easy	to	read
				println(user)												
				//	User(name=Alex,	id=1)
				//sampleEnd
}

This is particularly useful when debugging or creating logs.

Compare
instances
To compare data class instances, use the equality operator ==:

data	class	User(val	name:	String,	val	id:	Int)

fun	main()	{
				//sampleStart
				val	user	=	User("Alex",	1)
				val	secondUser	=	User("Alex",	1)
				val	thirdUser	=	User("Max",	2)

				//	Compares	user	to	second	user
				println("user	==	secondUser:	${user	==	secondUser}")	
				//	user	==	secondUser:	true
				
				//	Compares	user	to	third	user
				println("user	==	thirdUser:	${user	==	thirdUser}")			
				//	user	==	thirdUser:	false
				//sampleEnd
}

86

Copy
instance
To create an exact copy of a data class instance, call the .copy() function on the instance.

To create a copy of a data class instance and change some properties, call the .copy() function on the instance and add replacement values for properties as
function parameters.

For example:

data	class	User(val	name:	String,	val	id:	Int)

fun	main()	{
				//sampleStart
				val	user	=	User("Alex",	1)
				val	secondUser	=	User("Alex",	1)
				val	thirdUser	=	User("Max",	2)

				//	Creates	an	exact	copy	of	user
				println(user.copy())							
				//	User(name=Alex,	id=1)

				//	Creates	a	copy	of	user	with	name:	"Max"
				println(user.copy("Max"))		
				//	User(name=Max,	id=1)

				//	Creates	a	copy	of	user	with	id:	3
				println(user.copy(id	=	3))	
				//	User(name=Alex,	id=3)
				//sampleEnd
}

Creating a copy of an instance is safer than modifying the original instance because any code that relies on the original instance isn't affected by the copy and what
you do with it.

For more information about data classes, see Data classes.

The last chapter of this tour is about Kotlin's null safety.

Practice

Exercise
1
Define a data class Employee with two properties: one for a name, and another for a salary. Make sure that the property for salary is mutable, otherwise you won’t
get a salary boost at the end of the year! The main function demonstrates how you can use this data class.

//	Write	your	code	here

fun	main()	{
				val	emp	=	Employee("Mary",	20)
				println(emp)
				emp.salary	+=	10
				println(emp)
}

data class Employee(val name: String, var salary: Int) fun main() { val emp = Employee("Mary", 20) println(emp) emp.salary += 10 println(emp)
}

Exercise
2
To test your code, you need a generator that can create random employees. Define a class with a fixed list of potential names (inside the class body), and that is
configured by a minimum and maximum salary (inside the class header). Once again, the main function demonstrates how you can use this class.

Hint
Lists have an extension function called .random() that returns a random item within a list.

Hint
Random.nextInt(from = ..., until = ...) gives you a random Int number within specified limits.

87

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/random.html

import	kotlin.random.Random

data	class	Employee(val	name:	String,	var	salary:	Int)

//	Write	your	code	here

fun	main()	{
				val	empGen	=	RandomEmployeeGenerator(10,	30)
				println(empGen.generateEmployee())
				println(empGen.generateEmployee())
				println(empGen.generateEmployee())
				empGen.minSalary	=	50
				empGen.maxSalary	=	100
				println(empGen.generateEmployee())
}

import kotlin.random.Random data class Employee(val name: String, var salary: Int) class RandomEmployeeGenerator(var minSalary: Int, var
maxSalary: Int) { val names = listOf("John", "Mary", "Ann", "Paul", "Jack", "Elizabeth") fun generateEmployee() = Employee(names.random(),
Random.nextInt(from = minSalary, until = maxSalary)) } fun main() { val empGen = RandomEmployeeGenerator(10, 30)
println(empGen.generateEmployee()) println(empGen.generateEmployee()) println(empGen.generateEmployee()) empGen.minSalary = 50
empGen.maxSalary = 100 println(empGen.generateEmployee()) }

Next
step
Null safety

Null
safety
In Kotlin, it's possible to have a null value. To help prevent issues with null values in your programs, Kotlin has null safety in place. Null safety detects potential
problems with null values at compile time, rather than at run time.

Null safety is a combination of features that allow you to:

explicitly declare when null values are allowed in your program.

check for null values.

use safe calls to properties or functions that may contain null values.

declare actions to take if null values are detected.

Nullable
types
Kotlin supports nullable types which allows the possibility for the declared type to have null values. By default, a type is not allowed to accept null values. Nullable
types are declared by explicitly adding ? after the type declaration.

For example:

fun	main()	{
				//	neverNull	has	String	type
				var	neverNull:	String	=	"This	can't	be	null"

				//	Throws	a	compiler	error
				neverNull	=	null

				//	nullable	has	nullable	String	type
				var	nullable:	String?	=	"You	can	keep	a	null	here"

				//	This	is	OK		
				nullable	=	null

				//	By	default,	null	values	aren't	accepted
				var	inferredNonNull	=	"The	compiler	assumes	non-nullable"

				//	Throws	a	compiler	error
				inferredNonNull	=	null

				//	notNull	doesn't	accept	null	values

88

				fun	strLength(notNull:	String):	Int	{																	
								return	notNull.length
				}

				println(strLength(neverNull))	//	18
				println(strLength(nullable))		//	Throws	a	compiler	error
}

Check
for
null
values
You can check for the presence of null values within conditional expressions. In the following example, the describeString() function has an if statement that checks
whether maybeString is not null and if its length is greater than zero:

fun	describeString(maybeString:	String?):	String	{
				if	(maybeString	!=	null	&&	maybeString.length	>	0)	{
								return	"String	of	length	${maybeString.length}"
				}	else	{
								return	"Empty	or	null	string"
				}
}

fun	main()	{
				var	nullString:	String?	=	null
				println(describeString(nullString))
				//	Empty	or	null	string
}

Use
safe
calls
To safely access properties of an object that might contain a null value, use the safe call operator ?.. The safe call operator returns null if the object's property is
null. This is useful if you want to avoid the presence of null values triggering errors in your code.

In the following example, the lengthString() function uses a safe call to return either the length of the string or null:

fun	lengthString(maybeString:	String?):	Int?	=	maybeString?.length

fun	main()	{	
				var	nullString:	String?	=	null
				println(lengthString(nullString))
				//	null
}

The safe call operator can also be used to safely call an extension or member function. In this case, a null check is performed before the function is called. If the
check detects a null value, then the call is skipped and null is returned.

In the following example, nullString is null so the invocation of .uppercase() is skipped and null is returned:

fun	main()	{
				var	nullString:	String?	=	null
				println(nullString?.uppercase())
				//	null
}

length is a property of the String class that contains the number of characters within a string.

Safe calls can be chained so that if any property of an object contains a null value, then null is returned without an error being thrown. For example:

person.company?.address?.country

89

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/uppercase.html

Use
Elvis
operator
You can provide a default value to return if a null value is detected by using the Elvis operator ?:.

Write on the left-hand side of the Elvis operator what should be checked for a null value. Write on the right-hand side of the Elvis operator what should be returned if
a null value is detected.

In the following example, nullString is null so the safe call to access the length property returns a null value. As a result, the Elvis operator returns 0:

fun	main()	{
				var	nullString:	String?	=	null
				println(nullString?.length	?:	0)
				//	0
}

For more information about null safety in Kotlin, see Null safety.

Practice

Exercise
You have the employeeById function that gives you access to a database of employees of a company. Unfortunately, this function returns a value of the Employee?
type, so the result can be null. Your goal is to write a function that returns the salary of an employee when their id is provided, or 0 if the employee is missing from
the database.

data	class	Employee	(val	name:	String,	var	salary:	Int)

fun	employeeById(id:	Int)	=	when(id)	{
				1	->	Employee("Mary",	20)
				2	->	null
				3	->	Employee("John",	21)
				4	->	Employee("Ann",	23)
				else	->	null
}

fun	salaryById(id:	Int)	=	//	Write	your	code	here
				
fun	main()	{	
				println((1..5).sumOf	{	id	->	salaryById(id)	})
}

data class Employee (val name: String, var salary: Int) fun employeeById(id: Int) = when(id) { 1 -> Employee("Mary", 20) 2 -> null 3 ->
Employee("John", 21) 4 -> Employee("Ann", 23) else -> null } fun salaryById(id: Int) = employeeById(id)?.salary ?: 0 fun main() {
println((1..5).sumOf { id -> salaryById(id) }) }

What's
next?
Congratulations! Now that you have completed the Kotlin tour, check out our tutorials for popular Kotlin applications:

Create a backend application

Create a cross-platform application for Android and iOS

Kotlin
Multiplatform
The Kotlin Multiplatform technology is designed to simplify the development of cross-platform projects. It reduces time spent writing and maintaining the same
code for different platforms while retaining the flexibility and benefits of native programming.

Kotlin Multiplatform

90

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html

Kotlin
Multiplatform
use
cases

Android
and
iOS
applications
Sharing code between mobile platforms is a major Kotlin Multiplatform use cases. With Kotlin Multiplatform, you can build cross-platform mobile applications that
share code between Android and iOS to implement networking, data storage and data validation, analytics, computations, and other application logic.

Check out the Get started with Kotlin Multiplatform and Create a multiplatform app using Ktor and SQLDelight tutorials, where you will create applications for
Android and iOS that include a module with shared code for both platforms.

Thanks to Compose Multiplatform, a Kotlin-based declarative UI framework developed by JetBrains, you can also share UIs across Android and iOS to create fully
cross-platform apps:

Sharing different levels and UI

Check out the Get started with Compose Multiplatform tutorial to create your own mobile application with UIs shared between both platforms.

Multiplatform
libraries
Kotlin Multiplatform is also helpful for library authors. You can create a multiplatform library with common code and its platform-specific implementations for JVM,
web, and native platforms. Once published, a multiplatform library can be used as a dependency in other cross-platform projects.

See the Publish a multiplatform library for more details.

Desktop
applications
Compose Multiplatform helps share UIs across desktop platforms like Windows, macOS, and Linux. Many applications, including the JetBrains Toolbox app, have
already adopted this approach.

Try this Compose Multiplatform desktop application template to create your own project with UIs shared among desktop platforms.

Code
sharing
between
platforms
Kotlin Multiplatform allows you to maintain a single codebase of the application logic for different platforms. You also get advantages of native programming,
including great performance and full access to platform SDKs.

Kotlin provides the following code sharing mechanisms:

Share common code among all platforms used in your project.

Share code among some platforms included in your project to reuse much of the code in similar platforms:

Code shared across different platforms

If you need to access platform-specific APIs from the shared code, use the Kotlin mechanism of expected and actual declarations.

91

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://www.jetbrains.com/lp/compose-multiplatform/
https://github.com/JetBrains/compose-multiplatform-ios-android-template/#readme
https://blog.jetbrains.com/kotlin/2021/12/compose-multiplatform-toolbox-case-study/
https://github.com/JetBrains/compose-multiplatform-desktop-template#readme

Get
started
Begin with the Get started with Kotlin Multiplatform if you want to create iOS and Android applications with shared code

Explore sharing code principles and examples if you want to create applications or libraries targeting other platforms

Sample
projects
Look through cross-platform application samples to understand how Kotlin Multiplatform works.

Kotlin
for
server
side
Kotlin is a great fit for developing server-side applications. It allows you to write concise and expressive code while maintaining full compatibility with existing Java-
based technology stacks, all with a smooth learning curve:

Expressiveness: Kotlin's innovative language features, such as its support for type-safe builders and delegated properties, help build powerful and easy-to-use
abstractions.

Scalability: Kotlin's support for coroutines helps build server-side applications that scale to massive numbers of clients with modest hardware requirements.

Interoperability: Kotlin is fully compatible with all Java-based frameworks, so you can use your familiar technology stack while reaping the benefits of a more
modern language.

Migration: Kotlin supports gradual migration of large codebases from Java to Kotlin. You can start writing new code in Kotlin while keeping older parts of your
system in Java.

Tooling: In addition to great IDE support in general, Kotlin offers framework-specific tooling (for example, for Spring) in the plugin for IntelliJ IDEA Ultimate.

Learning Curve: For a Java developer, getting started with Kotlin is very easy. The automated Java-to-Kotlin converter included in the Kotlin plugin helps with
the first steps. Kotlin Koans can guide you through the key features of the language with a series of interactive exercises.

Frameworks
for
server-side
development
with
Kotlin
Here are some examples of the server-side frameworks for Kotlin:

Spring makes use of Kotlin's language features to offer more concise APIs, starting with version 5.0. The online project generator allows you to quickly generate
a new project in Kotlin.

Ktor is a framework built by JetBrains for creating Web applications in Kotlin, making use of coroutines for high scalability and offering an easy-to-use and
idiomatic API.

Quarkus provides first class support for using Kotlin. The framework is open source and maintained by Red Hat. Quarkus was built from the ground up for
Kubernetes and provides a cohesive full-stack framework by leveraging a growing list of hundreds of best-of-breed libraries.

Vert.x, a framework for building reactive Web applications on the JVM, offers dedicated support for Kotlin, including full documentation.

kotlinx.html is a DSL that can be used to build HTML in Web applications. It serves as an alternative to traditional templating systems such as JSP and
FreeMarker.

Micronaut is a modern JVM-based full-stack framework for building modular, easily testable microservices and serverless applications. It comes with a lot of
useful built-in features.

http4k is the functional toolkit with a tiny footprint for Kotlin HTTP applications, written in pure Kotlin. The library is based on the "Your Server as a Function"
paper from Twitter and represents modeling both HTTP servers and clients as simple Kotlin functions that can be composed together.

Javalin is a very lightweight web framework for Kotlin and Java which supports WebSockets, HTTP2, and async requests.

The available options for persistence include direct JDBC access, JPA, and using NoSQL databases through their Java drivers. For JPA, the kotlin-jpa compiler
plugin adapts Kotlin-compiled classes to the requirements of the framework.

New to Kotlin? Take a look at Getting started with Kotlin.

92

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-samples.html
https://spring.io
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://start.spring.io/#!language=kotlin
https://github.com/kotlin/ktor
https://quarkus.io/guides/kotlin
https://vertx.io
https://github.com/vert-x3/vertx-lang-kotlin
https://vertx.io/docs/vertx-core/kotlin/
https://github.com/kotlin/kotlinx.html
https://micronaut.io/
https://http4k.org/
https://javalin.io

Deploying
Kotlin
server-side
applications
Kotlin applications can be deployed into any host that supports Java Web applications, including Amazon Web Services, Google Cloud Platform, and more.

To deploy Kotlin applications on Heroku, you can follow the official Heroku tutorial.

AWS Labs provides a sample project showing the use of Kotlin for writing AWS Lambda functions.

Google Cloud Platform offers a series of tutorials for deploying Kotlin applications to GCP, both for Ktor and App Engine and Spring and App engine. In addition,
there is an interactive code lab for deploying a Kotlin Spring application.

Products
that
use
Kotlin
on
the
server
side
Corda is an open-source distributed ledger platform that is supported by major banks and built entirely in Kotlin.

JetBrains Account, the system responsible for the entire license sales and validation process at JetBrains, is written in 100% Kotlin and has been running in
production since 2015 with no major issues.

Next
steps
For a more in-depth introduction to the language, check out the Kotlin documentation on this site and Kotlin Koans.

Watch a webinar "Micronaut for microservices with Kotlin" and explore a detailed guide showing how you can use Kotlin extension functions in the Micronaut
framework.

http4k provides the CLI to generate fully formed projects, and a starter repo to generate an entire CD pipeline using GitHub, Travis, and Heroku with a single
bash command.

Want to migrate from Java to Kotlin? Learn how to perform typical tasks with strings in Java and Kotlin.

Kotlin
for
Android
Android mobile development has been Kotlin-first since Google I/O in 2019.

Over 50% of professional Android developers use Kotlin as their primary language, while only 30% use Java as their main language. 70% of developers whose
primary language is Kotlin say that Kotlin makes them more productive.

Using Kotlin for Android development, you can benefit from:

Less code combined with greater readability. Spend less time writing your code and working to understand the code of others.

Fewer common errors. Apps built with Kotlin are 20% less likely to crash based on Google's internal data.

Kotlin support in Jetpack libraries. Jetpack Compose is Android's recommended modern toolkit for building native UI in Kotlin. KTX extensions add Kotlin
language features, like coroutines, extension functions, lambdas, and named parameters to existing Android libraries.

Support for multiplatform development. Kotlin Multiplatform allows development for not only Android but also iOS, backend, and web applications. Some
Jetpack libraries are already multiplatform. Compose Multiplatform, JetBrains' declarative UI framework based on Kotlin and Jetpack Compose, makes it
possible to share UIs across platforms – iOS, Android, desktop, and web.

Mature language and environment. Since its creation in 2011, Kotlin has developed continuously, not only as a language but as a whole ecosystem with robust
tooling. Now it's seamlessly integrated into Android Studio and is actively used by many companies for developing Android applications.

Interoperability with Java. You can use Kotlin along with the Java programming language in your applications without needing to migrate all your code to Kotlin.

Easy learning. Kotlin is very easy to learn, especially for Java developers.

Big community. Kotlin has great support and many contributions from the community, which is growing all over the world. Over 95% of the top thousand
Android apps use Kotlin.

You can find more frameworks at https://kotlin.link/.

93

https://kotlin.link/resources
https://www.heroku.com
https://devcenter.heroku.com/articles/getting-started-with-kotlin
https://github.com/awslabs/serverless-photo-recognition
https://aws.amazon.com/lambda/
https://cloud.google.com/community/tutorials/kotlin-ktor-app-engine-java8
https://cloud.google.com/community/tutorials/kotlin-springboot-app-engine-java8
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-kotlin
https://www.corda.net/
https://account.jetbrains.com/
https://micronaut.io/2020/12/03/webinar-micronaut-for-microservices-with-kotlin/
https://guides.micronaut.io/latest/micronaut-kotlin-extension-fns.html
https://toolbox.http4k.org
https://start.http4k.org
https://developer.android.com/kotlin/first
https://medium.com/androiddevelopers/fewer-crashes-and-more-stability-with-kotlin-b606c6a6ac04
https://developer.android.com/jetpack/compose
https://developer.android.com/kotlin/ktx
https://kotlinlang.org/lp/multiplatform/
https://developer.android.com/kotlin/multiplatform
https://www.jetbrains.com/lp/compose-multiplatform/
https://developer.android.com/studio

Many startups and Fortune 500 companies have already developed Android applications using Kotlin, see the list on the Google website for Android developers.

To start using Kotlin for:

Android development, read Google's documentation for developing Android apps with Kotlin.

Developing cross-platform mobile applications, see Get started with Kotlin Multiplatform for Android and iOS.

Kotlin
Wasm

WebAssembly (Wasm) is a binary instruction format for a stack-based virtual machine. This format is platform-independent because it runs on its own virtual
machine. Wasm is designed to be fast and secure, and it can compile code from various programming languages, including Kotlin.

Kotlin/Wasm is a new compilation target for Kotlin. You can use it in your Kotlin Multiplatform projects. With Kotlin/Wasm, you can create applications that run on
different environments and devices supporting WebAssembly and meeting Kotlin's requirements.

Browser
support
To run applications built with Kotlin/Wasm in a browser, you need a version supporting the new garbage collection feature.

Learn more in Get started with Kotlin/Wasm.

Interoperability
Kotlin/Wasm allows you to both use JavaScript code and Browser API from Kotlin, and Kotlin code from JavaScript.

Learn more about Kotlin Wasm interoperability with JavaScript.

Compose
Multiplatform
for
Web

Compose Multiplatform for Web is based on new Kotlin/Wasm target. You can create a Kotlin Multiplatform project and experiment with sharing your mobile or
desktop UIs with the web. With Compose Multiplatform for Web, you can run your code in the browser with all the benefits of WebAssembly.

How
to
get
started
Get started with Kotlin/Wasm in IntelliJ IDEA

Check out the GitHub repository with Kotlin/Wasm examples

Libraries
support
You can use the Kotlin standard library (stdlib) and test library (kotlin.test) in Kotlin/Wasm out of the box. The version of these libraries is the same as the version of
the kotlin-multiplatform plugin.

Kotlin/Wasm has an experimental support for other Kotlin libraries. Read more how to enable them in your project.

Kotlin Wasm is Experimental. It may be changed at any time. Use it only for evaluation purposes.

We would appreciate your feedback on it in YouTrack.

Learn more about Kotlin/Wasm with this YouTube playlist.

Web support is Experimental and may be changed at any time. Use it only for evaluation purposes. We would appreciate your feedback on it in the public
Slack channel #compose-web. If you face any issues, please report them on GitHub.

94

https://developer.android.com/kotlin/stories
https://developer.android.com/kotlin/get-started
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://kotl.in/issue
https://webassembly.org
https://kotl.in/wasm-pl
https://github.com/WebAssembly/gc
https://slack-chats.kotlinlang.org/c/compose-web
https://github.com/JetBrains/compose-multiplatform/issues
https://github.com/Kotlin/kotlin-wasm-examples
https://kotlinlang.org/api/latest/kotlin.test/

Feedback
Provide your feedback directly to developers in Kotlin Slack – get an invite and join the #webassembly channel.

Report any problems you faced with Kotlin/Wasm on this YouTrack issue.

Kotlin
Native
Kotlin/Native is a technology for compiling Kotlin code to native binaries which can run without a virtual machine. Kotlin/Native includes an LLVM-based backend
for the Kotlin compiler and a native implementation of the Kotlin standard library.

Why
Kotlin/Native?
Kotlin/Native is primarily designed to allow compilation for platforms on which virtual machines are not desirable or possible, such as embedded devices or iOS. It is
ideal for situations when a developer needs to produce a self-contained program that does not require an additional runtime or virtual machine.

Target
platforms
Kotlin/Native supports the following platforms:

macOS

iOS, tvOS, watchOS

Linux

Windows (MinGW)

Android NDK

See the full list of supported targets.

Interoperability
Kotlin/Native supports two-way interoperability with native programming languages for different operating systems. The compiler creates:

an executable for many platforms

a static library or dynamic library with C headers for C/C++ projects

an Apple framework for Swift and Objective-C projects

Kotlin/Native supports interoperability to use existing libraries directly from Kotlin/Native:

static or dynamic C libraries

C, Swift, and Objective-C frameworks

It is easy to include compiled Kotlin code in existing projects written in C, C++, Swift, Objective-C, and other languages. It is also easy to use existing native code,
static or dynamic C libraries, Swift/Objective-C frameworks, graphical engines, and anything else directly from Kotlin/Native.

Kotlin/Native libraries help share Kotlin code between projects. POSIX, gzip, OpenGL, Metal, Foundation, and many other popular libraries and Apple frameworks
are pre-imported and included as Kotlin/Native libraries in the compiler package.

Sharing
code
between
platforms
Kotlin Multiplatform helps share common code across multiple platforms, including Android, iOS, JVM, web, and native. Multiplatform libraries provide the

To compile Apple targets, macOS, iOS, tvOS, and watchOS, you need Xcode and its command-line tools installed.

95

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/CDFP59223
https://youtrack.jetbrains.com/issue/KT-56492
https://llvm.org/
https://apps.apple.com/us/app/xcode/id497799835

necessary APIs for common Kotlin code and allow writing shared parts of projects in Kotlin all in one place.

You can use the Get started with Kotlin Multiplatform tutorial to create applications and share business logic between iOS and Android. To share UIs among iOS,
Android, desktop, and web, try Compose Multiplatform, JetBrains' declarative UI framework based on Kotlin and Jetpack Compose.

How
to
get
started
New to Kotlin? Take a look at Getting started with Kotlin.

Recommended documentation:

Get started with Kotlin Multiplatform

Interoperability with C

Interoperability with Swift/Objective-C

Recommended tutorials:

Get started with Kotlin/Native

Get started with Kotlin Multiplatform

Mapping primitive data types from C

Kotlin/Native as a dynamic Library

Kotlin/Native as an Apple framework

Kotlin
for
JavaScript
Kotlin/JS provides the ability to transpile your Kotlin code, the Kotlin standard library, and any compatible dependencies to JavaScript. The current implementation
of Kotlin/JS targets ES5.

The recommended way to use Kotlin/JS is via the kotlin.multiplatform Gradle plugin. It lets you easily set up and control Kotlin projects targeting JavaScript in one
place. This includes essential functionality such as controlling the bundling of your application, adding JavaScript dependencies directly from npm, and more. To
get an overview of the available options, check out Set up a Kotlin/JS project.

Kotlin/JS
IR
compiler
The Kotlin/JS IR compiler comes with a number of improvements over the old default compiler. For example, it reduces the size of generated executables via dead
code elimination and provides smoother interoperability with the JavaScript ecosystem and its tooling.

By generating TypeScript declaration files (d.ts) from Kotlin code, the IR compiler makes it easier to create "hybrid" applications that mix TypeScript and Kotlin code
and to leverage code-sharing functionality using Kotlin Multiplatform.

To learn more about the available features in the Kotlin/JS IR compiler and how to try it for your project, visit the Kotlin/JS IR compiler documentation page and the
migration guide.

Kotlin/JS
frameworks
Modern web development benefits significantly from frameworks that simplify building web applications. Here are a few examples of popular web frameworks for
Kotlin/JS written by different authors:

KVision
KVision is an object-oriented web framework that makes it possible to write applications in Kotlin/JS with ready-to-use components that can be used as building
blocks for your application's user interface. You can use both reactive and imperative programming models to build your frontend, use connectors for Ktor, Spring

The old compiler has been deprecated since the Kotlin 1.8.0 release.

96

https://www.jetbrains.com/lp/compose-multiplatform/
https://developer.android.com/jetpack/compose
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.ecma-international.org/ecma-262/5.1/

Boot, and other frameworks to integrate it with your server-side applications, and share code using Kotlin Multiplatform.

Visit KVision site for documentation, tutorials, and examples.

For updates and discussions about the framework, join the #kvision and #javascript channels in the Kotlin Slack.

fritz2
fritz2 is a standalone framework for building reactive web user interfaces. It provides its own type-safe DSL for building and rendering HTML elements, and it makes
use of Kotlin's coroutines and flows to express components and their data bindings. It provides state management, validation, routing, and more out of the box, and
integrates with Kotlin Multiplatform projects.

Visit fritz2 site for documentation, tutorials, and examples.

For updates and discussions about the framework, join the #fritz2 and #javascript channels in the Kotlin Slack.

Doodle
Doodle is a vector-based UI framework for Kotlin/JS. Doodle applications use the browser's graphics capabilities to draw user interfaces instead of relying on
DOM, CSS, or Javascript. By using this approach, Doodle gives you precise control over the rendering of arbitrary UI elements, vector shapes, gradients, and
custom visualizations.

Visit Doodle site for documentation, tutorials, and examples.

For updates and discussions about the framework, join the #doodle and #javascript channels in the Kotlin Slack.

Join
the
Kotlin/JS
community
You can join the #javascript channel in the official Kotlin Slack to chat with the community and the team.

Kotlin
for
data
science
From building data pipelines to productionizing machine learning models, Kotlin can be a great choice for working with data:

Kotlin is concise, readable, and easy to learn.

Static typing and null safety help create reliable, maintainable code that is easy to troubleshoot.

Being a JVM language, Kotlin gives you great performance and an ability to leverage an entire ecosystem of tried and true Java libraries.

Interactive
editors
Notebooks such as Jupyter Notebook, Datalore, and Apache Zeppelin provide convenient tools for data visualization and exploratory research. Kotlin integrates
with these tools to help you explore data, share your findings with colleagues, or build up your data science and machine learning skills.

Kotlin
Notebook
The Kotlin Notebook is a plugin for IntelliJ IDEA that allows you to create notebooks in Kotlin. It leverages the Kotlin kernel for executing the cells and harnesses the
powerful Kotlin IDE support to offer real-time code insights. It is now the preferred method for working with Kotlin notebooks. Be sure to check out our blog post
about it.

97

https://kvision.io
https://kotlinlang.slack.com/messages/kvision
https://kotlinlang.slack.com/archives/C0B8L3U69
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://www.fritz2.dev
https://kotlinlang.slack.com/messages/fritz2
https://kotlinlang.slack.com/archives/C0B8L3U69
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://nacular.github.io/doodle/
https://kotlinlang.slack.com/messages/doodle
https://kotlinlang.slack.com/archives/C0B8L3U69
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C0B8L3U69
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://jupyter.org/
http://jetbrains.com/datalore
https://zeppelin.apache.org/
https://plugins.jetbrains.com/plugin/16340-kotlin-notebook
https://blog.jetbrains.com/kotlin/2023/07/introducing-kotlin-notebook/

Kotlin Notebook

Jupyter
Kotlin
kernel
The Jupyter Notebook is an open-source web application that allows you to create and share documents (aka "notebooks") that can contain code, visualizations,
and Markdown text. Kotlin-jupyter is an open source project that brings Kotlin support to Jupyter Notebook.

98

https://github.com/Kotlin/kotlin-jupyter

Kotlin in Jupyter notebook

Check out Kotlin kernel's GitHub repo for installation instructions, documentation, and examples.

Kotlin
Notebooks
in
Datalore
With Datalore, you can use Kotlin in the browser straight out of the box, no installation required. You can also collaborate on Kotlin notebooks in real time, get smart
coding assistance when writing code, and share results as interactive or static reports. Check out a sample report.

99

https://github.com/Kotlin/kotlin-jupyter
https://datalore.jetbrains.com/view/report/9YLrg20eesVX2cQu1FKLiZ

Kotlin in Datalore

Sign up and use Kotlin with a free Datalore Community account.

Zeppelin
Kotlin
interpreter
Apache Zeppelin is a popular web-based solution for interactive data analytics. It provides strong support for the Apache Spark cluster computing system, which is
particularly useful for data engineering. Starting from version 0.9.0, Apache Zeppelin comes with bundled Kotlin interpreter.

Kotlin in Zeppelin notebook

Libraries
The ecosystem of libraries for data-related tasks created by the Kotlin community is rapidly expanding. Here are some libraries that you may find useful:

100

https://datalore.jetbrains.com/
https://zeppelin.apache.org/docs/0.9.0-preview1/

Kotlin
libraries
Multik: multidimensional arrays in Kotlin. The library provides Kotlin-idiomatic, type- and dimension-safe API for mathematical operations over multidimensional
arrays. Multik offers swappable JVM and native computational engines, and a combination of the two for optimal performance.

KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. It offers simple APIs for training deep learning models from scratch, importing
existing Keras models for inference, and leveraging transfer learning for tweaking existing pre-trained models to your tasks.

Kotlin DataFrame is a library for structured data processing. It aims to reconcile Kotlin's static typing with the dynamic nature of data by utilizing both the full
power of the Kotlin language and the opportunities provided by intermittent code execution in Jupyter notebooks and REPLs.

Kotlin for Apache Spark adds a missing layer of compatibility between Kotlin and Apache Spark. It allows Kotlin developers to use familiar language features
such as data classes, and lambda expressions as simple expressions in curly braces or method references.

kotlin-statistics is a library providing extension functions for exploratory and production statistics. It supports basic numeric list/sequence/array functions (from
sum to skewness), slicing operators (such as countBy, simpleRegressionBy), binning operations, discrete PDF sampling, naive bayes classifier, clustering, linear
regression, and much more.

kmath is an experimental library that was intially inspired by NumPy but evolved to more flexible abstractions. It implements mathematical operations combined
in algebraic structures over Kotlin types, defines APIs for linear structures, expressions, histograms, streaming operations, provides interchangeable wrappers
over existing Java and Kotlin libraries including ND4J, Commons Math, Multik, and others.

krangl is a library inspired by R's dplyr and Python's pandas. This library provides functionality for data manipulation using a functional-style API; it also includes
functions for filtering, transforming, aggregating, and reshaping tabular data.

lets-plot is a plotting library for statistical data written in Kotlin. Lets-Plot is multiplatform and can be used not only with JVM, but also with JS and Python.

kravis is another library for the visualization of tabular data inspired by R's ggplot.

londogard-nlp-toolkit is a library that provides utilities when working with natural language processing such as word/subword/sentence embeddings, word-
frequencies, stopwords, stemming, and much more.

Java
libraries
Since Kotlin provides first-class interop with Java, you can also use Java libraries for data science in your Kotlin code. Here are some examples of such libraries:

DeepLearning4J - a deep learning library for Java

ND4J - an efficient matrix math library for JVM

Dex - a Java-based data visualization tool

Smile - a comprehensive machine learning, natural language processing, linear algebra, graph, interpolation, and visualization system. Besides Java API, Smile
also provides a functional Kotlin API along with Scala and Clojure API.

Smile-NLP-kt - a Kotlin rewrite of the Scala implicits for the natural language processing part of Smile in the format of extension functions and interfaces.

Apache Commons Math - a general math, statistics, and machine learning library for Java

NM Dev - a Java mathematical library that covers all of classical mathematics.

OptaPlanner - a solver utility for optimization planning problems

Charts - a scientific JavaFX charting library in development

Apache OpenNLP - a machine learning based toolkit for the processing of natural language text

CoreNLP - a natural language processing toolkit

Apache Mahout - a distributed framework for regression, clustering and recommendation

Weka - a collection of machine learning algorithms for data mining tasks

Tablesaw - a Java dataframe. It includes a visualization library based on Plot.ly

If this list doesn't cover your needs, you can find more options in the Kotlin Machine Learning Demos GitHub repository with showcases from Thomas Nield.

Kotlin
for
competitive
programming

101

https://github.com/Kotlin/multik
https://github.com/jetbrains/kotlindl
https://github.com/Kotlin/dataframe
https://github.com/JetBrains/kotlin-spark-api
https://github.com/thomasnield/kotlin-statistics
https://github.com/mipt-npm/kmath
https://numpy.org/
https://github.com/eclipse/deeplearning4j/tree/master/nd4j
https://commons.apache.org/proper/commons-math/
https://github.com/Kotlin/multik
https://github.com/holgerbrandl/krangl
https://dplyr.tidyverse.org/
https://pandas.pydata.org/
https://github.com/JetBrains/lets-plot
https://github.com/holgerbrandl/kravis
https://ggplot2.tidyverse.org/
https://github.com/londogard/londogard-nlp-toolkit/
https://deeplearning4j.konduit.ai
https://github.com/eclipse/deeplearning4j/tree/master/nd4j
https://github.com/PatMartin/Dex
https://github.com/haifengl/smile
https://haifengl.github.io/api/kotlin/smile-kotlin/index.html
https://github.com/londogard/smile-nlp-kt
https://commons.apache.org/proper/commons-math/
https://nm.dev/
https://www.optaplanner.org/
https://github.com/HanSolo/charts
https://opennlp.apache.org/
https://stanfordnlp.github.io/CoreNLP/
https://mahout.apache.org/
https://www.cs.waikato.ac.nz/ml/index.html
https://github.com/jtablesaw/tablesaw
https://github.com/thomasnield/kotlin-machine-learning-demos

This tutorial is designed both for competitive programmers that did not use Kotlin before and for Kotlin developers that did not participate in any competitive
programming events before. It assumes the corresponding programming skills.

Competitive programming is a mind sport where contestants write programs to solve precisely specified algorithmic problems within strict constraints. Problems
can range from simple ones that can be solved by any software developer and require little code to get a correct solution, to complex ones that require knowledge
of special algorithms, data structures, and a lot of practice. While not being specifically designed for competitive programming, Kotlin incidentally fits well in this
domain, reducing the typical amount of boilerplate that a programmer needs to write and read while working with the code almost to the level offered by
dynamically-typed scripting languages, while having tooling and performance of a statically-typed language.

See Get started with Kotlin/JVM on how to set up development environment for Kotlin. In competitive programming, a single project is usually created and each
problem's solution is written in a single source file.

Simple
example:
Reachable
Numbers
problem
Let's take a look at a concrete example.

Codeforces Round 555 was held on April 26th for 3rd Division, which means it had problems fit for any developer to try. You can use this link to read the problems.
The simplest problem in the set is the Problem A: Reachable Numbers. It asks to implement a straightforward algorithm described in the problem statement.

We'd start solving it by creating a Kotlin source file with an arbitrary name. A.kt will do well. First, you need to implement a function specified in the problem
statement as:

Let's denote a function f(x) in such a way: we add 1 to x, then, while there is at least one trailing zero in the resulting number, we remove that zero.

Kotlin is a pragmatic and unopinionated language, supporting both imperative and function programming styles without pushing the developer towards either one.
You can implement the function f in functional style, using such Kotlin features as tail recursion:

tailrec	fun	removeZeroes(x:	Int):	Int	=
				if	(x	%	10	==	0)	removeZeroes(x	/	10)	else	x

fun	f(x:	Int)	=	removeZeroes(x	+	1)

Alternatively, you can write an imperative implementation of the function f using the traditional while loop and mutable variables that are denoted in Kotlin with var:

fun	f(x:	Int):	Int	{
				var	cur	=	x	+	1
				while	(cur	%	10	==	0)	cur	/=	10
				return	cur
}

Types in Kotlin are optional in many places due to pervasive use of type-inference, but every declaration still has a well-defined static type that is known at
compilation.

Now, all is left is to write the main function that reads the input and implements the rest of the algorithm that the problem statement asks for — to compute the
number of different integers that are produced while repeatedly applying function f to the initial number n that is given in the standard input.

By default, Kotlin runs on JVM and gives direct access to a rich and efficient collections library with general-purpose collections and data-structures like
dynamically-sized arrays (ArrayList), hash-based maps and sets (HashMap/HashSet), tree-based ordered maps and sets (TreeMap/TreeSet). Using a hash-set of
integers to track values that were already reached while applying function f, the straightforward imperative version of a solution to the problem can be written as
shown below:

Kotlin 1.6.0 and later

fun	main()	{
				var	n	=	readln().toInt()	//	read	integer	from	the	input
				val	reached	=	HashSet<Int>()	//	a	mutable	hash	set	
				while	(reached.add(n))	n	=	f(n)	//	iterate	function	f
				println(reached.size)	//	print	answer	to	the	output
}

There is no need to handle the case of misformatted input in competitive programming. An input format is always precisely specified in competitive programming, and the actual input

cannot deviate from the input specification in the problem statement. That's why you can use Kotlin's readln() function. It asserts that the input string is present and throws an exception

otherwise. Likewise, the String.toInt() function throws an exception if the input string is not an integer.

Earlier versions

102

https://en.wikipedia.org/wiki/Competitive_programming
https://codeforces.com/
https://codeforces.com/contest/1157
https://codeforces.com/contest/1157/problem/A
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/readln.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-int.html

fun	main()	{
				var	n	=	readLine()!!.toInt()	//	read	integer	from	the	input
				val	reached	=	HashSet<Int>()	//	a	mutable	hash	set	
				while	(reached.add(n))	n	=	f(n)	//	iterate	function	f
				println(reached.size)	//	print	answer	to	the	output
}

Note the use of Kotlin's null-assertion operator !! after the readLine() function call. Kotlin's readLine() function is defined to return a nullable type String? and returns null on the end of the

input, which explicitly forces the developer to handle the case of missing input.

There is no need to handle the case of misformatted input in competitive programming. In competitive programming, an input format is always precisely specified and the actual input

cannot deviate from the input specification in the problem statement. That's what the null-assertion operator !! essentially does — it asserts that the input string is present and throws an

exception otherwise. Likewise, the String.toInt().

All online competitive programming events allow the use of pre-written code, so you can define your own library of utility functions that are geared towards
competitive programming to make your actual solution code somewhat easier to read and write. You would then use this code as a template for your solutions. For
example, you can define the following helper functions for reading inputs in competitive programming:

Kotlin 1.6.0 and later

private	fun	readStr()	=	readln()	//	string	line
private	fun	readInt()	=	readStr().toInt()	//	single	int
//	similar	for	other	types	you'd	use	in	your	solutions

Earlier versions

private	fun	readStr()	=	readLine()!!	//	string	line
private	fun	readInt()	=	readStr().toInt()	//	single	int
//	similar	for	other	types	you'd	use	in	your	solutions

Note the use of private visibility modifier here. While the concept of visibility modifier is not relevant for competitive programming at all, it allows you to place
multiple solution files based on the same template without getting an error for conflicting public declarations in the same package.

Functional
operators
example:
Long
Number
problem
For more complicated problems, Kotlin's extensive library of functional operations on collections comes in handy to minimize the boilerplate and turn the code into
a linear top-to-bottom and left-to-right fluent data transformation pipeline. For example, the Problem B: Long Number problem takes a simple greedy algorithm to
implement and it can be written using this style without a single mutable variable:

Kotlin 1.6.0 and later

fun	main()	{
				//	read	input
				val	n	=	readln().toInt()
				val	s	=	readln()
				val	fl	=	readln().split("	").map	{	it.toInt()	}
				//	define	local	function	f
				fun	f(c:	Char)	=	'0'	+	fl[c	-	'1']
				//	greedily	find	first	and	last	indices
				val	i	=	s.indexOfFirst	{	c	->	f(c)	>	c	}
								.takeIf	{	it	>=	0	}	?:	s.length
				val	j	=	s.withIndex().indexOfFirst	{	(j,	c)	->	j	>	i	&&	f(c)	<	c	}
								.takeIf	{	it	>=	0	}	?:	s.length
				//	compose	and	write	the	answer
				val	ans	=
								s.substring(0,	i)	+
								s.substring(i,	j).map	{	c	->	f(c)	}.joinToString("")	+
								s.substring(j)
				println(ans)
}

Earlier versions

103

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/read-line.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-int.html
https://codeforces.com/contest/1157/problem/B

fun	main()	{
				//	read	input
				val	n	=	readLine()!!.toInt()
				val	s	=	readLine()!!
				val	fl	=	readLine()!!.split("	").map	{	it.toInt()	}
				//	define	local	function	f
				fun	f(c:	Char)	=	'0'	+	fl[c	-	'1']
				//	greedily	find	first	and	last	indices
				val	i	=	s.indexOfFirst	{	c	->	f(c)	>	c	}
								.takeIf	{	it	>=	0	}	?:	s.length
				val	j	=	s.withIndex().indexOfFirst	{	(j,	c)	->	j	>	i	&&	f(c)	<	c	}
								.takeIf	{	it	>=	0	}	?:	s.length
				//	compose	and	write	the	answer
				val	ans	=
								s.substring(0,	i)	+
								s.substring(i,	j).map	{	c	->	f(c)	}.joinToString("")	+	
								s.substring(j)
				println(ans)
}

In this dense code, in addition to collection transformations, you can see such handy Kotlin features as local functions and the elvis operator ?: that allow to express
idioms like "take the value if it is positive or else use length" with a concise and readable expressions like .takeIf { it >= 0 } ?: s.length, yet it is perfectly fine with
Kotlin to create additional mutable variables and express the same code in imperative style, too.

To make reading the input in competitive programming tasks like this more concise, you can have the following list of helper input-reading functions:

Kotlin 1.6.0 and later

private	fun	readStr()	=	readln()	//	string	line
private	fun	readInt()	=	readStr().toInt()	//	single	int
private	fun	readStrings()	=	readStr().split("	")	//	list	of	strings
private	fun	readInts()	=	readStrings().map	{	it.toInt()	}	//	list	of	ints

Earlier versions

private	fun	readStr()	=	readLine()!!	//	string	line
private	fun	readInt()	=	readStr().toInt()	//	single	int
private	fun	readStrings()	=	readStr().split("	")	//	list	of	strings
private	fun	readInts()	=	readStrings().map	{	it.toInt()	}	//	list	of	ints

With these helpers, the part of code for reading input becomes simpler, closely following the input specification in the problem statement line by line:

//	read	input
val	n	=	readInt()
val	s	=	readStr()
val	fl	=	readInts()

Note that in competitive programming it is customary to give variables shorter names than it is typical in industrial programming practice, since the code is to be
written just once and not supported thereafter. However, these names are usually still mnemonic — a for arrays, i, j, and others for indices, r, and c for row and
column numbers in tables, x and y for coordinates, and so on. It is easier to keep the same names for input data as it is given in the problem statement. However,
more complex problems require more code which leads to using longer self-explanatory variable and function names.

More
tips
and
tricks
Competitive programming problems often have input like this:

The first line of the input contains two integers n and k

In Kotlin this line can be concisely parsed with the following statement using destructuring declaration from a list of integers:

val	(n,	k)	=	readInts()

It might be temping to use JVM's java.util.Scanner class to parse less structured input formats. Kotlin is designed to interoperate well with JVM libraries, so that
their use feels quite natural in Kotlin. However, beware that java.util.Scanner is extremely slow. So slow, in fact, that parsing 105 or more integers with it might not fit

104

into a typical 2 second time-limit, which a simple Kotlin's split(" ").map { it.toInt() } would handle.

Writing output in Kotlin is usually straightforward with println(...) calls and using Kotlin's string templates. However, care must be taken when output contains on
order of 105 lines or more. Issuing so many println calls is too slow, since the output in Kotlin is automatically flushed after each line. A faster way to write many
lines from an array or a list is using joinToString() function with "\n" as the separator, like this:

println(a.joinToString("\n"))	//	each	element	of	array/list	of	a	separate	line

Learning
Kotlin
Kotlin is easy to learn, especially for those who already know Java. A short introduction to the basic syntax of Kotlin for software developers can be found directly in
the reference section of the website starting from basic syntax.

IDEA has built-in Java-to-Kotlin converter. It can be used by people familiar with Java to learn the corresponding Kotlin syntactic constructions, but it is not perfect,
and it is still worth familiarizing yourself with Kotlin and learning the Kotlin idioms.

A great resource to study Kotlin syntax and API of the Kotlin standard library are Kotlin Koans.

What's
new
in
Kotlin
1.9.20
Released: November 1, 2023

The Kotlin 1.9.20 release is out, the K2 compiler for all the targets is now in Beta, and Kotlin Multiplatform is now Stable. Additionally, here are some of the main
highlights:

New default hierarchy template for setting up multiplatform projects

Full support for the Gradle Configuration cache in Kotlin Multiplatform

Custom memory allocator enabled by default in Kotlin/Native

Performance improvements for the garbage collector in Kotlin/Native

New and renamed targets in Kotlin/Wasm

Support for the WASI API in the standard library for Kotlin/Wasm

You can also find a short overview of the updates in this video:

Watch video online.

IDE
support
The Kotlin plugins that support 1.9.20 are available for:

Gif

105

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/println.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/join-to-string.html
https://www.jetbrains.com/help/idea/converting-a-java-file-to-kotlin-file.html
https://youtube.com/v/Ol_96CHKqg8

IDE Supported versions

IntelliJ IDEA 2023.1.x, 2023.2.x

Android Studio Hedgehog (2023.1.1)*, Iguana (2023.2.1)

* The Kotlin 1.9.20 plugin will be included with Android Studio Hedgehog (231) and Iguana (232) in their upcoming releases.

New
Kotlin
K2
compiler
updates
The Kotlin team at JetBrains is continuing to stabilize the new K2 compiler, which will bring major performance improvements, speed up new language feature
development, unify all the platforms that Kotlin supports, and provide a better architecture for multiplatform projects.

Right now K2 is in Beta for all the targets. Read more in the release blog post

Support
for
Kotlin/Wasm
Since this release, the Kotlin/Wasm supports the new K2 compiler. Learn how to enable it in your project.

Preview
kapt
compiler
plugin
with
K2

In 1.9.20, you can try using the kapt compiler plugin with the K2 compiler. To use the K2 compiler in your project, add the following options to your
gradle.properties file:

kotlin.experimental.tryK2=true
kapt.use.k2=true

Alternatively, you can enable K2 for kapt by completing the following steps:

1. In your build.gradle.kts file, set the language version to 2.0.

2. In your gradle.properties file, add kapt.use.k2=true.

If you encounter any issues when using kapt with the K2 compiler, please report them to our issue tracker.

How
to
enable
the
Kotlin
K2
compiler

Enable K2 in Gradle
To enable and test the Kotlin K2 compiler, use the new language version with the following compiler option:

-language-version	2.0

You can specify it in your build.gradle.kts file:

kotlin	{
			sourceSets.all	{
							languageSettings	{
											languageVersion	=	"2.0"
							}
			}
}

Support for K2 in the kapt compiler plugin is Experimental. Opt-in is required (see details below), and you should use it only for evaluation purposes.

106

https://blog.jetbrains.com/kotlin/2023/11/kotlin-1-9-20-released/
http://kotl.in/issue

Enable K2 in Maven
To enable and test the Kotlin K2 compiler, update the <project/> section of your pom.xml file:

<properties>
				<kotlin.compiler.languageVersion>2.0</kotlin.compiler.languageVersion>
</properties>

Enable K2 in JPS
To enable and test the Kotlin K2 compiler in IntelliJ IDEA, go to Settings | Build, Execution, Deployment | Compiler | Kotlin Compiler and update the Language
Version field to 2.0 (experimental).

Leave
your
feedback
on
the
new
K2
compiler
We would appreciate any feedback you may have!

Provide your feedback directly to K2 developers on Kotlin Slack – get an invite and join the #k2-early-adopters channel.

Report any problems you faced with the new K2 compiler on our issue tracker.

Enable the Send usage statistics option to allow JetBrains to collect anonymous data about K2 usage.

Kotlin/JVM
Starting with version 1.9.20, the compiler can generate classes with a bytecode version corresponding to JVM 21.

Kotlin/Native
Kotlin 1.9.20 includes a Stable memory manager with the new memory allocator enabled by default, performance improvements for the garbage collector, and other
updates:

Custom memory allocator enabled by default

Performance improvements for the garbage collector

Incremental compilation of klib artifacts

Managing library linkage issues

Companion object initialization on class constructor calls

Opt–in requirement for all cinterop declarations

Custom message for linker errors

Removal of the legacy memory manager

Change to our target tiers policy

Custom
memory
allocator
enabled
by
default
Kotlin 1.9.20 comes with the new memory allocator enabled by default. It's designed to replace the previous default allocator, mimaloc, to make garbage collection
more efficient and improve the runtime performance of the Kotlin/Native memory manager.

The new custom allocator divides system memory into pages, allowing independent sweeping in consecutive order. Each allocation becomes a memory block
within a page, and the page keeps track of block sizes. Different page types are optimized for various allocation sizes. The consecutive arrangement of memory
blocks ensures efficient iteration through all allocated blocks.

When a thread allocates memory, it searches for a suitable page based on the allocation size. Threads maintain a set of pages for different size categories.
Typically, the current page for a given size can accommodate the allocation. If not, the thread requests a different page from the shared allocation space. This page
may already be available, require sweeping, or have to be created first.

The new allocator allows for multiple independent allocation spaces simultaneously, which will enable the Kotlin team to experiment with different page layouts to
improve performance even further.

107

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up?_gl=1*ju6cbn*_ga*MTA3MTk5NDkzMC4xNjQ2MDY3MDU4*_ga_9J976DJZ68*MTY1ODMzNzA3OS4xMDAuMS4xNjU4MzQwODEwLjYw
https://kotlinlang.slack.com/archives/C03PK0PE257
https://kotl.in/issue
https://www.jetbrains.com/help/idea/settings-usage-statistics.html

How to enable the custom memory allocator
Starting with Kotlin 1.9.20, the new memory allocator is the default. No additional setup is required.

If you experience high memory consumption, you can switch back to mimaloc or the system allocator with -Xallocator=mimalloc or -Xallocator=std in your Gradle
build script. Please report such issues in YouTrack to help us improve the new memory allocator.

For the technical details of the new allocator's design, see this README.

Performance
improvements
for
the
garbage
collector
The Kotlin team continues to improve the performance and stability of the new Kotlin/Native memory manager. This release brings a number of significant changes
to the garbage collector (GC), including the following 1.9.20 highlights:

Full parallel mark to reduce the pause time for the GC

Tracking memory in big chunks to improve the allocation performance

Full parallel mark to reduce the pause time for the GC
Previously, the default garbage collector performed only a partial parallel mark. When the mutator thread was paused, it would mark the GC's start from its own
roots, like thread–local variables and the call stack. Meanwhile, a separate GC thread was responsible for marking the start from global roots, as well as the roots of
all mutators that were actively running the native code and therefore not paused.

This approach worked well in cases where there were a limited number of global objects and the mutator threads spent a considerable amount of time in a runnable
state executing Kotlin code. However, this is not the case for typical iOS applications.

Now the GC uses a full parallel mark that combines paused mutators, the GC thread, and optional marker threads to process the mark queue. By default, the
marking process is performed by:

Paused mutators. Instead of processing their own roots and then being idle while not actively executing code, they contribute to the whole marking process.

The GC thread. This ensures that at least one thread will perform marking.

This new approach makes the marking process more efficient, reducing the pause time of the GC.

Tracking memory in big chunks to improve the allocation performance
Previously, the GC scheduler tracked the allocation of each object individually. However, neither the new default custom allocator nor the mimalloc memory
allocator allocates separate storage for each object; they allocate large areas for several objects at once.

In Kotlin 1.9.20, the GC tracks areas instead of individual objects. This speeds up the allocation of small objects by reducing the number of tasks performed on
each allocation and, therefore, helps to minimize the garbage collector's memory usage.

Incremental
compilation
of
klib
artifacts

Kotlin 1.9.20 introduces a new compilation time optimization for Kotlin/Native. The compilation of klib artifacts into native code is now partially incremental.

When compiling Kotlin source code into native binary in debug mode, the compilation goes through two stages:

1. Source code is compiled into klib artifacts.

2. klib artifacts, along with dependencies, are compiled into a binary.

To optimize the compilation time in the second stage, the team has already implemented compiler caches for dependencies. They are compiled into native code
only once, and the result is reused every time a binary is compiled. But klib artifacts built from project sources were always fully recompiled into native code at every
project change.

With the new incremental compilation, if the project module change causes only a partial recompilation of source code into klib artifacts, just a part of the klib is
further recompiled into a binary.

To enable incremental compilation, add the following option to your gradle.properties file:

This feature is Experimental. It may be dropped or changed at any time. Opt–in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

108

https://kotl.in/issue
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/runtime/src/alloc/custom/README.md
https://kotl.in/issue

kotlin.incremental.native=true

If you face any issues, report such cases to YouTrack.

Managing
library
linkage
issues
This release improves the way the Kotlin/Native compiler handles linkage issues in Kotlin libraries. Error messages now include more readable declarations, using
signature names instead of hashes, so it's easier to find and fix the issue, for example:

No	function	found	for	symbol	'org.samples/MyClass.removedFunction|removedFunction(kotlin.Int;kotlin.String){}[0]'

The Kotlin/Native compiler detects linkage issues between third–party Kotlin libraries and reports errors at runtime. You might face such issues if the author of one
third–party Kotlin library makes an incompatible change in experimental APIs that another third–party Kotlin library consumes.

Starting with Kotlin 1.9.20, the compiler detects linkage issues in the silent mode by default. You can adjust this setting in your projects:

If you want to record these issues in your compilation logs, enable warnings with the -Xpartial-linkage-loglevel=WARNING compiler option.

It's also possible to raise the severity of reported warnings to compilation errors with -Xpartial-linkage-loglevel=ERROR. In this case, the compilation fails, and
you get all the errors in the compilation log. Use this option to examine the linkage issues more closely.

//	An	example	of	passing	compiler	options	in	a	Gradle	build	file:
kotlin	{
			macosX64("native")	{
							binaries.executable()

							compilations.configureEach	{
											compilerOptions.configure	{

															//	To	report	linkage	issues	as	warnings:
															freeCompilerArgs.add("-Xpartial-linkage-loglevel=WARNING")

															//	To	raise	linkage	warnings	to	errors:
															freeCompilerArgs.add("-Xpartial-linkage-loglevel=ERROR")
											}
							}
			}
}

If you face unexpected problems with this feature, you can always opt out with the -Xpartial-linkage=disable compiler option. Don't hesitate to report such cases to
our issue tracker.

Companion
object
initialization
on
class
constructor
calls
Starting with Kotlin 1.9.20, the Kotlin/Native backend calls static initializer for companion objects in class constructors:

class	Greeting	{
				companion	object	{
								init	{
												print("Hello,	Kotlin!")	
								}
				}
}

fun	main()	{
				val	start	=	Greeting()	//	Prints	"Hello,	Kotlin!"
}

The behavior is now unified with Kotlin/JVM, where a companion object is initialized when the corresponding class matching the semantics of a Java static initializer
is loaded (resolved).

Now that the implementation of this feature is more consistent between platforms, it's easier to share code in Kotlin Multiplatform projects.

Opt–in
requirement
for
all
cinterop
declarations
Starting with Kotlin 1.9.20, all Kotlin declarations generated by the cinterop tool from C and Objective–C libraries, like libcurl and libxml, are marked with

109

https://kotl.in/issue
https://kotl.in/issue

@ExperimentalForeignApi. If the opt–in annotation is missing, your code won't compile.

This requirement reflects the Experimental status of the C and Objective–C libraries import. We recommend that you confine its use to specific areas in your
projects. This will make your migration easier once we begin stabilizing the import.

Custom
message
for
linker
errors
If you're a library author, you can now help your users resolve linker errors with custom messages.

If your Kotlin library depends on C or Objective–C libraries, for example, using the CocoaPods integration, its users need to have these dependent libraries locally
on the machine or configure them explicitly in the project build script. If this was not the case, users used to get a confusing "Framework not found" message.

Now, you can provide a specific instruction or a link in the compilation failure message. To do that, pass the -Xuser-setup-hint compiler option to cinterop or add a
userSetupHint=message property to your .def file.

Removal
of
the
legacy
memory
manager
The new memory manager was introduced in Kotlin 1.6.20 and became the default in 1.7.20. Since then, it has been receiving further updates and performance
improvements and has become Stable.

The time has come to complete the deprecation cycle and remove the legacy memory manager. If you're still using it, remove the
kotlin.native.binary.memoryModel=strict option from your gradle.properties and follow our Migration guide to make the necessary changes.

Change
to
our
target
tiers
policy
We've decided to upgrade the requirements for tier 1 support. The Kotlin team is now committed to providing source and binary compatibility between compiler
releases for targets eligible for tier 1. They also must be regularly tested on CI to be able to compile and run. Currently, tier 1 includes the following targets for Apple
macOS hosts:

macosX64

macosArm64

iosSimulatorArm64

iosX64

In Kotlin 1.9.20, we're also removing a number of previously deprecated targets, namely:

iosArm32

watchosX86

wasm32

mingwX86

linuxMips32

linuxMipsel32

See the full list of currently supported targets.

Kotlin
Multiplatform
Kotlin 1.9.20 focuses on the stabilization of Kotlin Multiplatform and makes new steps in improving developer experience with the new project wizards and other
notable features:

Kotlin Multiplatform is Stable

Template for configuring multiplatform projects

New project wizard

As for native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), only some of their APIs need an opt–in with
@ExperimentalForeignApi. In such cases, you get a warning with an opt–in requirement.

110

Full support for the Gradle Configuration cache

Easier configuration of new standard library versions in Gradle

Default support for third-party cinterop libraries

Support for Kotlin/Native compilation caches in Compose Multiplatform projects

Compatibility guidelines

Kotlin
Multiplatform
is
Stable
The 1.9.20 release marks an important milestone in Kotlin evolution: Kotlin Multiplatform has finally become Stable. This promotion means that the technology is
safe to use in your projects and ready for production. It also means that further development of Kotlin Multiplatform will continue according to our strict backward
compatibility rules.

Please note that some advanced features of Kotlin Multiplatform are still evolving. When using them, you'll receive a warning that describes the current stability
status of the feature you're using. In IntelliJ IDEA, you'll need to enable experimental functionality explicitly in Preferences | Advanced Settings | Enable experimental
Multiplatform IDE features.

Visit the Kotlin blog to learn more about the Kotlin Multiplatform stabilization and future plans.

Check out the Multiplatform compatibility guide to see what significant changes were made on the way to stabilization.

Read about the mechanism of expected and actual declarations, an important part of Kotlin Multiplatform that was also partially stabilized in this release.

Template
for
configuring
multiplatform
projects
Starting with Kotlin 1.9.20, the Kotlin Gradle plugin automatically creates shared source sets for popular multiplatform scenarios. If your project setup is one of
them, you don't need to configure the source set hierarchy manually. Just explicitly specify the targets necessary for your project.

Setup is now easier thanks to the default hierarchy template, a new feature of the Kotlin Gradle plugin. It's a predefined template of a source set hierarchy built into
the plugin. It includes intermediate source sets that Kotlin automatically creates for the targets you declared. See the full template.

Create your project easier
Consider a multiplatform project that targets both Android and iPhone devices and is developed on an Apple silicon MacBook. Compare how this project is set up
between different versions of Kotlin:

Kotlin 1.9.0 and earlier (a standard setup) Kotlin 1.9.20

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								val	commonMain	by	getting

								val	iosMain	by	creating	{
												dependsOn(commonMain)
								}

								val	iosArm64Main	by	getting	{
												dependsOn(iosMain)
								}

								val	iosSimulatorArm64Main	by	getting	
{
												dependsOn(iosMain)
								}
				}
}

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()
			
				//	The	iosMain	source	set	is	created	automatically
}

Notice how the use of the default hierarchy template considerably reduces the amount of boilerplate code needed to set up your project.

111

https://kotlinfoundation.org/language-committee-guidelines/
https://blog.jetbrains.com/kotlin/2023/11/kotlin-multiplatform-stable/

When you declare the androidTarget, iosArm64, and iosSimulatorArm64 targets in your code, the Kotlin Gradle plugin finds suitable shared source sets from the
template and creates them for you. The resulting hierarchy looks like this:

An example of the default target hierarchy in use

Green source sets are actually created and included in the project, while gray ones from the default template are ignored.

Use completion for source sets
To make it easier to work with the created project structure, IntelliJ IDEA now provides completion for source sets created with the default hierarchy template:

Watch animation online.

Kotlin also warns you if you attempt to access a source set that doesn't exist because you haven't declared the respective target. In the example below, there is no
JVM target (only androidTarget, which is not the same). But let's try to use the jvmMain source set and see what happens:

IDE
completion
for
source
set
names

112

file:///Users/Sarah.Haggarty/kotlin-web-site/dist/docs/images/multiplatform-hierarchy-completion.animated.gif

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								jvmMain	{
								}
				}
}

In this case, Kotlin reports a warning in the build log:

w:	Accessed	'source	set	jvmMain'	without	registering	the	jvm	target:
		kotlin	{
						jvm()	/*	<-	register	the	'jvm'	target	*/

						sourceSets.jvmMain.dependencies	{

						}
		}

Set up the target hierarchy
Starting with Kotlin 1.9.20, the default hierarchy template is automatically enabled. In most cases, no additional setup is required.

However, if you're migrating existing projects created before 1.9.20, you might encounter a warning if you had previously introduced intermediate sources manually
with dependsOn() calls. To solve this issue, do the following:

If your intermediate source sets are currently covered by the default hierarchy template, remove all manual dependsOn() calls and source sets created with by
creating constructions.

To check the list of all default source sets, see the full hierarchy template.

If you want to have additional source sets that the default hierarchy template doesn't provide, for example, one that shares code between a macOS and a JVM
target, adjust the hierarchy by reapplying the template explicitly with applyDefaultHierarchyTemplate() and configuring additional source sets manually as usual
with dependsOn():

kotlin	{
				jvm()
				macosArm64()
				iosArm64()
				iosSimulatorArm64()

				//	Apply	the	default	hierarchy	explicitly.	It'll	create,	for	example,	the	iosMain	source	set:
				applyDefaultHierarchyTemplate()

				sourceSets	{
								//	Create	an	additional	jvmAndMacos	source	set
								val	jvmAndMacos	by	creating	{
												dependsOn(commonMain.get())
								}

								macosArm64Main.get().dependsOn(jvmAndMacos)
								jvmMain.get().dependsOn(jvmAndMacos)
				}
}

If there are already source sets in your project that have the exact same names as those generated by the template but that are shared among different sets of
targets, there's currently no way to modify the default dependsOn relations between the template's source sets.

One option you have here is to find different source sets for your purposes, either in the default hierarchy template or ones that have been manually created.
Another is to opt out of the template completely.

To opt out, add kotlin.mpp.applyDefaultHierarchyTemplate=false to your gradle.properties and configure all other source sets manually.

We're currently working on an API for creating your own hierarchy templates to simplify the setup process in such cases.

See the full hierarchy template
When you declare the targets to which your project compiles, the plugin picks the shared source sets from the template accordingly and creates them in your

113

project.

Default hierarchy template

New
project
wizard
The JetBrains team is introducing a new way of creating cross–platform projects – the Kotlin Multiplatform web wizard.

This first implementation of the new Kotlin Multiplatform wizard covers the most popular Kotlin Multiplatform use cases. It incorporates all the feedback about
previous project templates and makes the architecture as robust and well–tested as possible.

The new wizard has a distributed architecture that allows us to have a unified backend and different frontends, with the web version being the first step. We're
considering both implementing an IDE version and creating a command line tool in the future. With the web version, you always get the latest version of the wizard,
while in IDEs you'll need to wait for the next release.

With the new wizard, project setup becomes easier than ever. You can tailor your projects to your needs by choosing the target platforms for mobile, server, and
desktop development. We also plan to add web development in future releases.

This example only shows the production part of the project, omitting the Main suffix (for example, using common instead of commonMain). However,
everything is the same for *Test sources as well.

114

https://kmp.jetbrains.com

115

Multiplatform web wizard

The new project wizard is now the preferred way to create cross–platform projects with Kotlin. Since 1.9.20, the Kotlin plugin no longer provides a "Kotlin
Multiplatform" project wizard in IntelliJ IDEA.

The new wizard will guide you easily through the initial setup, making the onboarding process much smoother. If you encounter any issues, please report them to
YouTrack to help us improve your wizard experience.

Create a project

Full
support
for
the
Gradle
configuration
cache
in
Kotlin
Multiplatform
Previously, we introduced a preview of the Gradle configuration cache, which was available for Kotlin multiplatform libraries. With 1.9.20, the Kotlin Multiplatform
plugin takes a step further.

It now supports the Gradle configuration cache in the Kotlin CocoaPods Gradle plugin, as well as in the integration tasks that are necessary for Xcode builds, like
embedAndSignAppleFrameworkForXcode.

Now all multiplatform projects can take advantage of the improved build time. The Gradle configuration cache speeds up the build process by reusing the results of
the configuration phase for subsequent builds. For more details and setup instructions, see the Gradle documentation.

Easier
configuration
of
new
standard
library
versions
in
Gradle
When you create a multiplatform project, a dependency for the standard library (stdlib) is added automatically to each source set. This is the easiest way to get
started with your multiplatform projects.

Previously, if you wanted to configure a dependency on the standard library manually, you needed to configure it for each source set individually. From kotlin-
stdlib:1.9.20 onward, you only need to configure the dependency once in the root source set: commonMain:

Standard library version 1.9.10 and earlier Standard library version 1.9.20

116

https://kotl.in/issue
https://kmp.jetbrains.com
https://kmp.jetbrains.com
https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:usage

kotlin	{
				sourceSets	{
							//	For	common	source	set
								val	commonMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlin:kotlin-
stdlib-common:1.9.10")
												}

							//	For	JVM	source	set
								val	jvmMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlin:kotlin-
stdlib:1.9.10")
												}
							//	For	JS	source	set
								val	jsMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlin:kotlin-
stdlib-js:1.9.10")
												}
								}
				}
}

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																
implementation("org.jetbrains.kotlin:kotlin-stdlib:1.9.20")
												}
								}
				}
}

Standard library version 1.9.10 and earlier Standard library version 1.9.20

This change was made possible by including new information in the Gradle metadata of the standard library. This allows Gradle to automatically resolve the correct
standard library artifacts for the other source sets.

Default
support
for
third–party
cinterop
libraries
Kotlin 1.9.20 adds default support for all cinterop dependencies in projects that have the Kotlin CocoaPods Gradle plugin applied.

This means you can now share more native code without being limited by platform–specific dependencies. For example, you can add dependencies on Pod libraries
to the iosMain shared source set.

Previously, this only worked with platform-specific libraries shipped with a Kotlin/Native distribution (like Foundation, UIKit, and POSIX). Now all third–party Pod
libraries are available in shared source sets by default; you no longer need to specify a separate Gradle property to support them.

Support
for
Kotlin/Native
compilation
caches
in
Compose
Multiplatform
projects
This release resolves a compatibility issue with the Compose Multiplatform compiler plugin, which mostly affected Compose Multiplatform projects for iOS.

To work around this issue, you had to disable caching by using the kotlin.native.cacheKind=none Gradle property. However, this workaround came at a
performance cost: It slowed down compilation time, as caching didn't work in the Kotlin/Native compiler.

Now that the issue is fixed, you can remove kotlin.native.cacheKind=none from your gradle.properties file and enjoy the improved compilation times in your
Compose Multiplatform projects.

For more tips on improving compilation times, see the Kotlin/Native documentation.

Compatibility
guidelines
When configuring your project, check the Kotlin Multiplatform Gradle plugin compatibility with the available Gradle, Xcode, and Android Gradle plugin (AGP)
versions:

Kotlin Multiplatform Gradle plugin Gradle Android Gradle plugin Xcode

1.9.20 7.5 and later 7.4.2–8.2 15.0. See details below

As of this release, the recommended version of Xcode is 15.0. Libraries delivered with Xcode 15 are fully supported, and you can access them from anywhere in

117

your Kotlin code.

However, XCode 14.3 should still work in the majority of cases. Keep in mind that if you use version 14.3 on your local machine, libraries delivered with Xcode 15
will be visible but not accessible.

Kotlin/Wasm
Compatibility with Wasm GC phase 4 and final opcodes

New wasm-wasi target, and the renaming of the wasm target to wasm-js

Support for the WASI API in standard library

Kotlin/Wasm API improvements

Compatibility
with
Wasm
GC
phase
4
and
final
opcodes
Wasm GC moves to the final phase and it requires updates of opcodes – constant numbers used in the binary representation. Kotlin 1.9.20 supports the latest
opcodes, so we strongly recommend that you update your Wasm projects to the latest version of Kotlin. We also recommend using the latest versions of browsers
with the Wasm environment:

Version 119 or newer for Chrome and Chromium–based browsers.

Version 119 or newer for Firefox. Note that in Firefox 119, you need to turn on Wasm GC manually.

New
wasm-wasi
target,
and
the
renaming
of
the
wasm
target
to
wasm-js
In this release, we're introducing a new target for Kotlin/Wasm – wasm-wasi. We're also renaming the wasm target to wasm-js. In the Gradle DSL, these targets are
available as wasmWasi {} and wasmJs {}, respectively.

To use these targets in your project, update the build.gradle.kts file:

kotlin	{
			wasmWasi	{
						//	...
			}
			wasmJs	{
						//	...
			}
}

The previously introduced wasm {} block has been deprecated in favor of wasmJs {}.

To migrate your existing Kotlin/Wasm project, do the following:

In the build.gradle.kts file, rename the wasm {} block to wasmJs {}.

In your project structure, rename the wasmMain directory to wasmJsMain.

Support
for
the
WASI
API
in
the
standard
library
In this release, we have included support for WASI, a system interface for the Wasm platform. WASI support makes it easier for you to use Kotlin/Wasm outside of
browsers, for example in server–side applications, by offering a standardized set of APIs for accessing system resources. In addition, WASI provides capability–
based security – another layer of security when accessing external resources.

To run Kotlin/Wasm applications, you need a VM that supports Wasm Garbage Collection (GC), for example, Node.js or Deno. Wasmtime, WasmEdge, and others
are still working towards full Wasm GC support.

To import a WASI function, use the @WasmImport annotation:

import	kotlin.wasm.WasmImport

Kotlin Wasm is Experimental. It may be changed at any time. Use it only for evaluation purposes.

We would appreciate your feedback on it in YouTrack.

118

https://kotl.in/issue
https://github.com/WebAssembly/WASI

@WasmImport("wasi_snapshot_preview1",	"clock_time_get")
private	external	fun	wasiRawClockTimeGet(clockId:	Int,	precision:	Long,	resultPtr:	Int):	Int

You can find a full example in our GitHub repository.

Kotlin/Wasm
API
improvements
This release quality-of-life improvements to the Kotlin/Wasm API. For example, you're no longer required to return a value for DOM event listeners:

Before 1.9.20 In 1.9.20

fun	main()	{
	window.onload	=	{
					
document.body?.sayHello()
					null
	}
}

fun	main()	{
				window.onload	=	{	document.body?.sayHello()	}
}

Gradle
Kotlin 1.9.20 is fully compatible with Gradle 6.8.3 through 8.1. You can also use Gradle versions up to the latest Gradle release, but if you do, keep in mind that you
might encounter deprecation warnings or some new Gradle features might not work.

This version brings the following changes:

Support for test fixtures to access internal declarations

New property to configure paths to Konan directories

New build report metrics for Kotlin/Native tasks

Support
for
test
fixtures
to
access
internal
declarations
In Kotlin 1.9.20, if you use Gradle's java-test-fixtures plugin, then your test fixtures now have access to internal declarations within main source set classes. In
addition, any test sources can also see any internal declarations within test fixtures classes.

New
property
to
configure
paths
to
Konan
directories
In Kotlin 1.9.20, the kotlin.data.dir Gradle property is available to customize your path to the ~/konan directory so that you don't have to configure it through an
environment variable.

Alternatively, you can use the -Xkonan-data-dir argument to configure your custom path to the ~/konan directory via the cinterop and konanc tools.

New
build
report
metrics
for
Kotlin/Native
tasks
In Kotlin 1.9.20, Gradle build reports now include metrics for Kotlin/Native tasks. Here is an example of a build report containing these metrics:

Total	time	for	Kotlin	tasks:	20.81	s	(93.1	%	of	all	tasks	time)
Time			|%	of	Kotlin	time|Task																												
15.24	s|73.2	%										|:compileCommonMainKotlinMetadata
5.57	s	|26.8	%										|:compileNativeMainKotlinMetadata

Task	':compileCommonMainKotlinMetadata'	finished	in	15.24	s
Task	info:
		Kotlin	language	version:	2.0
Time	metrics:
		Total	Gradle	task	time:	15.24	s

It isn't possible to use interoperability with JavaScript, while targeting wasmWasi.

119

https://github.com/Kotlin/kotlin-wasm-examples/tree/main/wasi-example
https://docs.gradle.org/current/userguide/java_testing.html#sec:java_test_fixtures

		Spent	time	before	task	action:	0.16	s
		Task	action	before	worker	execution:	0.21	s
		Run	native	in	process:	2.70	s
				Run	entry	point:	2.64	s
Size	metrics:
		Start	time	of	task	action:	2023-07-27T11:04:17

Task	':compileNativeMainKotlinMetadata'	finished	in	5.57	s
Task	info:
		Kotlin	language	version:	2.0
Time	metrics:
		Total	Gradle	task	time:	5.57	s
		Spent	time	before	task	action:	0.04	s
		Task	action	before	worker	execution:	0.02	s
		Run	native	in	process:	1.48	s
				Run	entry	point:	1.47	s
Size	metrics:
		Start	time	of	task	action:	2023-07-27T11:04:32

In addition, the kotlin.experimental.tryK2 build report now includes any Kotlin/Native tasks that were compiled and lists the language version used:

#####	'kotlin.experimental.tryK2'	results	#####
:lib:compileCommonMainKotlinMetadata:	2.0	language	version
:lib:compileKotlinJvm:	2.0	language	version
:lib:compileKotlinIosArm64:	2.0	language	version
:lib:compileKotlinIosSimulatorArm64:	2.0	language	version
:lib:compileKotlinLinuxX64:	2.0	language	version
:lib:compileTestKotlinJvm:	2.0	language	version
:lib:compileTestKotlinIosSimulatorArm64:	2.0	language	version
:lib:compileTestKotlinLinuxX64:	2.0	language	version
#####	100%	(8/8)	tasks	have	been	compiled	with	Kotlin	2.0	#####

Standard
library
In Kotlin 1.9.20, the Kotlin/Native standard library becomes Stable, and there are some new features:

Replacement of the Enum class values generic function

Improved performance of HashMap operations in Kotlin/JS

Replacement
of
the
Enum
class
values
generic
function

In Kotlin 1.9.0, the entries property for enum classes became Stable. The entries property is a modern and performant replacement for the synthetic values()
function. As part of Kotlin 1.9.20, there is a replacement for the generic enumValues<T>() function: enumEntries<T>().

For example:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

@OptIn(ExperimentalStdlibApi::class)
inline	fun	<reified	T	:	Enum<T>>	printAllValues()	{
				print(enumEntries<T>().joinToString	{	it.name	})

If you use Gradle 8.0, you might come across some problems with build reports, especially when Gradle configuration caching is enabled. This is a known
issue, which is fixed in Gradle 8.1 and later.

This feature is Experimental. It may be dropped or changed at any time. Opt–in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

The enumValues<T>() function is still supported, but we recommend that you use the enumEntries<T>() function instead because it has less performance
impact. Every time you > call enumValues<T>() a new array is created, whereas whenever you call enumEntries<T>() the same list is returned each time,
which is far more efficient.

120

https://kotl.in/issue

}

printAllValues<RGB>()	
//	RED,	GREEN,	BLUE

How to enable the enumEntries function
To try this feature out, opt in with @OptIn(ExperimentalStdlibApi) and use language version 1.9 or later. If you use the latest version of the Kotlin Gradle plugin, you
don't need to specify the language version to test this feature.

The
Kotlin/Native
standard
library
becomes
Stable
In Kotlin 1.9.0, we explained the actions we've taken to bring the Kotlin/Native standard library closer to our goal of stabilization. In Kotlin 1.9.20, we finally conclude
this work and make the Kotlin/Native standard library Stable. Here are some highlights from this release:

The Vector128 class was moved from the kotlin.native package to the kotlinx.cinterop package.

The opt–in requirement level for ExperimentalNativeApi and NativeRuntimeApi annotations, which were introduced as part of Kotlin 1.9.0, has been raised from
WARNING to ERROR.

Kotlin/Native collections now detect concurrent modifications, for example, in the ArrayList and HashMap collections.

The printStackTrace() function from the Throwable class now prints to STDERR instead of STDOUT.

Improvements to the Atomics API
In Kotlin 1.9.0, we said that the Atomics API would be ready to become Stable when the Kotlin/Native standard library becomes Stable. Kotlin 1.9.20 includes the
following additional changes:

Experimental AtomicIntArray, AtomicLongArray, and AtomicArray<T> classes are introduced. These new classes are designed specifically to be consistent with
Java's atomic arrays so that in the future, they can be included in the common standard library.

In the kotlin.native.concurrent package, the Atomics API that was deprecated in Kotlin 1.9.0 with deprecation level: WARNING, has had its deprecation level
raised to: ERROR.

In the kotlin.concurrent package, member functions of the AtomicInt and AtomicLong classes that had deprecation level: ERROR, have been removed.

All member functions of the AtomicReference class now use atomic intrinsic functions.

For more information on all of the changes in Kotlin 1.9.20, see our YouTrack ticket.

Improved
performance
of
HashMap
operations
in
Kotlin/JS
Kotlin 1.9.20 improves the performance of HashMap operations and reduces their memory footprint in Kotlin/JS. Internally, Kotlin/JS has changed its internal
implementation to open addressing. This means that you should see performance improvements when you:

Insert new elements into a HashMap

Search for existing elements in a HashMap

Iterate through keys or values in a HashMap

Documentation
updates
The Kotlin documentation has received some notable changes:

The JVM Metadata API reference – Explore how you can parse metadata with Kotlin/JVM.

The output format of printStackTrace() isn't Stable and is subject to change.

The AtomicIntArray, AtomicLongArray, and AtomicArray<T> classes are Experimental. They may be dropped or changed at any time. To try them out,
opt in with @OptIn(ExperimentalStdlibApi). Use them only for evaluation purposes. We would appreciate your feedback in YouTrack.

121

https://kotlinlang.org/api/latest/jvm/stdlib/kotlinx.cinterop/-vector128/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-array-list/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-hash-map/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-throwable/print-stack-trace.html
https://kotl.in/issue
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/-atomic-int/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/-atomic-long/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.concurrent/-atomic-reference/#functions
https://youtrack.jetbrains.com/issue/KT-61028/Behavioural-changes-to-the-Native-stdlib-API
https://kotlinlang.org/api/kotlinx-metadata-jvm/

Time measurement guide – Learn how to calculate and measure time in Kotlin.

Improved Collections chapter in the tour of Kotlin – Learn the fundamentals of the Kotlin programming language with chapters including both theory and
practice.

Definitely non-nullable types – Learn about definitely non-nullable generic types.

Improved Arrays page – Learn about arrays and when to use them.

Expected and actual declarations in Kotlin Multiplatform – Learn about the Kotlin mechanism of expected and actual declarations in Kotlin Multiplatform.

Install
Kotlin
1.9.20

Check
the
IDE
version
IntelliJ IDEA 2023.1.x and 2023.2.x automatically suggest updating the Kotlin plugin to version 1.9.20. IntelliJ IDEA 2023.3 will include the Kotlin 1.9.20 plugin.

Android Studio Hedgehog (231) and Iguana (232) will support Kotlin 1.9.20 in their upcoming releases.

The new command–line compiler is available for download on the GitHub release page.

Configure
Gradle
settings
To download Kotlin artifacts and dependencies, update your settings.gradle(.kts) file to use the Maven Central repository:

pluginManagement	{
				repositories	{
								mavenCentral()
								gradlePluginPortal()
				}
}

If the repository is not specified, Gradle uses the sunset JCenter repository, which could lead to issues with Kotlin artifacts.

What's
new
in
Kotlin
1.9.0
Release date: July 6, 2023

The Kotlin 1.9.0 release is out and the K2 compiler for the JVM is now in Beta. Additionally, here are some of the main highlights:

New Kotlin K2 compiler updates

Stable replacement of the enum class values function

Stable ..< operator for open-ended ranges

New common function to get regex capture group by name

New path utility to create parent directories

Preview of the Gradle configuration cache in Kotlin Multiplatform

Changes to Android target support in Kotlin Multiplatform

Preview of custom memory allocator in Kotlin/Native

Library linkage in Kotlin/Native

Size-related optimizations in Kotlin/Wasm

You can also find a short overview of the updates in this video:

122

https://www.jetbrains.com/idea/download/
https://github.com/JetBrains/kotlin/releases/tag/v1.9.20

Watch video online.

IDE
support
The Kotlin plugins that support 1.9.0 are available for:

IDE Supported versions

IntelliJ IDEA 2022.3.x, 2023.1.x

Android Studio Giraffe (223), Hedgehog (231)*

*The Kotlin 1.9.0 plugin will be included with Android Studio Giraffe (223) and Hedgehog (231) in their upcoming releases.

The Kotlin 1.9.0 plugin will be included with IntelliJ IDEA 2023.2 in the upcoming releases.

New
Kotlin
K2
compiler
updates
The Kotlin team at JetBrains continues to stabilize the K2 compiler, and the 1.9.0 release introduces further advancements. The K2 compiler for the JVM is now in
Beta.

There's now also basic support for Kotlin/Native and multiplatform projects.

Compatibility
of
the
kapt
compiler
plugin
with
the
K2
compiler
You can use the kapt plugin in your project along with the K2 compiler, but with some restrictions. Despite setting languageVersion to 2.0, the kapt compiler plugin
still utilizes the old compiler.

If you execute the kapt compiler plugin within a project where languageVersion is set to 2.0, kapt will automatically switch to 1.9 and disable specific version
compatibility checks. This behavior is equivalent to including the following command arguments:

-Xskip-metadata-version-check

-Xskip-prerelease-check

-Xallow-unstable-dependencies

These checks are exclusively disabled for kapt tasks. All other compilation tasks will continue to utilize the new K2 compiler.

Gif

To download Kotlin artifacts and dependencies, configure your Gradle settings to use the Maven Central Repository.

123

https://youtube.com/v/fvwTZc-dxsM

If you encounter any issues when using kapt with the K2 compiler, please report them to our issue tracker.

Try
the
K2
compiler
in
your
project
Starting with 1.9.0 and until the release of Kotlin 2.0, you can easily test the K2 compiler by adding the kotlin.experimental.tryK2=true Gradle property to your
gradle.properties file. You can also run the following command:

./gradlew	assemble	-Pkotlin.experimental.tryK2=true

This Gradle property automatically sets the language version to 2.0 and updates the build report with the number of Kotlin tasks compiled using the K2 compiler
compared to the current compiler:

#####	'kotlin.experimental.tryK2'	results	(Kotlin/Native	not	checked)	#####
:lib:compileKotlin:	2.0	language	version
:app:compileKotlin:	2.0	language	version
#####	100%	(2/2)	tasks	have	been	compiled	with	Kotlin	2.0	#####

Gradle
build
reports
Gradle build reports now show whether the current or the K2 compiler was used to compile the code. In Kotlin 1.9.0, you can see this information in your Gradle
build scans:

Gradle build scan - K1

Gradle build scan - K2

You can also find the Kotlin version used in the project right in the build report:

Task	info:

124

http://kotl.in/issue
https://scans.gradle.com/

		Kotlin	language	version:	1.9

Current
K2
compiler
limitations
Enabling K2 in your Gradle project comes with certain limitations that can affect projects using Gradle versions below 8.3 in the following cases:

Compilation of source code from buildSrc.

Compilation of Gradle plugins in included builds.

Compilation of other Gradle plugins if they are used in projects with Gradle versions below 8.3.

Building Gradle plugin dependencies.

If you encounter any of the problems mentioned above, you can take the following steps to address them:

Set the language version for buildSrc, any Gradle plugins, and their dependencies:

kotlin	{
				compilerOptions	{
								languageVersion.set(org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9)
								apiVersion.set(org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9)
				}
}

Update the Gradle version in your project to 8.3 when it becomes available.

Leave
your
feedback
on
the
new
K2
compiler
We'd appreciate any feedback you may have!

Provide your feedback directly to K2 developers Kotlin's Slack – get an invite and join the #k2-early-adopters channel.

Report any problems you've faced with the new K2 compiler on our issue tracker.

Enable the Send usage statistics option to allow JetBrains to collect anonymous data about K2 usage.

Language
In Kotlin 1.9.0, we're stabilizing some new language features that were introduced earlier:

Replacement of the enum class values function

Data object symmetry with data classes

Support for secondary constructors with bodies in inline value classes

Stable
replacement
of
the
enum
class
values
function
In 1.8.20, the entries property for enum classes was introduced as an Experimental feature. The entries property is a modern and performant replacement for the
synthetic values() function. In 1.9.0, the entries property is Stable.

enum	class	Color(val	colorName:	String,	val	rgb:	String)	{
				RED("Red",	"#FF0000"),
				ORANGE("Orange",	"#FF7F00"),
				YELLOW("Yellow",	"#FFFF00")
}

If you use Gradle 8.0, you might come across some problems with build reports, especially when Gradle configuration caching is enabled. This is a known
issue, fixed in Gradle 8.1 and later.

The values() function is still supported, but we recommend that you use the entries property instead.

125

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C03PK0PE257
https://kotl.in/issue
https://www.jetbrains.com/help/idea/settings-usage-statistics.html

fun	findByRgb(rgb:	String):	Color?	=	Color.entries.find	{	it.rgb	==	rgb	}

For more information about the entries property for enum classes, see What's new in Kotlin 1.8.20.

Stable
data
objects
for
symmetry
with
data
classes
Data object declarations, which were introduced in Kotlin 1.8.20, are now Stable. This includes the functions added for symmetry with data classes: toString(),
equals(), and hashCode().

This feature is particularly useful with sealed hierarchies (like a sealed class or sealed interface hierarchy), because data object declarations can be used
conveniently alongside data class declarations. In this example, declaring EndOfFile as a data object instead of a plain object means that it automatically has a
toString() function without the need to override it manually. This maintains symmetry with the accompanying data class definitions.

sealed	interface	ReadResult
data	class	Number(val	number:	Int)	:	ReadResult
data	class	Text(val	text:	String)	:	ReadResult
data	object	EndOfFile	:	ReadResult

fun	main()	{
				println(Number(7))	//	Number(number=7)
				println(EndOfFile)	//	EndOfFile
}

For more information, see What's new in Kotlin 1.8.20.

Support
for
secondary
constructors
with
bodies
in
inline
value
classes
Starting with Kotlin 1.9.0, the use of secondary constructors with bodies in inline value classes is available by default:

@JvmInline
value	class	Person(private	val	fullName:	String)	{
				//	Allowed	since	Kotlin	1.4.30:
				init	{
								check(fullName.isNotBlank())	{
												"Full	name	shouldn't	be	empty"
								}
				}
				//	Allowed	by	default	since	Kotlin	1.9.0:
				constructor(name:	String,	lastName:	String)	:	this("$name	$lastName")	{
								check(lastName.isNotBlank())	{
												"Last	name	shouldn't	be	empty"
								}
				}
}

Previously, Kotlin allowed only public primary constructors in inline classes. As a result, it was impossible to encapsulate underlying values or create an inline class
that would represent some constrained values.

As Kotlin developed, these issues were fixed. Kotlin 1.4.30 lifted restrictions on init blocks and then Kotlin 1.8.20 came with a preview of secondary constructors
with bodies. They are now available by default. Learn more about the development of Kotlin inline classes in this KEEP.

Kotlin/JVM
Starting with version 1.9.0, the compiler can generate classes with a bytecode version corresponding to JVM 20. In addition, the deprecation of the JvmDefault
annotation and legacy -Xjvm-default modes continues.

Deprecation
of
JvmDefault
annotation
and
legacy
-Xjvm-default
modes
Starting from Kotlin 1.5, the usage of the JvmDefault annotation has been deprecated in favor of the newer -Xjvm-default modes: all and all-compatibility. With the
introduction of JvmDefaultWithoutCompatibility in Kotlin 1.4 and JvmDefaultWithCompatibility in Kotlin 1.6, these modes offer comprehensive control over the
generation of DefaultImpls classes, ensuring seamless compatibility with older Kotlin code.

Consequently in Kotlin 1.9.0, the JvmDefault annotation no longer holds any significance and has been marked as deprecated, resulting in an error. It will eventually
be removed from Kotlin.

126

https://github.com/Kotlin/KEEP/blob/master/proposals/inline-classes.md

Kotlin/Native
Among other improvements, this release brings further advancements to the Kotlin/Native memory manager that should enhance its robustness and performance:

Preview of custom memory allocator

Objective-C or Swift object deallocation hook on the main thread

No object initialization when accessing constant values in Kotlin/Native

Ability to configure standalone mode for iOS simulator tests

Library linkage in Kotlin/Native

Preview
of
custom
memory
allocator
Kotlin 1.9.0 introduces the preview of a custom memory allocator. Its allocation system improves the runtime performance of the Kotlin/Native memory manager.

The current object allocation system in Kotlin/Native uses a general-purpose allocator that doesn't have the functionality for efficient garbage collection. To
compensate, it maintains thread-local linked lists of all allocated objects before the garbage collector (GC) merges them into a single list, which can be iterated
during sweeping. This approach comes with several performance downsides:

The sweeping order lacks memory locality and often results in scattered memory access patterns, leading to potential performance issues.

Linked lists require additional memory for each object, increasing memory usage, particularly when dealing with many small objects.

The single list of allocated objects makes it challenging to parallelize sweeping, which can cause memory usage problems when mutator threads allocate
objects faster than the GC thread can collect them.

To address these issues, Kotlin 1.9.0 introduces a preview of the custom allocator. It divides system memory into pages, allowing independent sweeping in
consecutive order. Each allocation becomes a memory block within a page, and the page keeps track of block sizes. Different page types are optimized for various
allocation sizes. The consecutive arrangement of memory blocks ensures efficient iteration through all allocated blocks.

When a thread allocates memory, it searches for a suitable page based on the allocation size. Threads maintain a set of pages for different size categories.
Typically, the current page for a given size can accommodate the allocation. If not, the thread requests a different page from the shared allocation space. This page
may already be available, require sweeping, or should be created first.

The new allocator allows having multiple independent allocation spaces simultaneously, which will allow the Kotlin team to experiment with different page layouts to
improve performance even further.

For more information on the design of the new allocator, see this README.

How to enable
Add the -Xallocator=custom compiler option:

kotlin	{
				macosX64("native")	{
								binaries.executable()

								compilations.configureEach	{
												compilerOptions.configure	{
																freeCompilerArgs.add("-Xallocator=custom")
												}
								}
				}
}

Leave feedback
We would appreciate your feedback in YouTrack to improve the custom allocator.

Objective-C
or
Swift
object
deallocation
hook
on
the
main
thread
Starting with Kotlin 1.9.0, the Objective-C or Swift object deallocation hook is called on the main thread if the object is passed to Kotlin there. The way the
Kotlin/Native memory manager previously handled references to Objective-C objects could lead to memory leaks. We believe the new behavior should improve the
robustness of the memory manager.

Consider an Objective-C object that is referenced in Kotlin code, for example, when passed as an argument, returned by a function, or retrieved from a collection.

127

https://github.com/JetBrains/kotlin/blob/master/kotlin-native/runtime/src/alloc/custom/README.md
https://youtrack.jetbrains.com/issue/KT-55364/Implement-custom-allocator-for-Kotlin-Native

In this case, Kotlin creates its own object that holds the reference to the Objective-C object. When the Kotlin object gets deallocated, the Kotlin/Native runtime calls
the objc_release function that releases that Objective-C reference.

Previously, the Kotlin/Native memory manager ran objc_release on a special GC thread. If it's the last object reference, the object gets deallocated. Issues could
come up when Objective-C objects have custom deallocation hooks like the dealloc method in Objective-C or the deinit block in Swift, and these hooks expect to
be called on a specific thread.

Since hooks for objects on the main thread usually expect to be called there, Kotlin/Native runtime now calls objc_release on the main thread as well. It should
cover the cases when the Objective-C object was passed to Kotlin on the main thread, creating a Kotlin peer object there. This only works if the main dispatch
queue is processed, which is the case for regular UI applications. When it's not the main queue or the object was passed to Kotlin on a thread other than main, the
objc_release is called on a special GC thread as before.

How to opt out
In case you face issues, you can disable this behavior in your gradle.properties file with the following option:

kotlin.native.binary.objcDisposeOnMain=false

Don't hesitate to report such cases to our issue tracker.

No
object
initialization
when
accessing
constant
values
in
Kotlin/Native
Starting with Kotlin 1.9.0, the Kotlin/Native backend doesn't initialize objects when accessing const val fields:

object	MyObject	{
				init	{
								println("side	effect!")
				}

				const	val	y	=	1
}

fun	main()	{
				println(MyObject.y)	//	No	initialization	at	first
				val	x	=	MyObject				//	Initialization	occurs
				println(x.y)
}

The behavior is now unified with Kotlin/JVM, where the implementation is consistent with Java and objects are never initialized in this case. You can also expect
some performance improvements in your Kotlin/Native projects thanks to this change.

Ability
to
configure
standalone
mode
for
iOS
simulator
tests
in
Kotlin/Native
By default, when running iOS simulator tests for Kotlin/Native, the --standalone flag is used to avoid manual simulator booting and shutdown. In 1.9.0, you can now
configure whether this flag is used in a Gradle task via the standalone property. By default, the --standalone flag is used so standalone mode is enabled.

Here is an example of how to disable standalone mode in your build.gradle.kts file:

tasks.withType<org.jetbrains.kotlin.gradle.targets.native.tasks.KotlinNativeSimulatorTest>().configureEach	{
				standalone.set(false)
}

Library
linkage
in
Kotlin/Native
Starting with Kotlin 1.9.0, the Kotlin/Native compiler treats linkage issues in Kotlin libraries the same way as Kotlin/JVM. You might face such issues if the author of
one third-party Kotlin library makes an incompatible change in experimental APIs that another third-party Kotlin library consumes.

Now builds don't fail during compilation in case of linkage issues between third-party Kotlin libraries. Instead, you'll only encounter these errors in run time, exactly

If you disable standalone mode, you must boot the simulator manually. To boot your simulator from CLI, you can use the following command:

/usr/bin/xcrun	simctl	boot	<DeviceId>

128

https://kotl.in/issue

as on the JVM.

The Kotlin/Native compiler reports warnings every time it detects issues with library linkage. You can find such warnings in your compilation logs, for example:

No	function	found	for	symbol	'org.samples/MyRemovedClass.doSomething|3657632771909858561[0]'

Can	not	get	instance	of	singleton	'MyEnumClass.REMOVED_ENTRY':	No	enum	entry	found	for	symbol	
'org.samples/MyEnumClass.REMOVED_ENTRY|null[0]'

Function	'getMyRemovedClass'	can	not	be	called:	Function	uses	unlinked	class	symbol	'org.samples/MyRemovedClass|null[0]'

You can further configure or even disable this behavior in your projects:

If you don't want to see these warnings in your compilation logs, suppress them with the -Xpartial-linkage-loglevel=INFO compiler option.

It's also possible to raise the severity of reported warnings to compilation errors with -Xpartial-linkage-loglevel=ERROR. In this case, the compilation fails and
you'll see all the errors in the compilation log. Use this option to examine the linkage issues more closely.

If you face unexpected problems with this feature, you can always opt out with the -Xpartial-linkage=disable compiler option. Don't hesitate to report such cases
to our issue tracker.

//	An	example	of	passing	compiler	options	via	Gradle	build	file.
kotlin	{
				macosX64("native")	{
								binaries.executable()

								compilations.configureEach	{
												compilerOptions.configure	{

																//	To	suppress	linkage	warnings:
																freeCompilerArgs.add("-Xpartial-linkage-loglevel=INFO")

																//	To	raise	linkage	warnings	to	errors:
																freeCompilerArgs.add("-Xpartial-linkage-loglevel=ERROR")

																//	To	disable	the	feature	completely:
																freeCompilerArgs.add("-Xpartial-linkage=disable")
												}
								}
				}
}

Compiler
option
for
C
interop
implicit
integer
conversions
We have introduced a compiler option for C interop that allows you to use implicit integer conversions. After careful consideration, we've introduced this compiler
option to prevent unintentional use as this feature still has room for improvement and our aim is to have an API of the highest quality.

In this code sample an implicit integer conversion allows options = 0 even though options has unsigned type UInt and 0 is signed.

val	today	=	NSDate()
val	tomorrow	=	NSCalendar.currentCalendar.dateByAddingUnit(
				unit	=	NSCalendarUnitDay,
				value	=	1,
				toDate	=	today,
				options	=	0
)

To use implicit conversions with native interop libraries, use the -XXLanguage:+ImplicitSignedToUnsignedIntegerConversion compiler option.

You can configure this in your Gradle build.gradle.kts file:

tasks.withType<org.jetbrains.kotlin.gradle.tasks.KotlinNativeCompile>().configureEach	{
				compilerOptions.freeCompilerArgs.addAll(
								"-XXLanguage:+ImplicitSignedToUnsignedIntegerConversion"
)
}

Kotlin
Multiplatform

129

https://kotl.in/issue
https://developer.apple.com/documentation/foundation/nscalendar/options

Kotlin Multiplatform has received some notable updates in 1.9.0 designed to improve your developer experience:

Changes to Android target support

New Android source set layout enabled by default

Preview of the Gradle configuration cache in multiplatform projects

Changes
to
Android
target
support
We continue our efforts to stabilize Kotlin Multiplatform. An essential step is to provide first-class support for the Android target. We're excited to announce that in
the future, the Android team from Google will provide its own Gradle plugin to support Android in Kotlin Multiplatform.

To open the way for this new solution from Google, we're renaming the android block in the current Kotlin DSL in 1.9.0. Please change all the occurrences of the
android block to androidTarget in your build scripts. This is a temporary change that is necessary to free the android name for the upcoming DSL from Google.

The Google plugin will be the preferred way of working with Android in multiplatform projects. When it's ready, we'll provide the necessary migration instructions so
that you'll be able to use the short android name as before.

New
Android
source
set
layout
enabled
by
default
Starting with Kotlin 1.9.0, the new Android source set layout is the default. It replaced the previous naming schema for directories, which was confusing in multiple
ways. The new layout has a number of advantages:

Simplified type semantics – The new Android source layout provides clear and consistent naming conventions that help to distinguish between different types of
source sets.

Improved source directory layout – With the new layout, the SourceDirectories arrangement becomes more coherent, making it easier to organize code and
locate source files.

Clear naming schema for Gradle configurations – The schema is now more consistent and predictable in both KotlinSourceSets and AndroidSourceSets.

The new layout requires the Android Gradle plugin version 7.0 or later and is supported in Android Studio 2022.3 and later. See our migration guide to make the
necessary changes in your build.gradle(.kts) file.

Preview
of
the
Gradle
configuration
cache

Kotlin 1.9.0 comes with support for the Gradle configuration cache in multiplatform libraries. If you're a library author, you can already benefit from the improved
build performance.

The Gradle configuration cache speeds up the build process by reusing the results of the configuration phase for subsequent builds. The feature has become Stable
since Gradle 8.1. To enable it, follow the instructions in the Gradle documentation.

Kotlin/Wasm
The Kotlin team continues to experiment with the new Kotlin/Wasm target. This release introduces several performance and size-related optimizations, along with
updates in JavaScript interop.

Size-related
optimizations
Kotlin 1.9.0 introduces significant size improvements for WebAssembly (Wasm) projects. Comparing two "Hello World" projects, the code footprint for Wasm in
Kotlin 1.9.0 is now over 10 times smaller than in Kotlin 1.8.20.

The Kotlin Multiplatform plugin still doesn't support the Gradle configuration cache with Xcode integration tasks or the Kotlin CocoaPods Gradle plugin.
We expect to add this feature in future Kotlin releases.

130

https://docs.gradle.org/current/userguide/configuration_cache.html
https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:usage

Kotlin/Wasm size-related optimizations

These size optimizations result in more efficient resource utilization and improved performance when targeting Wasm platforms with Kotlin code.

Updates
in
JavaScript
interop
This Kotlin update introduces changes to the interoperability between Kotlin and JavaScript for Kotlin/Wasm. As Kotlin/Wasm is an Experimental feature, certain
limitations apply to its interoperability.

Restriction of Dynamic types
Starting with version 1.9.0, Kotlin no longer supports the use of Dynamic types in Kotlin/Wasm. This is now deprecated in favor of the new universal JsAny type,
which facilitates JavaScript interoperability.

For more details, see the Kotlin/Wasm interoperability with JavaScript documentation.

Restriction of non-external types
Kotlin/Wasm supports conversions for specific Kotlin static types when passing values to and from JavaScript. These supported types include:

Primitives, such as signed numbers, Boolean, and Char.

String.

Function types.

Other types were passed without conversion as opaque references, leading to inconsistencies between JavaScript and Kotlin subtyping.

To address this, Kotlin restricts JavaScript interop to a well-supported set of types. Starting from Kotlin 1.9.0, only external, primitive, string, and function types are
supported in Kotlin/Wasm JavaScript interop. Furthermore, a separate explicit type called JsReference has been introduced to represent handles to Kotlin/Wasm
objects that can be used in JavaScript interop.

For more details, refer to the Kotlin/Wasm interoperability with JavaScript documentation.

Kotlin/Wasm
in
Kotlin
Playground
Kotlin Playground supports the Kotlin/Wasm target. You can write, run, and share your Kotlin code that targets the Kotlin/Wasm. Check it out!

131

https://pl.kotl.in/HDFAvimga

import	kotlin.time.*
import	kotlin.time.measureTime

fun	main()	{
				println("Hello	from	Kotlin/Wasm!")
				computeAck(3,	10)
}

tailrec	fun	ack(m:	Int,	n:	Int):	Int	=	when	{
				m	==	0	->	n	+	1
				n	==	0	->	ack(m	-	1,	1)
				else	->	ack(m	-	1,	ack(m,	n	-	1))
}

fun	computeAck(m:	Int,	n:	Int)	{
				var	res	=	0
				val	t	=	measureTime	{
								res	=	ack(m,	n)
				}
				println()
				println("ack($m,	$n)	=	${res}")
				println("duration:	${t.inWholeNanoseconds	/	1e6}	ms")
}

Kotlin/JS
This release introduces updates for Kotlin/JS, including the removal of the old Kotlin/JS compiler, Kotlin/JS Gradle plugin deprecation and Experimental support for
ES6:

Removal of the old Kotlin/JS compiler

Deprecation of the Kotlin/JS Gradle plugin

Deprecation of external enum

Experimental support for ES6 classes and modules

Changed default destination of JS production distribution

Extract org.w3c declarations from stdlib-js

Removal
of
the
old
Kotlin/JS
compiler
In Kotlin 1.8.0, we announced that the IR-based backend became Stable. Since then, not specifying the compiler has become an error, and using the old compiler
leads to warnings.

In Kotlin 1.9.0, using the old backend results in an error. Please migrate to the IR compiler by following our migration guide.

Deprecation
of
the
Kotlin/JS
Gradle
plugin
Starting with Kotlin 1.9.0, the kotlin-js Gradle plugin is deprecated. We encourage you to use the kotlin-multiplatform Gradle plugin with the js() target instead.

The functionality of the Kotlin/JS Gradle plugin essentially duplicated the kotlin-multiplatform plugin and shared the same implementation under the hood. This
overlap created confusion and increased maintenance load on the Kotlin team.

Refer to our Compatibility guide for Kotlin Multiplatform for migration instructions. If you find any issues that aren't covered in the guide, please report them to our
issue tracker.

Using Kotlin/Wasm requires enabling experimental features in your browser.

Learn more about how to enable these features.

Starting from version 1.9.0, partial library linkage is also enabled for Kotlin/JS.

132

http://kotl.in/issue

Deprecation
of
external
enum
In Kotlin 1.9.0, the use of external enums will be deprecated due to issues with static enum members like entries, that can't exist outside Kotlin. We recommend
using an external sealed class with object subclasses instead:

//	Before
external	enum	class	ExternalEnum	{	A,	B	}

//	After
external	sealed	class	ExternalEnum	{
				object	A:	ExternalEnum
				object	B:	ExternalEnum
}

By switching to an external sealed class with object subclasses, you can achieve similar functionality to external enums while avoiding the problems associated with
default methods.

Starting from Kotlin 1.9.0, the use of external enums will be marked as deprecated. We encourage you to update your code to utilize the suggested external sealed
class implementation for compatibility and future maintenance.

Experimental
support
for
ES6
classes
and
modules
This release introduces Experimental support for ES6 modules and generation of ES6 classes:

Modules offer a way to simplify your codebase and improve maintainability.

Classes allow you to incorporate object-oriented programming (OOP) principles, resulting in cleaner and more intuitive code.

To enable these features, update your build.gradle.kts file accordingly:

//	build.gradle.kts
kotlin	{	
				js(IR)	{	
								useEsModules()	//	Enables	ES6	modules
								browser()
								}
				}

//	Enables	ES6	classes	generation
tasks.withType<KotlinJsCompile>().configureEach	{
				kotlinOptions	{
								useEsClasses	=	true
				}
}

Learn more about ECMAScript 2015 (ES6) in the official documentation.

Changed
default
destination
of
JS
production
distribution
Prior to Kotlin 1.9.0, the distribution target directory was build/distributions. However, this is a common directory for Gradle archives. To resolve this issue, we've
changed the default distribution target directory in Kotlin 1.9.0 to: build/dist/<targetName>/<binaryName>.

For example, productionExecutable was in build/distributions. In Kotlin 1.9.0, it's in build/dist/js/productionExecutable.

Extract
org.w3c
declarations
from
stdlib-js
Since Kotlin 1.9.0, the stdlib-js no longer includes org.w3c declarations. Instead, these declarations have been moved to a separate Gradle dependency. When you
add the Kotlin Multiplatform Gradle plugin to your build.gradle.kts file, these declarations will be automatically included in your project, similar to the standard
library.

There is no need for any manual action or migration. The necessary adjustments will be handled automatically.

Gradle

If you have a pipeline in place that uses the results of these builds, make sure to update the directory.

133

https://262.ecma-international.org/6.0/

Kotlin 1.9.0 comes with new Gradle compiler options and a lot more:

Removed classpath property

New Gradle compiler options

Project-level compiler options for Kotlin/JVM

Compiler option for Kotlin/Native module name

Separate compiler plugins for official Kotlin libraries

Incremented minimum supported version

kapt doesn't cause eager task creation

Programmatic configuration of the JVM target validation mode

Removed
classpath
property
In Kotlin 1.7.0, we announced the start of a deprecation cycle for the KotlinCompile task's property: classpath. The deprecation level was raised to ERROR in Kotlin
1.8.0. In this release, we've finally removed the classpath property. All compile tasks should now use the libraries input for a list of libraries required for compilation.

New
compiler
options
The Kotlin Gradle plugin now provides new properties for opt-ins and the compiler's progressive mode.

To opt in to new APIs, you can now use the optIn property and pass a list of strings like: optIn.set(listOf(a, b, c)).

To enable progressive mode, use progressiveMode.set(true).

Project-level
compiler
options
for
Kotlin/JVM
Starting with Kotlin 1.9.0, a new compilerOptions block is available inside the kotlin configuration block:

kotlin	{
				compilerOptions	{
								jvmTarget.set(JVM.Target_11)
				}
}

It makes configuring compiler options much easier. However, it is important to note some important details:

This configuration only works on the project level.

For the Android plugin, this block configures the same object as:

android	{
				kotlinOptions	{}
}

The android.kotlinOptions and kotlin.compilerOptions configuration blocks override each other. The last (lowest) block in the build file always takes effect.

If moduleName is configured on the project level, its value could be changed when passed to the compiler. It's not the case for the main compilation, but for
other types, for example, test sources, the Kotlin Gradle plugin will add the _test suffix.

The configuration inside the tasks.withType<KotlinJvmCompile>().configureEach {} (or tasks.named<KotlinJvmCompile>("compileKotlin") { }) overrides both
kotlin.compilerOptions and android.kotlinOptions.

Compiler
option
for
Kotlin/Native
module
name
The Kotlin/Native module-name compiler option is now easily available in the Kotlin Gradle plugin.

This option specifies a name for the compilation module and can also be used for adding a name prefix for declarations exported to Objective-C.

You can now set the module name directly in the compilerOptions block of your Gradle build files:

134

Kotlin

tasks.named<org.jetbrains.kotlin.gradle.tasks.KotlinNativeCompile>("compileKotlinLinuxX64")	{
				compilerOptions	{
								moduleName.set("my-module-name")
				}
}

Groovy

tasks.named("compileKotlinLinuxX64",	org.jetbrains.kotlin.gradle.tasks.KotlinNativeCompile.class)	{
				compilerOptions	{
								moduleName	=	"my-module-name"
				}
}

Separate
compiler
plugins
for
official
Kotlin
libraries
Kotlin 1.9.0 introduces separate compiler plugins for its official libraries. Previously, compiler plugins were embedded into their corresponding Gradle plugins. This
could cause compatibility issues in case the compiler plugin was compiled against a Kotlin version higher than the Gradle build's Kotlin runtime version.

Now compiler plugins are added as separate dependencies, so you'll no longer face compatibility issues with older Gradle versions. Another major advantage of the
new approach is that new compiler plugins can be used with other build systems like Bazel.

Here's the list of new compiler plugins we're now publishing to Maven Central:

kotlin-atomicfu-compiler-plugin

kotlin-allopen-compiler-plugin

kotlin-lombok-compiler-plugin

kotlin-noarg-compiler-plugin

kotlin-sam-with-receiver-compiler-plugin

kotlinx-serialization-compiler-plugin

Every plugin has its -embeddable counterpart, for example, kotlin-allopen-compiler-plugin-embeddable is designed for working with the kotlin-compiler-
embeddable artifact, the default option for scripting artifacts.

Gradle adds these plugins as compiler arguments. You don't need to make any changes to your existing projects.

Incremented
minimum
supported
version
Starting with Kotlin 1.9.0, the minimum supported Android Gradle plugin version is 4.2.2.

See the Kotlin Gradle plugin's compatibility with available Gradle versions in our documentation.

kapt
doesn't
cause
eager
task
creation
in
Gradle
Prior to 1.9.0, the kapt compiler plugin caused eager task creation by requesting the configured instance of the Kotlin compilation task. This behavior has been
fixed in Kotlin 1.9.0. If you use the default configuration for your build.gradle.kts file then your setup is not affected by this change.

135

https://bazel.build/

For more information, see our YouTrack ticket.

Programmatic
configuration
of
the
JVM
target
validation
mode
Before Kotlin 1.9.0, there was only one way to adjust the detection of JVM target incompatibility between Kotlin and Java. You had to set
kotlin.jvm.target.validation.mode=ERROR in your gradle.properties for the whole project.

You can now also configure it on the task level in your build.gradle.kts file:

tasks.named<org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile>("compileKotlin")	{
				jvmTargetValidationMode.set(org.jetbrains.kotlin.gradle.dsl.jvm.JvmTargetValidationMode.WARNING)
}

Standard
library
Kotlin 1.9.0 has some great improvements for the standard library:

The ..< operator and time API are Stable.

The Kotlin/Native standard library has been thoroughly reviewed and updated

The @Volatile annotation can be used on more platforms

There's a common function to get a regex capture group by name

The HexFormat class has been introduced to format and parse hexadecimals

Stable
..<
operator
for
open-ended
ranges
The new ..< operator for open-ended ranges that was introduced in Kotlin 1.7.20 and became Stable in 1.8.0. In 1.9.0, the standard library API for working with
open-ended ranges is also Stable.

Our research shows that the new ..< operator makes it easier to understand when an open-ended range is declared. If you use the until infix function, it's easy to
make the mistake of assuming that the upper bound is included.

Here is an example using the until function:

fun	main()	{
				for	(number	in	2	until	10)	{
								if	(number	%	2	==	0)	{
												print("$number	")
								}
				}
				//	2	4	6	8
}

And here is an example using the new ..< operator:

fun	main()	{
				for	(number	in	2..<10)	{
								if	(number	%	2	==	0)	{

If you use a custom configuration, your setup will be adversely affected. For example, if you have modified the KotlinJvmCompile task using Gradle's
tasks API, you must similarly modify the KaptGenerateStubs task in your build script.

For example, if your script has the following configuration for the KotlinJvmCompile task:

tasks.named<KotlinJvmCompile>("compileKotlin")	{	//	Your	custom	configuration	}

In this case, you need to make sure that the same modification is included as part of the KaptGenerateStubs task:

tasks.named<KaptGenerateStubs>("kaptGenerateStubs")	{	//	Your	custom	configuration	}

136

https://youtrack.jetbrains.com/issue/KT-54468/KAPT-Gradle-plugin-causes-eager-task-creation
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/until.html

												print("$number	")
								}
				}
				//	2	4	6	8
}

For more information about what you can do with this operator, see What's new in Kotlin 1.7.20.

Stable
time
API
Since 1.3.50, we have previewed a new time measurement API. The duration part of the API became Stable in 1.6.0. In 1.9.0, the remaining time measurement API
is Stable.

The old time API provided the measureTimeMillis and measureNanoTime functions, which aren't intuitive to use. Although it is clear that they both measure time in
different units, it isn't clear that measureTimeMillisuses a wall clock to measure time, whereas measureNanoTime uses a monotonic time source. The new time API
resolves this and other issues to make the API more user friendly.

With the new time API, you can easily:

Measure the time taken to execute some code using a monotonic time source with your desired time unit.

Mark a moment in time.

Compare and find the difference between two moments in time.

Check how much time has passed since a specific moment in time.

Check whether the current time has passed a specific moment in time.

Measure code execution time
To measure the time taken to execute a block of code, use the measureTime inline function.

To measure the time taken to execute a block of code and return the result of the block of code, use the measureTimedValue inline function.

By default, both functions use a monotonic time source. However, if you want to use an elapsed real-time source, you can. For example, on Android the default
time source System.nanoTime() only counts time while the device is active. It loses track of time when the device enters deep sleep. To keep track of time while the
device is in deep sleep, you can create a time source that uses SystemClock.elapsedRealtimeNanos() instead:

object	RealtimeMonotonicTimeSource	:	AbstractLongTimeSource(DurationUnit.NANOSECONDS)	{
				override	fun	read():	Long	=	SystemClock.elapsedRealtimeNanos()
}

Mark and measure differences in time
To mark a specific moment in time, use the TimeSource interface and the markNow() function to create a TimeMark. To measure differences between TimeMarks
from the same time source, use the subtraction operator (-):

import	kotlin.time.*

fun	main()	{
				val	timeSource	=	TimeSource.Monotonic
				val	mark1	=	timeSource.markNow()
				Thread.sleep(500)	//	Sleep	0.5	seconds.
				val	mark2	=	timeSource.markNow()

				repeat(4)	{	n	->
								val	mark3	=	timeSource.markNow()
								val	elapsed1	=	mark3	-	mark1
								val	elapsed2	=	mark3	-	mark2

								println("Measurement	1.${n	+	1}:	elapsed1=$elapsed1,	elapsed2=$elapsed2,	diff=${elapsed1	-	elapsed2}")
				}
				//	It's	also	possible	to	compare	time	marks	with	each	other.
				println(mark2	>	mark1)	//	This	is	true,	as	mark2	was	captured	later	than	mark1.
}

From IntelliJ IDEA version 2023.1.1, a new code inspection is available that highlights when you can use the ..< operator.

137

https://en.wikipedia.org/wiki/Elapsed_real_time
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/measure-time.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/measure-timed-value.html
https://developer.android.com/reference/android/os/SystemClock#elapsedRealtimeNanos()
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-source/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-source/mark-now.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/

To check if a deadline has passed or a timeout has been reached, use the hasPassedNow() and hasNotPassedNow() extension functions:

import	kotlin.time.*
import	kotlin.time.Duration.Companion.seconds

fun	main()	{
				val	timeSource	=	TimeSource.Monotonic
				val	mark1	=	timeSource.markNow()
				val	fiveSeconds:	Duration	=	5.seconds
				val	mark2	=	mark1	+	fiveSeconds

				//	It	hasn't	been	5	seconds	yet
				println(mark2.hasPassedNow())
				//	false

				//	Wait	six	seconds
				Thread.sleep(6000)
				println(mark2.hasPassedNow())
				//	true
}

The
Kotlin/Native
standard
library's
journey
towards
stabilization
As our standard library for Kotlin/Native continues to grow, we decided that it was time for a complete review to ensure that it meets our high standards. As part of
this, we carefully reviewed every existing public signature. For each signature, we considered whether it:

Has a unique purpose.

Is consistent with other Kotlin APIs.

Has similar behavior to its counterpart for the JVM.

Is future-proof.

Based on these considerations, we made one of the following decisions:

Made it Stable.

Made it Experimental.

Marked it as private.

Modified its behavior.

Moved it to a different location.

Deprecated it.

Marked it as obsolete.

We won't list all of the results of the review here, but here are some of the highlights:

We stabilized the Atomics API.

We made kotlinx.cinterop Experimental and now require different opt-ins for the package to be used. For more information, see Explicit C-interoperability
stability guarantees.

We marked the Worker class and its related APIs as obsolete.

If an existing signature has been:

Moved to another package, then the signature still exists in the original package but it's now deprecated with deprecation level: WARNING. IntelliJ
IDEA will automatically suggest replacements upon code inspection.

Deprecated, then it's been deprecated with deprecation level: WARNING.

Marked as obsolete, then you can keep using it, but it will be replaced in future.

138

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/has-passed-now.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/has-not-passed-now.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlinx.cinterop/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-worker/

We marked the BitSet class as obsolete.

We marked all public APIs in the kotlin.native.internal package as private or moved them to other packages.

Explicit C-interoperability stability guarantees
To maintain the high quality of our API, we decided to make kotlinx.cinterop Experimental. Although kotlinx.cinterop has been thoroughly tried and tested, there is
still room for improvement before we are satisfied enough to make it Stable. We recommend that you use this API for interoperability but that you try to confine its
use to specific areas in your projects. This will make your migration easier once we begin evolving this API to make it Stable.

If you want to use C-like foreign APIs such as pointers, you must opt in with @OptIn(ExperimentalForeignApi), otherwise your code won't compile.

To use the remainder of kotlinx.cinterop, which covers Objective-C/Swift interoperability, you must opt in with @OptIn(BetaInteropApi). If you try to use this API
without the opt-in, your code will compile but the compiler will raise warnings that provide a clear explanation of what behavior you can expect.

For more information about these annotations, see our source code for Annotations.kt.

For more information on all of the changes as part of this review, see our YouTrack ticket.

We'd appreciate any feedback you might have! You can provide your feedback directly by commenting on the ticket.

Stable
@Volatile
annotation
If you annotate a var property with @Volatile, then the backing field is marked so that any reads or writes to this field are atomic, and writes are always made visible
to other threads.

Prior to 1.8.20, the kotlin.jvm.Volatile annotation was available in the common standard library. However, this annotation was only effective on the JVM. If you used it
on other platforms, it was ignored, which led to errors.

In 1.8.20, we introduced an experimental common annotation, kotlin.concurrent.Volatile, which you could preview in both the JVM and Kotlin/Native.

In 1.9.0, kotlin.concurrent.Volatile is Stable. If you use kotlin.jvm.Volatile in your multiplatform projects, we recommend that you migrate to kotlin.concurrent.Volatile.

New
common
function
to
get
regex
capture
group
by
name
Prior to 1.9.0, every platform had its own extension to get a regular expression capture group by its name from a regular expression match. However there was no
common function. It wasn't possible to have a common function prior to Kotlin 1.8.0, because the standard library still supported JVM targets 1.6 and 1.7.

As of Kotlin 1.8.0, the standard library is compiled with JVM target 1.8. So in 1.9.0, there is now a common groups function that you can use to retrieve a group's
contents by its name for a regular expression match. This is useful when you want to access the results of regular expression matches belonging to a particular
capture group.

Here is an example with a regular expression containing three capture groups: city, state, and areaCode. You can use these group names to access the matched
values:

fun	main()	{
				val	regex	=	"""\b(?<city>[A-Za-z\s]+),\s(?<state>[A-Z]{2}):\s(?<areaCode>[0-9]{3})\b""".toRegex()
				val	input	=	"Coordinates:	Austin,	TX:	123"
				
				val	match	=	regex.find(input)!!
				println(match.groups["city"]?.value)
				//	Austin
				println(match.groups["state"]?.value)
				//	TX
				println(match.groups["areaCode"]?.value)
				//	123
}

New
path
utility
to
create
parent
directories
In 1.9.0 there is a new createParentDirectories() extension function that you can use to create a new file with all the necessary parent directories. When you provide
a file path to createParentDirectories() it checks whether the parent directories already exist. If they do, it does nothing. However, if they do not, it creates them for
you.

createParentDirectories() is particularly useful when you are copying files. For example, you can use it in combination with the copyToRecursively() function:

sourcePath.copyToRecursively(
			destinationPath.createParentDirectories(),	

139

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-bit-set/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlinx.cinterop/
https://github.com/JetBrains/kotlin/blob/56b729f1812733cb6a79673684c2fa5c4c6b3475/kotlin-native/Interop/Runtime/src/main/kotlin/kotlinx/cinterop/Annotations.kt
https://youtrack.jetbrains.com/issue/KT-55765
https://youtrack.jetbrains.com/issue/KT-57728
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-volatile/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-match-result/groups.html

			followLinks	=	false
)

New
HexFormat
class
to
format
and
parse
hexadecimals

In 1.9.0, the HexFormat class and its related extension functions are provided as an Experimental feature that allows you to convert between numerical values and
hexadecimal strings. Specifically, you can use the extension functions to convert between hexadecimal strings and ByteArrays or other numeric types (Int, Short,
Long).

For example:

println(93.toHexString())	//	"0000005d"

The HexFormat class includes formatting options that you can configure with the HexFormat{} builder.

If you are working with ByteArrays you have the following options, which are configurable by properties:

Option Description

upperCase Whether hexadecimal digits are upper or lower case. By default, lower case is assumed. upperCase = false.

bytes.bytesPerLine The maximum number of bytes per line.

bytes.bytesPerGroup The maximum number of bytes per group.

bytes.bytesSeparator The separator between bytes. Nothing by default.

bytes.bytesPrefix The string that immediately precedes a two-digit hexadecimal representation of each byte, nothing by default.

bytes.bytesSuffix The string that immediately succeeds a two-digit hexadecimal representation of each byte, nothing by default.

For example:

val	macAddress	=	"001b638445e6".hexToByteArray()

//	Use	HexFormat{}	builder	to	separate	the	hexadecimal	string	by	colons
println(macAddress.toHexString(HexFormat	{	bytes.byteSeparator	=	":"	}))
//	"00:1b:63:84:45:e6"

//	Use	HexFormat{}	builder	to:
//	*	Make	the	hexadecimal	string	uppercase
//	*	Group	the	bytes	in	pairs
//	*	Separate	by	periods
val	threeGroupFormat	=	HexFormat	{	upperCase	=	true;	bytes.bytesPerGroup	=	2;	bytes.groupSeparator	=	"."	}

println(macAddress.toHexString(threeGroupFormat))
//	"001B.6384.45E6"

If you are working with numeric types, you have the following options, which are configurable by properties:

The new HexFormat class and its related extension functions are Experimental, and to use them, you can opt in with @OptIn(ExperimentalStdlibApi::class)
or the compiler argument -opt-in=kotlin.ExperimentalStdlibApi.

140

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-hexformat/

Option Description

number.prefix The prefix of a hexadecimal string, nothing by default.

number.suffix The suffix of a hexadecimal string, nothing by default.

number.removeLeadingZeros Whether to remove leading zeros in a hexadecimal string. By default, no leading zeros are removed. number.removeLeadingZeros
= false

For example:

//	Use	HexFormat{}	builder	to	parse	a	hexadecimal	that	has	prefix:	"0x".
println("0x3a".hexToInt(HexFormat	{	number.prefix	=	"0x"	}))	//	"58"

Documentation
updates
The Kotlin documentation has received some notable changes:

The tour of Kotlin – Learn the fundamentals of the Kotlin programming language with chapters including both theory and practice.

Android source set layout – Learn about the new Android source set layout.

Compatibility guide for Kotlin Multiplatform – Learn about the incompatible changes you might encounter while developing projects with Kotlin Multiplatform.

Kotlin Wasm – Learn about Kotlin/Wasm and how you can use it in your Kotlin Multiplatform projects.

Add dependencies on Kotlin libraries to Kotlin/Wasm project – Learn about the supported Kotlin libraries for Kotlin/Wasm.

Install
Kotlin
1.9.0

Check
the
IDE
version
IntelliJ IDEA 2022.3.3 and 2023.1.1 automatically suggest updating the Kotlin plugin to version 1.9.0. IntelliJ IDEA 2023.2 will include the Kotlin 1.9.0 plugin.

Android Studio Giraffe (223) and Hedgehog (231) will support Kotlin 1.9.0 in their upcoming releases.

The new command-line compiler is available for download on the GitHub release page.

Configure
Gradle
settings
To download Kotlin artifacts and dependencies, update your settings.gradle(.kts) file to use the Maven Central repository:

pluginManagement	{
				repositories	{
								mavenCentral()
								gradlePluginPortal()
				}
}

If the repository is not specified, Gradle uses the sunset JCenter repository, which could lead to issues with Kotlin artifacts.

Compatibility
guide
for
Kotlin
1.9.0
Kotlin 1.9.0 is a feature release and can, therefore, bring changes that are incompatible with your code written for earlier versions of the language. Find the detailed
list of these changes in the Compatibility guide for Kotlin 1.9.0.

141

https://www.jetbrains.com/idea/download/
https://github.com/JetBrains/kotlin/releases/tag/v1.9.0

What's
new
in
Kotlin
1.9.20-RC2
Released: October 24, 2023

The Kotlin 1.9.20-RC2 release is out! Here are some highlights from this preview version:

Preview kapt compiler plugin with K2

New default hierarchy template for setting up multiplatform projects

Full support for the Gradle Configuration cache in Kotlin Multiplatform

Custom memory allocator enabled by default in Kotlin/Native

Performance improvements for the garbage collector in Kotlin/Native

Support for Xcode 15 in Kotlin/Native

New and renamed targets in Kotlin/Wasm

Support for the WASI API in the standard library for Kotlin/Wasm

IDE
support
The Kotlin plugins that support 1.9.20-RC2 are available for:

IDE Supported versions

IntelliJ IDEA 2023.1.x, 2023.2.x

Android Studio Hedgehog (2023.1.1 Beta 3), Iguana (2023.2.1 Canary 2)

New
Kotlin
K2
compiler
updates

Support
for
Kotlin/Wasm
Since this release, the Kotlin/Wasm supports the new K2 compiler.
Learn how to enable it in your project.

Preview
kapt
compiler
plugin
with
K2

In 1.9.20-RC, you can try using the kapt compiler plugin with the K2 compiler. To use the K2 compiler in your project, add the following options to your
gradle.properties file:

kotlin.experimental.tryK2=true
kapt.use.k2=true

This document doesn't cover all of the features of the Early Access Preview (EAP) release, but it highlights the latest ones and some major improvements.

See the full list of changes in the GitHub changelog.

Support for K2 in the kapt compiler plugin is Experimental. Opt-in is required (see details below), and you should use it only for evaluation purposes.

142

https://github.com/JetBrains/kotlin/releases/tag/v1.9.20-RC2

Alternatively, you can enable K2 for kapt by completing the following steps:

1. In your build.gradle.kts file, set the language version to 2.0.

2. In your gradle.properties file, add kapt.use.k2=true.

If you encounter any issues when using kapt with the K2 compiler, please report them to our issue tracker.

How
to
enable
the
Kotlin
K2
compiler
To enable and test the Kotlin K2 compiler, use the new language version with the following compiler option:

-language-version	2.0

You can specify it in your build.gradle.kts file:

kotlin	{
			sourceSets.all	{
							languageSettings	{
											languageVersion	=	"2.0"
							}
			}
}

Leave
your
feedback
on
the
new
K2
compiler
We would appreciate any feedback you may have!

Provide your feedback directly to K2 developers on Kotlin Slack – get an invite and join the #k2-early-adopters channel.

Report any problems you faced with the new K2 compiler on our issue tracker.

Enable the Send usage statistics option to allow JetBrains to collect anonymous data about K2 usage.

Kotlin
Multiplatform
Template for configuring multiplatform projects

Full support for the Gradle Configuration cache

Template
for
configuring
multiplatform
projects
Starting with Kotlin 1.9.20-RC2, the Kotlin Gradle plugin automatically creates shared source sets for popular multiplatform scenarios. If your project setup is one of
them, you don't need to configure the source set hierarchy manually. Just explicitly specify the targets necessary for your project.

Setup is now easier thanks to the default hierarchy template, a new feature of the Kotlin Gradle plugin. It's a predefined template of a source set hierarchy built into
the plugin. It includes intermediate source sets that Kotlin automatically creates for the targets you declared. See the full template.

Create your project easier
Consider a multiplatform project that targets both Android and iPhone devices and is developed on an Apple silicon MacBook. Compare how this project is set up
between different versions of Kotlin:

Kotlin 1.9.0 and earlier (a standard setup) Kotlin 1.9.20-RC2

143

http://kotl.in/issue
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up?_gl=1*ju6cbn*_ga*MTA3MTk5NDkzMC4xNjQ2MDY3MDU4*_ga_9J976DJZ68*MTY1ODMzNzA3OS4xMDAuMS4xNjU4MzQwODEwLjYw
https://kotlinlang.slack.com/archives/C03PK0PE257
https://kotl.in/issue
https://www.jetbrains.com/help/idea/settings-usage-statistics.html

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								val	commonMain	by	getting

								val	iosMain	by	creating	{
												dependsOn(commonMain)
								}

								val	iosArm64Main	by	getting	{
												dependsOn(iosMain)
								}

								val	iosSimulatorArm64Main	by	getting	
{
												dependsOn(iosMain)
								}
				}
}

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()
			
				//	The	iosMain	source	set	is	created	automatically
}

Kotlin 1.9.0 and earlier (a standard setup) Kotlin 1.9.20-RC2

Notice how the use of the default hierarchy template considerably reduces the amount of boilerplate code needed to set up your project.

When you declare the androidTarget, iosArm64, and iosSimulatorArm64 targets in your code, the Kotlin Gradle plugin finds suitable shared source sets from the
template and creates them for you. The resulting hierarchy looks like this:

An example of the default target hierarchy in use

Green source sets are actually created and included in the project, while gray ones from the default template are ignored.

Enjoy improved tooling support
To make it easier to work with the created project structure, IntelliJ IDEA now provides completion for source sets created with the default hierarchy template:

144

Watch animation online.

The IDE also warns you if you attempt to access a source set that doesn't exist because you haven't declared the respective target. In the example below, there is
no JVM target (only androidTarget, which is not the same). But let's try to use the jvmMain source set and see what happens:

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								jvmMain	{
								}
				}
}

In this case, Kotlin reports a warning in the build log:

w:	Accessed	'source	set	jvmMain'	without	registering	the	jvm	target:
		kotlin	{
						jvm()	/*	<-	register	the	'jvm'	target	*/

						sourceSets.jvmMain.dependencies	{

						}
		}

Set up the target hierarchy
Starting with Kotlin 1.9.20-RC2, the default hierarchy template is automatically enabled. In most cases, no additional setup is required.

However, if you're migrating existing projects created before 1.9.20, you might encounter a warning if you had previously introduced intermediate sources manually
with dependsOn() calls. To solve this issue, do the following:

If your intermediate source sets are currently covered by the default hierarchy template, remove all manual dependsOn() calls and source sets created with by
creating constructions.

To check the list of all default source sets, see the full hierarchy template.

If you want to have additional source sets that the default hierarchy template doesn't provide, for example between JS and the JVM, adjust the hierarchy by
reapplying the template explicitly with applyDefaultHierarchyTemplate() and configuring additional source sets manually as usual with dependsOn():

IDE
completion
for
source
set
names

145

file:///Users/Sarah.Haggarty/kotlin-web-site/dist/docs/images/multiplatform-hierarchy-completion.animated.gif

kotlin	{
				jvm()
				js	{	browser()	}
				iosArm64()
				iosSimulatorArm64()

				//	Apply	the	default	hierarchy	explicitly.	It'll	create,	for	example,	the	iosMain	source	set:
				applyDefaultHierarchyTemplate()

				sourceSets	{
								//	Create	an	additional	jsAndJvmMain	source	set
								val	jsAndJvmMain	by	creating	{
												dependsOn(commonMain.get())
				}

								jsMain.get().dependsOn(jsAndJvmMain)
								jvmMain.get().dependsOn(jsAndJvmMain)
				}
}

If there are already source sets in your project that have the exact same names as those generated by the template but that are shared among different sets of
targets, there's currently no way to modify the default dependsOn relations between the template's source sets.

One option you have here is to find different source sets for your purposes, either in the default hierarchy template or ones that have been manually created.
Another is to opt out of the template completely.

To opt out, add kotlin.mpp.applyDefaultHierarchyTemplate=false to your gradle.properties and configure all other source sets manually.

We're currently working on an API for creating your own hierarchy templates to simplify the setup process in such cases.

See the full hierarchy template
When you declare the targets to which your project compiles, the plugin picks the shared source sets from the template accordingly and creates them in your
project.

146

Default hierarchy template

Full
support
for
the
Gradle
configuration
cache
in
Kotlin
Multiplatform
Previously, we introduced a preview of the Gradle configuration cache, which was available for Kotlin multiplatform libraries. With 1.9.20-RC2, the Kotlin
Multiplatform plugin takes a step further.

It now supports the Gradle configuration cache in the Kotlin CocoaPods Gradle plugin, as well as in the integration tasks that are necessary for Xcode builds, like
embedAndSignAppleFrameworkForXcode.

Now all multiplatform projects can take advantage of the improved build time. The Gradle configuration cache speeds up the build process by reusing the results of
the configuration phase for subsequent builds. For more details and setup instructions, see the Gradle documentation.

Kotlin/Native
Custom memory allocator enabled by default

This example only shows the production part of the project, omitting the Main suffix (for example, using common instead of commonMain). However,
everything is the same for *Test sources as well.

147

https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:usage

Performance improvements for garbage collector

Incremental compilation of klib artifacts

Custom
memory
allocator
enabled
by
default
Kotlin 1.9.20-RC2 comes with the new memory allocator enabled by default. It's designed to replace the previous default allocator, mimaloc, to make garbage
collection more efficient and improve the runtime performance of the Kotlin/Native memory manager.

The new custom allocator divides system memory into pages, allowing independent sweeping in consecutive order. Each allocation becomes a memory block
within a page, and the page keeps track of block sizes. Different page types are optimized for various allocation sizes. The consecutive arrangement of memory
blocks ensures efficient iteration through all allocated blocks.

When a thread allocates memory, it searches for a suitable page based on the allocation size. Threads maintain a set of pages for different size categories.
Typically, the current page for a given size can accommodate the allocation. If not, the thread requests a different page from the shared allocation space. This page
may already be available, require sweeping, or have to be created first.

The new allocator allows for multiple independent allocation spaces simultaneously, which will enable the Kotlin team to experiment with different page layouts to
improve performance even further.

How to enable the custom memory allocator
Starting with Kotlin 1.9.20-RC2, the new memory allocator is the default. No additional setup is required.

If you experience high memory consumption, you can switch back to mimaloc or the system allocator with -Xallocator=mimalloc or -Xallocator=std in your Gradle
build script. Please report such issues in YouTrack to help us improve the new memory allocator.

For the technical details of the new allocator's design, see this README.

Performance
improvements
for
the
garbage
collector
The Kotlin team continues to improve the performance and stability of the new Kotlin/Native memory manager. This release brings a number of significant changes
to the garbage collector (GC), including the following 1.9.20-RC2 highlights:

Full parallel mark to reduce the pause time for the GC

Tracking memory in big chunks to improve the allocation performance

Full parallel mark to reduce the pause time for the GC
Previously, the default garbage collector performed only a partial parallel mark. When the mutator thread was paused, it would mark the GC's start from its own
roots, like thread-local variables and the call stack. Meanwhile, a separate GC thread was responsible for marking the start from global roots, as well as the roots of
all mutators that were actively running the native code and therefore not paused.

This approach worked well in cases where there were a limited number of global objects and the mutator threads spent a considerable amount of time in a runnable
state executing Kotlin code. However, this is not the case for typical iOS applications.

Now the GC uses a full parallel mark that combines paused mutators, the GC thread, and optional marker threads to process the mark queue. By default, the
marking process is performed by:

Paused mutators. Instead of processing their own roots and then being idle while not actively executing code, they contribute to the whole marking process.

The GC thread. This ensures that at least one thread will perform marking.

This new approach makes the marking process more efficient, reducing the pause time of the GC.

Tracking memory in big chunks to improve the allocation performance
Previously, the GC scheduler tracked the allocation of each object individually. However, neither the new default custom allocator nor the mimalloc memory
allocator allocates separate storage for each object; they allocate large areas for several objects at once.

In Kotlin 1.9.20-RC2, the GC tracks areas instead of individual objects. This speeds up the allocation of small objects by reducing the number of tasks performed
on each allocation and, therefore, helps to minimize the garbage collector's memory usage.

Incremental
compilation
of
klib
artifacts

148

https://kotl.in/issue
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/runtime/src/alloc/custom/README.md

Kotlin 1.9.20-RC2 introduces a new compilation time optimization for Kotlin/Native. The compilation of klib artifacts into native code is now partially incremental.

When compiling Kotlin source code into native binary in debug mode, the compilation goes through two stages:

1. Source code is compiled into klib artifacts.

2. klib artifacts, along with dependencies, are compiled into a binary.

To optimize the compilation time in the second stage, the team has already implemented compiler caches for dependencies. They are compiled into native code
only once, and the result is reused every time a binary is compiled. But klib artifacts built from project sources were always fully recompiled into native code at every
project change.

With new incremental compilation, if the project module change causes only a partial recompilation of source code into klib artifacts, just a part of the klib is further
recompiled into a binary.

To enable incremental compilation, add the following option to your gradle.properties file:

kotlin.incremental.native=true

If you face any issues, report such cases to YouTrack.

Support
for
Xcode
15
Kotlin/Native 1.9.20-RC2 supports Xcode 15.0 – the latest version of Xcode. As part of this, platform libraries have been updated to reflect the changes to
Objective-C frameworks for Apple targets. Feel free to update your Xcode and continue working on your Kotlin projects for Apple operating systems.

Kotlin/Wasm
New wasm-wasi target, and the renaming of the wasm target to wasm-js

Support for the WASI API in standard library

New
wasm-wasi
target,
and
the
renaming
of
the
wasm
target
to
wasm-js
In this release, we're introducing a new target for Kotlin/Wasm – wasm-wasi. We're also renaming the wasm target to wasm-js. In the Gradle DSL, these targets are
available as wasmWasi {} and wasmJs {}, respectively.

To use these targets in your project, update the build.gradle.kts file:

kotlin	{
			wasmWasi	{
						//	...
			}
			wasmJs	{
						//	...
			}
}

The previously introduced wasm {} block has been deprecated in favor of wasmJs {}.

To migrate your existing Kotlin/Wasm project, do the following:

In the build.gradle.kts file, rename the wasm {} block to wasmJs {}.

In your project structure, rename the wasmMain directory to wasmJsMain.

This feature is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

Kotlin Wasm is Experimental. It may be changed at any time. Use it only for evaluation purposes.

We would appreciate your feedback on it in YouTrack.

149

https://kotl.in/issue
https://kotl.in/issue
https://kotl.in/issue

Support
for
the
WASI
API
in
the
standard
library
In this release, we have included support for WASI, a system interface for the Wasm platform. WASI support makes it easier for you to use Kotlin/Wasm outside of
browsers, for example in server-side applications, by offering a standardized set of APIs for accessing system resources. In addition, WASI provides capability-
based security – another layer of security when accessing external resources.

To run Kotlin/Wasm applications, you need a VM that supports Wasm Garbage Collection (GC), for example, Node.js or Deno. Wasmtime, WasmEdge, and others
are still working towards full Wasm GC support.

To import a WASI function, use the @WasmImport annotation:

import	kotlin.wasm.WasmImport

@WasmImport("wasi_snapshot_preview1",	"clock_time_get")
private	external	fun	wasiRawClockTimeGet(clockId:	Int,	precision:	Long,	resultPtr:	Int):	Int

You can find a full example in our GitHub repository.

How
to
update
to
Kotlin
1.9.20-RC2
Install Kotlin 1.9.20-RC2 in any of the following ways:

If you use the Early Access Preview update channel, the IDE will suggest automatically updating to 1.9.20-RC2 as soon as it becomes available.

If you use the Stable update channel, you can change the channel to Early Access Preview at any time by selecting Tools | Kotlin | Configure Kotlin Plugin
Updates in your IDE. You'll then be able to install the latest preview release. Check out these instructions for details.

Once you've installed 1.9.20-RC2 don't forget to change the Kotlin version to 1.9.20-RC2 in your build scripts.

What's
new
in
Kotlin
1.8.20
Released: 25 April 2023

The Kotlin 1.8.20 release is out and here are some of its biggest highlights:

New Kotlin K2 compiler updates

New experimental Kotlin/Wasm target

New JVM incremental compilation by default in Gradle

Update for Kotlin/Native targets

Preview of Gradle composite builds in Kotlin Multiplatform

Improved output for Gradle errors in Xcode

Experimental support for the AutoCloseable interface in the standard library

Experimental support for Base64 encoding in the standard library

You can also find a short overview of the changes in this video:

It isn't possible to use interoperability with JavaScript, while targeting wasmWasi.

150

https://github.com/WebAssembly/WASI
https://github.com/Kotlin/kotlin-wasm-examples/tree/main/wasi-example

Watch video online.

IDE
support
The Kotlin plugins that support 1.8.20 are available for:

IDE Supported versions

IntelliJ IDEA 2022.2.x, 2022.3.x, 2023.1.x

Android Studio Flamingo (222)

New
Kotlin
K2
compiler
updates
The Kotlin team continues to stabilize the K2 compiler. As mentioned in the Kotlin 1.7.0 announcement, it's still in Alpha. This release introduces further
improvements on the road to K2 Beta.

Starting with this 1.8.20 release, the Kotlin K2 compiler:

Has a preview version of the serialization plugin.

Provides Alpha support for the JS IR compiler.

Introduces the future release of the new language version, Kotlin 2.0.

Learn more about the new compiler and its benefits in the following videos:

What Everyone Must Know About The NEW Kotlin K2 Compiler

The New Kotlin K2 Compiler: Expert Review

How
to
enable
the
Kotlin
K2
compiler
To enable and test the Kotlin K2 compiler, use the new language version with the following compiler option:

-language-version	2.0

Gif

To download Kotlin artifacts and dependencies properly, configure Gradle settings to use the Maven Central repository.

151

https://youtube.com/v/R1JpkpPzyBU
https://youtrack.jetbrains.com/issue/KT-52604
https://blog.jetbrains.com/kotlin/2023/02/k2-kotlin-2-0/
https://www.youtube.com/watch?v=iTdJJq_LyoY
https://www.youtube.com/watch?v=db19VFLZqJM

You can specify it in your build.gradle(.kts) file:

kotlin	{
			sourceSets.all	{
							languageSettings	{
											languageVersion	=	"2.0"
							}
			}
}

The previous -Xuse-k2 compiler option has been deprecated.

Leave
your
feedback
on
the
new
K2
compiler
We would appreciate any feedback you may have!

Provide your feedback directly to K2 developers on Kotlin Slack – get an invite and join the #k2-early-adopters channel.

Report any problems you faced with the new K2 compiler on our issue tracker.

Enable the Send usage statistics option to allow JetBrains to collect anonymous data about K2 usage.

Language
As Kotlin continues to evolve, we're introducing preview versions for new language features in 1.8.20:

A modern and performant replacement of the Enum class values function

Data objects for symmetry with data classes

Lifting restrictions on secondary constructors with bodies in inline classes

A
modern
and
performant
replacement
of
the
Enum
class
values
function

Enum classes have a synthetic values() function, which returns an array of defined enum constants. However, using an array can lead to hidden performance issues
in Kotlin and Java. In addition, most of the APIs use collections, which require eventual conversion. To fix these problems, we've introduced the entries property for
Enum classes, which should be used instead of the values() function. When called, the entries property returns a pre-allocated immutable list of defined enum
constants.

enum	class	Color(val	colorName:	String,	val	rgb:	String)	{
			RED("Red",	"#FF0000"),
			ORANGE("Orange",	"#FF7F00"),
			YELLOW("Yellow",	"#FFFF00")
}

@OptIn(ExperimentalStdlibApi::class)
fun	findByRgb(rgb:	String):	Color?	=	Color.entries.find	{	it.rgb	==	rgb	}

How to enable the entries property

The Alpha version of the new K2 compiler only works with JVM and JS IR projects. It doesn't support Kotlin/Native or any of the multiplatform projects
yet.

This feature is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

The values() function is still supported, but we recommend that you use the entries property instead.

152

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up?_gl=1*ju6cbn*_ga*MTA3MTk5NDkzMC4xNjQ2MDY3MDU4*_ga_9J976DJZ68*MTY1ODMzNzA3OS4xMDAuMS4xNjU4MzQwODEwLjYw
https://kotlinlang.slack.com/archives/C03PK0PE257
https://kotl.in/issue
https://www.jetbrains.com/help/idea/settings-usage-statistics.html
https://kotl.in/issue
https://github.com/Kotlin/KEEP/blob/master/proposals/enum-entries.md#examples-of-performance-issues

To try this feature out, opt in with @OptIn(ExperimentalStdlibApi) and enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by
adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=
														org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
}

For more information on the proposal, see the KEEP note.

Preview
of
data
objects
for
symmetry
with
data
classes
Data objects allow you to declare objects with singleton semantics and a clean toString() representation. In this snippet, you can see how adding the data keyword
to an object declaration improves the readability of its toString() output:

package	org.example
object	MyObject
data	object	MyDataObject

fun	main()	{
				println(MyObject)	//	org.example.MyObject@1f32e575
				println(MyDataObject)	//	MyDataObject
}

Especially for sealed hierarchies (like a sealed class or sealed interface hierarchy), data objects are an excellent fit because they can be used conveniently
alongside data class declarations. In this snippet, declaring EndOfFile as a data object instead of a plain object means that it will get a pretty toString without the
need to override it manually. This maintains symmetry with the accompanying data class definitions.

sealed	interface	ReadResult
data	class	Number(val	number:	Int)	:	ReadResult
data	class	Text(val	text:	String)	:	ReadResult
data	object	EndOfFile	:	ReadResult

fun	main()	{
				println(Number(7))	//	Number(number=7)
				println(EndOfFile)	//	EndOfFile
}

Semantics of data objects
Since their first preview version in Kotlin 1.7.20, the semantics of data objects have been refined. The compiler now automatically generates a number of
convenience functions for them:

toString
The toString() function of a data object returns the simple name of the object:

Starting with IntelliJ IDEA 2023.1, if you have opted in to this feature, the appropriate IDE inspection will notify you about converting from values() to
entries and offer a quick-fix.

153

https://github.com/Kotlin/KEEP/blob/master/proposals/enum-entries.md

data	object	MyDataObject	{
				val	x:	Int	=	3
}

fun	main()	{
				println(MyDataObject)	//	MyDataObject
}

equals and hashCode
The equals() function for a data object ensures that all objects that have the type of your data object are considered equal. In most cases, you will only have a single
instance of your data object at runtime (after all, a data object declares a singleton). However, in the edge case where another object of the same type is generated
at runtime (for example, via platform reflection through java.lang.reflect, or by using a JVM serialization library that uses this API under the hood), this ensures that
the objects are treated as equal.

Make sure to only compare data objects structurally (using the == operator) and never by reference (the === operator). This helps avoid pitfalls when more than one
instance of a data object exists at runtime. The following snippet illustrates this specific edge case:

import	java.lang.reflect.Constructor

data	object	MySingleton

fun	main()	{
				val	evilTwin	=	createInstanceViaReflection()

				println(MySingleton)	//	MySingleton
				println(evilTwin)	//	MySingleton

				//	Even	when	a	library	forcefully	creates	a	second	instance	of	MySingleton,	its	`equals`	method	returns	true:
				println(MySingleton	==	evilTwin)	//	true

				//	Do	not	compare	data	objects	via	===.
				println(MySingleton	===	evilTwin)	//	false
}

fun	createInstanceViaReflection():	MySingleton	{
				//	Kotlin	reflection	does	not	permit	the	instantiation	of	data	objects.
				//	This	creates	a	new	MySingleton	instance	"by	force"	(i.e.,	Java	platform	reflection)
				//	Don't	do	this	yourself!
				return	(MySingleton.javaClass.declaredConstructors[0].apply	{	isAccessible	=	true	}	as	Constructor<MySingleton>).newInstance()
}

The behavior of the generated hashCode() function is consistent with that of the equals() function, so that all runtime instances of a data object have the same hash
code.

No copy and componentN functions for data objects
While data object and data class declarations are often used together and have some similarities, there are some functions that are not generated for a data object:

Because a data object declaration is intended to be used as a singleton object, no copy() function is generated. The singleton pattern restricts the instantiation of a
class to a single instance, and allowing copies of the instance to be created would violate that restriction.

Also, unlike a data class, a data object does not have any data properties. Since attempting to destructure such an object would not make sense, no componentN()
functions are generated.

We would appreciate your feedback on this feature in YouTrack.

How to enable the data objects preview
To try this feature out, enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9

154

https://youtrack.jetbrains.com/issue/KT-4107

)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=
														org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
}

Preview
of
lifting
restriction
on
secondary
constructors
with
bodies
in
inline
classes

Kotlin 1.8.20 lifts restrictions on the use of secondary constructors with bodies in inline classes.

Inline classes used to allow only a public primary constructor without init blocks or secondary constructors to have clear initialization semantics. As a result, it was
impossible to encapsulate underlying values or create an inline class that would represent some constrained values.

These issues were fixed when Kotlin 1.4.30 lifted restrictions on init blocks. Now we're taking it a step further and allowing secondary constructors with bodies in
preview mode:

@JvmInline
value	class	Person(private	val	fullName:	String)	{
//	Allowed	since	Kotlin	1.4.30:
				init	{	
								check(fullName.isNotBlank())	{
												"Full	name	shouldn't	be	empty"
								}
				}
//	Preview	available	since	Kotlin	1.8.20:
				constructor(name:	String,	lastName:	String)	:	this("$name	$lastName")	{
								check(lastName.isNotBlank())	{
												"Last	name	shouldn't	be	empty"
								}
				}
}

How to enable secondary constructors with bodies
To try this feature out, enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=
														org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
}

This feature is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

155

https://kotl.in/issue

We encourage you to try this feature out and submit all reports in YouTrack to help us make it the default in Kotlin 1.9.0.

Learn more about the development of Kotlin inline classes in this KEEP.

New
Kotlin/Wasm
target
Kotlin/Wasm (Kotlin WebAssembly) goes Experimental in this preview release. The Kotlin team finds WebAssembly to be a promising technology and wants to find
better ways for you to use it and get all of the benefits of Kotlin.

WebAssembly binary format is independent of the platform because it runs using its own virtual machine. Almost all modern browsers already support
WebAssembly 1.0. To set up the environment to run WebAssembly, you only need to enable an experimental garbage collection mode that Kotlin/Wasm targets.
You can find detailed instructions here: How to enable Kotlin/Wasm.

We want to highlight the following advantages of the new Kotlin/Wasm target:

Faster compilation speed compared to the wasm32 Kotlin/Native target, since Kotlin/Wasm doesn't have to use LLVM.

Easier interoperability with JS and integration with browsers compared to the wasm32 target, thanks to the Wasm garbage collection.

Potentially faster application startup compared to Kotlin/JS and JavaScript because Wasm has a compact and easy-to-parse bytecode.

Improved application runtime performance compared to Kotlin/JS and JavaScript because Wasm is a statically typed language.

Starting with the 1.8.20-RC2 preview release, you can use Kotlin/Wasm in your experimental projects. We provide the Kotlin standard library (stdlib) and test library
(kotlin.test) for Kotlin/Wasm out of the box. IDE support will be added in future releases.

Learn more about Kotlin/Wasm in this YouTube video.

How
to
enable
Kotlin/Wasm
To enable and test Kotlin/Wasm, update your build.gradle.kts file:

plugins	{
				kotlin("multiplatform")	version	"1.8.20-RC2"
}

kotlin	{
				wasm	{
								binaries.executable()
								browser	{
								}
				}
				sourceSets	{
								val	commonMain	by	getting
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))
												}
								}
								val	wasmMain	by	getting
								val	wasmTest	by	getting
				}
}

To run a Kotlin/Wasm project, you need to update the settings of the target environment:

Chrome

For version 109:

Run the application with the --js-flags=--experimental-wasm-gc command line argument.

For version 110 or later:

1. Go to chrome://flags/#enable-webassembly-garbage-collection in your browser.

2. Enable WebAssembly Garbage Collection.

Check out the GitHub repository with Kotlin/Wasm examples.

156

https://kotl.in/issue
https://github.com/Kotlin/KEEP/blob/master/proposals/inline-classes.md
https://webassembly.org/
https://github.com/WebAssembly/gc
https://www.youtube.com/watch?v=-pqz9sKXatw
https://github.com/Kotlin/kotlin-wasm-examples

3. Relaunch your browser.

Firefox

For version 109 or later:

1. Go to about:config in your browser.

2. Enable javascript.options.wasm_function_references and javascript.options.wasm_gc options.

3. Relaunch your browser.

Edge

For version 109 or later:

Run the application with the --js-flags=--experimental-wasm-gc command line argument.

Leave
your
feedback
on
Kotlin/Wasm
We would appreciate any feedback you may have!

Provide your feedback directly to developers in Kotlin Slack – get an invite and join the #webassembly channel.

Report any problems you faced with Kotlin/Wasm on this YouTrack issue.

Kotlin/JVM
Kotlin 1.8.20 introduces a preview of Java synthetic property references and support for the JVM IR backend in the kapt stub generating task by default.

Preview
of
Java
synthetic
property
references

Kotlin 1.8.20 introduces the ability to create references to Java synthetic properties, for example, for such Java code:

public	class	Person	{
				private	String	name;
				private	int	age;

				public	Person(String	name,	int	age)	{
								this.name	=	name;
								this.age	=	age;
				}

				public	String	getName()	{
								return	name;
				}

				public	int	getAge()	{
								return	age;
				}
}

Kotlin has always allowed you to write person.age, where age is a synthetic property. Now, you can also create references to Person::age and person::age. All the
same works for name, as well.

val	persons	=	listOf(Person("Jack",	11),	Person("Sofie",	12),	Person("Peter",	11))
				Persons
								//	Call	a	reference	to	Java	synthetic	property:
								.sortedBy(Person::age)
								//	Call	Java	getter	via	the	Kotlin	property	syntax:
								.forEach	{	person	->	println(person.name)	}
}

This feature is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate your feedback on it in
YouTrack.

157

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up?_gl=1*ju6cbn*_ga*MTA3MTk5NDkzMC4xNjQ2MDY3MDU4*_ga_9J976DJZ68*MTY1ODMzNzA3OS4xMDAuMS4xNjU4MzQwODEwLjYw
https://kotlinlang.slack.com/archives/CDFP59223
https://youtrack.jetbrains.com/issue/KT-56492
https://kotl.in/issue

How to enable Java synthetic property references
To try this feature out, enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=
													org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
}

Support
for
the
JVM
IR
backend
in
kapt
stub
generating
task
by
default
In Kotlin 1.7.20, we introduced support for the JVM IR backend in the kapt stub generating task. Starting with this release, this support works by default. You no
longer need to specify kapt.use.jvm.ir=true in your gradle.properties to enable it. We would appreciate your feedback on this feature in YouTrack.

Kotlin/Native
Kotlin 1.8.20 includes changes to supported Kotlin/Native targets, interoperability with Objective-C, and improvements to the CocoaPods Gradle plugin, among
other updates:

Update for Kotlin/Native targets

Deprecation of the legacy memory manager

Support for Objective-C headers with @import directives

Support for link-only mode in the Cocoapods Gradle plugin

Import Objective-C extensions as class members in UIKit

Reimplementation of compiler cache management in the compiler

Deprecation of useLibraries() in Cocoapods Gradle plugin

Update
for
Kotlin/Native
targets
The Kotlin team decided to revisit the list of targets supported by Kotlin/Native, split them into tiers, and deprecate some of them starting with Kotlin 1.8.20. See the
Kotlin/Native target support section for the full list of supported and deprecated targets.

The following targets have been deprecated with Kotlin 1.8.20 and will be removed in 1.9.20:

iosArm32

watchosX86

wasm32

mingwX86

linuxArm32Hfp

linuxMips32

158

https://youtrack.jetbrains.com/issue/KT-49682

linuxMipsel32

As for the remaining targets, there are now three tiers of support depending on how well a target is supported and tested in the Kotlin/Native compiler. A target can
be moved to a different tier. For example, we'll do our best to provide full support for iosArm64 in the future, as it is important for Kotlin Multiplatform.

If you're a library author, these target tiers can help you decide which targets to test on CI tools and which ones to skip. The Kotlin team will use the same approach
when developing official Kotlin libraries, like kotlinx.coroutines.

Check out our blog post to learn more about the reasons for these changes.

Deprecation
of
the
legacy
memory
manager
Starting with 1.8.20, the legacy memory manager is deprecated and will be removed in 1.9.20. The new memory manager was enabled by default in 1.7.20 and has
been receiving further stability updates and performance improvements.

If you're still using the legacy memory manager, remove the kotlin.native.binary.memoryModel=strict option from your gradle.properties and follow our Migration
guide to make the necessary changes.

The new memory manager doesn't support the wasm32 target. This target is also deprecated starting with this release and will be removed in 1.9.20.

Support
for
Objective-C
headers
with
@import
directives

Kotlin/Native can now import Objective-C headers with @import directives. This feature is useful for consuming Swift libraries that have auto-generated Objective-C
headers or classes of CocoaPods dependencies written in Swift.

Previously, the cinterop tool failed to analyze headers that depended on Objective-C modules via the @import directive. The reason was that it lacked support for
the -fmodules option.

Starting with Kotlin 1.8.20, you can use Objective-C headers with @import. To do so, pass the -fmodules option to the compiler in the definition file as
compilerOpts. If you use CocoaPods integration, specify the cinterop option in the configuration block of the pod() function like this:

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								pod("PodName")	{
												extraOpts	=	listOf("-compiler-option",	"-fmodules")
								}
				}
}

This was a highly awaited feature, and we welcome your feedback about it in YouTrack to help us make it the default in future releases.

Support
for
the
link-only
mode
in
Cocoapods
Gradle
plugin
With Kotlin 1.8.20, you can use Pod dependencies with dynamic frameworks only for linking, without generating cinterop bindings. This may come in handy when
cinterop bindings are already generated.

Consider a project with 2 modules, a library and an app. The library depends on a Pod but doesn't produce a framework, only a .klib. The app depends on the
library and produces a dynamic framework. In this case, you need to link this framework with the Pods that the library depends on, but you don't need cinterop
bindings because they are already generated for the library.

To enable the feature, use the linkOnly option or a builder property when adding a dependency on a Pod:

cocoapods	{
				summary	=	"CocoaPods	test	library"
				homepage	=	"https://github.com/JetBrains/kotlin"

This feature is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

159

https://blog.jetbrains.com/kotlin/2023/02/update-regarding-kotlin-native-targets/
https://kotl.in/issue
https://youtrack.jetbrains.com/issue/KT-39120
https://kotl.in/issue

			
				pod("Alamofire",	linkOnly	=	true)	{
								version	=	"5.7.0"
				}
}

Import
Objective-C
extensions
as
class
members
in
UIKit
Since Xcode 14.1, some methods from Objective-C classes have been moved to category members. That led to the generation of a different Kotlin API, and these
methods were imported as Kotlin extensions instead of methods.

You may have experienced issues resulting from this when overriding methods using UIKit. For example, it became impossible to override drawRect() or
layoutSubviews() methods when subclassing a UIVIew in Kotlin.

Since 1.8.20, category members that are declared in the same headers as NSView and UIView classes are imported as members of these classes. This means that
the methods subclassing from NSView and UIView can be easily overridden, like any other method.

If everything goes well, we're planning to enable this behavior by default for all of the Objective-C classes.

Reimplementation
of
compiler
cache
management
in
the
compiler
To speed up the evolution of compiler caches, we've moved compiler cache management from the Kotlin Gradle plugin to the Kotlin/Native compiler. This unblocks
work on several important improvements, including those to do with compilation times and compiler cache flexibility.

If you encounter some problem and need to return to the old behavior, use the kotlin.native.cacheOrchestration=gradle Gradle property.

We would appreciate your feedback on this in YouTrack.

Deprecation
of
useLibraries()
in
Cocoapods
Gradle
plugin
Kotlin 1.8.20 starts the deprecation cycle of the useLibraries() function used in the CocoaPods integration for static libraries.

We introduced the useLibraries() function to allow dependencies on Pods containing static libraries. With time, this case has become very rare. Most of the Pods
are distributed by sources, and Objective-C frameworks or XCFrameworks are a common choice for binary distribution.

Since this function is unpopular and it creates issues that complicate the development of the Kotlin CocoaPods Gradle plugin, we've decided to deprecate it.

For more information on frameworks and XCFrameworks, see Build final native binaries.

Kotlin
Multiplatform
Kotlin 1.8.20 strives to improve the developer experience with the following updates to Kotlin Multiplatform:

New approach for setting up source set hierarchy

Preview of Gradle composite builds support in Kotlin Multiplatform

Improved output for Gradle errors in Xcode

New
approach
to
source
set
hierarchy

Kotlin 1.8.20 offers a new way of setting up source set hierarchy in your multiplatform projects − the default target hierarchy. The new approach is intended to
replace target shortcuts like ios, which have their design flaws.

The idea behind the default target hierarchy is simple: You explicitly declare all the targets to which your project compiles, and the Kotlin Gradle plugin
automatically creates shared source sets based on the specified targets.

If you use this option with static frameworks, it will remove the Pod dependency entirely because Pods are not used for static framework linking.

The new approach to source set hierarchy is Experimental. It may be changed in future Kotlin releases without prior notice. Opt-in is required (see the
details below). We would appreciate your feedback in YouTrack.

160

https://kotl.in/issue
https://kotl.in/issue

Set up your project
Consider this example of a simple multiplatform mobile app:

@OptIn(ExperimentalKotlinGradlePluginApi::class)
kotlin	{
				//	Enable	the	default	target	hierarchy:
				targetHierarchy.default()

				android()
				iosArm64()
				iosSimulatorArm64()
}

You can think of the default target hierarchy as a template for all possible targets and their shared source sets. When you declare the final targets android,
iosArm64, and iosSimulatorArm64 in your code, the Kotlin Gradle plugin finds suitable shared source sets from the template and creates them for you. The resulting
hierarchy looks like this:

An example of using the default target hierarchy

Green source sets are actually created and present in the project, while gray ones from the default template are ignored. As you can see, the Kotlin Gradle plugin
hasn't created the watchos source set, for example, because there are no watchOS targets in the project.

If you add a watchOS target, such as watchosArm64, the watchos source set is created, and the code from the apple, native, and common source sets is compiled
to watchosArm64, as well.

You can find the complete scheme for the default target hierarchy in the documentation.

Why replace shortcuts
Creating source sets hierarchies can be verbose, error-prone, and unfriendly for beginners. Our previous solution was to introduce shortcuts like ios that create a
part of the hierarchy for you. However, working with shortcuts proved they have a big design flaw: they're difficult to change.

Take the ios shortcut, for example. It creates only the iosArm64 and iosX64 targets, which can be confusing and may lead to issues when working on an M1-based
host that requires the iosSimulatorArm64 target as well. However, adding the iosSimulatorArm64 target can be a very disruptive change for user projects:

All dependencies used in the iosMain source set have to support the iosSimulatorArm64 target; otherwise, the dependency resolution fails.

Some native APIs used in iosMain may disappear when adding a new target (though this is unlikely in the case of iosSimulatorArm64).

In this example, the apple and native source sets compile only to the iosArm64 and iosSimulatorArm64 targets. Therefore, despite their names, they have
access to the full iOS API. This might be counter-intuitive for source sets like native, as you may expect that only APIs available on all native targets are
accessible in this source set. This behavior may change in the future.

161

In some cases, such as when writing a small pet project on your Intel-based MacBook, you might not even need this change.

It became clear that shortcuts didn't solve the problem of configuring hierarchies, which is why we stopped adding new shortcuts at some point.

The default target hierarchy may look similar to shortcuts at first glance, but they have a crucial distinction: users have to explicitly specify the set of targets. This set
defines how your project is compiled and published and how it participates in dependency resolution. Since this set is fixed, changes to the default configuration
from the Kotlin Gradle plugin should cause significantly less distress in the ecosystem, and it will be much easier to provide tooling-assisted migration.

How to enable the default hierarchy
This new feature is Experimental. For Kotlin Gradle build scripts, you need to opt in with @OptIn(ExperimentalKotlinGradlePluginApi::class).

For more information, see Hierarchical project structure.

Leave feedback
This is a significant change to multiplatform projects. We would appreciate your feedback to help make it even better.

Preview
of
Gradle
composite
builds
support
in
Kotlin
Multiplatform

Starting with 1.8.20-RC2, Kotlin Multiplatform supports Gradle composite builds. Composite builds allow you to include builds of separate projects or parts of the
same project into a single build.

Due to some technical challenges, using Gradle composite builds with Kotlin Multiplatform was only partially supported. Kotlin 1.8.20-RC2 contains a preview of the
improved support that should work with a larger variety of projects. To try it out, add the following option to your gradle.properties:

kotlin.mpp.import.enableKgpDependencyResolution=true

This option enables a preview of the new import mode. Besides the support for composite builds, it provides a smoother import experience in multiplatform
projects, as we've included major bug fixes and improvements to make the import more stable.

Known issues
It's still a preview version that needs further stabilization, and you might encounter some issues with import along the way. Here are some known issues we're
planning to fix before the final release of Kotlin 1.8.20:

There's no Kotlin 1.8.20 plugin available for IntelliJ IDEA 2023.1 EAP yet. Despite that, you can still set the Kotlin Gradle plugin version to 1.8.20-RC2 and try out
composite builds in this IDE.

If your projects include builds with a specified rootProject.name, composite builds may fail to resolve the Kotlin metadata. For the workaround and details, see
this Youtrack issue.

We encourage you to try it out and submit all reports on YouTrack to help us make it the default in Kotlin 1.9.0.

Improved
output
for
Gradle
errors
in
Xcode
If you had issues building your multiplatform projects in Xcode, you might have encountered a "Command PhaseScriptExecution failed with a nonzero exit code"
error. This message signals that the Gradle invocation has failed, but it's not very helpful when trying to detect the problem.

Starting with Kotlin 1.8.20-RC2, Xcode can parse the output from the Kotlin/Native compiler. Furthermore, in case the Gradle build fails, you'll see an additional
error message from the root cause exception in Xcode. In most cases, it'll help to identify the root problem.

This feature has been supported in Gradle builds since Kotlin Gradle Plugin 1.8.20. For IDE support, use IntelliJ IDEA 2023.1 Beta 2 (231.8109.2) or later
and the Kotlin Gradle plugin 1.8.20 with any Kotlin IDE plugin.

162

https://kotl.in/issue
https://docs.gradle.org/current/userguide/composite_builds.html
https://youtrack.jetbrains.com/issue/KT-56536
https://kotl.in/issue

Improved output for Gradle errors in Xcode

The new behavior is enabled by default for the standard Gradle tasks for Xcode integration, like embedAndSignAppleFrameworkForXcode that can connect the iOS
framework from your multiplatform project to the iOS application in Xcode. It can also be enabled (or disabled) with the kotlin.native.useXcodeMessageStyle Gradle
property.

Kotlin/JavaScript
Kotlin 1.8.20 changes the ways TypeScript definitions can be generated. It also includes a change designed to improve your debugging experience:

Removal of Dukat integration from the Gradle plugin

Kotlin variable and function names in source maps

Opt in for generation of TypeScript definition files

Removal
of
Dukat
integration
from
Gradle
plugin
In Kotlin 1.8.20, we've removed our Experimental Dukat integration from the Kotlin/JavaScript Gradle plugin. The Dukat integration supported the automatic
conversion of TypeScript declaration files (.d.ts) into Kotlin external declarations.

You can still convert TypeScript declaration files (.d.ts) into Kotlin external declarations by using our Dukat tool instead.

Kotlin
variable
and
function
names
in
source
maps
To help with debugging, we've introduced the ability to add the names that you declared in Kotlin code for variables and functions into your source maps. Prior to
1.8.20, these weren't available in source maps, so in the debugger, you always saw the variable and function names of the generated JavaScript.

You can configure what is added by using sourceMapNamesPolicy in your Gradle file build.gradle.kts, or the -source-map-names-policy compiler option. The table
below lists the possible settings:

The Dukat tool is Experimental. It may be dropped or changed at any time.

163

https://github.com/Kotlin/dukat

Setting Description Example output

simple-names Variable names and simple function names are added. (Default) main

fully-qualified-names Variable names and fully qualified function names are added. com.example.kjs.playground.main

no No variable or function names are added. N/A

See below for an example configuration in a build.gradle.kts file:

tasks.withType<org.jetbrains.kotlin.gradle.tasks.Kotlin2JsCompile>().configureEach	{
				
compilercompileOptions.sourceMapNamesPolicy.set(org.jetbrains.kotlin.gradle.dsl.JsSourceMapNamesPolicy.SOURCE_MAP_NAMES_POLICY_FQ_NAMES
//	or	SOURCE_MAP_NAMES_POLICY_NO,	or	SOURCE_MAP_NAMES_POLICY_SIMPLE_NAMES
}

Debugging tools like those provided in Chromium-based browsers can pick up the original Kotlin names from your source map to improve the readability of your
stack trace. Happy debugging!

Opt
in
for
generation
of
TypeScript
definition
files
Previously, if you had a project that produced executable files (binaries.executable()), the Kotlin/JS IR compiler collected any top-level declarations marked with
@JsExport and automatically generated TypeScript definitions in a .d.ts file.

As this isn't useful for every project, we've changed the behavior in Kotlin 1.8.20. If you want to generate TypeScript definitions, you have to explicitly configure this
in your Gradle build file. Add generateTypeScriptDefinitions() to your build.gradle.kts.file in the js section. For example:

kotlin	{
			js	{
							binaries.executable()
							browser	{
							}
							generateTypeScriptDefinitions()
			}
}

Gradle
Kotlin 1.8.20 is fully compatible with Gradle 6.8 through 7.6 except for some special cases in the Multiplatform plugin. You can also use Gradle versions up to the
latest Gradle release, but if you do, keep in mind that you might encounter deprecation warnings or some new Gradle features might not work.

This version brings the following changes:

New alignment of Gradle plugins' versions

New JVM incremental compilation by default in Gradle

Precise backup of compilation tasks' outputs

Lazy Kotlin/JVM task creation for all Gradle versions

Non-default location of compile tasks' destinationDirectory

The addition of variable and function names in source maps is Experimental. It may be dropped or changed at any time.

The generation of TypeScript definitions (d.ts) is Experimental. It may be dropped or changed at any time.

164

https://youtrack.jetbrains.com/issue/KT-55751

Ability to opt-out from reporting compiler arguments to an HTTP statistics service

New
Gradle
plugins
versions
alignment
Gradle provides a way to ensure dependencies that must work together are always aligned in their versions. Kotlin 1.8.20 adopted this approach, too. It works by
default so that you don't need to change or update your configuration to enable it. In addition, you no longer need to resort to this workaround for resolving Kotlin
Gradle plugins' transitive dependencies.

We would appreciate your feedback on this feature in YouTrack.

New
JVM
incremental
compilation
by
default
in
Gradle
The new approach to incremental compilation, which has been available since Kotlin 1.7.0, now works by default. You no longer need to specify
kotlin.incremental.useClasspathSnapshot=true in your gradle.properties to enable it.

We would appreciate your feedback on this. You can file an issue in YouTrack.

Precise
backup
of
compilation
tasks'
outputs

Starting with Kotlin 1.8.20, you can enable precise backup, whereby only those classes that Kotlin recompiles in the incremental compilation will be backed up.
Both full and precise backups help to run builds incrementally again after compilation errors. Precise backup also saves build time compared to full backup. Full
backup may take noticeable build time in large projects or if many tasks are making backups, especially if a project is located on a slow HDD.

This optimization is Experimental. You can enable it by adding the kotlin.compiler.preciseCompilationResultsBackup Gradle property to the gradle.properties file:

kotlin.compiler.preciseCompilationResultsBackup=true

Example of precise backup usage in JetBrains
In the following charts, you can see examples of using precise backup compared to full backup:

Comparison of full and precise backups

The first and second charts show how precise backup in the Kotlin project affects building the Kotlin Gradle plugin:

1. After making a small ABI change – adding a new public method – to a module that lots of modules depend on.

2. After making a small non-ABI change – adding a private function – to a module that no other modules depend on.

The third chart shows how precise backup in the Space project affects building a web frontend after a small non-ABI change – adding a private function – to a
Kotlin/JS module that lots of modules depend on.

Precise backup of compilation tasks' outputs is Experimental. To use it, add kotlin.compiler.preciseCompilationResultsBackup=true to gradle.properties.
We would appreciate your feedback on it in YouTrack.

165

https://docs.gradle.org/current/userguide/dependency_version_alignment.html#aligning_versions_natively_with_gradle
https://youtrack.jetbrains.com/issue/KT-54691
https://kotl.in/issue
https://kotl.in/issue/experimental-ic-optimizations
https://en.wikipedia.org/wiki/Application_binary_interface
https://www.jetbrains.com/space/

These measurements were performed on a computer with the Apple M1 Max CPU; different computers will yield slightly different results. The factors affecting
performance include but are not limited to:

How warm the Kotlin daemon and the Gradle daemon are.

How fast or slow the disk is.

The CPU model and how busy it is.

Which modules are affected by the changes and how big these modules are.

Whether the changes are ABI or non-ABI.

Evaluating optimizations with build reports
To estimate the impact of the optimization on your computer for your project and your scenarios, you can use Kotlin build reports. Enable reports in the text file
format by adding the following property to your gradle.properties file:

kotlin.build.report.output=file

Here is an example of a relevant part of the report before enabling precise backup:

Task	':kotlin-gradle-plugin:compileCommonKotlin'	finished	in	0.59	s
<...>
Time	metrics:
	Total	Gradle	task	time:	0.59	s
	Task	action	before	worker	execution:	0.24	s
		Backup	output:	0.22	s	//	Pay	attention	to	this	number	
<...>

And here is an example of a relevant part of the report after enabling precise backup:

Task	':kotlin-gradle-plugin:compileCommonKotlin'	finished	in	0.46	s
<...>
Time	metrics:
	Total	Gradle	task	time:	0.46	s
	Task	action	before	worker	execution:	0.07	s
		Backup	output:	0.05	s	//	The	time	has	reduced
	Run	compilation	in	Gradle	worker:	0.32	s
		Clear	jar	cache:	0.00	s
		Precise	backup	output:	0.00	s	//	Related	to	precise	backup
		Cleaning	up	the	backup	stash:	0.00	s	//	Related	to	precise	backup
<...>

Lazy
Kotlin/JVM
tasks
creation
for
all
Gradle
versions
For projects with the "org.jetbrains.kotlin.gradle.jvm" plugin on Gradle 7.3+, the Kotlin Gradle plugin no longer creates and configures the task "compileKotlin"
eagerly. On lower Gradle versions, it simply registers all the tasks and doesn't configure them on a dry run. The same behavior is now in place when using Gradle
7.3+.

Non-default
location
of
compile
tasks'
destinationDirectory
Update your build script with some additional code if you do one of the following:

Override the Kotlin/JVM KotlinJvmCompile/KotlinCompile task's destinationDirectory location.

Use a deprecated Kotlin/JS/Non-IR variant and override the Kotlin2JsCompile task's destinationDirectory.

You need to explicitly add sourceSets.main.kotlin.classesDirectories to sourceSets.main.outputs in your JAR file:

tasks.jar(type: Jar) { from sourceSets.main.outputs from sourceSets.main.kotlin.classesDirectories }

Ability
to
opt-out
from
reporting
compiler
arguments
to
an
HTTP
statistics
service
You can now control whether the Kotlin Gradle plugin should include compiler arguments in HTTP build reports. Sometimes, you might not need the plugin to report
these arguments. If a project contains many modules, its compiler arguments in the report can be very heavy and not that helpful. There is now a way to disable it
and thus save memory. In your gradle.properties or local.properties, use the kotlin.build.report.include_compiler_arguments=(true|false) property.

166

https://docs.gradle.org/current/userguide/gradle_daemon.html

We would appreciate your feedback on this feature on YouTrack.

Standard
library
Kotlin 1.8.20 adds a variety of new features, including some that are particularly useful for Kotlin/Native development:

Support for the AutoCloseable interface

Support for Base64 encoding and decoding

Support for @Volatile in Kotlin/Native

Bug fix for stack overflow when using regex in Kotlin/Native

Support
for
the
AutoCloseable
interface

The AutoCloseable interface has been added to the common standard library so that you can use one common interface for all libraries to close resources. In
Kotlin/JVM, the AutoCloseable interface is an alias for java.lang.AutoClosable.

In addition, the extension function use() is now included, which executes a given block function on the selected resource and then closes it down correctly, whether
an exception is thrown or not.

There is no public class in the common standard library that implements the AutoCloseable interface. In the example below, we define the XMLWriter interface and
assume that there is a resource that implements it. For example, this resource could be a class that opens a file, writes XML content, and then closes it.

interface	XMLWriter	:	AutoCloseable	{
				fun	document(encoding:	String,	version:	String,	content:	XMLWriter.()	->	Unit)
				fun	element(name:	String,	content:	XMLWriter.()	->	Unit)
				fun	attribute(name:	String,	value:	String)
				fun	text(value:	String)
}

fun	writeBooksTo(writer:	XMLWriter)	{
				writer.use	{	xml	->
								xml.document(encoding	=	"UTF-8",	version	=	"1.0")	{
												element("bookstore")	{
																element("book")	{
																				attribute("category",	"fiction")
																				element("title")	{	text("Harry	Potter	and	the	Prisoner	of	Azkaban")	}
																				element("author")	{	text("J.	K.	Rowling")	}
																				element("year")	{	text("1999")	}
																				element("price")	{	text("29.99")	}
																}
																element("book")	{
																				attribute("category",	"programming")
																				element("title")	{	text("Kotlin	in	Action")	}
																				element("author")	{	text("Dmitry	Jemerov")	}
																				element("author")	{	text("Svetlana	Isakova")	}
																				element("year")	{	text("2017")	}
																				element("price")	{	text("25.19")	}
																}
												}
								}
				}
}

Support
for
Base64
encoding

The new AutoCloseable interface is Experimental, and to use it you need to opt in with @OptIn(ExperimentalStdlibApi::class) or the compiler argument -
opt-in=kotlin.ExperimentalStdlibApi.

The new encoding and decoding functionality is Experimental, and to use it, you need to opt in with @OptIn(ExperimentalEncodingApi::class) or the
compiler argument -opt-in=kotlin.io.encoding.ExperimentalEncodingApi.

167

https://youtrack.jetbrains.com/issue/KT-55323/
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

We've added support for Base64 encoding and decoding. We provide 3 class instances, each using different encoding schemes and displaying different behaviors.
Use the Base64.Default instance for the standard Base64 encoding scheme.

Use the Base64.UrlSafe instance for the "URL and Filename safe" encoding scheme.

Use the Base64.Mime instance for the MIME encoding scheme. When you use the Base64.Mime instance, all encoding functions insert a line separator every 76
characters. In the case of decoding, any illegal characters are skipped and don't throw an exception.

val	foBytes	=	"fo".map	{	it.code.toByte()	}.toByteArray()
Base64.Default.encode(foBytes)	//	"Zm8="
//	Alternatively:
//	Base64.encode(foBytes)

val	foobarBytes	=	"foobar".map	{	it.code.toByte()	}.toByteArray()
Base64.UrlSafe.encode(foobarBytes)	//	"Zm9vYmFy"

Base64.Default.decode("Zm8=")	//	foBytes
//	Alternatively:
//	Base64.decode("Zm8=")

Base64.UrlSafe.decode("Zm9vYmFy")	//	foobarBytes

You can use additional functions to encode or decode bytes into an existing buffer, as well as to append the encoding result to a provided Appendable type object.

In Kotlin/JVM, we've also added the extension functions encodingWith() and decodingWith() to enable you to perform Base64 encoding and decoding with input
and output streams.

Support
for
@Volatile
in
Kotlin/Native

If you annotate a var property with @Volatile, then the backing field is marked so that any reads or writes to this field are atomic, and writes are always made visible
to other threads.

Prior to 1.8.20, the kotlin.jvm.Volatile annotation was only available in the common standard library. However, this annotation is only effective in the JVM. If you use
it in Kotlin/Native, it is ignored, which can lead to errors.

In 1.8.20, we've introduced a common annotation, kotlin.concurrent.Volatile, that you can use in both the JVM and Kotlin/Native.

How to enable
To try this feature out, opt in with @OptIn(ExperimentalStdlibApi) and enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by
adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
)
				}

Groovy

The Base64.Default instance is the companion object of the Base64 class. As a result, you can call its functions via Base64.encode() and
Base64.decode() instead of Base64.Default.encode() and Base64.Default.decode().

@Volatile in Kotlin/Native is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for evaluation
purposes. We would appreciate your feedback on it in YouTrack.

168

https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc4648#section-5
https://www.rfc-editor.org/rfc/rfc2045#section-6.8
https://kotl.in/issue
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-volatile/

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=
														org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_1_9
}

Bug
fix
for
stack
overflow
when
using
regex
in
Kotlin/Native
In previous versions of Kotlin, a crash could occur if your regex input contained a large number of characters, even when the regex pattern was very simple. In
1.8.20, this issue has been resolved. For more information, see KT-46211.

Serialization
updates
Kotlin 1.8.20 comes with Alpha support for the Kotlin K2 compiler and prohibits serializer customization via companion object.

Prototype
serialization
compiler
plugin
for
Kotlin
K2
compiler

Starting with 1.8.20, the serialization compiler plugin works with the Kotlin K2 compiler. Give it a try and share your feedback with us!

Prohibit
implicit
serializer
customization
via
companion
object
Currently, it is possible to declare a class as serializable with the @Serializable annotation and, at the same time, declare a custom serializer with the @Serializer
annotation on its companion object.

For example:

import	kotlinx.serialization.*

@Serializable
class	Foo(val	a:	Int)	{
			@Serializer(Foo::class)
			companion	object	{
							//	Custom	implementation	of	KSerializer<Foo>
			}
}

In this case, it's not clear from the @Serializable annotation which serializer is used. In actual fact, class Foo has a custom serializer.

To prevent this kind of confusion, in Kotlin 1.8.20 we've introduced a compiler warning for when this scenario is detected. The warning includes a possible
migration path to resolve this issue.

If you use such constructs in your code, we recommend updating them to the below:

import	kotlinx.serialization.*

@Serializable(Foo.Companion::class)
class	Foo(val	a:	Int)	{
			//	Doesn't	matter	if	you	use	@Serializer(Foo::class)	or	not
			companion	object:	KSerializer<Foo>	{
							//	Custom	implementation	of	KSerializer<Foo>
			}
}

With this approach, it is clear that the Foo class uses the custom serializer declared in the companion object. For more information, see our YouTrack ticket.

Support for the serialization compiler plugin for K2 is in Alpha. To use it, enable the Kotlin K2 compiler.

In Kotlin 2.0, we plan to promote the compile warning to a compiler error. We recommend that you migrate your code if you see this warning.

169

https://youtrack.jetbrains.com/issue/KT-46211
https://youtrack.jetbrains.com/issue/KT-54441

Documentation
updates
The Kotlin documentation has received some notable changes:

Get started with Spring Boot and Kotlin – create a simple application with a database and learn more about the features of Spring Boot and Kotlin.

Scope functions – learn how to simplify your code with useful scope functions from the standard library.

CocoaPods integration – set up an environment to work with CocoaPods.

Install
Kotlin
1.8.20

Check
the
IDE
version
IntelliJ IDEA 2022.2 and 2022.3 automatically suggest updating the Kotlin plugin to version 1.8.20. IntelliJ IDEA 2023.1 has the built-in Kotlin plugin 1.8.20.

Android Studio Flamingo (222) and Giraffe (223) will support Kotlin 1.8.20 in the next releases.

The new command-line compiler is available for download on the GitHub release page.

Configure
Gradle
settings
To download Kotlin artifacts and dependencies properly, update your settings.gradle(.kts) file to use the Maven Central repository:

pluginManagement	{
				repositories	{
								mavenCentral()
								gradlePluginPortal()
				}
}

If the repository is not specified, Gradle uses the sunset JCenter repository that could lead to issues with Kotlin artifacts.

What's
new
in
Kotlin
1.8.0
Released: 28 December 2022

The Kotlin 1.8.0 release is out and here are some of its biggest highlights:

New experimental functions for JVM: recursively copy or delete directory content

Improved kotlin-reflect performance

New -Xdebug compiler option for better debugging experience

kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 merged into kotlin-stdlib

Improved Objective-C/Swift interoperability

Compatibility with Gradle 7.3

IDE
support
The Kotlin plugin that supports 1.8.0 is available for:

IDE Supported versions

IntelliJ IDEA 2021.3, 2022.1, 2022.2

170

https://www.jetbrains.com/idea/download/
https://github.com/JetBrains/kotlin/releases/tag/v1.8.20

Android Studio Electric Eel (221), Flamingo (222)

IDE Supported versions

Kotlin/JVM
Starting with version 1.8.0, the compiler can generate classes with a bytecode version corresponding to JVM 19. The new language version also includes:

A compiler option for switching off the generation of JVM annotation targets

A new -Xdebug compiler option for disabling optimizations

The removal of the old backend

Support for Lombok's @Builder annotation

Ability
to
not
generate
TYPE_USE
and
TYPE_PARAMETER
annotation
targets
If a Kotlin annotation has TYPE among its Kotlin targets, the annotation maps to java.lang.annotation.ElementType.TYPE_USE in its list of Java annotation targets.
This is just like how the TYPE_PARAMETER Kotlin target maps to the java.lang.annotation.ElementType.TYPE_PARAMETER Java target. This is an issue for
Android clients with API levels less than 26, which don't have these targets in the API.

Starting with Kotlin 1.8.0, you can use the new compiler option -Xno-new-java-annotation-targets to avoid generating the TYPE_USE and TYPE_PARAMETER
annotation targets.

A
new
compiler
option
for
disabling
optimizations
Kotlin 1.8.0 adds a new -Xdebug compiler option, which disables optimizations for a better debugging experience. For now, the option disables the "was optimized
out" feature for coroutines. In the future, after we add more optimizations, this option will disable them, too.

The "was optimized out" feature optimizes variables when you use suspend functions. However, it is difficult to debug code with optimized variables because you
don't see their values.

Removal
of
the
old
backend
In Kotlin 1.5.0, we announced that the IR-based backend became Stable. That meant that the old backend from Kotlin 1.4.* was deprecated. In Kotlin 1.8.0, we've
removed the old backend completely. By extension, we've removed the compiler option -Xuse-old-backend and the Gradle useOldBackend option.

Support
for
Lombok's
@Builder
annotation
The community has added so many votes for the Kotlin Lombok: Support generated builders (@Builder) YouTrack issue that we just had to support the @Builder
annotation.

We don't yet have plans to support the @SuperBuilder or @Tolerate annotations, but we'll reconsider if enough people vote for the @SuperBuilder and @Tolerate
issues.

Learn how to configure the Lombok compiler plugin.

Kotlin/Native
Kotlin 1.8.0 includes changes to Objective-C and Swift interoperability, support for Xcode 14.1, and improvements to the CocoaPods Gradle plugin:

You can update your projects to Kotlin 1.8.0 in IntelliJ IDEA 2022.3 without updating the IDE plugin.

To migrate existing projects to Kotlin 1.8.0 in IntelliJ IDEA 2022.3, change the Kotlin version to 1.8.0 and reimport your Gradle or Maven project.

Never use this option in production: Disabling this feature via -Xdebug can cause memory leaks.

171

https://youtrack.jetbrains.com/issue/KT-48678/Coroutine-debugger-disable-was-optimised-out-compiler-feature#focus=Comments-27-6015585.0-0
https://youtrack.jetbrains.com/issue/KT-46959
https://projectlombok.org/features/Builder
https://youtrack.jetbrains.com/issue/KT-53563/Kotlin-Lombok-Support-SuperBuilder
https://youtrack.jetbrains.com/issue/KT-53564/Kotlin-Lombok-Support-Tolerate

Support for Xcode 14.1

Improved Objective-C/Swift interoperability

Dynamic frameworks by default in the CocoaPods Gradle plugin

Support
for
Xcode
14.1
The Kotlin/Native compiler now supports the latest stable Xcode version, 14.1. The compatibility improvements include the following changes:

There's a new watchosDeviceArm64 preset for the watchOS target that supports Apple watchOS on ARM64 platforms.

The Kotlin CocoaPods Gradle plugin no longer has bitcode embedding for Apple frameworks by default.

Platform libraries were updated to reflect the changes to Objective-C frameworks for Apple targets.

Improved
Objective-C/Swift
interoperability
To make Kotlin more interoperable with Objective-C and Swift, three new annotations were added:

@ObjCName allows you to specify a more idiomatic name in Swift or Objective-C, instead of renaming the Kotlin declaration.

The annotation instructs the Kotlin compiler to use a custom Objective-C and Swift name for this class, property, parameter, or function:

@ObjCName(swiftName	=	"MySwiftArray")
class	MyKotlinArray	{
				@ObjCName("index")
				fun	indexOf(@ObjCName("of")	element:	String):	Int	=	TODO()
}

//	Usage	with	the	ObjCName	annotations
let	array	=	MySwiftArray()
let	index	=	array.index(of:	"element")

@HiddenFromObjC allows you to hide a Kotlin declaration from Objective-C.

The annotation instructs the Kotlin compiler not to export a function or property to Objective-C and, consequently, Swift. This can make your Kotlin code more
Objective-C/Swift-friendly.

@ShouldRefineInSwift is useful for replacing a Kotlin declaration with a wrapper written in Swift.

The annotation instructs the Kotlin compiler to mark a function or property as swift_private in the generated Objective-C API. Such declarations get the __ prefix,
which makes them invisible to Swift code.

You can still use these declarations in your Swift code to create a Swift-friendly API, but they won't be suggested by Xcode's autocompletion, for example.

For more information on refining Objective-C declarations in Swift, see the official Apple documentation.

The Kotlin team is very grateful to Rick Clephas for implementing these annotations.

Dynamic
frameworks
by
default
in
the
CocoaPods
Gradle
plugin
Starting with Kotlin 1.8.0, Kotlin frameworks registered by the CocoaPods Gradle plugin are linked dynamically by default. The previous static implementation was
inconsistent with the behavior of the Kotlin Gradle plugin.

kotlin	{
				cocoapods	{
								framework	{
												baseName	=	"MyFramework"
												isStatic	=	false	//	Now	dynamic	by	default
								}
				}
}

If you have an existing project with a static linking type and you upgrade to Kotlin 1.8.0 (or change the linking type explicitly), you may encounter an error with the

The new annotations require opt-in.

172

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-obj-c-name/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-hidden-from-obj-c/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-should-refine-in-swift/
https://developer.apple.com/documentation/swift/improving-objective-c-api-declarations-for-swift
https://github.com/rickclephas

project's execution. To fix it, close your Xcode project and run pod install in the Podfile directory.

For more information, see the CocoaPods Gradle plugin DSL reference.

Kotlin
Multiplatform:
A
new
Android
source
set
layout
Kotlin 1.8.0 introduces a new Android source set layout that replaces the previous naming schema for directories, which is confusing in multiple ways.

Consider an example of two androidTest directories created in the current layout. One is for KotlinSourceSets and the other is for AndroidSourceSets:

They have different semantics: Kotlin's androidTest belongs to the unitTest type, whereas Android's belongs to the integrationTest type.

They create a confusing SourceDirectories layout, as src/androidTest/kotlin has a UnitTest and src/androidTest/java has an InstrumentedTest.

Both KotlinSourceSets and AndroidSourceSets use a similar naming schema for Gradle configurations, so the resulting configurations of androidTest for both
Kotlin's and Android's source sets are the same: androidTestImplementation, androidTestApi, androidTestRuntimeOnly, and androidTestCompileOnly.

To address these and other existing issues, we've introduced a new Android source set layout. Here are some of the key differences between the two layouts:

KotlinSourceSet
naming
schema

Current source set layout New source set layout

targetName + AndroidSourceSet.name targetName + AndroidVariantType

{AndroidSourceSet.name} maps to {KotlinSourceSet.name} as follows:

Current source set layout New source set layout

main androidMain androidMain

test androidTest androidUnitTest

androidTest androidAndroidTest androidInstrumentedTest

SourceDirectories

Current source set layout New source set layout

The layout adds additional /kotlin SourceDirectories src/{AndroidSourceSet.name}/kotlin, src/{KotlinSourceSet.name}/kotlin

{AndroidSourceSet.name} maps to {SourceDirectories included} as follows:

Current source set layout New source set layout

main src/androidMain/kotlin, src/main/kotlin, src/main/java src/androidMain/kotlin, src/main/kotlin, src/main/java

test src/androidTest/kotlin, src/test/kotlin, src/test/java src/androidUnitTest/kotlin, src/test/kotlin, src/test/java

173

androidTest src/androidAndroidTest/kotlin, src/androidTest/java src/androidInstrumentedTest/kotlin, src/androidTest/java, src/androidTest/kotlin

Current source set layout New source set layout

The
location
of
the
AndroidManifest.xml
file

Current source set layout New source set layout

src/{AndroidSourceSet.name}/AndroidManifest.xml src/{KotlinSourceSet.name}/AndroidManifest.xml

{AndroidSourceSet.name} maps to{AndroidManifest.xml location} as follows:

Current source set layout New source set layout

main src/main/AndroidManifest.xml src/androidMain/AndroidManifest.xml

debug src/debug/AndroidManifest.xml src/androidDebug/AndroidManifest.xml

The
relation
between
Android
and
common
tests
The new Android source set layout changes the relation between Android-instrumented tests (renamed to androidInstrumentedTest in the new layout) and common
tests.

Previously, there was a default dependsOn relation between androidAndroidTest and commonTest. In practice, it meant the following:

The code in commonTest was available in androidAndroidTest.

expect declarations in commonTest had to have corresponding actual implementations in androidAndroidTest.

Tests declared in commonTest were also running as Android instrumented tests.

In the new Android source set layout, the dependsOn relation is not added by default. If you prefer the previous behavior, manually declare this relation in your
build.gradle.kts file:

kotlin	{
//	...
				sourceSets	{
								val	commonTest	by	getting
								val	androidInstrumentedTest	by	getting	{
												dependsOn(commonTest)
								}
				}
}

Support
for
Android
flavors
Previously, the Kotlin Gradle plugin eagerly created source sets that correspond to Android source sets with debug and release build types or custom flavors like
demo and full. It made them accessible by constructions like val androidDebug by getting { ... }.

In the new Android source set layout, those source sets are created in the afterEvaluate phase. It makes such expressions invalid, leading to errors like
org.gradle.api.UnknownDomainObjectException: KotlinSourceSet with name 'androidDebug' not found.

To work around that, use the new invokeWhenCreated() API in your build.gradle.kts file:

kotlin	{
//	...

174

				sourceSets.invokeWhenCreated("androidFreeDebug")	{
								//	...
				}
}

Configuration
and
setup
The new layout will become the default in future releases. You can enable it now with the following Gradle option:

kotlin.mpp.androidSourceSetLayoutVersion=2

The usage of the previous Android-style directories is now discouraged. Kotlin 1.8.0 marks the start of the deprecation cycle, introducing a warning for the current
layout. You can suppress the warning with the following Gradle property:

kotlin.mpp.androidSourceSetLayoutVersion1.nowarn=true

Kotlin/JS
Kotlin 1.8.0 stabilizes the JS IR compiler backend and brings new features to JavaScript-related Gradle build scripts:

Stable JS IR compiler backend

New settings for reporting that yarn.lock has been updated

Add test targets for browsers via Gradle properties

New approach to adding CSS support to your project

Stable
JS
IR
compiler
backend
Starting with this release, the Kotlin/JS intermediate representation (IR-based) compiler backend is Stable. It took a while to unify infrastructure for all three
backends, but they now work with the same IR for Kotlin code.

As a consequence of the stable JS IR compiler backend, the old one is deprecated from now on.

Incremental compilation is enabled by default along with the stable JS IR compiler.

If you still use the old compiler, switch your project to the new backend with the help of our migration guide.

New
settings
for
reporting
that
yarn.lock
has
been
updated
If you use the yarn package manager, there are three new special Gradle settings that could notify you if the yarn.lock file has been updated. You can use these
settings when you want to be notified if yarn.lock has been changed silently during the CI build process.

These three new Gradle properties are:

YarnLockMismatchReport, which specifies how changes to the yarn.lock file are reported. You can use one of the following values:

FAIL fails the corresponding Gradle task. This is the default.

WARNING writes the information about changes in the warning log.

NONE disables reporting.

reportNewYarnLock, which reports about the recently created yarn.lock file explicitly. By default, this option is disabled: it's a common practice to generate a
new yarn.lock file at the first start. You can use this option to ensure that the file has been committed to your repository.

yarnLockAutoReplace, which replaces yarn.lock automatically every time the Gradle task is run.

To use these options, update your build script file build.gradle.kts as follows:

The new layout requires Android Gradle plugin 7.0 or later and is supported in Android Studio 2022.3 and later.

175

import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnLockMismatchReport
import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin::class.java)	{
				rootProject.the<YarnRootExtension>().yarnLockMismatchReport	=
								YarnLockMismatchReport.WARNING	//	NONE	|	FAIL
				rootProject.the<YarnRootExtension>().reportNewYarnLock	=	false	//	true
				rootProject.the<YarnRootExtension>().yarnLockAutoReplace	=	false	//	true
}

Add
test
targets
for
browsers
via
Gradle
properties
Starting with Kotlin 1.8.0, you can set test targets for different browsers right in the Gradle properties file. Doing so shrinks the size of the build script file as you no
longer need to write all targets in build.gradle.kts.

You can use this property to define a list of browsers for all modules, and then add specific browsers in the build scripts of particular modules.

For example, the following line in your Gradle property file will run the test in Firefox and Safari for all modules:

kotlin.js.browser.karma.browsers=firefox,safari

See the full list of available values for the property on GitHub.

The Kotlin team is very grateful to Martynas Petuška for implementing this feature.

New
approach
to
adding
CSS
support
to
your
project
This release provides a new approach to adding CSS support to your project. We assume that this will affect a lot of projects, so don't forget to update your Gradle
build script files as described below.

Before Kotlin 1.8.0, the cssSupport.enabled property was used to add CSS support:

browser	{
				commonWebpackConfig	{
								cssSupport.enabled	=	true
				}
}

Now you should use the enabled.set() method in the cssSupport {} block:

browser	{
				commonWebpackConfig	{
								cssSupport	{
												enabled.set(true)
								}
				}
}

Gradle
Kotlin 1.8.0 fully supports Gradle versions 7.2 and 7.3. You can also use Gradle versions up to the latest Gradle release, but if you do, keep in mind that you might
encounter deprecation warnings or some new Gradle features might not work.

This version brings lots of changes:

Exposing Kotlin compiler options as Gradle lazy properties

Bumping the minimum supported versions

Ability to disable the Kotlin daemon fallback strategy

Usage of the latest kotlin-stdlib version in transitive dependencies

Obligatory check for JVM target compatibility equality of related Kotlin and Java compile tasks

Resolution of Kotlin Gradle plugins' transitive dependencies

176

https://github.com/JetBrains/kotlin/blob/master/libraries/tools/kotlin-gradle-plugin/src/common/kotlin/org/jetbrains/kotlin/gradle/targets/js/testing/karma/KotlinKarma.kt#L106
https://github.com/mpetuska

Deprecations and removals

Exposing
Kotlin
compiler
options
as
Gradle
lazy
properties
To expose available Kotlin compiler options as Gradle lazy properties and to integrate them better into the Kotlin tasks, we made lots of changes:

Compile tasks have the new compilerOptions input, which is similar to the existing kotlinOptions but uses Property from the Gradle Properties API as the return
type:

tasks.named("compileKotlin",	org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile::class.java)	{
				compilerOptions	{
								useK2.set(true)
				}
}

The Kotlin tools tasks KotlinJsDce and KotlinNativeLink have the new toolOptions input, which is similar to the existing kotlinOptions input.

New inputs have the @Nested Gradle annotation. Every property inside the inputs has a related Gradle annotation, such as @Input or @Internal.

The Kotlin Gradle plugin API artifact has two new interfaces:

org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask, which has the compilerOptions input and the compileOptions() method. All Kotlin compilation tasks
implement this interface.

org.jetbrains.kotlin.gradle.tasks.KotlinToolTask, which has the toolOptions input and the toolOptions() method. All Kotlin tool tasks – KotlinJsDce,
KotlinNativeLink, and KotlinNativeLinkArtifactTask – implement this interface.

Some compilerOptions use the new types instead of the String type:

JvmTarget

KotlinVersion (for the apiVersion and the languageVersion inputs)

JsMainFunctionExecutionMode

JsModuleKind

JsSourceMapEmbedMode

For example, you can use compilerOptions.jvmTarget.set(JvmTarget.JVM_11) instead of kotlinOptions.jvmTarget = "11".

The kotlinOptions types didn't change, and they are internally converted to compilerOptions types.

The Kotlin Gradle plugin API is binary-compatible with previous releases. There are, however, some source and ABI-breaking changes in the kotlin-gradle-plugin
artifact. Most of these changes involve additional generic parameters to some internal types. One important change is that the KotlinNativeLink task no longer
inherits the AbstractKotlinNativeCompile task.

KotlinJsCompilerOptions.outputFile and the related KotlinJsOptions.outputFile options are deprecated. Use the Kotlin2JsCompile.outputFileProperty task input
instead.

Limitations

The Kotlin Gradle plugin still adds the KotlinJvmOptions DSL to the Android extension:

android	{	
				kotlinOptions	{
								jvmTarget	=	"11"
				}
}

This will be changed in the scope of this issue, when the compilerOptions DSL will be added to a module level.

The kotlinOptions task input and the kotlinOptions{...} task DSL are in support mode and will be deprecated in upcoming releases. Improvements will be
made only to compilerOptions and toolOptions.

177

https://docs.gradle.org/current/userguide/lazy_configuration.html
https://docs.gradle.org/current/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/Nested.html
https://docs.gradle.org/current/userguide/more_about_tasks.html#sec:up_to_date_checks
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JvmTarget.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/KotlinVersion.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsMainFunctionExecutionMode.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsModuleKind.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsSourceMapEmbedMode.kt
https://youtrack.jetbrains.com/issue/KT-15370/Gradle-DSL-add-module-level-kotlin-options

Calling any setter or getter on kotlinOptions delegates to the related property in the compilerOptions. This introduces the following limitations:

compilerOptions and kotlinOptions cannot be changed in the task execution phase (see one exception in the paragraph below).

freeCompilerArgs returns an immutable List<String>, which means that, for example, kotlinOptions.freeCompilerArgs.remove("something") will fail.

Several plugins, including kotlin-dsl and the Android Gradle plugin (AGP) with Jetpack Compose enabled, try to modify the freeCompilerArgs attribute in the task
execution phase. We've added a workaround for them in Kotlin 1.8.0. This workaround allows any build script or plugin to modify kotlinOptions.freeCompilerArgs in
the execution phase but produces a warning in the build log. To disable this warning, use the new Gradle property
kotlin.options.suppressFreeCompilerArgsModificationWarning=true. Gradle is going to add fixes for the kotlin-dsl plugin and AGP with Jetpack Compose enabled.

Bumping
the
minimum
supported
versions
Starting with Kotlin 1.8.0, the minimum supported Gradle version is 6.8.3 and the minimum supported Android Gradle plugin version is 4.1.3.

See the Kotlin Gradle plugin compatibility with available Gradle versions in our documentation

Ability
to
disable
the
Kotlin
daemon
fallback
strategy
There is a new Gradle property kotlin.daemon.useFallbackStrategy, whose default value is true. When the value is false, builds fail on problems with the daemon's
startup or communication. There is also a new useDaemonFallbackStrategy property in Kotlin compile tasks, which takes priority over the Gradle property if you use
both. If there is insufficient memory to run the compilation, you can see a message about it in the logs.

The Kotlin compiler's fallback strategy is to run a compilation outside the Kotlin daemon if the daemon somehow fails. If the Gradle daemon is on, the compiler uses
the "In process" strategy. If the Gradle daemon is off, the compiler uses the "Out of process" strategy. Learn more about these execution strategies in the
documentation. Note that silent fallback to another strategy can consume a lot of system resources or lead to non-deterministic builds; see this YouTrack issue for
more details.

Usage
of
the
latest
kotlin-stdlib
version
in
transitive
dependencies
If you explicitly write Kotlin version 1.8.0 or higher in your dependencies, for example: implementation("org.jetbrains.kotlin:kotlin-stdlib:1.8.0"), then the Kotlin Gradle
Plugin will use that Kotlin version for transitive kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 dependencies. This is done to avoid class duplication from different stdlib
versions (learn more about merging kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 into kotlin-stdlib). You can disable this behavior with the
kotlin.stdlib.jdk.variants.version.alignment Gradle property:

kotlin.stdlib.jdk.variants.version.alignment=false

If you run into issues with version alignment, align all versions via the Kotlin BOM by declaring a platform dependency on kotlin-bom in your build script:

implementation(platform("org.jetbrains.kotlin:kotlin-bom:1.8.0"))

Learn about other cases and our suggested solutions in the documentation.

Obligatory
check
for
JVM
targets
of
related
Kotlin
and
Java
compile
tasks

Starting from this release, the default value for the kotlin.jvm.target.validation.mode property is error for projects on Gradle 8.0+ (this version of Gradle has not been
released yet), and the plugin will fail the build in the event of JVM target incompatibility.

The shift of the default value from warning to error is a preparation step for a smooth migration to Gradle 8.0. We encourage you to set this property to error and
configure a toolchain or align JVM versions manually.

Learn more about what can go wrong if you don't check the targets' compatibility.

Resolution
of
Kotlin
Gradle
plugins'
transitive
dependencies
In Kotlin 1.7.0, we introduced support for Gradle plugin variants. Because of these plugin variants, a build classpath can have different versions of the Kotlin Gradle
plugins that depend on different versions of some dependency, usually kotlin-gradle-plugin-api. This can lead to a resolution problem, and we would like to propose
the following workaround, using the kotlin-dsl plugin as an example.

This section applies to your JVM project even if your source files are only in Kotlin and you don't use Java.

178

https://developer.android.com/jetpack/compose
https://github.com/gradle/gradle/issues/22091
https://issuetracker.google.com/u/1/issues/247544167
https://youtrack.jetbrains.com/issue/KT-48843/Add-ability-to-disable-Kotlin-daemon-fallback-strategy
https://docs.gradle.org/current/userguide/platforms.html#sub:bom_import
https://youtrack.jetbrains.com/issue/KT-54993/Raise-kotlin.jvm.target.validation.mode-check-default-level-to-error-when-build-is-running-on-Gradle-8
https://plugins.gradle.org/u/kotlin

The kotlin-dsl plugin in Gradle 7.6 depends on the org.jetbrains.kotlin.plugin.sam.with.receiver:1.7.10 plugin, which depends on kotlin-gradle-plugin-api:1.7.10. If
you add the org.jetbrains.kotlin.gradle.jvm:1.8.0 plugin, this kotlin-gradle-plugin-api:1.7.10 transitive dependency may lead to a dependency resolution error
because of a mismatch between the versions (1.8.0 and 1.7.10) and the variant attributes' org.gradle.plugin.api-version values. As a workaround, add this constraint
to align the versions. This workaround may be needed until we implement the Kotlin Gradle Plugin libraries alignment platform, which is in the plans:

dependencies	{
				constraints	{
								implementation("org.jetbrains.kotlin:kotlin-sam-with-receiver:1.8.0")
				}
}

This constraint forces the org.jetbrains.kotlin:kotlin-sam-with-receiver:1.8.0 version to be used in the build classpath for transitive dependencies. Learn more about
one similar case in the Gradle issue tracker.

Deprecations
and
removals
In Kotlin 1.8.0, the deprecation cycle continues for the following properties and methods:

In the notes for Kotlin 1.7.0 that the KotlinCompile task still had the deprecated Kotlin property classpath, which would be removed in future releases. Now,
we've changed the deprecation level to error for the KotlinCompile task's classpath property. All compile tasks use the libraries input for a list of libraries
required for compilation.

We removed the kapt.use.worker.api property that allowed running kapt via the Gradle Workers API. By default, kapt has been using Gradle workers since Kotlin
1.3.70, and we recommend sticking to this method.

In Kotlin 1.7.0, we announced the start of a deprecation cycle for the kotlin.compiler.execution.strategy property. In this release, we removed this property. Learn
how to define a Kotlin compiler execution strategy in other ways.

Standard
library
Kotlin 1.8.0:

Updates JVM compilation target.

Stabilizes a number of functions – TimeUnit conversion between Java and Kotlin, cbrt(), Java Optionals extension functions.

Provides a preview for comparable and subtractable TimeMarks.

Includes experimental extension functions for java.nio.file.path.

Presents improved kotlin-reflect performance.

Updated
JVM
compilation
target
In Kotlin 1.8.0, the standard libraries (kotlin-stdlib, kotlin-reflect, and kotlin-script-*) are compiled with JVM target 1.8. Previously, the standard libraries were
compiled with JVM target 1.6.

Kotlin 1.8.0 no longer supports JVM targets 1.6 and 1.7. As a result, you no longer need to declare kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 separately in build scripts
because the contents of these artifacts have been merged into kotlin-stdlib.

Note that mixing different versions of stdlib artifacts could lead to class duplication or to missing classes. To avoid that, the Kotlin Gradle plugin can help you align
stdlib versions.

cbrt()
The cbrt() function, which allows you to compute the real cube root of a double or float, is now Stable.

import	kotlin.math.*

fun	main()	{

If you have explicitly declared kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 as dependencies in your build scripts, then you should replace them with kotlin-
stdlib.

179

https://docs.gradle.org/current/javadoc/org/gradle/api/attributes/plugin/GradlePluginApiVersion.html
https://docs.gradle.org/current/userguide/dependency_constraints.html#sec:adding-constraints-transitive-deps
https://youtrack.jetbrains.com/issue/KT-54691/Kotlin-Gradle-Plugin-libraries-alignment-platform
https://github.com/gradle/gradle/issues/22510#issuecomment-1292259298

				val	num	=	27
				val	negNum	=	-num

				println("The	cube	root	of	${num.toDouble()}	is:	"	+
												cbrt(num.toDouble()))
				println("The	cube	root	of	${negNum.toDouble()}	is:	"	+
												cbrt(negNum.toDouble()))
}

TimeUnit
conversion
between
Java
and
Kotlin
The toTimeUnit() and toDurationUnit() functions in kotlin.time are now Stable. Introduced as Experimental in Kotlin 1.6.0, these functions improve interoperability
between Kotlin and Java. You can now easily convert between Java java.util.concurrent.TimeUnit and Kotlin kotlin.time.DurationUnit. These functions are supported
on the JVM only.

import	kotlin.time.*

//	For	use	from	Java
fun	wait(timeout:	Long,	unit:	TimeUnit)	{
				val	duration:	Duration	=	timeout.toDuration(unit.toDurationUnit())
				...
}

Comparable
and
subtractable
TimeMarks

Before Kotlin 1.8.0, if you wanted to calculate the time difference between multiple TimeMarks and now, you could only call elapsedNow() on one TimeMark at a
time. This made it difficult to compare the results because the two elapsedNow() function calls couldn't be executed at exactly the same time.

To solve this, in Kotlin 1.8.0 you can subtract and compare TimeMarks from the same time source. Now you can create a new TimeMark instance to represent now
and subtract other TimeMarks from it. This way, the results that you collect from these calculations are guaranteed to be relative to each other.

import	kotlin.time.*
fun	main()	{
//sampleStart
				val	timeSource	=	TimeSource.Monotonic
				val	mark1	=	timeSource.markNow()
				Thread.sleep(500)	//	Sleep	0.5	seconds
				val	mark2	=	timeSource.markNow()

				//	Before	1.8.0
				repeat(4)	{	n	->
								val	elapsed1	=	mark1.elapsedNow()
								val	elapsed2	=	mark2.elapsedNow()

								//	Difference	between	elapsed1	and	elapsed2	can	vary	depending	
								//	on	how	much	time	passes	between	the	two	elapsedNow()	calls
								println("Measurement	1.${n	+	1}:	elapsed1=$elapsed1,	"	+
																"elapsed2=$elapsed2,	diff=${elapsed1	-	elapsed2}")
				}
				println()

				//	Since	1.8.0
				repeat(4)	{	n	->
								val	mark3	=	timeSource.markNow()
								val	elapsed1	=	mark3	-	mark1
								val	elapsed2	=	mark3	-	mark2

								//	Now	the	elapsed	times	are	calculated	relative	to	mark3,	
								//	which	is	a	fixed	value
								println("Measurement	2.${n	+	1}:	elapsed1=$elapsed1,	"	+
																"elapsed2=$elapsed2,	diff=${elapsed1	-	elapsed2}")
				}
				//	It's	also	possible	to	compare	time	marks	with	each	other
				//	This	is	true,	as	mark2	was	captured	later	than	mark1
				println(mark2	>	mark1)
//sampleEnd
}

The new functionality of TimeMarks is Experimental, and to use it you need to opt in by using @OptIn(ExperimentalTime::class) or @ExperimentalTime.

180

This new functionality is particularly useful in animation calculations where you want to calculate the difference between, or compare, multiple TimeMarks
representing different frames.

Recursive
copying
or
deletion
of
directories

We have introduced two new extension functions for java.nio.file.Path, copyToRecursively() and deleteRecursively(), which allow you to recursively:

Copy a directory and its contents to another destination.

Delete a directory and its contents.

These functions can be very useful as part of a backup process.

Error handling
Using copyToRecursively(), you can define what should happen if an exception occurs while copying, by overloading the onError lambda function:

sourceRoot.copyToRecursively(destinationRoot,	followLinks	=	false,
				onError	=	{	source,	target,	exception	->
								logger.logError(exception,	"Failed	to	copy	$source	to	$target")
								OnErrorResult.TERMINATE
				})

When you use deleteRecursively(), if an exception occurs while deleting a file or folder, then the file or folder is skipped. Once the deletion has completed,
deleteRecursively() throws an IOException containing all the exceptions that occurred as suppressed exceptions.

File overwrite
If copyToRecursively() finds that a file already exists in the destination directory, then an exception occurs. If you want to overwrite the file instead, use the overload
that has overwrite as an argument and set it to true:

fun	setUpEnvironment(projectDirectory:	Path,	fixtureName:	String)	{
				fixturesRoot.resolve(COMMON_FIXTURE_NAME)
								.copyToRecursively(projectDirectory,	followLinks	=	false)
				fixturesRoot.resolve(fixtureName)
								.copyToRecursively(projectDirectory,	followLinks	=	false,
												overwrite	=	true)	//	patches	the	common	fixture
}

Custom copying action
To define your own custom logic for copying, use the overload that has copyAction as an additional argument. By using copyAction you can provide a lambda
function, for example, with your preferred actions:

sourceRoot.copyToRecursively(destinationRoot,	followLinks	=	false)	{	source,	target	->
				if	(source.name.startsWith("."))	{
								CopyActionResult.SKIP_SUBTREE
				}	else	{
								source.copyToIgnoringExistingDirectory(target,	followLinks	=	false)
								CopyActionResult.CONTINUE
				}
}

For more information on these extension functions, see our API reference.

Java
Optionals
extension
functions
The extension functions that were introduced in Kotlin 1.7.0 are now Stable. These functions simplify working with Optional classes in Java. They can be used to
unwrap and convert Optional objects on the JVM, and to make working with Java APIs more concise. For more information, see What's new in Kotlin 1.7.0.

These new functions for java.nio.file.path are Experimental. To use them, you need to opt in with @OptIn(kotlin.io.path.ExperimentalPathApi::class) or
@kotlin.io.path.ExperimentalPathApi. Alternatively, you can use the compiler option -opt-in=kotlin.io.path.ExperimentalPathApi.

181

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io.path/java.nio.file.-path/copy-to-recursively.html

Improved
kotlin-reflect
performance
Taking advantage of the fact that kotlin-reflect is now compiled with JVM target 1.8, we migrated our internal cache mechanism to Java's ClassValue. Previously we
only cached KClass, but we now also cache KType and KDeclarationContainer. These changes have led to significant performance improvements when invoking
typeOf().

Documentation
updates
The Kotlin documentation has received some notable changes:

Revamped
and
new
pages

Gradle overview – learn how to configure and build a Kotlin project with the Gradle build system, available compiler options, compilation, and caches in the
Kotlin Gradle plugin.

Nullability in Java and Kotlin – see the differences between Java's and Kotlin's approaches to handling possibly nullable variables.

Lincheck guide – learn how to set up and use the Lincheck framework for testing concurrent algorithms on the JVM.

New
and
updated
tutorials

Get started with Gradle and Kotlin/JVM – create a console application using IntelliJ IDEA and Gradle.

Create a multiplatform app using Ktor and SQLDelight – create a mobile application for iOS and Android using Kotlin Multiplatform Mobile.

Get started with Kotlin Multiplatform – learn about cross-platform mobile development with Kotlin and create an app that works on both Android and iOS.

Install
Kotlin
1.8.0
IntelliJ IDEA 2021.3, 2022.1, and 2022.2 automatically suggest updating the Kotlin plugin to version 1.8.0. IntelliJ IDEA 2022.3 will have the 1.8.0 version of the
Kotlin plugin bundled in an upcoming minor update.

For Android Studio Electric Eel (221) and Flamingo (222), version 1.8.0 of the Kotlin plugin will be delivered with the upcoming Android Studios updates. The new
command-line compiler is available for download on the GitHub release page.

Compatibility
guide
for
Kotlin
1.8.0
Kotlin 1.8.0 is a feature release and can, therefore, bring changes that are incompatible with your code written for earlier versions of the language. Find the detailed
list of these changes in the Compatibility guide for Kotlin 1.8.0.

What's
new
in
Kotlin
1.7.20
Released: 29 September 2022

The Kotlin 1.7.20 release is out! Here are some highlights from this release:

The new Kotlin K2 compiler supports all-open, SAM with receiver, Lombok, and other compiler plugins

We introduced the preview of the ..< operator for creating open-ended ranges

The new Kotlin/Native memory manager is now enabled by default

We introduced a new experimental feature for JVM: inline classes with a generic underlying type

You can also find a short overview of the changes in this video:

To migrate existing projects to Kotlin 1.8.0 in IntelliJ IDEA 2022.3, change the Kotlin version to 1.8.0 and reimport your Gradle or Maven project.

182

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.jetbrains.com/idea/download/
https://github.com/JetBrains/kotlin/releases/tag/v1.8.0

Watch video online.

Support
for
Kotlin
K2
compiler
plugins
The Kotlin team continues to stabilize the K2 compiler. K2 is still in Alpha (as announced in the Kotlin 1.7.0 release), but it now supports several compiler plugins.
You can follow this YouTrack issue to get updates from the Kotlin team on the new compiler.

Starting with this 1.7.20 release, the Kotlin K2 compiler supports the following plugins:

all-open

no-arg

SAM with receiver

Lombok

AtomicFU

jvm-abi-gen

Learn more about the new compiler and its benefits in the following videos:

The Road to the New Kotlin Compiler

K2 Compiler: a Top-Down View

How
to
enable
the
Kotlin
K2
compiler
To enable the Kotlin K2 compiler and test it, use the following compiler option:

-Xuse-k2

You can specify it in your build.gradle(.kts) file:

Kotlin

tasks.withType<KotlinCompile>	{
				kotlinOptions.useK2	=	true
}

Groovy

Gif

The Alpha version of the new K2 compiler only works with JVM projects. It doesn't support Kotlin/JS, Kotlin/Native, or other multiplatform projects.

183

https://youtube.com/v/OG9npowJgE8
https://youtrack.jetbrains.com/issue/KT-52604
https://www.youtube.com/watch?v=iTdJJq_LyoY
https://www.youtube.com/watch?v=db19VFLZqJM

compileKotlin	{
				kotlinOptions.useK2	=	true
}

Check out the performance boost on your JVM projects and compare it with the results of the old compiler.

Leave
your
feedback
on
the
new
K2
compiler
We really appreciate your feedback in any form:

Provide your feedback directly to K2 developers in Kotlin Slack: get an invite and join the #k2-early-adopters channel.

Report any problems you faced with the new K2 compiler to our issue tracker.

Enable the Send usage statistics option to allow JetBrains collecting anonymous data about K2 usage.

Language
Kotlin 1.7.20 introduces preview versions for new language features, as well as puts restrictions on builder type inference:

Preview of the ..< operator for creating open-ended ranges

New data object declarations

Builder type inference restrictions

Preview
of
the
..<
operator
for
creating
open-ended
ranges

This release introduces the new ..< operator. Kotlin has the .. operator to express a range of values. The new ..< operator acts like the until function and helps you
define the open-ended range.

Watch video online.

Our research shows that this new operator does a better job at expressing open-ended ranges and making it clear that the upper bound is not included.

Here is an example of using the ..< operator in a when expression:

when	(value)	{
				in	0.0..<0.25	->	//	First	quarter
				in	0.25..<0.5	->	//	Second	quarter
				in	0.5..<0.75	->	//	Third	quarter
				in	0.75..1.0	->		//	Last	quarter		<-	Note	closed	range	here

The new operator is Experimental, and it has limited support in the IDE.

Gif

184

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up?_gl=1*ju6cbn*_ga*MTA3MTk5NDkzMC4xNjQ2MDY3MDU4*_ga_9J976DJZ68*MTY1ODMzNzA3OS4xMDAuMS4xNjU4MzQwODEwLjYw
https://kotlinlang.slack.com/archives/C03PK0PE257
https://kotl.in/issue
https://www.jetbrains.com/help/idea/settings-usage-statistics.html
https://youtube.com/v/v0AHdAIBnbs

}

Standard library API changes
The following new types and operations will be introduced in the kotlin.ranges packages in the common Kotlin standard library:

New OpenEndRange interface
The new interface to represent open-ended ranges is very similar to the existing ClosedRange<T> interface:

interface	OpenEndRange<T	:	Comparable<T>>	{
				//	Lower	bound
				val	start:	T
				//	Upper	bound,	not	included	in	the	range
				val	endExclusive:	T
				operator	fun	contains(value:	T):	Boolean	=	value	>=	start	&&	value	<	endExclusive
				fun	isEmpty():	Boolean	=	start	>=	endExclusive
}

Implementing OpenEndRange in the existing iterable ranges
When developers need to get a range with an excluded upper bound, they currently use the until function to effectively produce a closed iterable range with the
same values. To make these ranges acceptable in the new API that takes OpenEndRange<T>, we want to implement that interface in the existing iterable ranges:
IntRange, LongRange, CharRange, UIntRange, and ULongRange. So they will simultaneously implement both the ClosedRange<T> and OpenEndRange<T>
interfaces.

class	IntRange	:	IntProgression(...),	ClosedRange<Int>,	OpenEndRange<Int>	{
				override	val	start:	Int
				override	val	endInclusive:	Int
				override	val	endExclusive:	Int
}

rangeUntil operators for the standard types
The rangeUntil operators will be provided for the same types and combinations currently defined by the rangeTo operator. We provide them as extension functions
for prototype purposes, but for consistency, we plan to make them members later before stabilizing the open-ended ranges API.

How to enable the ..< operator
To use the ..< operator or to implement that operator convention for your own types, enable the -language-version 1.8 compiler option.

The new API elements introduced to support the open-ended ranges of the standard types require an opt-in, as usual for an experimental stdlib API:
@OptIn(ExperimentalStdlibApi::class). Alternatively, you could use the -opt-in=kotlin.ExperimentalStdlibApi compiler option.

Read more about the new operator in this KEEP document.

Improved
string
representations
for
singletons
and
sealed
class
hierarchies
with
data
objects

This release introduces a new type of object declaration for you to use: data object. Data object behaves conceptually identical to a regular object declaration but
comes with a clean toString representation out of the box.

Data objects are Experimental, and have limited support in the IDE at the moment.

185

https://github.com/kotlin/KEEP/blob/open-ended-ranges/proposals/open-ended-ranges.md
https://youtrack.jetbrains.com/issue/KT-4107

Watch video online.

package	org.example
object	MyObject
data	object	MyDataObject

fun	main()	{
				println(MyObject)	//	org.example.MyObject@1f32e575
				println(MyDataObject)	//	MyDataObject
}

This makes data object declarations perfect for sealed class hierarchies, where you may use them alongside data class declarations. In this snippet, declaring
EndOfFile as a data object instead of a plain object means that it will get a pretty toString without the need to override it manually, maintaining symmetry with the
accompanying data class definitions:

sealed	class	ReadResult	{
				data	class	Number(val	value:	Int)	:	ReadResult()
				data	class	Text(val	value:	String)	:	ReadResult()
				data	object	EndOfFile	:	ReadResult()
}

fun	main()	{
				println(ReadResult.Number(1))	//	Number(value=1)
				println(ReadResult.Text("Foo"))	//	Text(value=Foo)
				println(ReadResult.EndOfFile)	//	EndOfFile
}

How to enable data objects
To use data object declarations in your code, enable the -language-version 1.9 compiler option. In a Gradle project, you can do so by adding the following to your
build.gradle(.kts):

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompile>().configureEach	{
				//	...
				kotlinOptions.languageVersion	=	"1.9"
}

Groovy

compileKotlin	{
				//	...
				kotlinOptions.languageVersion	=	'1.9'
}

Read more about data objects, and share your feedback on their implementation in the respective KEEP document.

Gif

186

https://youtube.com/v/ovAqcwFhEGc
https://github.com/Kotlin/KEEP/pull/316

New
builder
type
inference
restrictions
Kotlin 1.7.20 places some major restrictions on the use of builder type inference that could affect your code. These restrictions apply to code containing builder
lambda functions, where it's impossible to derive the parameter without analyzing the lambda itself. The parameter is used as an argument. Now, the compiler will
always show an error for such code and ask you to specify the type explicitly.

This is a breaking change, but our research shows that these cases are very rare, and the restrictions shouldn't affect your code. If they do, consider the following
cases:

Builder inference with extension that hides members.

If your code contains an extension function with the same name that will be used during the builder inference, the compiler will show you an error:

class	Data	{
				fun	doSmth()	{}	//	1
}

fun	<T>	T.doSmth()	{}	//	2

fun	test()	{
				buildList	{
								this.add(Data())
								this.get(0).doSmth()	//	Resolves	to	2	and	leads	to	error
				}
}

To fix the code, you should specify the type explicitly:

class	Data	{
				fun	doSmth()	{}	//	1
}

fun	<T>	T.doSmth()	{}	//	2

fun	test()	{
				buildList<Data>	{	//	Type	argument!
								this.add(Data())
								this.get(0).doSmth()	//	Resolves	to	1
				}
}

Builder inference with multiple lambdas and the type arguments are not specified explicitly.

If there are two or more lambda blocks in builder inference, they affect the type. To prevent an error, the compiler requires you to specify the type:

fun	<T:	Any>	buildList(
				first:	MutableList<T>.()	->	Unit,	
				second:	MutableList<T>.()	->	Unit
):	List<T>	{
				val	list	=	mutableListOf<T>()
				list.first()
				list.second()
				return	list	
}

fun	main()	{
				buildList(
								first	=	{	//	this:	MutableList<String>
												add("")
								},
								second	=	{	//	this:	MutableList<Int>	
												val	i:	Int	=	get(0)
												println(i)
								}
)
}

To fix the error, you should specify the type explicitly and fix the type mismatch:

fun	main()	{
				buildList<Int>(
								first	=	{	//	this:	MutableList<Int>
												add(0)
								},

187

								second	=	{	//	this:	MutableList<Int>
												val	i:	Int	=	get(0)
												println(i)
								}
)
}

If you haven't found your case mentioned above, file an issue to our team.

See this YouTrack issue for more information about this builder inference update.

Kotlin/JVM
Kotlin 1.7.20 introduces generic inline classes, adds more bytecode optimizations for delegated properties, and supports IR in the kapt stub generating task,
making it possible to use all the newest Kotlin features with kapt:

Generic inline classes

More optimized cases of delegated properties

Support for the JVM IR backend in kapt stub generating task

Generic
inline
classes

Kotlin 1.7.20 allows the underlying type of JVM inline classes to be a type parameter. The compiler maps it to Any? or, generally, to the upper bound of the type
parameter.

Watch video online.

Consider the following example:

@JvmInline
value	class	UserId<T>(val	value:	T)

fun	compute(s:	UserId<String>)	{}	//	Compiler	generates	fun	compute-<hashcode>(s:	Any?)

The function accepts the inline class as a parameter. The parameter is mapped to the upper bound, not the type argument.

To enable this feature, use the -language-version 1.8 compiler option.

We would appreciate your feedback on this feature in YouTrack.

Generic inline classes is an Experimental feature. It may be dropped or changed at any time. Opt-in is required (see details below), and you should use it
only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

Gif

188

https://kotl.in/issue
https://youtrack.jetbrains.com/issue/KT-53797
https://youtrack.jetbrains.com/issue/KT-52994
https://youtube.com/v/0JRPA0tt9og
https://youtrack.jetbrains.com/issue/KT-52994

More
optimized
cases
of
delegated
properties
In Kotlin 1.6.0, we optimized the case of delegating to a property by omitting the $delegate field and generating immediate access to the referenced property. In
1.7.20, we've implemented this optimization for more cases. The $delegate field will now be omitted if a delegate is:

A named object:

object	NamedObject	{
				operator	fun	getValue(thisRef:	Any?,	property:	KProperty<*>):	String	=	...
}

val	s:	String	by	NamedObject

A final val property with a backing field and a default getter in the same module:

val	impl:	ReadOnlyProperty<Any?,	String>	=	...

class	A	{
				val	s:	String	by	impl
}

A constant expression, an enum entry, this, or null. Here's an example of this:

class	A	{
				operator	fun	getValue(thisRef:	Any?,	property:	KProperty<*>)	...

				val	s	by	this
}

Learn more about delegated properties.

We would appreciate your feedback on this feature in YouTrack.

Support
for
the
JVM
IR
backend
in
kapt
stub
generating
task

Before 1.7.20, the kapt stub generating task used the old backend, and repeatable annotations didn't work with kapt. With Kotlin 1.7.20, we've added support for
the JVM IR backend in the kapt stub generating task. This makes it possible to use all the newest Kotlin features with kapt, including repeatable annotations.

To use the IR backend in kapt, add the following option to your gradle.properties file:

kapt.use.jvm.ir=true

We would appreciate your feedback on this feature in YouTrack.

Kotlin/Native
Kotlin 1.7.20 comes with the new Kotlin/Native memory manager enabled by default and gives you the option to customize the Info.plist file:

The new default memory manager

Customizing the Info.plist file

The
new
Kotlin/Native
memory
manager
enabled
by
default
This release brings further stability and performance improvements to the new memory manager, allowing us to promote the new memory manager to Beta.

The previous memory manager complicated writing concurrent and asynchronous code, including issues with implementing the kotlinx.coroutines library. This
blocked the adoption of Kotlin Multiplatform Mobile because concurrency limitations created problems with sharing Kotlin code between iOS and Android
platforms. The new memory manager finally paves the way to promote Kotlin Multiplatform Mobile to Beta.

Support for the JVM IR backend in the kapt stub generating task is an Experimental feature. It may be changed at any time. Opt-in is required (see details
below), and you should use it only for evaluation purposes.

189

https://youtrack.jetbrains.com/issue/KT-23397
https://youtrack.jetbrains.com/issue/KT-49682
https://blog.jetbrains.com/kotlin/2022/05/kotlin-multiplatform-mobile-beta-roadmap-update/

The new memory manager also supports the compiler cache that makes compilation times comparable to previous releases. For more on the benefits of the new
memory manager, see our original blog post for the preview version. You can find more technical details in the documentation.

Configuration and setup
Starting with Kotlin 1.7.20, the new memory manager is the default. Not much additional setup is required.

If you've already turned it on manually, you can remove the kotlin.native.binary.memoryModel=experimental option from your gradle.properties or
binaryOptions["memoryModel"] = "experimental" from the build.gradle(.kts) file.

If necessary, you can switch back to the legacy memory manager with the kotlin.native.binary.memoryModel=strict option in your gradle.properties. However,
compiler cache support is no longer available for the legacy memory manager, so compilation times might worsen.

Freezing
In the new memory manager, freezing is deprecated. Don't use it unless you need your code to work with the legacy manager (where freezing is still required). This
may be helpful for library authors that need to maintain support for the legacy memory manager or developers who want to have a fallback if they encounter issues
with the new memory manager.

In such cases, you can temporarily support code for both new and legacy memory managers. To ignore deprecation warnings, do one of the following:

Annotate usages of the deprecated API with @OptIn(FreezingIsDeprecated::class).

Apply languageSettings.optIn("kotlin.native.FreezingIsDeprecated") to all the Kotlin source sets in Gradle.

Pass the compiler flag -opt-in=kotlin.native.FreezingIsDeprecated.

Calling Kotlin suspending functions from Swift/Objective-C
The new memory manager still restricts calling Kotlin suspend functions from Swift and Objective-C from threads other than the main one, but you can lift it with a
new Gradle option.

This restriction was originally introduced in the legacy memory manager due to cases where the code dispatched a continuation to be resumed on the original
thread. If this thread didn't have a supported event loop, the task would never run, and the coroutine would never be resumed.

In certain cases, this restriction is no longer required, but a check of all the necessary conditions can't be easily implemented. Because of this, we decided to keep
it in the new memory manager while introducing an option for you to disable it. For this, add the following option to your gradle.properties:

kotlin.native.binary.objcExportSuspendFunctionLaunchThreadRestriction=none

The Kotlin team is very grateful to Ahmed El-Helw for implementing this option.

Leave your feedback
This is a significant change to our ecosystem. We would appreciate your feedback to help make it even better.

Try the new memory manager on your projects and share feedback in our issue tracker, YouTrack.

Customizing
the
Info.plist
file
When producing a framework, the Kotlin/Native compiler generates the information property list file, Info.plist. Previously, it was cumbersome to customize its
contents. With Kotlin 1.7.20, you can directly set the following properties:

Property Binary option

CFBundleIdentifier bundleId

Do not add this option if you use the native-mt version of kotlinx.coroutines or other libraries that have the same "dispatch to the original thread"
approach.

190

https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/
https://github.com/ahmedre
https://youtrack.jetbrains.com/issue/KT-48525

CFBundleShortVersionString bundleShortVersionString

CFBundleVersion bundleVersion

Property Binary option

To do that, use the corresponding binary option. Pass the -Xbinary=$option=$value compiler flag or set the binaryOption(option, value) Gradle DSL for the
necessary framework.

The Kotlin team is very grateful to Mads Ager for implementing this feature.

Kotlin/JS
Kotlin/JS has received some enhancements that improve the developer experience and boost performance:

Klib generation is faster in both incremental and clean builds, thanks to efficiency improvements for the loading of dependencies.

Incremental compilation for development binaries has been reworked, resulting in major improvements in clean build scenarios, faster incremental builds, and
stability fixes.

We've improved .d.ts generation for nested objects, sealed classes, and optional parameters in constructors.

Gradle
The updates for the Kotlin Gradle plugin are focused on compatibility with the new Gradle features and the latest Gradle versions.

Kotlin 1.7.20 contains changes to support Gradle 7.1. Deprecated methods and properties were removed or replaced, reducing the number of deprecation
warnings produced by the Kotlin Gradle plugin and unblocking future support for Gradle 8.0.

There are, however, some potentially breaking changes that may need your attention:

Target
configuration
org.jetbrains.kotlin.gradle.dsl.SingleTargetExtension now has a generic parameter, SingleTargetExtension<T : KotlinTarget>.

The kotlin.targets.fromPreset() convention has been deprecated. Instead, you can still use kotlin.targets { fromPreset() }, but we recommend using more
specialized ways to create targets.

Target accessors auto-generated by Gradle are no longer available inside the kotlin.targets { } block. Please use the findByName("targetName") method instead.

Note that such accessors are still available in the case of kotlin.targets, for example, kotlin.targets.linuxX64.

Source
directories
configuration
The Kotlin Gradle plugin now adds Kotlin SourceDirectorySet as a kotlin extension to Java's SourceSet group. This makes it possible to configure source
directories in the build.gradle.kts file similarly to how they are configured in Java, Groovy, and Scala:

sourceSets	{
				main	{
								kotlin	{
												java.setSrcDirs(listOf("src/java"))
												kotlin.setSrcDirs(listOf("src/kotlin"))
								}
				}
}

You no longer need to use a deprecated Gradle convention and specify the source directories for Kotlin.

Remember that you can also use the kotlin extension to access KotlinSourceSet:

191

https://docs.gradle.org/7.1/release-notes.html#easier-source-set-configuration-in-kotlin-dsl

kotlin	{
				sourceSets	{
								main	{
								//	...
								}
				}
}

New
method
for
JVM
toolchain
configuration
This release provides a new jvmToolchain() method for enabling the JVM toolchain feature. If you don't need any additional configuration fields, such as
implementation or vendor, you can use this method from the Kotlin extension:

kotlin	{
				jvmToolchain(17)
}

This simplifies the Kotlin project setup process without any additional configuration. Before this release, you could specify the JDK version only in the following way:

kotlin	{
				jvmToolchain	{
								languageVersion.set(JavaLanguageVersion.of(17))
				}
}

Standard
library
Kotlin 1.7.20 offers new extension functions for the java.nio.file.Path class, which allows you to walk through a file tree:

walk() lazily traverses the file tree rooted at the specified path.

fileVisitor() makes it possible to create a FileVisitor separately. FileVisitor defines actions on directories and files when traversing them.

visitFileTree(fileVisitor: FileVisitor, ...) consumes a ready FileVisitor and uses java.nio.file.Files.walkFileTree() under the hood.

visitFileTree(..., builderAction: FileVisitorBuilder.() -> Unit) creates a FileVisitor with the builderAction and calls the visitFileTree(fileVisitor, ...) function.

FileVisitResult, return type of FileVisitor, has the CONTINUE default value that continues the processing of the file.

Here are some things you can do with these new extension functions:

Explicitly create a FileVisitor and then use:

val	cleanVisitor	=	fileVisitor	{
				onPreVisitDirectory	{	directory,	attributes	->
								//	Some	logic	on	visiting	directories
								FileVisitResult.CONTINUE
				}

				onVisitFile	{	file,	attributes	->
								//	Some	logic	on	visiting	files
								FileVisitResult.CONTINUE
				}
}

//	Some	logic	may	go	here

projectDirectory.visitFileTree(cleanVisitor)

Create a FileVisitor with the builderAction and use it immediately:

projectDirectory.visitFileTree	{

The new extension functions for java.nio.file.Path are Experimental. They may be changed at any time. Opt-in is required (see details below), and you
should use them only for evaluation purposes.

192

https://docs.gradle.org/current/javadoc/org/gradle/jvm/toolchain/JavaToolchainSpec.html

//	Definition	of	the	builderAction:
				onPreVisitDirectory	{	directory,	attributes	->
								//	Some	logic	on	visiting	directories
								FileVisitResult.CONTINUE
				}

				onVisitFile	{	file,	attributes	->
								//	Some	logic	on	visiting	files
								FileVisitResult.CONTINUE
				}
}

Traverse a file tree rooted at the specified path with the walk() function:

@OptIn(kotlin.io.path.ExperimentalPathApi::class)
fun	traverseFileTree()	{
				val	cleanVisitor	=	fileVisitor	{
								onPreVisitDirectory	{	directory,	_	->
												if	(directory.name	==	"build")	{
																directory.toFile().deleteRecursively()
																FileVisitResult.SKIP_SUBTREE
												}	else	{
																FileVisitResult.CONTINUE
												}
								}

								onVisitFile	{	file,	_	->
												if	(file.extension	==	"class")	{
																file.deleteExisting()
												}
												FileVisitResult.CONTINUE
								}
				}

				val	rootDirectory	=	createTempDirectory("Project")

				rootDirectory.resolve("src").let	{	srcDirectory	->
								srcDirectory.createDirectory()
								srcDirectory.resolve("A.kt").createFile()
								srcDirectory.resolve("A.class").createFile()
				}

				rootDirectory.resolve("build").let	{	buildDirectory	->
								buildDirectory.createDirectory()
								buildDirectory.resolve("Project.jar").createFile()
				}

//	Use	walk	function:
				val	directoryStructure	=	rootDirectory.walk(PathWalkOption.INCLUDE_DIRECTORIES)
								.map	{	it.relativeTo(rootDirectory).toString()	}
								.toList().sorted()
				assertPrints(directoryStructure,	"[,	build,	build/Project.jar,	src,	src/A.class,	src/A.kt]")

				rootDirectory.visitFileTree(cleanVisitor)

				val	directoryStructureAfterClean	=	rootDirectory.walk(PathWalkOption.INCLUDE_DIRECTORIES)
								.map	{	it.relativeTo(rootDirectory).toString()	}
								.toList().sorted()
				assertPrints(directoryStructureAfterClean,	"[,	src,	src/A.kt]")
//sampleEnd
}

As is usual for an experimental API, the new extensions require an opt-in: @OptIn(kotlin.io.path.ExperimentalPathApi::class) or @kotlin.io.path.ExperimentalPathApi.
Alternatively, you can use a compiler option: -opt-in=kotlin.io.path.ExperimentalPathApi.

We would appreciate your feedback on the walk() function and the visit extension functions in YouTrack.

Documentation
updates
Since the previous release, the Kotlin documentation has received some notable changes:

Revamped
and
improved
pages

193

https://youtrack.jetbrains.com/issue/KT-52909
https://youtrack.jetbrains.com/issue/KT-52910

Basic types overview – learn about the basic types used in Kotlin: numbers, Booleans, characters, strings, arrays, and unsigned integer numbers.

IDEs for Kotlin development – see the list of IDEs with official Kotlin support and tools that have community-supported plugins.

New
articles
in
the
Kotlin
Multiplatform
journal

Native and cross-platform app development: how to choose? – check out our overview and advantages of cross-platform app development and the native
approach.

The six best cross-platform app development frameworks – read about the key aspects to help you choose the right framework for your cross-platform project.

New
and
updated
tutorials

Get started with Kotlin Multiplatform – learn about cross-platform mobile development with Kotlin and create an app that works on both Android and iOS.

Build a web application with React and Kotlin/JS – create a browser app exploring Kotlin's DSLs and features of a typical React program.

Changes
in
release
documentation
We no longer provide a list of recommended kotlinx libraries for each release. This list included only the versions recommended and tested with Kotlin itself. It didn't
take into account that some libraries depend on each other and require a special kotlinx version, which may differ from the recommended Kotlin version.

We're working on finding a way to provide information on how libraries interrelate and depend on each other so that it will be clear which kotlinx library version you
should use when you upgrade the Kotlin version in your project.

Install
Kotlin
1.7.20
IntelliJ IDEA 2021.3, 2022.1, and 2022.2 automatically suggest updating the Kotlin plugin to 1.7.20.

The new command-line compiler is available for download on the GitHub release page.

Compatibility
guide
for
Kotlin
1.7.20
Although Kotlin 1.7.20 is an incremental release, there are still incompatible changes we had to make to limit spread of the issues introduced in Kotlin 1.7.0.

Find the detailed list of such changes in the Compatibility guide for Kotlin 1.7.20.

What's
new
in
Kotlin
1.7.0
Released: 9 June 2022

Kotlin 1.7.0 has been released. It unveils the Alpha version of the new Kotlin/JVM K2 compiler, stabilizes language features, and brings performance improvements
for the JVM, JS, and Native platforms.

Here is a list of the major updates in this version:

The new Kotlin K2 compiler is in Alpha now, and it offers serious performance improvements. It is available only for the JVM, and none of the compiler plugins,
including kapt, work with it.

A new approach to the incremental compilation in Gradle. Incremental compilation is now also supported for changes made inside dependent non-Kotlin
modules and is compatible with Gradle.

We've stabilized opt-in requirement annotations, definitely non-nullable types, and builder inference.

There's now an underscore operator for type args. You can use it to automatically infer a type of argument when other types are specified.

This release allows implementation by delegation to an inlined value of an inline class. You can now create lightweight wrappers that do not allocate memory in
most cases.

For Android Studio Dolphin (213), Electric Eel (221), and Flamingo (222), the Kotlin plugin 1.7.20 will be delivered with upcoming Android Studios updates.

194

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.jetbrains.com/idea/download/
https://github.com/JetBrains/kotlin/releases/tag/v1.7.20

You can also find a short overview of the changes in this video:

Watch video online.

New
Kotlin
K2
compiler
for
the
JVM
in
Alpha
This Kotlin release introduces the Alpha version of the new Kotlin K2 compiler. The new compiler aims to speed up the development of new language features, unify
all of the platforms Kotlin supports, bring performance improvements, and provide an API for compiler extensions.

We've already published some detailed explanations of our new compiler and its benefits:

The Road to the New Kotlin Compiler

K2 Compiler: a Top-Down View

It's important to point out that with the Alpha version of the new K2 compiler we were primarily focused on performance improvements, and it only works with JVM
projects. It doesn't support Kotlin/JS, Kotlin/Native, or other multi-platform projects, and none of compiler plugins, including kapt, work with it.

Our benchmarks show some outstanding results on our internal projects:

Project Current Kotlin compiler performance New K2 Kotlin compiler performance Performance boost

Kotlin 2.2 KLOC/s 4.8 KLOC/s ~ x2.2

YouTrack 1.8 KLOC/s 4.2 KLOC/s ~ x2.3

IntelliJ IDEA 1.8 KLOC/s 3.9 KLOC/s ~ x2.2

Space 1.2 KLOC/s 2.8 KLOC/s ~ x2.3

You can check out the performance boost on your JVM projects and compare it with the results of the old compiler. To enable the Kotlin K2 compiler, use the
following compiler option:

-Xuse-k2

Also, the K2 compiler includes a number of bugfixes. Please note that even issues with State: Open from this list are in fact fixed in K2.

Gif

The KLOC/s performance numbers stand for the number of thousands of lines of code that the compiler processes per second.

195

https://youtube.com/v/54WEfLKtCGk
https://www.youtube.com/watch?v=iTdJJq_LyoY
https://www.youtube.com/watch?v=db19VFLZqJM
https://youtrack.jetbrains.com/issues/KT?q=tag:%20FIR-preview-qa%20%2523Resolved

The next Kotlin releases will improve the stability of the K2 compiler and provide more features, so stay tuned!

If you face any performance issues with the Kotlin K2 compiler, please report them to our issue tracker.

Language
Kotlin 1.7.0 introduces support for implementation by delegation and a new underscore operator for type arguments. It also stabilizes several language features
introduced as previews in previous releases:

Implementation by delegation to inlined value of inline class

Underscore operator for type arguments

Stable builder inference

Stable opt-in requirements

Stable definitely non-nullable types

Allow
implementation
by
delegation
to
an
inlined
value
of
an
inline
class
If you want to create a lightweight wrapper for a value or class instance, it's necessary to implement all interface methods by hand. Implementation by delegation
solves this issue, but it did not work with inline classes before 1.7.0. This restriction has been removed, so you can now create lightweight wrappers that do not
allocate memory in most cases.

interface	Bar	{
				fun	foo()	=	"foo"
}

@JvmInline
value	class	BarWrapper(val	bar:	Bar):	Bar	by	bar

fun	main()	{
				val	bw	=	BarWrapper(object:	Bar	{})
				println(bw.foo())
}

Underscore
operator
for
type
arguments
Kotlin 1.7.0 introduces an underscore operator, _, for type arguments. You can use it to automatically infer a type argument when other types are specified:

abstract	class	SomeClass<T>	{
				abstract	fun	execute():	T
}

class	SomeImplementation	:	SomeClass<String>()	{
				override	fun	execute():	String	=	"Test"
}

class	OtherImplementation	:	SomeClass<Int>()	{
				override	fun	execute():	Int	=	42
}

object	Runner	{
				inline	fun	<reified	S:	SomeClass<T>,	T>	run():	T	{
								return	S::class.java.getDeclaredConstructor().newInstance().execute()
				}
}

fun	main()	{
				//	T	is	inferred	as	String	because	SomeImplementation	derives	from	SomeClass<String>
				val	s	=	Runner.run<SomeImplementation,	_>()
				assert(s	==	"Test")

				//	T	is	inferred	as	Int	because	OtherImplementation	derives	from	SomeClass<Int>
				val	n	=	Runner.run<OtherImplementation,	_>()
				assert(n	==	42)
}

196

https://kotl.in/issue

Stable
builder
inference
Builder inference is a special kind of type inference that is useful when calling generic builder functions. It helps the compiler infer the type arguments of a call using
the type information about other calls inside its lambda argument.

Starting with 1.7.0, builder inference is automatically activated if a regular type inference cannot get enough information about a type without specifying the -
Xenable-builder-inference compiler option, which was introduced in 1.6.0.

Learn how to write custom generic builders.

Stable
opt-in
requirements
Opt-in requirements are now Stable and do not require additional compiler configuration.

Before 1.7.0, the opt-in feature itself required the argument -opt-in=kotlin.RequiresOptIn to avoid a warning. It no longer requires this; however, you can still use the
compiler argument -opt-in to opt-in for other annotations, module-wide.

Stable
definitely
non-nullable
types
In Kotlin 1.7.0, definitely non-nullable types have been promoted to Stable. They provide better interoperability when extending generic Java classes and interfaces.

You can mark a generic type parameter as definitely non-nullable at the use site with the new syntax T & Any. The syntactic form comes from the notation for
intersection types and is now limited to a type parameter with nullable upper bounds on the left side of & and a non-nullable Any on the right side:

fun	<T>	elvisLike(x:	T,	y:	T	&	Any):	T	&	Any	=	x	?:	y

fun	main()	{
				//	OK
				elvisLike<String>("",	"").length
				//	Error:	'null'	cannot	be	a	value	of	a	non-null	type
				elvisLike<String>("",	null).length

				//	OK
				elvisLike<String?>(null,	"").length
				//	Error:	'null'	cannot	be	a	value	of	a	non-null	type
				elvisLike<String?>(null,	null).length
}

Learn more about definitely non-nullable types in this KEEP.

Kotlin/JVM
This release brings performance improvements for the Kotlin/JVM compiler and a new compiler option. Additionally, callable references to functional interface
constructors have become Stable. Note that since 1.7.0, the default target version for Kotlin/JVM compilations is 1.8.

Compiler performance optimizations

New compiler option -Xjdk-release

Stable callable references to functional interface constructors

Removed the JVM target version 1.6

Compiler
performance
optimizations
Kotlin 1.7.0 introduces performance improvements for the Kotlin/JVM compiler. According to our benchmarks, compilation time has been reduced by 10% on
average compared to Kotlin 1.6.0. Projects with lots of usages of inline functions, for example, projects using kotlinx.html, will compile faster thanks to the
improvements to the bytecode postprocessing.

New
compiler
option:
-Xjdk-release
Kotlin 1.7.0 presents a new compiler option, -Xjdk-release. This option is similar to the javac's command-line --release option. The -Xjdk-release option controls the
target bytecode version and limits the API of the JDK in the classpath to the specified Java version. For example, kotlinc -Xjdk-release=1.8 won't allow referencing

You can use the underscore operator in any position in the variables list to infer a type argument.

197

https://en.wikipedia.org/wiki/Intersection_type
https://github.com/Kotlin/KEEP/blob/c72601cf35c1e95a541bb4b230edb474a6d1d1a8/proposals/definitely-non-nullable-types.md
https://youtrack.jetbrains.com/issue/KT-48233/Switching-to-JVM-IR-backend-increases-compilation-time-by-more-t#focus=Comments-27-6114542.0-0
https://youtrack.jetbrains.com/issue/KT-51416/Compilation-of-kotlinx-html-DSL-should-still-be-faster
http://openjdk.java.net/jeps/247

java.lang.Module even if the JDK in the dependencies is version 9 or higher.

Please leave your feedback on this YouTrack ticket.

Stable
callable
references
to
functional
interface
constructors
Callable references to functional interface constructors are now Stable. Learn how to migrate from an interface with a constructor function to a functional interface
using callable references.

Please report any issues you find in YouTrack.

Removed
JVM
target
version
1.6
The default target version for Kotlin/JVM compilations is 1.8. The 1.6 target has been removed.

Please migrate to JVM target 1.8 or above. Learn how to update the JVM target version for:

Gradle

Maven

The command-line compiler

Kotlin/Native
Kotlin 1.7.0 includes changes to Objective-C and Swift interoperability and stabilizes features that were introduced in previous releases. It also brings performance
improvements for the new memory manager along with other updates:

Performance improvements for the new memory manager

Unified compiler plugin ABI with JVM and JS IR backends

Support for standalone Android executables

Interop with Swift async/await: returning Void instead of KotlinUnit

Prohibited undeclared exceptions through Objective-C bridges

Improved CocoaPods integration

Overriding of the Kotlin/Native compiler download URL

Performance
improvements
for
the
new
memory
manager

The new memory manager is still in Alpha, but it is on its way to becoming Stable. This release delivers significant performance improvements for the new memory
manager, especially in garbage collection (GC). In particular, concurrent implementation of the sweep phase, introduced in 1.6.20, is now enabled by default. This
helps reduce the time the application is paused for GC. The new GC scheduler is better at choosing the GC frequency, especially for larger heaps.

Also, we've specifically optimized debug binaries, ensuring that the proper optimization level and link-time optimizations are used in the implementation code of the
memory manager. This helped us improve execution time by roughly 30% for debug binaries on our benchmarks.

Try using the new memory manager in your projects to see how it works, and share your feedback with us in YouTrack.

Unified
compiler
plugin
ABI
with
JVM
and
JS
IR
backends
Starting with Kotlin 1.7.0, the Kotlin Multiplatform Gradle plugin uses the embeddable compiler jar for Kotlin/Native by default. This feature was announced in 1.6.0

This option is not guaranteed to be effective for each JDK distribution.

The new Kotlin/Native memory manager is in Alpha. It may change incompatibly and require manual migration in the future. We would appreciate your
feedback in YouTrack.

198

https://youtrack.jetbrains.com/issue/KT-29974
https://youtrack.jetbrains.com/issue/KT-29974/Add-a-compiler-option-Xjdk-release-similar-to-javac-s-release-to
https://youtrack.jetbrains.com/newissue?project=kt
https://youtrack.jetbrains.com/issue/KT-48525
https://youtrack.jetbrains.com/issue/KT-48525

as Experimental, and now it's Stable and ready to use.

This improvement is very handy for library authors, as it improves the compiler plugin development experience. Before this release, you had to provide separate
artifacts for Kotlin/Native, but now you can use the same compiler plugin artifacts for Native and other supported platforms.

Support
for
standalone
Android
executables
Kotlin 1.7.0 provides full support for generating standard executables for Android Native targets. It was introduced in 1.6.20, and now it's enabled by default.

If you want to roll back to the previous behavior when Kotlin/Native generated shared libraries, use the following setting:

binaryOptions["androidProgramType"]	=	"nativeActivity"

Interop
with
Swift
async/await:
returning
Void
instead
of
KotlinUnit
Kotlin suspend functions now return the Void type instead of KotlinUnit in Swift. This is the result of the improved interop with Swift's async/await. This feature was
introduced in 1.6.20, and this release enables this behavior by default.

You don't need to use the kotlin.native.binary.unitSuspendFunctionObjCExport=proper property anymore to return the proper type for such functions.

Prohibited
undeclared
exceptions
through
Objective-C
bridges
When you call Kotlin code from Swift/Objective-C code (or vice versa) and this code throws an exception, it should be handled by the code where the exception
occurred, unless you specifically allowed the forwarding of exceptions between languages with proper conversion (for example, using the @Throws annotation).

Previously, Kotlin had another unintended behavior where undeclared exceptions could "leak" from one language to another in some cases. Kotlin 1.7.0 fixes that
issue, and now such cases lead to program termination.

So, for example, if you have a { throw Exception() } lambda in Kotlin and call it from Swift, in Kotlin 1.7.0 it will terminate as soon as the exception reaches the Swift
code. In previous Kotlin versions, such an exception could leak to the Swift code.

The @Throws annotation continues to work as before.

Improved
CocoaPods
integration
Starting with Kotlin 1.7.0, you no longer need to install the cocoapods-generate plugin if you want to integrate CocoaPods in your projects.

Previously, you needed to install both the CocoaPods dependency manager and the cocoapods-generate plugin to use CocoaPods, for example, to handle iOS
dependencies in Kotlin Multiplatform Mobile projects.

Now setting up the CocoaPods integration is easier, and we've resolved the issue when cocoapods-generate couldn't be installed on Ruby 3 and later. Now the
newest Ruby versions that work better on Apple M1 are also supported.

See how to set up the initial CocoaPods integration.

Overriding
the
Kotlin/Native
compiler
download
URL
Starting with Kotlin 1.7.0, you can customize the download URL for the Kotlin/Native compiler. This is useful when external links on the CI are forbidden.

To override the default base URL https://download.jetbrains.com/kotlin/native/builds, use the following Gradle property:

kotlin.native.distribution.baseDownloadUrl=https://example.com

This feature might require plugin developers to take migration steps for their existing plugins.

Learn how to prepare your plugin for the update in this YouTrack issue.

The downloader will append the native version and target OS to this base URL to ensure it downloads the actual compiler distribution.

199

https://youtrack.jetbrains.com/issue/KT-48595

Kotlin/JS
Kotlin/JS is receiving further improvements to the JS IR compiler backend along with other updates that can make your development experience better:

Performance improvements for the new IR backend

Minification for member names when using IR

Support for older browsers via polyfills in the IR backend

Dynamically load JavaScript modules from js expressions

Specify environment variables for JavaScript test runners

Performance
improvements
for
the
new
IR
backend
This release has some major updates that should improve your development experience:

Incremental compilation performance of Kotlin/JS has been significantly improved. It takes less time to build your JS projects. Incremental rebuilds should now
be roughly on par with the legacy backend in many cases now.

The Kotlin/JS final bundle requires less space, as we have significantly reduced the size of the final artifacts. We've measured up to a 20% reduction in the
production bundle size compared to the legacy backend for some large projects.

Type checking for interfaces has been improved by orders of magnitude.

Kotlin generates higher-quality JS code

Minification
for
member
names
when
using
IR
The Kotlin/JS IR compiler now uses its internal information about the relationships of your Kotlin classes and functions to apply more efficient minification,
shortening the names of functions, properties, and classes. This shrinks the resulting bundled applications.

This type of minification is automatically applied when you build your Kotlin/JS application in production mode and is enabled by default. To disable member name
minification, use the -Xir-minimized-member-names compiler flag:

kotlin	{
				js(IR)	{
								compilations.all	{
												compileKotlinTask.kotlinOptions.freeCompilerArgs	+=	listOf("-Xir-minimized-member-names=false")
								}
				}
}

Support
for
older
browsers
via
polyfills
in
the
IR
backend
The IR compiler backend for Kotlin/JS now includes the same polyfills as the legacy backend. This allows code compiled with the new compiler to run in older
browsers that do not support all the methods from ES2015 used by the Kotlin standard library. Only those polyfills actually used by the project are included in the
final bundle, which minimizes their potential impact on the bundle size.

This feature is enabled by default when using the IR compiler, and you don't need to configure it.

Dynamically
load
JavaScript
modules
from
js
expressions
When working with the JavaScript modules, most applications use static imports, whose use is covered with the JavaScript module integration. However, Kotlin/JS
was missing a mechanism to load JavaScript modules dynamically at runtime in your applications.

Starting with Kotlin 1.7.0, the import statement from JavaScript is supported in js blocks, allowing you to dynamically bring packages into your application at
runtime:

val	myPackage	=	js("import('my-package')")

Specify
environment
variables
for
JavaScript
test
runners
To tune Node.js package resolution or pass external information to Node.js tests, you can now specify environment variables used by the JavaScript test runners.

200

To define an environment variable, use the environment() function with a key-value pair inside the testTask block in your build script:

kotlin	{
				js	{
								nodejs	{
												testTask	{
																environment("key",	"value")
												}
								}
				}
}

Standard
library
In Kotlin 1.7.0, the standard library has received a range of changes and improvements. They introduce new features, stabilize experimental ones, and unify support
for named capturing groups for Native, JS, and the JVM:

min() and max() collection functions return as non-nullable

Regular expression matching at specific indices

Extended support of previous language and API versions

Access to annotations via reflection

Stable deep recursive functions

Time marks based on inline classes for default time source

New experimental extension functions for Java Optionals

Support for named capturing groups in JS and Native

min()
and
max()
collection
functions
return
as
non-nullable
In Kotlin 1.4.0, we renamed the min() and max() collection functions to minOrNull() and maxOrNull(). These new names better reflect their behavior – returning null if
the receiver collection is empty. It also helped align the functions' behavior with naming conventions used throughout the Kotlin collections API.

The same was true of minBy(), maxBy(), minWith(), and maxWith(), which all got their *OrNull() synonyms in Kotlin 1.4.0. Older functions affected by this change were
gradually deprecated.

Kotlin 1.7.0 reintroduces the original function names, but with a non-nullable return type. The new min(), max(), minBy(), maxBy(), minWith(), and maxWith() functions
now strictly return the collection element or throw an exception.

fun	main()	{
				val	numbers	=	listOf<Int>()
				println(numbers.maxOrNull())	//	"null"
				println(numbers.max())	//	"Exception	in...	Collection	is	empty."
}

Regular
expression
matching
at
specific
indices
The Regex.matchAt() and Regex.matchesAt() functions, introduced in 1.5.30, are now Stable. They provide a way to check whether a regular expression has an
exact match at a particular position in a String or CharSequence.

matchesAt() checks for a match and returns a boolean result:

fun	main()	{
				val	releaseText	=	"Kotlin	1.7.0	is	on	its	way!"
				//	regular	expression:	one	digit,	dot,	one	digit,	dot,	one	or	more	digits
				val	versionRegex	=	"\\d[.]\\d[.]\\d+".toRegex()

				println(versionRegex.matchesAt(releaseText,	0))	//	"false"
				println(versionRegex.matchesAt(releaseText,	7))	//	"true"
}

matchAt() returns the match if it's found, or null if it isn't:

201

fun	main()	{
				val	releaseText	=	"Kotlin	1.7.0	is	on	its	way!"
				val	versionRegex	=	"\\d[.]\\d[.]\\d+".toRegex()

				println(versionRegex.matchAt(releaseText,	0))	//	"null"
				println(versionRegex.matchAt(releaseText,	7)?.value)	//	"1.7.0"
}

We'd be grateful for your feedback on this YouTrack issue.

Extended
support
for
previous
language
and
API
versions
To support library authors developing libraries that are meant to be consumable in a wide range of previous Kotlin versions, and to address the increased frequency
of major Kotlin releases, we have extended our support for previous language and API versions.

With Kotlin 1.7.0, we're supporting three previous language and API versions rather than two. This means Kotlin 1.7.0 supports the development of libraries
targeting Kotlin versions down to 1.4.0. For more information on backward compatibility, see Compatibility modes.

Access
to
annotations
via
reflection
The KAnnotatedElement.findAnnotations() extension function, which was first introduced in 1.6.0, is now Stable. This reflection function returns all annotations of a
given type on an element, including individually applied and repeated annotations.

@Repeatable
annotation	class	Tag(val	name:	String)

@Tag("First	Tag")
@Tag("Second	Tag")
fun	taggedFunction()	{
				println("I'm	a	tagged	function!")
}

fun	main()	{
				val	x	=	::taggedFunction
				val	foo	=	x	as	KAnnotatedElement
				println(foo.findAnnotations<Tag>())	//	[@Tag(name=First	Tag),	@Tag(name=Second	Tag)]
}

Stable
deep
recursive
functions
Deep recursive functions have been available as an experimental feature since Kotlin 1.4.0, and they are now Stable in Kotlin 1.7.0. Using DeepRecursiveFunction,
you can define a function that keeps its stack on the heap instead of using the actual call stack. This allows you to run very deep recursive computations. To call a
deep recursive function, invoke it.

In this example, a deep recursive function is used to calculate the depth of a binary tree recursively. Even though this sample function calls itself recursively 100,000
times, no StackOverflowError is thrown:

class	Tree(val	left:	Tree?,	val	right:	Tree?)

val	calculateDepth	=	DeepRecursiveFunction<Tree?,	Int>	{	t	->
				if	(t	==	null)	0	else	maxOf(
								callRecursive(t.left),
								callRecursive(t.right)
)	+	1
}

fun	main()	{
				//	Generate	a	tree	with	a	depth	of	100_000
				val	deepTree	=	generateSequence(Tree(null,	null))	{	prev	->
								Tree(prev,	null)
				}.take(100_000).last()

				println(calculateDepth(deepTree))	//	100000
}

Consider using deep recursive functions in your code where your recursion depth exceeds 1000 calls.

Time
marks
based
on
inline
classes
for
default
time
source

202

https://youtrack.jetbrains.com/issue/KT-34021
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.full/find-annotations.html
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-rc-debugging-coroutines/#Defining_deep_recursive_functions_using_coroutines

Kotlin 1.7.0 improves the performance of time measurement functionality by changing the time marks returned by TimeSource.Monotonic into inline value classes.
This means that calling functions like markNow(), elapsedNow(), measureTime(), and measureTimedValue() doesn't allocate wrapper classes for their TimeMark
instances. Especially when measuring a piece of code that is part of a hot path, this can help minimize the performance impact of the measurement:

@OptIn(ExperimentalTime::class)
fun	main()	{
				val	mark	=	TimeSource.Monotonic.markNow()	//	Returned	`TimeMark`	is	inline	class
				val	elapsedDuration	=	mark.elapsedNow()
}

New
experimental
extension
functions
for
Java
Optionals
Kotlin 1.7.0 comes with new convenience functions that simplify working with Optional classes in Java. These new functions can be used to unwrap and convert
optional objects on the JVM and help make working with Java APIs more concise.

The getOrNull(), getOrDefault(), and getOrElse() extension functions allow you to get the value of an Optional if it's present. Otherwise, you get null, a default value,
or a value returned by a function, respectively:

val	presentOptional	=	Optional.of("I'm	here!")

println(presentOptional.getOrNull())
//	"I'm	here!"

val	absentOptional	=	Optional.empty<String>()

println(absentOptional.getOrNull())
//	null
println(absentOptional.getOrDefault("Nobody	here!"))
//	"Nobody	here!"
println(absentOptional.getOrElse	{
				println("Optional	was	absent!")
				"Default	value!"
})
//	"Optional	was	absent!"
//	"Default	value!"

The toList(), toSet(), and asSequence() extension functions convert the value of a present Optional to a list, set, or sequence, or return an empty collection
otherwise. The toCollection() extension function appends the Optional value to an already existing destination collection:

val	presentOptional	=	Optional.of("I'm	here!")
val	absentOptional	=	Optional.empty<String>()
println(presentOptional.toList()	+	","	+	absentOptional.toList())
//	["I'm	here!"],	[]
println(presentOptional.toSet()	+	","	+	absentOptional.toSet())
//	["I'm	here!"],	[]
val	myCollection	=	mutableListOf<String>()
absentOptional.toCollection(myCollection)
println(myCollection)
//	[]
presentOptional.toCollection(myCollection)
println(myCollection)
//	["I'm	here!"]
val	list	=	listOf(presentOptional,	absentOptional).flatMap	{	it.asSequence()	}
println(list)
//	["I'm	here!"]

These extension functions are being introduced as Experimental in Kotlin 1.7.0. You can learn more about Optional extensions in this KEEP. As always, we
welcome your feedback in the Kotlin issue tracker.

Support
for
named
capturing
groups
in
JS
and
Native
Starting with Kotlin 1.7.0, named capturing groups are supported not only on the JVM, but on the JS and Native platforms as well.

To give a name to a capturing group, use the (?<name>group) syntax in your regular expression. To get the text matched by a group, call the newly introduced
MatchGroupCollection.get() function and pass the group name.

This optimization is only available if the time source from which the TimeMark is obtained is statically known to be TimeSource.Monotonic.

203

https://github.com/Kotlin/KEEP/pull/291
https://kotl.in/issue
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/get.html

Retrieve matched group value by name
Consider this example for matching city coordinates. To get a collection of groups matched by the regular expression, use groups. Compare retrieving a group's
contents by its number (index) and by its name using value:

fun	main()	{
				val	regex	=	"\\b(?<city>[A-Za-z\\s]+),\\s(?<state>[A-Z]{2}):\\s(?<areaCode>[0-9]{3})\\b".toRegex()
				val	input	=	"Coordinates:	Austin,	TX:	123"
				val	match	=	regex.find(input)!!
				println(match.groups["city"]?.value)	//	"Austin"	—	by	name
				println(match.groups[2]?.value)	//	"TX"	—	by	number
}

Named backreferencing
You can now also use group names when backreferencing groups. Backreferences match the same text that was previously matched by a capturing group. For
this, use the \k<name> syntax in your regular expression:

fun	backRef()	{
				val	regex	=	"(?<title>\\w+),	yes	\\k<title>".toRegex()
				val	match	=	regex.find("Do	you	copy?	Sir,	yes	Sir!")!!
				println(match.value)	//	"Sir,	yes	Sir"
				println(match.groups["title"]?.value)	//	"Sir"
}

Named groups in replacement expressions
Named group references can be used with replacement expressions. Consider the replace() function that substitutes all occurrences of the specified regular
expression in the input with a replacement expression, and the replaceFirst() function that swaps the first match only.

Occurrences of ${name} in the replacement string are substituted with the subsequences corresponding to the captured groups with the specified name. You can
compare replacements in group references by name and index:

fun	dateReplace()	{
				val	dateRegex	=	Regex("(?<dd>\\d{2})-(?<mm>\\d{2})-(?<yyyy>\\d{4})")
				val	input	=	"Date	of	birth:	27-04-2022"
				println(dateRegex.replace(input,	"\${yyyy}-\${mm}-\${dd}"))	//	"Date	of	birth:	2022-04-27"	—	by	name
				println(dateRegex.replace(input,	"\$3-\$2-\$1"))	//	"Date	of	birth:	2022-04-27"	—	by	number
}

Gradle
This release introduces new build reports, support for Gradle plugin variants, new statistics in kapt, and a lot more:

A new approach to incremental compilation

New build reports for tracking compiler performance

Changes to the minimum supported versions of Gradle and the Android Gradle plugin

Support for Gradle plugin variants

Updates in the Kotlin Gradle plugin API

Availability of the sam-with-receiver plugin via the plugins API

Changes in compile tasks

New statistics of generated files by each annotation processor in kapt

Deprecation of the kotlin.compiler.execution.strategy system property

Removal of deprecated options, methods, and plugins

A
new
approach
to
incremental
compilation

204

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-match-result/groups.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/replace.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/replace-first.html

In Kotlin 1.7.0, we've reworked incremental compilation for cross-module changes. Now incremental compilation is also supported for changes made inside
dependent non-Kotlin modules, and it is compatible with the Gradle build cache. Support for compilation avoidance has also been improved.

We expect you'll see the most significant benefit of the new approach if you use the build cache or frequently make changes in non-Kotlin Gradle modules. Our
tests for the Kotlin project on the kotlin-gradle-plugin module show an improvement of greater than 80% for the changes after the cache hit.

To try this new approach, set the following option in your gradle.properties:

kotlin.incremental.useClasspathSnapshot=true

Learn how the new approach to incremental compilation is implemented under the hood in this blog post.

Our plan is to stabilize this technology and add support for other backends (JS, for instance) and build systems. We'd appreciate your reports in YouTrack about
any issues or strange behavior you encounter in this compilation scheme. Thank you!

The Kotlin team is very grateful to Ivan Gavrilovic, Hung Nguyen, Cédric Champeau, and other external contributors for their help.

Build
reports
for
Kotlin
compiler
tasks

Kotlin 1.7.0 introduces build reports that help track compiler performance. Reports contain the durations of different compilation phases and reasons why
compilation couldn't be incremental.

Build reports come in handy when you want to investigate issues with compiler tasks, for example:

When the Gradle build takes too much time and you want to understand the root cause of the poor performance.

When the compilation time for the same project differs, sometimes taking seconds, sometimes taking minutes.

To enable build reports, declare where to save the build report output in gradle.properties:

kotlin.build.report.output=file

The following values (and their combinations) are available:

file saves build reports in a local file.

build_scan saves build reports in the custom values section of the build scan.

http posts build reports using HTTP(S). The POST method sends metrics in the JSON format. Data may change from version to version. You can see the current
version of the sent data in the Kotlin repository.

There are two common cases that analyzing build reports for long-running compilations can help you resolve:

The build wasn't incremental. Analyze the reasons and fix underlying problems.

The build was incremental, but took too much time. Try to reorganize source files — split big files, save separate classes in different files, refactor large classes,
declare top-level functions in different files, and so on.

The new approach to incremental compilation is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below). We
encourage you to use it only for evaluation purposes, and we would appreciate your feedback in YouTrack.

The new approach to incremental compilation is currently available for the JVM backend in the Gradle build system only.

Kotlin build reports are Experimental. They may be dropped or changed at any time. Opt-in is required (see details below). Use them only for evaluation
purposes. We appreciate your feedback on them in YouTrack.

The Gradle Enterprise plugin limits the number of custom values and their length. In big projects, some values could be lost.

205

https://youtrack.jetbrains.com/issues/KT
https://docs.gradle.org/current/userguide/build_cache.html
https://blog.jetbrains.com/kotlin/2022/07/a-new-approach-to-incremental-compilation-in-kotlin/
https://youtrack.jetbrains.com/issues/KT
https://github.com/gavra0
https://github.com/hungvietnguyen
https://github.com/melix
https://youtrack.jetbrains.com/issues/KT
https://scans.gradle.com/
https://github.com/JetBrains/kotlin/blob/master/libraries/tools/kotlin-gradle-plugin/src/common/kotlin/org/jetbrains/kotlin/gradle/plugin/statistics/CompileStatisticsData.kt

Learn more about new build reports in this blog post.

You are welcome to try using build reports in your infrastructure. If you have any feedback, encounter any issues, or want to suggest improvements, please don't
hesitate to report them in our issue tracker. Thank you!

Bumping
minimum
supported
versions
Starting with Kotlin 1.7.0, the minimum supported Gradle version is 6.7.1. We had to raise the version to support Gradle plugin variants and the new Gradle API. In
the future, we should not have to raise the minimum supported version as often, thanks to the Gradle plugin variants feature.

Also, the minimal supported Android Gradle plugin version is now 3.6.4.

Support
for
Gradle
plugin
variants
Gradle 7.0 introduced a new feature for Gradle plugin authors — plugins with variants. This feature makes it easier to add support for new Gradle features while
maintaining compatibility for Gradle versions below 7.1. Learn more about variant selection in Gradle.

With Gradle plugin variants, we can ship different Kotlin Gradle plugin variants for different Gradle versions. The goal is to support the base Kotlin compilation in the
main variant, which corresponds to the oldest supported versions of Gradle. Each variant will have implementations for Gradle features from a corresponding
release. The latest variant will support the widest Gradle feature set. With this approach, we can extend support for older Gradle versions with limited functionality.

Currently, there are only two variants of the Kotlin Gradle plugin:

main for Gradle versions 6.7.1–6.9.3

gradle70 for Gradle versions 7.0 and higher

In future Kotlin releases, we may add more.

To check which variant your build uses, enable the --info log level and find a string in the output starting with Using Kotlin Gradle plugin, for example, Using Kotlin
Gradle plugin main variant.

Leave your feedback on this YouTrack ticket.

Updates
in
the
Kotlin
Gradle
plugin
API
The Kotlin Gradle plugin API artifact has received several improvements:

There are new interfaces for Kotlin/JVM and Kotlin/kapt tasks with user-configurable inputs.

There is a new KotlinBasePlugin interface that all Kotlin plugins inherit from. Use this interface when you want to trigger some configuration action whenever any
Kotlin Gradle plugin (JVM, JS, Multiplatform, Native, and other platforms) is applied:

project.plugins.withType<org.jetbrains.kotlin.gradle.plugin.KotlinBasePlugin>()	{
				//	Configure	your	action	here
}

You can leave your feedback about the KotlinBasePlugin in this YouTrack ticket.

We've laid the groundwork for the Android Gradle plugin to configure Kotlin compilation within itself, meaning you won't need to add the Kotlin Android Gradle
plugin to your build. Follow Android Gradle Plugin release announcements to learn about the added support and try it out!

The
sam-with-receiver
plugin
is
available
via
the
plugins
API
The sam-with-receiver compiler plugin is now available via the Gradle plugins DSL:

plugins	{
				id("org.jetbrains.kotlin.plugin.sam.with.receiver")	version	"$kotlin_version"

Here are workarounds for some known issues with variant selection in Gradle:

ResolutionStrategy in pluginManagement is not working for plugins with multivariants

Plugin variants are ignored when a plugin is added as the buildSrc common dependency

206

https://blog.jetbrains.com/kotlin/2022/06/introducing-kotlin-build-reports/
https://youtrack.jetbrains.com/newIssue
https://youtrack.jetbrains.com/issue/KT-49733/Bump-minimal-supported-Gradle-version-to-6-7-1
https://docs.gradle.org/7.0/userguide/implementing_gradle_plugins.html#plugin-with-variants
https://docs.gradle.org/current/userguide/variant_model.html
https://docs.gradle.org/current/userguide/logging.html#sec:choosing_a_log_level
https://github.com/gradle/gradle/issues/20545
https://github.com/gradle/gradle/issues/20847
https://youtrack.jetbrains.com/issue/KT-49227/Support-Gradle-plugins-variants
https://youtrack.jetbrains.com/issue/KT-48008/Consider-offering-a-KotlinBasePlugin
https://developer.android.com/studio/releases/gradle-plugin
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block

}

Changes
in
compile
tasks
Compile tasks have received lots of changes in this release:

Kotlin compile tasks no longer inherit the Gradle AbstractCompile task. They inherit only the DefaultTask.

The AbstractCompile task has the sourceCompatibility and targetCompatibility inputs. Since the AbstractCompile task is no longer inherited, these inputs are no
longer available in Kotlin users' scripts.

The SourceTask.stableSources input is no longer available, and you should use the sources input. setSource(...) methods are still available.

All compile tasks now use the libraries input for a list of libraries required for compilation. The KotlinCompile task still has the deprecated Kotlin property
classpath, which will be removed in future releases.

Compile tasks still implement the PatternFilterable interface, which allows the filtering of Kotlin sources. The sourceFilesExtensions input was removed in favor
of using PatternFilterable methods.

The deprecated Gradle destinationDir: File output was replaced with the destinationDirectory: DirectoryProperty output.

The Kotlin/Native AbstractNativeCompile task now inherits the AbstractKotlinCompileTool base class. This is an initial step toward integrating Kotlin/Native build
tools into all the other tools.

Please leave your feedback in this YouTrack ticket.

Statistics
of
generated
files
by
each
annotation
processor
in
kapt
The kotlin-kapt Gradle plugin already reports performance statistics for each processor. Starting with Kotlin 1.7.0, it can also report statistics on the number of
generated files for each annotation processor.

This is useful to track if there are unused annotation processors as a part of the build. You can use the generated report to find modules that trigger unnecessary
annotation processors and update the modules to prevent that.

Enable the statistics in two steps:

Set the showProcessorStats flag to true in your build.gradle.kts:

kapt	{
				showProcessorStats	=	true
}

Set the kapt.verbose Gradle property to true in your gradle.properties:

kapt.verbose=true

The statistics will appear in the logs with the info level. You'll see the Annotation processor stats: line followed by statistics on the execution time of each annotation
processor. After these lines, there will be the Generated files report: line followed by statistics on the number of generated files for each annotation processor. For
example:

[INFO]	Annotation	processor	stats:
[INFO]	org.mapstruct.ap.MappingProcessor:	total:	290	ms,	init:	1	ms,	3	round(s):	289	ms,	0	ms,	0	ms
[INFO]	Generated	files	report:
[INFO]	org.mapstruct.ap.MappingProcessor:	total	sources:	2,	sources	per	round:	2,	0,	0

Please leave your feedback in this YouTrack ticket.

Deprecation
of
the
kotlin.compiler.execution.strategy
system
property
Kotlin 1.6.20 introduced new properties for defining a Kotlin compiler execution strategy. In Kotlin 1.7.0, a deprecation cycle has started for the old system property
kotlin.compiler.execution.strategy in favor of the new properties.

You can also enable verbose output via the command line option verbose.

207

https://youtrack.jetbrains.com/issue/KT-32805
https://github.com/JetBrains/kotlin/pull/4280
https://youtrack.jetbrains.com/issue/KT-51132/KAPT-Support-reporting-the-number-of-generated-files-by-each-ann

When using the kotlin.compiler.execution.strategy system property, you'll receive a warning. This property will be deleted in future releases. To preserve the old
behavior, replace the system property with the Gradle property of the same name. You can do this in gradle.properties, for example:

kotlin.compiler.execution.strategy=out-of-process

You can also use the compile task property compilerExecutionStrategy. Learn more about this on the Gradle page.

Removal
of
deprecated
options,
methods,
and
plugins

Removal of the useExperimentalAnnotation method
In Kotlin 1.7.0, we completed the deprecation cycle for the useExperimentalAnnotation Gradle method. Use optIn() instead to opt in to using an API in a module.

For example, if your Gradle module is multiplatform:

sourceSets	{
				all	{
								languageSettings.optIn("org.mylibrary.OptInAnnotation")
				}
}

Learn more about opt-in requirements in Kotlin.

Removal of deprecated compiler options
We've completed the deprecation cycle for several compiler options:

The kotlinOptions.jdkHome compiler option was deprecated in 1.5.30 and has been removed in the current release. Gradle builds now fail if they contain this
option. We encourage you to use Java toolchains, which have been supported since Kotlin 1.5.30.

The deprecated noStdlib compiler option has also been removed. The Gradle plugin uses the kotlin.stdlib.default.dependency=true property to control whether
the Kotlin standard library is present.

Removal of deprecated plugins
In Kotlin 1.4.0, the kotlin2js and kotlin-dce-plugin plugins were deprecated, and they have been removed in this release. Instead of kotlin2js, use the new
org.jetbrains.kotlin.js plugin. Dead code elimination (DCE) works when the Kotlin/JS Gradle plugin is properly configured.

In Kotlin 1.6.0, we changed the deprecation level of the KotlinGradleSubplugin class to ERROR. Developers used this class for writing compiler plugins. In this
release, this class has been removed. Use the KotlinCompilerPluginSupportPlugin class instead.

Removal of the deprecated coroutines DSL option and property
We removed the deprecated kotlin.experimental.coroutines Gradle DSL option and the kotlin.coroutines property used in gradle.properties. Now you can just use
suspending functions or add the kotlinx.coroutines dependency to your build script.

Learn more about coroutines in the Coroutines guide.

Removal of the type cast in the toolchain extension method
Before Kotlin 1.7.0, you had to do the type cast into the JavaToolchainSpec class when configuring the Gradle toolchain with Kotlin DSL:

kotlin	{
				jvmToolchain	{
								(this	as	JavaToolchainSpec).languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>)
				}
}

The compiler arguments -jdkHome and -no-stdlib are still available.

The best practice is to use Kotlin plugins with versions 1.7.0 and higher throughout your project.

208

https://youtrack.jetbrains.com/issue/KT-48831/

Now, you can omit the (this as JavaToolchainSpec) part:

kotlin	{
				jvmToolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>)
				}
}

Migrating
to
Kotlin
1.7.0

Install
Kotlin
1.7.0
IntelliJ IDEA 2022.1 and Android Studio Chipmunk (212) automatically suggest updating the Kotlin plugin to 1.7.0.

The new command-line compiler is available for download on the GitHub release page.

Migrate
existing
or
start
a
new
project
with
Kotlin
1.7.0
To migrate existing projects to Kotlin 1.7.0, change the Kotlin version to 1.7.0 and reimport your Gradle or Maven project. Learn how to update to Kotlin 1.7.0.

To start a new project with Kotlin 1.7.0, update the Kotlin plugin and run the Project Wizard from File | New | Project.

Compatibility
guide
for
Kotlin
1.7.0
Kotlin 1.7.0 is a feature release and can, therefore, bring changes that are incompatible with your code written for earlier versions of the language. Find the detailed
list of such changes in the Compatibility guide for Kotlin 1.7.0.

What's
new
in
Kotlin
1.6.20
Released: 4 April 2022

Kotlin 1.6.20 reveals previews of the future language features, makes the hierarchical structure the default for multiplatform projects, and brings evolutionary
improvements to other components.

You can also find a short overview of the changes in this video:

Watch video online.

For IntelliJ IDEA 2022.2, and Android Studio Dolphin (213) or Android Studio Electric Eel (221), the Kotlin plugin 1.7.0 will be delivered with upcoming
IntelliJ IDEA and Android Studios updates.

Gif

209

https://github.com/JetBrains/kotlin/releases/tag/v1.7.0
https://youtube.com/v/8F19ds109-o

Language
In Kotlin 1.6.20, you can try two new language features:

Prototype of context receivers for Kotlin/JVM

Definitely non-nullable types

Prototype
of
context
receivers
for
Kotlin/JVM

With Kotlin 1.6.20, you are no longer limited to having one receiver. If you need more, you can make functions, properties, and classes context-dependent (or
contextual) by adding context receivers to their declaration. A contextual declaration does the following:

It requires all declared context receivers to be present in a caller's scope as implicit receivers.

It brings declared context receivers into its body scope as implicit receivers.

interface	LoggingContext	{
				val	log:	Logger	//	This	context	provides	a	reference	to	a	logger	
}

context(LoggingContext)
fun	startBusinessOperation()	{
				//	You	can	access	the	log	property	since	LoggingContext	is	an	implicit	receiver
				log.info("Operation	has	started")
}

fun	test(loggingContext:	LoggingContext)	{
				with(loggingContext)	{
								//	You	need	to	have	LoggingContext	in	a	scope	as	an	implicit	receiver
								//	to	call	startBusinessOperation()
								startBusinessOperation()
				}
}

To enable context receivers in your project, use the -Xcontext-receivers compiler option. You can find a detailed description of the feature and its syntax in the
KEEP.

Please note that the implementation is a prototype:

With -Xcontext-receivers enabled, the compiler will produce pre-release binaries that cannot be used in production code

The IDE support for context receivers is minimal for now

Try the feature in your toy projects and share your thoughts and experience with us in this YouTrack issue. If you run into any problems, please file a new issue.

Definitely
non-nullable
types

To provide better interoperability when extending generic Java classes and interfaces, Kotlin 1.6.20 allows you to mark a generic type parameter as definitely non-
nullable on the use site with the new syntax T & Any. The syntactic form comes from a notation of intersection types and is now limited to a type parameter with
nullable upper bounds on the left side of & and non-nullable Any on the right side:

fun	<T>	elvisLike(x:	T,	y:	T	&	Any):	T	&	Any	=	x	?:	y

fun	main()	{
				//	OK
				elvisLike<String>("",	"").length
				//	Error:	'null'	cannot	be	a	value	of	a	non-null	type

The feature is a prototype available only for Kotlin/JVM. With -Xcontext-receivers enabled, the compiler will produce pre-release binaries that cannot be
used in production code. Use context receivers only in your toy projects. We appreciate your feedback in YouTrack.

Definitely non-nullable types are in Beta. They are almost stable, but migration steps may be required in the future. We'll do our best to minimize any
changes you have to make.

210

https://youtrack.jetbrains.com/issues/KT
https://github.com/Kotlin/KEEP/blob/master/proposals/context-receivers.md#detailed-design
https://youtrack.jetbrains.com/issue/KT-42435
https://kotl.in/issue
https://en.wikipedia.org/wiki/Intersection_type

				elvisLike<String>("",	null).length

				//	OK
				elvisLike<String?>(null,	"").length
				//	Error:	'null'	cannot	be	a	value	of	a	non-null	type
				elvisLike<String?>(null,	null).length
}

Set the language version to 1.7 to enable the feature:

Kotlin

kotlin	{
				sourceSets.all	{
								languageSettings.apply	{
												languageVersion	=	"1.7"
								}
				}
}

Groovy

kotlin	{
				sourceSets.all	{
								languageSettings	{
												languageVersion	=	'1.7'
								}
				}
}

Learn more about definitely non-nullable types in the KEEP.

Kotlin/JVM
Kotlin 1.6.20 introduces:

Compatibility improvements of default methods in JVM interfaces: new @JvmDefaultWithCompatibility annotation for interfaces and compatibility changes in the
-Xjvm-default modes

Support for parallel compilation of a single module in the JVM backend

Support for callable references to functional interface constructors

New
@JvmDefaultWithCompatibility
annotation
for
interfaces
Kotlin 1.6.20 introduces the new annotation @JvmDefaultWithCompatibility: use it along with the -Xjvm-default=all compiler option to create the default method in
JVM interface for any non-abstract member in any Kotlin interface.

If there are clients that use your Kotlin interfaces compiled without the -Xjvm-default=all option, they may be binary-incompatible with the code compiled with this
option. Before Kotlin 1.6.20, to avoid this compatibility issue, the recommended approach was to use the -Xjvm-default=all-compatibility mode and also the
@JvmDefaultWithoutCompatibility annotation for interfaces that didn't need this type of compatibility.

This approach had some disadvantages:

You could easily forget to add the annotation when a new interface was added.

Usually there are more interfaces in non-public parts than in the public API, so you end up having this annotation in many places in your code.

Now, you can use the -Xjvm-default=all mode and mark interfaces with the @JvmDefaultWithCompatibility annotation. This allows you to add this annotation to all
interfaces in the public API once, and you won't need to use any annotations for new non-public code.

Leave your feedback about this new annotation in this YouTrack ticket.

Compatibility
changes
in
the
-Xjvm-default
modes
Kotlin 1.6.20 adds the option to compile modules in the default mode (the -Xjvm-default=disable compiler option) against modules compiled with the -Xjvm-

211

https://github.com/Kotlin/KEEP/blob/c72601cf35c1e95a541bb4b230edb474a6d1d1a8/proposals/definitely-non-nullable-types.md
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-default-with-compatibility/
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/#JvmDefaultWithoutCompatibility
https://youtrack.jetbrains.com/issue/KT-48217

default=all or -Xjvm-default=all-compatibility modes. As before, compilations will also be successful if all modules have the -Xjvm-default=all or -Xjvm-default=all-
compatibility modes. You can leave your feedback in this YouTrack issue.

Kotlin 1.6.20 deprecates the compatibility and enable modes of the compiler option -Xjvm-default. There are changes in other modes' descriptions regarding the
compatibility, but the overall logic remains the same. You can check out the updated descriptions.

For more information about default methods in the Java interop, see the interoperability documentation and this blog post.

Support
for
parallel
compilation
of
a
single
module
in
the
JVM
backend

We are continuing our work to improve the new JVM IR backend compilation time. In Kotlin 1.6.20, we added the experimental JVM IR backend mode to compile all
the files in a module in parallel. Parallel compilation can reduce the total compilation time by up to 15%.

Enable the experimental parallel backend mode with the compiler option -Xbackend-threads. Use the following arguments for this option:

N is the number of threads you want to use. It should not be greater than your number of CPU cores; otherwise, parallelization stops being effective because of
switching context between threads

0 to use a separate thread for each CPU core

Gradle can run tasks in parallel, but this type of parallelization doesn't help a lot when a project (or a major part of a project) is just one big task from Gradle's
perspective. If you have a very big monolithic module, use parallel compilation to compile more quickly. If your project consists of lots of small modules and has a
build parallelized by Gradle, adding another layer of parallelization may hurt performance because of context switching.

Support
for
callable
references
to
functional
interface
constructors

Support for callable references to functional interface constructors adds a source-compatible way to migrate from an interface with a constructor function to a
functional interface.

Consider the following code:

interface	Printer	{
				fun	print()
}

fun	Printer(block:	()	->	Unit):	Printer	=	object	:	Printer	{	override	fun	print()	=	block()	}

With callable references to functional interface constructors enabled, this code can be replaced with just a functional interface declaration:

fun	interface	Printer	{
				fun	print()
}

Its constructor will be created implicitly, and any code using the ::Printer function reference will compile. For example:

documentsStorage.addPrinter(::Printer)

Support for parallel compilation of a single module in the JVM backend is Experimental. It may be dropped or changed at any time. Opt-in is required
(see details below), and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

Parallel compilation has some constraints:

It doesn't work with kapt because kapt disables the IR backend

It requires more JVM heap by design. The amount of heap is proportional to the number of threads

Support for callable references to functional interface constructors is Experimental. It may be dropped or changed at any time. Opt-in is required (see
details below), and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

212

https://youtrack.jetbrains.com/issue/KT-47000
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://youtrack.jetbrains.com/issue/KT-46085
https://youtrack.jetbrains.com/issue/KT-46768
https://youtrack.jetbrains.com/issue/KT-47939

Preserve the binary compatibility by marking the legacy function Printer with the @Deprecated annotation with DeprecationLevel.HIDDEN:

@Deprecated(message	=	"Your	message	about	the	deprecation",	level	=	DeprecationLevel.HIDDEN)
fun	Printer(...)	{...}

Use the compiler option -XXLanguage:+KotlinFunInterfaceConstructorReference to enable this feature.

Kotlin/Native
Kotlin/Native 1.6.20 marks continued development of its new components. We've taken another step toward consistent experience with Kotlin on other platforms:

An update on the new memory manager

Concurrent implementation for the sweep phase in new memory manager

Instantiation of annotation classes

Interop with Swift async/await: returning Swift's Void instead of KotlinUnit

Better stack traces with libbacktrace

Support for standalone Android executables

Performance improvements

Improved error handling during cinterop modules import

Support for Xcode 13 libraries

An
update
on
the
new
memory
manager

With Kotlin 1.6.20, you can try the Alpha version of the new Kotlin/Native memory manager. It eliminates the differences between the JVM and Native platforms to
provide a consistent developer experience in multiplatform projects. For example, you'll have a much easier time creating new cross-platform mobile applications
that work on both Android and iOS.

The new Kotlin/Native memory manager lifts restrictions on object-sharing between threads. It also provides leak-free concurrent programming primitives that are
safe and don't require any special management or annotations.

The new memory manager will become the default in future versions, so we encourage you to try it now. Check out our blog post to learn more about the new
memory manager and explore demo projects, or jump right to the migration instructions to try it yourself.

Try using the new memory manager on your projects to see how it works and share feedback in our issue tracker, YouTrack.

Concurrent
implementation
for
the
sweep
phase
in
new
memory
manager
If you have already switched to our new memory manager, which was announced in Kotlin 1.6, you might notice a huge execution time improvement: our
benchmarks show 35% improvement on average. Starting with 1.6.20, there is also a concurrent implementation for the sweep phase available for the new memory
manager. This should also improve the performance and decrease the duration of garbage collector pauses.

To enable the feature for the new Kotlin/Native memory manager, pass the following compiler option:

-Xgc=cms	

Feel free to share your feedback on the new memory manager performance in this YouTrack issue.

Instantiation
of
annotation
classes
In Kotlin 1.6.0, instantiation of annotation classes became Stable for Kotlin/JVM and Kotlin/JS. The 1.6.20 version delivers support for Kotlin/Native.

The new Kotlin/Native memory manager is in Alpha. It may change incompatibly and require manual migration in the future. We would appreciate your
feedback on it in YouTrack.

213

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-deprecated/
https://youtrack.jetbrains.com/issue/KT-48525
https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/NEW_MM.md
https://youtrack.jetbrains.com/issue/KT-48525
https://youtrack.jetbrains.com/issue/KT-48526

Learn more about instantiation of annotation classes.

Interop
with
Swift
async/await:
returning
Void
instead
of
KotlinUnit

We've continued working on the experimental interop with Swift's async/await (available since Swift 5.5). Kotlin 1.6.20 differs from previous versions in the way it
works with suspend functions with the Unit return type.

Previously, such functions were presented in Swift as async functions returning KotlinUnit. However, the proper return type for them is Void, similar to non-
suspending functions.

To avoid breaking the existing code, we're introducing a Gradle property that makes the compiler translate Unit-returning suspend functions to async Swift with the
Void return type:

#	gradle.properties
kotlin.native.binary.unitSuspendFunctionObjCExport=proper

We plan to make this behavior the default in future Kotlin releases.

Better
stack
traces
with
libbacktrace

Kotlin/Native is now able to produce detailed stack traces with file locations and line numbers for better debugging of linux* (except linuxMips32 and linuxMipsel32)
and androidNative* targets.

This feature uses the libbacktrace library under the hood. Take a look at the following code to see an example of the difference:

fun	main()	=	bar()
fun	bar()	=	baz()
inline	fun	baz()	{
				error("")
}

Before 1.6.20:

Uncaught Kotlin exception: kotlin.IllegalStateException: at 0 example.kexe 0x227190 kfun:kotlin.Throwable#<init>(kotlin.String?){} + 96 at 1
example.kexe 0x221e4c kfun:kotlin.Exception#<init>(kotlin.String?){} + 92 at 2 example.kexe 0x221f4c kfun:kotlin.RuntimeException#<init>
(kotlin.String?){} + 92 at 3 example.kexe 0x22234c kfun:kotlin.IllegalStateException#<init>(kotlin.String?){} + 92 at 4 example.kexe 0x25d708
kfun:#bar(){} + 104 at 5 example.kexe 0x25d68c kfun:#main(){} + 12

1.6.20 with libbacktrace:

Uncaught Kotlin exception: kotlin.IllegalStateException: at 0 example.kexe 0x229550 kfun:kotlin.Throwable#<init>(kotlin.String?){} + 96
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Throwable.kt:24:37) at 1 example.kexe
0x22420c kfun:kotlin.Exception#<init>(kotlin.String?){} + 92 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-
native/runtime/src/main/kotlin/kotlin/Exceptions.kt:23:44) at 2 example.kexe 0x22430c kfun:kotlin.RuntimeException#<init>(kotlin.String?){}
+ 92 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Exceptions.kt:34:44) at 3 example.kexe
0x22470c kfun:kotlin.IllegalStateException#<init>(kotlin.String?){} + 92 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-
native/runtime/src/main/kotlin/kotlin/Exceptions.kt:70:44) at 4 example.kexe 0x25fac8 kfun:#bar(){} + 104 [inlined]
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/libraries/stdlib/src/kotlin/util/Preconditions.kt:143:56) at 5 example.kexe 0x25fac8
kfun:#bar(){} + 104 [inlined] (/private/tmp/backtrace/src/commonMain/kotlin/app.kt:4:5) at 6 example.kexe 0x25fac8 kfun:#bar(){} + 104
(/private/tmp/backtrace/src/commonMain/kotlin/app.kt:2:13) at 7 example.kexe 0x25fa4c kfun:#main(){} + 12
(/private/tmp/backtrace/src/commonMain/kotlin/app.kt:1:14)
On Apple targets, which already had file locations and line numbers in stack traces, libbacktrace provides more details for inline function calls:

Before 1.6.20:

Uncaught Kotlin exception: kotlin.IllegalStateException: at 0 example.kexe 0x10a85a8f8 kfun:kotlin.Throwable#<init>(kotlin.String?){} + 88
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Throwable.kt:24:37) at 1 example.kexe
0x10a855846 kfun:kotlin.Exception#<init>(kotlin.String?){} + 86 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-
native/runtime/src/main/kotlin/kotlin/Exceptions.kt:23:44) at 2 example.kexe 0x10a855936 kfun:kotlin.RuntimeException#<init>
(kotlin.String?){} + 86 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Exceptions.kt:34:44) at 3

Concurrency interoperability with Swift async/await is Experimental. It may be dropped or changed at any time. You should use it only for evaluation
purposes. We would appreciate your feedback on it in YouTrack.

Using libbacktrace for resolving source locations is Experimental. It may be dropped or changed at any time. You should use it only for evaluation
purposes. We would appreciate your feedback on it in YouTrack.

214

https://youtrack.jetbrains.com/issue/KT-47610
https://youtrack.jetbrains.com/issue/KT-48424
https://github.com/ianlancetaylor/libbacktrace

example.kexe 0x10a855c86 kfun:kotlin.IllegalStateException#<init>(kotlin.String?){} + 86
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Exceptions.kt:70:44) at 4 example.kexe
0x10a8489a5 kfun:#bar(){} + 117 (/private/tmp/backtrace/src/commonMain/kotlin/app.kt:2:1) at 5 example.kexe 0x10a84891c kfun:#main(){}
+ 12 (/private/tmp/backtrace/src/commonMain/kotlin/app.kt:1:14) ...

1.6.20 with libbacktrace:

Uncaught Kotlin exception: kotlin.IllegalStateException: at 0 example.kexe 0x10669bc88 kfun:kotlin.Throwable#<init>(kotlin.String?){} + 88
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Throwable.kt:24:37) at 1 example.kexe
0x106696bd6 kfun:kotlin.Exception#<init>(kotlin.String?){} + 86 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-
native/runtime/src/main/kotlin/kotlin/Exceptions.kt:23:44) at 2 example.kexe 0x106696cc6 kfun:kotlin.RuntimeException#<init>
(kotlin.String?){} + 86 (/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Exceptions.kt:34:44) at 3
example.kexe 0x106697016 kfun:kotlin.IllegalStateException#<init>(kotlin.String?){} + 86
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/kotlin-native/runtime/src/main/kotlin/kotlin/Exceptions.kt:70:44) at 4 example.kexe
0x106689d35 kfun:#bar(){} + 117 [inlined]
(/opt/buildAgent/work/c3a91df21e46e2c8/kotlin/libraries/stdlib/src/kotlin/util/Preconditions.kt:143:56) >> at 5 example.kexe 0x106689d35
kfun:#bar(){} + 117 [inlined] (/private/tmp/backtrace/src/commonMain/kotlin/app.kt:4:5) at 6 example.kexe 0x106689d35 kfun:#bar(){} + 117
(/private/tmp/backtrace/src/commonMain/kotlin/app.kt:2:13) at 7 example.kexe 0x106689cac kfun:#main(){} + 12
(/private/tmp/backtrace/src/commonMain/kotlin/app.kt:1:14) ...
To produce better stack traces with libbacktrace, add the following line to gradle.properties:

#	gradle.properties
kotlin.native.binary.sourceInfoType=libbacktrace

Please tell us how debugging Kotlin/Native with libbacktrace works for you in this YouTrack issue.

Support
for
standalone
Android
executables
Previously, Android Native executables in Kotlin/Native were not actually executables but shared libraries that you could use as a NativeActivity. Now there's an
option to generate standard executables for Android Native targets.

For that, in the build.gradle(.kts) part of your project, configure the executable block of your androidNative target. Add the following binary option:

kotlin	{
				androidNativeX64("android")	{
								binaries	{
												executable	{
																binaryOptions["androidProgramType"]	=	"standalone"
												}
								}
				}
}

Note that this feature will become the default in Kotlin 1.7.0. If you want to preserve the current behavior, use the following setting:

binaryOptions["androidProgramType"]	=	"nativeActivity"

Thanks to Mattia Iavarone for the implementation!

Performance
improvements
We are working hard on Kotlin/Native to speed up the compilation process and improve your developing experience.

Kotlin 1.6.20 brings some performance updates and bug fixes that affect the LLVM IR that Kotlin generates. According to the benchmarks on our internal projects,
we achieved the following performance boosts on average:

15% reduction in execution time

20% reduction in the code size of both release and debug binaries

26% reduction in the compilation time of release binaries

These changes also provide a 10% reduction in compilation time for a debug binary on a large internal project.

To achieve this, we've implemented static initialization for some of the compiler-generated synthetic objects, improved the way we structure LLVM IR for every
function, and optimized the compiler caches.

Improved
error
handling
during
cinterop
modules
import
This release introduces improved error handling for cases where you import an Objective-C module using the cinterop tool (as is typical for CocoaPods pods).
Previously, if you got an error while trying to work with an Objective-C module (for instance, when dealing with a compilation error in a header), you received an

215

https://youtrack.jetbrains.com/issue/KT-48424
https://github.com/jetbrains/kotlin/pull/4624
https://youtrack.jetbrains.com/issue/KT-42294

uninformative error message, such as fatal error: could not build module $name. We expanded upon this part of the cinterop tool, so you'll get an error message
with an extended description.

Support
for
Xcode
13
libraries
Libraries delivered with Xcode 13 have full support as of this release. Feel free to access them from anywhere in your Kotlin code.

Kotlin
Multiplatform
1.6.20 brings the following notable updates to Kotlin Multiplatform:

Hierarchical structure support is now default for all new multiplatform projects

Kotlin CocoaPods Gradle plugin received several useful features for CocoaPods integration

Hierarchical
structure
support
for
multiplatform
projects
Kotlin 1.6.20 comes with hierarchical structure support enabled by default. Since introducing it in Kotlin 1.4.0, we've significantly improved the frontend and made
IDE import stable.

Previously, there were two ways to add code in a multiplatform project. The first was to insert it in a platform-specific source set, which is limited to one target and
can't be reused by other platforms. The second is to use a common source set shared across all the platforms that are currently supported by Kotlin.

Now you can share source code among several similar native targets that reuse a lot of the common logic and third-party APIs. The technology will provide the
correct default dependencies and find the exact API available in the shared code. This eliminates a complex build setup and having to use workarounds to get IDE
support for sharing source sets among native targets. It also helps prevent unsafe API usages meant for a different target.

The technology will come in handy for library authors, too, as a hierarchical project structure allows them to publish and consume libraries with common APIs for a
subset of targets.

By default, libraries published with the hierarchical project structure are compatible only with hierarchical structure projects.

Better code-sharing in your project
Without hierarchical structure support, there is no straightforward way to share code across some but not all Kotlin targets. One popular example is sharing code
across all iOS targets and having access to iOS-specific dependencies, like Foundation.

Thanks to the hierarchical project structure support, you can now achieve this out of the box. In the new structure, source sets form a hierarchy. You can use
platform-specific language features and dependencies available for each target that a given source set compiles to.

For example, consider a typical multiplatform project with two targets — iosArm64 and iosX64 for iOS devices and simulators. The Kotlin tooling understands that
both targets have the same function and allows you to access that function from the intermediate source set, iosMain.

216

iOS hierarchy example

The Kotlin toolchain provides the correct default dependencies, like Kotlin/Native stdlib or native libraries. Moreover, Kotlin tooling will try its best to find exactly the
API surface area available in the shared code. This prevents such cases as, for example, the use of a macOS-specific function in code shared for Windows.

More opportunities for library authors
When a multiplatform library is published, the API of its intermediate source sets is now properly published alongside it, making it available for consumers. Again,
the Kotlin toolchain will automatically figure out the API available in the consumer source set while carefully watching out for unsafe usages, like using an API meant
for the JVM in JS code. Learn more about sharing code in libraries.

Configuration and setup
Starting with Kotlin 1.6.20, all your new multiplatform projects will have a hierarchical project structure. No additional setup is required.

If you've already turned it on manually, you can remove the deprecated options from gradle.properties:

#	gradle.properties
kotlin.mpp.enableGranularSourceSetsMetadata=true
kotlin.native.enableDependencyPropagation=false	//	or	'true',	depending	on	your	previous	setup

For Kotlin 1.6.20, we recommend using Android Studio 2021.1.1 (Bumblebee) or later to get the best experience.

You can also opt out. To disable hierarchical structure support, set the following options in gradle.properties:

#	gradle.properties
kotlin.mpp.hierarchicalStructureSupport=false

Leave your feedback
This is a significant change to the whole ecosystem. We would appreciate your feedback to help make it even better.

Try it now and report any difficulties you encounter to our issue tracker.

Kotlin
CocoaPods
Gradle
plugin
To simplify CocoaPods integration, Kotlin 1.6.20 delivers the following features:

The CocoaPods plugin now has tasks that build XCFrameworks with all registered targets and generate the Podspec file. This can be useful when you don't
want to integrate with Xcode directly, but you want to build artifacts and deploy them to your local CocoaPods repository.

Learn more about building XCFrameworks.

217

https://developer.android.com/studio
https://kotl.in/issue

If you use CocoaPods integration in your projects, you're used to specifying the required Pod version for the entire Gradle project. Now you have more options:

Specify the Pod version directly in the cocoapods block

Continue using a Gradle project version

If none of these properties is configured, you'll get an error.

You can now configure the CocoaPod name in the cocoapods block instead of changing the name of the whole Gradle project.

The CocoaPods plugin introduces a new extraSpecAttributes property, which you can use to configure properties in a Podspec file that were previously hard-
coded, like libraries or vendored_frameworks.

kotlin	{
				cocoapods	{
								version	=	"1.0"
								name	=	"MyCocoaPod"
								extraSpecAttributes["social_media_url"]	=	'https://twitter.com/kotlin'
								extraSpecAttributes["vendored_frameworks"]	=	'CustomFramework.xcframework'
								extraSpecAttributes["libraries"]	=	'xml'
				}
}

See the full Kotlin CocoaPods Gradle plugin DSL reference.

Kotlin/JS
Kotlin/JS improvements in 1.6.20 mainly affect the IR compiler:

Incremental compilation for development binaries (IR)

Lazy initialization of top-level properties by default (IR)

Separate JS files for project modules by default (IR)

Char class optimization (IR)

Export improvements (both IR and legacy backends)

@AfterTest guarantees for asynchronous tests

Incremental
compilation
for
development
binaries
with
IR
compiler
To make Kotlin/JS development with the IR compiler more efficient, we're introducing a new incremental compilation mode.

When building development binaries with the compileDevelopmentExecutableKotlinJs Gradle task in this mode, the compiler caches the results of previous
compilations on the module level. It uses the cached compilation results for unchanged source files during subsequent compilations, making them complete more
quickly, especially with small changes. Note that this improvement exclusively targets the development process (shortening the edit-build-debug cycle) and doesn't
affect the building of production artifacts.

To enable incremental compilation for development binaries, add the following line to the project's gradle.properties:

#	gradle.properties
kotlin.incremental.js.ir=true	//	false	by	default

In our test projects, the new mode made incremental compilation up to 30% faster. However, the clean build in this mode became slower because of the need to
create and populate the caches.

Please tell us what you think of using incremental compilation with your Kotlin/JS projects in this YouTrack issue.

Lazy
initialization
of
top-level
properties
by
default
with
IR
compiler
In Kotlin 1.4.30, we presented a prototype of lazy initialization of top-level properties in the JS IR compiler. By eliminating the need to initialize all properties when
the application launches, lazy initialization reduces the startup time. Our measurements showed about a 10% speed-up on a real-life Kotlin/JS application.

Now, having polished and properly tested this mechanism, we're making lazy initialization the default for top-level properties in the IR compiler.

218

https://youtrack.jetbrains.com/issue/KT-50203

//	lazy	initialization
val	a	=	run	{
				val	result	=	//	intensive	computations
								println(result)
				result
}	//	run	is	executed	upon	the	first	usage	of	the	variable

If for some reason you need to initialize a property eagerly (upon the application start), mark it with the @EagerInitialization annotation.

Separate
JS
files
for
project
modules
by
default
with
IR
compiler
Previously, the JS IR compiler offered an ability to generate separate .js files for project modules. This was an alternative to the default option – a single .js file for
the whole project. This file might be too large and inconvenient to use, because whenever you want to use a function from your project, you have to include the
entire JS file as a dependency. Having multiple files adds flexibility and decreases the size of such dependencies. This feature was available with the -Xir-per-
module compiler option.

Starting from 1.6.20, the JS IR compiler generates separate .js files for project modules by default.

Compiling the project into a single .js file is now available with the following Gradle property:

#	gradle.properties
kotlin.js.ir.output.granularity=whole-program	//	`per-module`	is	the	default

In previous releases, the experimental per-module mode (available via the -Xir-per-module=true flag) invoked main() functions in each module. This is inconsistent
with the regular single .js mode. Starting with 1.6.20, the main() function will be invoked in the main module only in both cases. If you do need to run some code
when a module is loaded, you can use top-level properties annotated with the @EagerInitialization annotation. See Lazy initialization of top-level properties by
default (IR).

Char
class
optimization
The Char class is now handled by the Kotlin/JS compiler without introducing boxing (similar to inline classes). This speeds up operations on chars in Kotlin/JS
code.

Aside from the performance improvement, this changes the way Char is exported to JavaScript: it's now translated to Number.

Improvements
to
export
and
TypeScript
declaration
generation
Kotlin 1.6.20 is bringing multiple fixes and improvements to the export mechanism (the @JsExport annotation), including the generation of TypeScript declarations
(.d.ts). We've added the ability to export interfaces and enums, and we've fixed the export behavior in some corner cases that were reported to us previously. For
more details, see the list of export improvements in YouTrack.

Learn more about using Kotlin code from JavaScript.

@AfterTest
guarantees
for
asynchronous
tests
Kotlin 1.6.20 makes @AfterTest functions work properly with asynchronous tests on Kotlin/JS. If a test function's return type is statically resolved to Promise, the
compiler now schedules the execution of the @AfterTest function to the corresponding then() callback.

Security
Kotlin 1.6.20 introduces a couple of features to improve the security of your code:

Using relative paths in klibs

Persisting yarn.lock for Kotlin/JS Gradle projects

Installation of npm dependencies with --ignore-scripts by default

Using
relative
paths
in
klibs
A library in klib format contains a serialized IR representation of source files, which also includes their paths for generating proper debug information. Before Kotlin
1.6.20, stored file paths were absolute. Since the library author may not want to share absolute paths, the 1.6.20 version comes with an alternative option.

If you are publishing a klib and want to use only relative paths of source files in the artifact, you can now pass the -Xklib-relative-path-base compiler option with one

219

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-eager-initialization/
https://youtrack.jetbrains.com/issue/KT-44319
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/-js-export/
https://youtrack.jetbrains.com/issues?q=Project:%20Kotlin%20issue%20id:%20KT-45434,%20KT-44494,%20KT-37916,%20KT-43191,%20KT-46961,%20KT-40236
https://kotlinlang.org/api/latest/kotlin.test/kotlin.test/-after-test/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/-promise/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/-promise/then.html

or multiple base paths of source files:

Kotlin

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinCompile::class).configureEach	{
				//	$base	is	a	base	path	of	source	files
				kotlinOptions.freeCompilerArgs	+=	"-Xklib-relative-path-base=$base"
}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinCompile).configureEach	{
				kotlinOptions	{
								//	$base	is	a	base	path	of	source	files
								freeCompilerArgs	+=	"-Xklib-relative-path-base=$base"
				}
}

Persisting
yarn.lock
for
Kotlin/JS
Gradle
projects

The Kotlin/JS Gradle plugin now provides an ability to persist the yarn.lock file, making it possible to lock the versions of the npm dependencies for your project
without additional Gradle configuration. The feature brings changes to the default project structure by adding the auto-generated kotlin-js-store directory to the
project root. It holds the yarn.lock file inside.

We strongly recommend committing the kotlin-js-store directory and its contents to your version control system. Committing lockfiles to your version control system
is a recommended practice because it ensures your application is being built with the exact same dependency tree on all machines, regardless of whether those are
development environments on other machines or CI/CD services. Lockfiles also prevent your npm dependencies from being silently updated when a project is
checked out on a new machine, which is a security concern.

Tools like Dependabot can also parse the yarn.lock files of your Kotlin/JS projects, and provide you with warnings if any npm package you depend on is
compromised.

If needed, you can change both directory and lockfile names in the build script:

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().lockFileDirectory	=
								project.rootDir.resolve("my-kotlin-js-store")
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().lockFileName	=	"my-yarn.lock"
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).lockFileDirectory	=
								file("my-kotlin-js-store")
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).lockFileName	=	'my-yarn.lock'
}

Installation
of
npm
dependencies
with
--ignore-scripts
by
default

The feature was backported to Kotlin 1.6.10.

Changing the name of the lockfile may cause dependency inspection tools to no longer pick up the file.

The feature was backported to Kotlin 1.6.10.

220

https://classic.yarnpkg.com/blog/2016/11/24/lockfiles-for-all/
https://github.com/dependabot

The Kotlin/JS Gradle plugin now prevents the execution of lifecycle scripts during the installation of npm dependencies by default. The change is aimed at reducing
the likelihood of executing malicious code from compromised npm packages.

To roll back to the old configuration, you can explicitly enable lifecycle scripts execution by adding the following lines to build.gradle(.kts):

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().ignoreScripts	=	false
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).ignoreScripts	=	false
}

Learn more about npm dependencies of a Kotlin/JS Gradle project.

Gradle
Kotlin 1.6.20 brings the following changes for the Kotlin Gradle Plugin:

New properties kotlin.compiler.execution.strategy and compilerExecutionStrategy for defining a Kotlin compiler execution strategy

Deprecation of the options kapt.use.worker.api, kotlin.experimental.coroutines, and kotlin.coroutines

Removal of the kotlin.parallel.tasks.in.project build option

Properties
for
defining
Kotlin
compiler
execution
strategy
Before Kotlin 1.6.20, you used the system property -Dkotlin.compiler.execution.strategy to define a Kotlin compiler execution strategy. This property might have
been inconvenient in some cases. Kotlin 1.6.20 introduces a Gradle property with the same name, kotlin.compiler.execution.strategy, and the compile task property
compilerExecutionStrategy.

The system property still works, but it will be removed in future releases.

The current priority of properties is the following:

The task property compilerExecutionStrategy takes priority over the system property and the Gradle property kotlin.compiler.execution.strategy.

The Gradle property takes priority over the system property.

There are three compiler execution strategies that you can assign to these properties:

Strategy Where Kotlin compiler is executed Incremental compilation Other characteristics

Daemon Inside its own daemon process Yes The default strategy. Can be shared between different Gradle daemons

In process Inside the Gradle daemon process No May share the heap with the Gradle daemon

Out of process In a separate process for each call No —

Accordingly, the available values for kotlin.compiler.execution.strategy properties (both system and Gradle's) are:

1. daemon (default)

2. in-process

221

https://docs.npmjs.com/cli/v8/using-npm/scripts#life-cycle-scripts

3. out-of-process

Use the Gradle property kotlin.compiler.execution.strategy in gradle.properties:

#	gradle.properties
kotlin.compiler.execution.strategy=out-of-process

The available values for the compilerExecutionStrategy task property are:

1. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.DAEMON (default)

2. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.IN_PROCESS

3. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.OUT_OF_PROCESS

Use the task property compilerExecutionStrategy in the build.gradle.kts build script:

import	org.jetbrains.kotlin.gradle.dsl.KotlinCompile
import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy

//	...

tasks.withType<KotlinCompile>().configureEach	{
				compilerExecutionStrategy.set(KotlinCompilerExecutionStrategy.IN_PROCESS)
}

Please leave your feedback in this YouTrack task.

Deprecation
of
build
options
for
kapt
and
coroutines
In Kotlin 1.6.20, we changed deprecation levels of the properties:

We deprecated the ability to run kapt via the Kotlin daemon with kapt.use.worker.api – now it produces a warning to Gradle's output. By default, kapt has been
using Gradle workers since the 1.3.70 release, and we recommend sticking to this method.

We are going to remove the option kapt.use.worker.api in future releases.

We deprecated the kotlin.experimental.coroutines Gradle DSL option and the kotlin.coroutines property used in gradle.properties. Just use suspending functions
or add the kotlinx.coroutines dependency to your build.gradle(.kts) file.

Learn more about coroutines in the Coroutines guide.

Removal
of
the
kotlin.parallel.tasks.in.project
build
option
In Kotlin 1.5.20, we announced the deprecation of the build option kotlin.parallel.tasks.in.project. This option has been removed in Kotlin 1.6.20.

Depending on the project, parallel compilation in the Kotlin daemon may require more memory. To reduce memory consumption, increase the heap size for the
Kotlin daemon.

Learn more about the currently supported compiler options in the Kotlin Gradle plugin.

What's
new
in
Kotlin
1.6.0
Released: 16 November 2021

Kotlin 1.6.0 introduces new language features, optimizations and improvements to existing features, and a lot of improvements to the Kotlin standard library.

You can also find an overview of the changes in the release blog post.

Language
Kotlin 1.6.0 brings stabilization to several language features introduced for preview in the previous 1.5.30 release:

Stable exhaustive when statements for enum, sealed and Boolean subjects

222

https://youtrack.jetbrains.com/issue/KT-49299
https://blog.jetbrains.com/kotlin/2021/11/kotlin-1-6-0-is-released/

Stable suspending functions as supertypes

Stable suspend conversions

Stable instantiation of annotation classes

It also includes various type inference improvements and support for annotations on class type parameters:

Improved type inference for recursive generic types

Changes to builder inference

Support for annotations on class type parameters

Stable
exhaustive
when
statements
for
enum,
sealed,
and
Boolean
subjects
An exhaustive when statement contains branches for all possible types or values of its subject, or for some types plus an else branch. It covers all possible cases,
making your code safer.

We will soon prohibit non-exhaustive when statements to make the behavior consistent with when expressions. To ensure smooth migration, Kotlin 1.6.0 reports
warnings about non-exhaustive when statements with an enum, sealed, or Boolean subject. These warnings will become errors in future releases.

sealed	class	Contact	{
				data	class	PhoneCall(val	number:	String)	:	Contact()
				data	class	TextMessage(val	number:	String)	:	Contact()
}

fun	Contact.messageCost():	Int	=
				when(this)	{	//	Error:	'when'	expression	must	be	exhaustive
								is	Contact.PhoneCall	->	42
				}

fun	sendMessage(contact:	Contact,	message:	String)	{
				//	Starting	with	1.6.0

				//	Warning:	Non	exhaustive	'when'	statements	on	Boolean	will	be
				//	prohibited	in	1.7,	add	'false'	branch	or	'else'	branch	instead	
				when(message.isEmpty())	{
								true	->	return
				}
				//	Warning:	Non	exhaustive	'when'	statements	on	sealed	class/interface	will	be
				//	prohibited	in	1.7,	add	'is	TextMessage'	branch	or	'else'	branch	instead
				when(contact)	{
								is	Contact.PhoneCall	->	TODO()
				}
}

See this YouTrack ticket for a more detailed explanation of the change and its effects.

Stable
suspending
functions
as
supertypes
Implementation of suspending functional types has become Stable in Kotlin 1.6.0. A preview was available in 1.5.30.

The feature can be useful when designing APIs that use Kotlin coroutines and accept suspending functional types. You can now streamline your code by enclosing
the desired behavior in a separate class that implements a suspending functional type.

class	MyClickAction	:	suspend	()	->	Unit	{
				override	suspend	fun	invoke()	{	TODO()	}
}

fun	launchOnClick(action:	suspend	()	->	Unit)	{}

You can use an instance of this class where only lambdas and suspending function references were allowed previously: launchOnClick(MyClickAction()).

There are currently two limitations coming from implementation details:

You can't mix ordinary functional types and suspending ones in the list of supertypes.

You can't use multiple suspending functional supertypes.

223

https://youtrack.jetbrains.com/issue/KT-47709

Stable
suspend
conversions
Kotlin 1.6.0 introduces Stable conversions from regular to suspending functional types. Starting from 1.4.0, the feature supported functional literals and callable
references. With 1.6.0, it works with any form of expression. As a call argument, you can now pass any expression of a suitable regular functional type where
suspending is expected. The compiler will perform an implicit conversion automatically.

fun	getSuspending(suspending:	suspend	()	->	Unit)	{}

fun	suspending()	{}

fun	test(regular:	()	->	Unit)	{
				getSuspending	{	}											//	OK
				getSuspending(::suspending)	//	OK
				getSuspending(regular)						//	OK
}

Stable
instantiation
of
annotation
classes
Kotlin 1.5.30 introduced experimental support for instantiation of annotation classes on the JVM platform. With 1.6.0, the feature is available by default both for
Kotlin/JVM and Kotlin/JS.

Learn more about instantiation of annotation classes in this KEEP.

Improved
type
inference
for
recursive
generic
types
Kotlin 1.5.30 introduced an improvement to type inference for recursive generic types, which allowed their type arguments to be inferred based only on the upper
bounds of the corresponding type parameters. The improvement was available with the compiler option. In version 1.6.0 and later, it is enabled by default.

//	Before	1.5.30
val	containerA	=	PostgreSQLContainer<Nothing>(DockerImageName.parse("postgres:13-alpine")).apply	{
		withDatabaseName("db")
		withUsername("user")
		withPassword("password")
		withInitScript("sql/schema.sql")
}

//	With	compiler	option	in	1.5.30	or	by	default	starting	with	1.6.0
val	containerB	=	PostgreSQLContainer(DockerImageName.parse("postgres:13-alpine"))
		.withDatabaseName("db")
		.withUsername("user")
		.withPassword("password")
		.withInitScript("sql/schema.sql")

Changes
to
builder
inference
Builder inference is a type inference flavor which is useful when calling generic builder functions. It can infer the type arguments of a call with the help of type
information from calls inside its lambda argument.

We're making multiple changes that are bringing us closer to fully stable builder inference. Starting with 1.6.0:

You can make calls returning an instance of a not yet inferred type inside a builder lambda without specifying the -Xunrestricted-builder-inference compiler
option introduced in 1.5.30.

With -Xenable-builder-inference, you can write your own builders without applying the @BuilderInference annotation.

With the -Xenable-builder-inference, builder inference automatically activates if a regular type inference cannot get enough information about a type.

Learn how to write custom generic builders.

Support
for
annotations
on
class
type
parameters
Support for annotations on class type parameters looks like this:

@Target(AnnotationTarget.TYPE_PARAMETER)

Note that clients of these builders will need to specify the same -Xenable-builder-inference compiler option.

224

https://github.com/Kotlin/KEEP/blob/master/proposals/annotation-instantiation.md
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-builder-inference/

annotation	class	BoxContent

class	Box<@BoxContent	T>	{}

Annotations on all type parameters are emitted into JVM bytecode so annotation processors are able to use them.

For the motivating use case, read this YouTrack ticket.

Learn more about annotations.

Supporting
previous
API
versions
for
a
longer
period
Starting with Kotlin 1.6.0, we will support development for three previous API versions instead of two, along with the current stable one. Currently, we support
versions 1.3, 1.4, 1.5, and 1.6.

Kotlin/JVM
For Kotlin/JVM, starting with 1.6.0, the compiler can generate classes with a bytecode version corresponding to JVM 17. The new language version also includes
optimized delegated properties and repeatable annotations, which we had on the roadmap:

Repeatable annotations with runtime retention for 1.8 JVM target

Optimize delegated properties which call get/set on the given KProperty instance

Repeatable
annotations
with
runtime
retention
for
1.8
JVM
target
Java 8 introduced repeatable annotations, which can be applied multiple times to a single code element. The feature requires two declarations to be present in the
Java code: the repeatable annotation itself marked with @java.lang.annotation.Repeatable and the containing annotation to hold its values.

Kotlin also has repeatable annotations, but requires only @kotlin.annotation.Repeatable to be present on an annotation declaration to make it repeatable. Before
1.6.0, the feature supported only SOURCE retention and was incompatible with Java's repeatable annotations. Kotlin 1.6.0 removes these limitations.
@kotlin.annotation.Repeatable now accepts any retention and makes the annotation repeatable both in Kotlin and Java. Java's repeatable annotations are now also
supported from the Kotlin side.

While you can declare a containing annotation, it's not necessary. For example:

If an annotation @Tag is marked with @kotlin.annotation.Repeatable, the Kotlin compiler automatically generates a containing annotation class under the name
of @Tag.Container:

@Repeatable	
annotation	class	Tag(val	name:	String)

//	The	compiler	generates	@Tag.Container	containing	annotation

To set a custom name for a containing annotation, apply the @kotlin.jvm.JvmRepeatable meta-annotation and pass the explicitly declared containing annotation
class as an argument:

@JvmRepeatable(Tags::class)
annotation	class	Tag(val	name:	String)

annotation	class	Tags(val	value:	Array<Tag>)

Kotlin reflection now supports both Kotlin's and Java's repeatable annotations via a new function, KAnnotatedElement.findAnnotations().

Learn more about Kotlin repeatable annotations in this KEEP.

Optimize
delegated
properties
which
call
get/set
on
the
given
KProperty
instance
We optimized the generated JVM bytecode by omitting the $delegate field and generating immediate access to the referenced property.

For example, in the following code

class	Box<T>	{
				private	var	impl:	T	=	...

225

https://youtrack.jetbrains.com/issue/KT-43714
https://docs.oracle.com/javase/tutorial/java/annotations/repeating.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Repeatable.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-repeatable/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvmrepeatable/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.full/find-annotations.html
https://github.com/Kotlin/KEEP/blob/master/proposals/repeatable-annotations.md

				var	content:	T	by	::impl
}

Kotlin no longer generates the field content$delegate. Property accessors of the content variable invoke the impl variable directly, skipping the delegated property's
getValue/setValue operators and thus avoiding the need for the property reference object of the KProperty type.

Thanks to our Google colleagues for the implementation!

Learn more about delegated properties.

Kotlin/Native
Kotlin/Native is receiving multiple improvements and component updates, some of them in the preview state:

Preview of the new memory manager

Support for Xcode 13

Compilation of Windows targets on any host

LLVM and linker updates

Performance improvements

Unified compiler plugin ABI with JVM and JS IR backends

Detailed error messages for klib linkage failures

Reworked unhandled exception handling API

Preview
of
the
new
memory
manager

With Kotlin 1.6.0, you can try the development preview of the new Kotlin/Native memory manager. It moves us closer to eliminating the differences between the
JVM and Native platforms to provide a consistent developer experience in multiplatform projects.

One of the notable changes is the lazy initialization of top-level properties, like in Kotlin/JVM. A top-level property gets initialized when a top-level property or
function from the same file is accessed for the first time. This mode also includes global interprocedural optimization (enabled only for release binaries), which
removes redundant initialization checks.

We've recently published a blog post about the new memory manager. Read it to learn about the current state of the new memory manager and find some demo
projects, or jump right to the migration instructions to try it yourself. Please check how the new memory manager works on your projects and share feedback in our
issue tracker, YouTrack.

Support
for
Xcode
13
Kotlin/Native 1.6.0 supports Xcode 13 – the latest version of Xcode. Feel free to update your Xcode and continue working on your Kotlin projects for Apple
operating systems.

Compilation
of
Windows
targets
on
any
host
Starting from 1.6.0, you don't need a Windows host to compile the Windows targets mingwX64 and mingwX86. They can be compiled on any host that supports
Kotlin/Native.

LLVM
and
linker
updates

The new Kotlin/Native memory manager is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below), and you
should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

New libraries added in Xcode 13 aren't available for use in Kotlin 1.6.0, but we're going to add support for them in upcoming versions.

226

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-property/index.html
https://youtrack.jetbrains.com/issue/KT-48525
https://blog.jetbrains.com/kotlin/2021/08/try-the-new-kotlin-native-memory-manager-development-preview/
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/NEW_MM.md
https://youtrack.jetbrains.com/issue/KT-48525

We've reworked the LLVM dependency that Kotlin/Native uses under the hood. This brings various benefits, including:

Updated LLVM version to 11.1.0.

Decreased dependency size. For example, on macOS it's now about 300 MB instead of 1200 MB in the previous version.

Excluded dependency on the ncurses5 library that isn't available in modern Linux distributions.

In addition to the LLVM update, Kotlin/Native now uses the LLD linker (a linker from the LLVM project) for MingGW targets. It provides various benefits over the
previously used ld.bfd linker, and will allow us to improve runtime performance of produced binaries and support compiler caches for MinGW targets. Note that
LLD requires import libraries for DLL linkage. Learn more in this Stack Overflow thread.

Performance
improvements
Kotlin/Native 1.6.0 delivers the following performance improvements:

Compilation time: compiler caches are enabled by default for linuxX64 and iosArm64 targets. This speeds up most compilations in debug mode (except the first
one). Measurements showed about a 200% speed increase on our test projects. The compiler caches have been available for these targets since Kotlin 1.5.0
with additional Gradle properties; you can remove them now.

Runtime: iterating over arrays with for loops is now up to 12% faster thanks to optimizations in the produced LLVM code.

Unified
compiler
plugin
ABI
with
JVM
and
JS
IR
backends

In previous versions, authors of compiler plugins had to provide separate artifacts for Kotlin/Native because of the differences in the ABI.

Starting from 1.6.0, the Kotlin Multiplatform Gradle plugin is able to use the embeddable compiler jar – the one used for the JVM and JS IR backends – for
Kotlin/Native. This is a step toward unification of the compiler plugin development experience, as you can now use the same compiler plugin artifacts for Native and
other supported platforms.

This is a preview version of such support, and it requires an opt-in. To start using generic compiler plugin artifacts for Kotlin/Native, add the following line to
gradle.properties: kotlin.native.useEmbeddableCompilerJar=true.

We're planning to use the embeddable compiler jar for Kotlin/Native by default in the future, so it's vital for us to hear how the preview works for you.

If you are an author of a compiler plugin, please try this mode and check if it works for your plugin. Note that depending on your plugin's structure, migration steps
may be required. See this YouTrack issue for migration instructions and leave your feedback in the comments.

Detailed
error
messages
for
klib
linkage
failures
The Kotlin/Native compiler now provides detailed error messages for klib linkage errors. The messages now have clear error descriptions, and they also include
information about possible causes and ways to fix them.

For example:

1.5.30:

e:	java.lang.IllegalStateException:	IrTypeAliasSymbol	expected:	Unbound	public	symbol	for	public	
kotlinx.coroutines/CancellationException|null[0]
<stack	trace>

1.6.0:

e:	The	symbol	of	unexpected	type	encountered	during	IR	deserialization:	IrClassPublicSymbolImpl,	
kotlinx.coroutines/CancellationException|null[0].
IrTypeAliasSymbol	is	expected.

This	could	happen	if	there	are	two	libraries,	where	one	library	was	compiled	against	the	different	version	of	the	other	library	
than	the	one	currently	used	in	the	project.
Please	check	that	the	project	configuration	is	correct	and	has	consistent	versions	of	dependencies.

The	list	of	libraries	that	depend	on	"org.jetbrains.kotlinx:kotlinx-coroutines-core	(org.jetbrains.kotlinx:kotlinx-coroutines-

The option to use the common IR compiler plugin ABI for Kotlin/Native is Experimental. It may be dropped or changed at any time. Opt-in is required (see
details below), and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

227

https://youtrack.jetbrains.com/issue/KT-42693
https://lld.llvm.org/
https://stackoverflow.com/questions/3573475/how-does-the-import-library-work-details/3573527/#3573527
https://youtrack.jetbrains.com/issue/KT-48595
https://youtrack.jetbrains.com/issue/KT-48595

core-macosx64)"	and	may	lead	to	conflicts:
<list	of	libraries	and	potential	version	mismatches>

Project	dependencies:
<dependencies	tree>

Reworked
unhandled
exception
handling
API
We've unified the processing of unhandled exceptions throughout the Kotlin/Native runtime and exposed the default processing as the function
processUnhandledException(throwable: Throwable) for use by custom execution environments, like kotlinx.coroutines. This processing is also applied to exceptions
that escape operation in Worker.executeAfter(), but only for the new memory manager.

API improvements also affected the hooks that have been set by setUnhandledExceptionHook(). Previously such hooks were reset after the Kotlin/Native runtime
called the hook with an unhandled exception, and the program would always terminate right after. Now these hooks may be used more than once, and if you want
the program to always terminate on an unhandled exception, either do not set an unhandled exception hook (setUnhandledExceptionHook()), or make sure to call
terminateWithUnhandledException() at the end of your hook. This will help you send exceptions to a third-party crash reporting service (like Firebase Crashlytics)
and then terminate the program. Exceptions that escape main() and exceptions that cross the interop boundary will always terminate the program, even if the hook
did not call terminateWithUnhandledException().

Kotlin/JS
We're continuing to work on stabilizing the IR backend for the Kotlin/JS compiler. Kotlin/JS now has an option to disable downloading of Node.js and Yarn.

Option
to
use
pre-installed
Node.js
and
Yarn
You can now disable downloading Node.js and Yarn when building Kotlin/JS projects and use the instances already installed on the host. This is useful for building
on servers without internet connectivity, such as CI servers.

To disable downloading external components, add the following lines to your build.gradle(.kts):

Yarn:

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().download	=	false	//	or	true	for	default	
behavior
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).download	=	false
}

Node.js:

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootExtension>().download	=	false	//	or	true	for	default	
behavior
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootExtension).download	=	false
}

228

Kotlin
Gradle
plugin
In Kotlin 1.6.0, we changed the deprecation level of the KotlinGradleSubplugin class to 'ERROR'. This class was used for writing compiler plugins. In the following
releases, we'll remove this class. Use the class KotlinCompilerPluginSupportPlugin instead.

We removed the kotlin.useFallbackCompilerSearch build option and the noReflect and includeRuntime compiler options. The useIR compiler option has been
hidden and will be removed in upcoming releases.

Learn more about the currently supported compiler options in the Kotlin Gradle plugin.

Standard
library
The new 1.6.0 version of the standard library stabilizes experimental features, introduces new ones, and unifies its behavior across the platforms:

New readline functions

Stable typeOf()

Stable collection builders

Stable Duration API

Splitting Regex into a sequence

Bit rotation operations on integers

Changes for replace() and replaceFirst() in JS

Improvements to the existing API

Deprecations

New
readline
functions
Kotlin 1.6.0 offers new functions for handling standard input: readln() and readlnOrNull().

Earlier versions 1.6.0 alternative Usage

readLine()!! readln() Reads a line from stdin and returns it, or throws a RuntimeException if EOF has been reached.

readLine() readlnOrNull() Reads a line from stdin and returns it, or returns null if EOF has been reached.

We believe that eliminating the need to use !! when reading a line will improve the experience for newcomers and simplify teaching Kotlin. To make the read-line
operation name consistent with its println() counterpart, we've decided to shorten the names of new functions to 'ln'.

println("What	is	your	nickname?")
val	nickname	=	readln()
println("Hello,	$nickname!")

fun	main()	{
//sampleStart
				var	sum	=	0
				while	(true)	{
								val	nextLine	=	readlnOrNull().takeUnless	{	
												it.isNullOrEmpty()	
								}	?:	break
								sum	+=	nextLine.toInt()
				}
				println(sum)

For now, new functions are available for the JVM and Native target platforms only.

229

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/readln.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/readln-or-null.html

//sampleEnd
}

The existing readLine() function will get a lower priority than readln() and readlnOrNull() in your IDE code completion. IDE inspections will also recommend using new
functions instead of the legacy readLine().

We're planning to gradually deprecate the readLine() function in future releases.

Stable
typeOf()
Version 1.6.0 brings a Stable typeOf() function, closing one of the major roadmap items.

Since 1.3.40, typeOf() was available on the JVM platform as an experimental API. Now you can use it in any Kotlin platform and get KType representation of any
Kotlin type that the compiler can infer:

inline	fun	<reified	T>	renderType():	String	{
				val	type	=	typeOf<T>()
				return	type.toString()
}

fun	main()	{
				val	fromExplicitType	=	typeOf<Int>()
				val	fromReifiedType	=	renderType<List<Int>>()
}

Stable
collection
builders
In Kotlin 1.6.0, collection builder functions have been promoted to Stable. Collections returned by collection builders are now serializable in their read-only state.

You can now use buildMap(), buildList(), and buildSet() without the opt-in annotation:

fun	main()	{
//sampleStart
				val	x	=	listOf('b',	'c')
				val	y	=	buildList	{
								add('a')
								addAll(x)
								add('d')
				}
				println(y)		//	[a,	b,	c,	d]
//sampleEnd
}

Stable
Duration
API
The Duration class for representing duration amounts in different time units has been promoted to Stable. In 1.6.0, the Duration API has received the following
changes:

The first component of the toComponents() function that decomposes the duration into days, hours, minutes, seconds, and nanoseconds now has the Long type
instead of Int. Before, if the value didn't fit into the Int range, it was coerced into that range. With the Long type, you can decompose any value in the duration
range without cutting off the values that don't fit into Int.

The DurationUnit enum is now standalone and not a type alias of java.util.concurrent.TimeUnit on the JVM. We haven't found any convincing cases in which
having typealias DurationUnit = TimeUnit could be useful. Also, exposing the TimeUnit API through a type alias might confuse DurationUnit users.

In response to community feedback, we're bringing back extension properties like Int.seconds. But we'd like to limit their applicability, so we put them into the
companion of the Duration class. While the IDE can still propose extensions in completion and automatically insert an import from the companion, in the future
we plan to limit this behavior to cases when the Duration type is expected.

import	kotlin.time.Duration.Companion.seconds

fun	main()	{
//sampleStart
				val	duration	=	10000
				println("There	are	${duration.seconds.inWholeMinutes}	minutes	in	$duration	seconds")
				//	There	are	166	minutes	in	10000	seconds
//sampleEnd
}

230

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/type-of.html
https://youtrack.jetbrains.com/issue/KT-45396
https://blog.jetbrains.com/kotlin/2019/06/kotlin-1-3-40-released/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-type/#kotlin.reflect.KType
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-set.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-components.html

We suggest replacing previously introduced companion functions, such as Duration.seconds(Int), and deprecated top-level extensions like Int.seconds with new
extensions in Duration.Companion.

Splitting
Regex
into
a
sequence
The Regex.splitToSequence(CharSequence) and CharSequence.splitToSequence(Regex) functions are promoted to Stable. They split the string around matches of
the given regex, but return the result as a Sequence so that all operations on this result are executed lazily:

fun	main()	{
//sampleStart
				val	colorsText	=	"green,	red,	brown&blue,	orange,	pink&green"
				val	regex	=	"[,\\s]+".toRegex()
				val	mixedColor	=	regex.splitToSequence(colorsText)
				//	or
				//	val	mixedColor	=	colorsText.splitToSequence(regex)
								.onEach	{	println(it)	}
								.firstOrNull	{	it.contains('&')	}
				println(mixedColor)	//	"brown&blue"
//sampleEnd
}

Bit
rotation
operations
on
integers
In Kotlin 1.6.0, the rotateLeft() and rotateRight() functions for bit manipulations became Stable. The functions rotate the binary representation of the number left or
right by a specified number of bits:

fun	main()	{
//sampleStart
				val	number:	Short	=	0b10001
				println(number
								.rotateRight(2)
								.toString(radix	=	2))	//	100000000000100
				println(number
								.rotateLeft(2)
								.toString(radix	=	2))		//	1000100
//sampleEnd
}

Changes
for
replace()
and
replaceFirst()
in
JS
Before Kotlin 1.6.0, the replace() and replaceFirst() Regex functions behaved differently in Java and JS when the replacement string contained a group reference. To
make the behavior consistent across all target platforms, we've changed their implementation in JS.

Occurrences of ${name} or $index in the replacement string are substituted with the subsequences corresponding to the captured groups with the specified index
or a name:

$index – the first digit after '$' is always treated as a part of the group reference. Subsequent digits are incorporated into the index only if they form a valid group
reference.Only digits '0'–'9' are considered potential components of the group reference. Note that indexes of captured groups start from '1'. The group with
index '0' stands for the whole match.

${name} – the name can consist of Latin letters 'a'–'z', 'A'–'Z', or digits '0'–'9'. The first character must be a letter.

To include the succeeding character as a literal in the replacement string, use the backslash character \:

fun	main()	{
//sampleStart
				println(Regex("(.+)").replace("Kotlin",	"""\$	$1"""))	//	$	Kotlin
				println(Regex("(.+)").replaceFirst("1.6.0",	"""\\	$1"""))	//	\	1.6.0
//sampleEnd

Such a replacement may cause ambiguity between old top-level extensions and new companion extensions. Be sure to use the wildcard import of the
kotlin.time package – import kotlin.time.* – before doing automated migration.

Named groups in replacement patterns are currently supported only on the JVM.

231

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/replace.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/replace-first.html

}

You can use Regex.escapeReplacement() if the replacement string has to be treated as a literal string.

Improvements
to
the
existing
API
Version 1.6.0 added the infix extension function for Comparable.compareTo(). You can now use the infix form for comparing two objects for order:

	class	WrappedText(val	text:	String)	:	Comparable<WrappedText>	{
					override	fun	compareTo(other:	WrappedText):	Int	=
									this.text	compareTo	other.text
}

Regex.replace() in JS is now also not inline to unify its implementation across all platforms.

The compareTo() and equals() String functions, as well as the isBlank() CharSequence function now behave in JS exactly the same way they do on the JVM.
Previously there were deviations when it came to non-ASCII characters.

Deprecations
In Kotlin 1.6.0, we're starting the deprecation cycle with a warning for some JS-only stdlib API.

concat(), match(), and matches() string functions

To concatenate the string with the string representation of a given other object, use plus() instead of concat().

To find all occurrences of a regular expression within the input, use findAll() of the Regex class instead of String.match(regex: String).

To check if the regular expression matches the entire input, use matches() of the Regex class instead of String.matches(regex: String).

sort() on arrays taking comparison functions
We've deprecated the Array<out T>.sort() function and the inline functions ByteArray.sort(), ShortArray.sort(), IntArray.sort(), LongArray.sort(), FloatArray.sort(),
DoubleArray.sort(), and CharArray.sort(), which sorted arrays following the order passed by the comparison function. Use other standard library functions for array
sorting.

See the collection ordering section for reference.

Tools

Kover
–
a
code
coverage
tool
for
Kotlin

With Kotlin 1.6.0, we're introducing Kover – a Gradle plugin for the IntelliJ and JaCoCo Kotlin code coverage agents. It works with all language constructs, including
inline functions.

Learn more about Kover on its GitHub repository or in this video:

The Kover Gradle plugin is Experimental. We would appreciate your feedback on it in GitHub.

232

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/escape-replacement.html
https://github.com/Kotlin/kotlinx-kover/issues
https://github.com/JetBrains/intellij-coverage
https://github.com/jacoco/jacoco
https://github.com/Kotlin/kotlinx-kover

Watch video online.

Coroutines
1.6.0-RC
kotlinx.coroutines 1.6.0-RC is out with multiple features and improvements:

Support for the new Kotlin/Native memory manager

Introduction of dispatcher views API, which allows limiting parallelism without creating additional threads

Migrating from Java 6 to Java 8 target

kotlinx-coroutines-test with the new reworked API and multiplatform support

Introduction of CopyableThreadContextElement, which gives coroutines a thread-safe write access to ThreadLocal variables

Learn more in the changelog.

Migrating
to
Kotlin
1.6.0
IntelliJ IDEA and Android Studio will suggest updating the Kotlin plugin to 1.6.0 once it is available.

To migrate existing projects to Kotlin 1.6.0, change the Kotlin version to 1.6.0 and reimport your Gradle or Maven project. Learn how to update to Kotlin 1.6.0.

To start a new project with Kotlin 1.6.0, update the Kotlin plugin and run the Project Wizard from File | New | Project.

The new command-line compiler is available for download on the GitHub release page.

Kotlin 1.6.0 is a feature release and can, therefore, bring changes that are incompatible with your code written for earlier versions of the language. Find the detailed
list of such changes in the Compatibility Guide for Kotlin 1.6.

What's
new
in
Kotlin
1.5.30
Released: 24 August 2021

Kotlin 1.5.30 offers language updates including previews of future changes, various improvements in platform support and tooling, and new standard library
functions.

Here are some major improvements:

Language features, including experimental sealed when statements, changes in using opt-in requirement, and others

Native support for Apple silicon

Kotlin/JS IR backend reaches Beta

Gif

233

https://youtube.com/v/jNu5LY9HIbw
https://github.com/Kotlin/kotlinx.coroutines/releases/tag/1.6.0-RC
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-copyable-thread-context-element/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ThreadLocal.html
https://github.com/Kotlin/kotlinx.coroutines/releases/tag/1.6.0-RC
https://github.com/JetBrains/kotlin/releases/tag/v1.6.0

Improved Gradle plugin experience

You can also find a short overview of the changes in the release blog post and this video:

Watch video online.

Language
features
Kotlin 1.5.30 is presenting previews of future language changes and bringing improvements to the opt-in requirement mechanism and type inference:

Exhaustive when statements for sealed and Boolean subjects

Suspending functions as supertypes

Requiring opt-in on implicit usages of experimental APIs

Changes to using opt-in requirement annotations with different targets

Improvements to type inference for recursive generic types

Eliminating builder inference restrictions

Exhaustive
when
statements
for
sealed
and
Boolean
subjects

An exhaustive when statement contains branches for all possible types or values of its subject or for some types plus an else branch. In other words, it covers all
possible cases.

We're planning to prohibit non-exhaustive when statements soon to make the behavior consistent with when expressions. To ensure smooth migration, you can
configure the compiler to report warnings about non-exhaustive when statements with a sealed class or a Boolean. Such warnings will appear by default in Kotlin
1.6 and will become errors later.

sealed	class	Mode	{
				object	ON	:	Mode()
				object	OFF	:	Mode()
}

fun	main()	{
				val	x:	Mode	=	Mode.ON

Gif

Support for sealed (exhaustive) when statements is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below),
and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

Enums already get a warning.

234

https://blog.jetbrains.com/kotlin/2021/08/kotlin-1-5-30-released/
https://youtube.com/v/rNbb3A9IdOo
https://youtrack.jetbrains.com/issue/KT-12380

				when	(x)	{	
								Mode.ON	->	println("ON")
				}
//	WARNING:	Non	exhaustive	'when'	statements	on	sealed	classes/interfaces	
//	will	be	prohibited	in	1.7,	add	an	'OFF'	or	'else'	branch	instead

				val	y:	Boolean	=	true
				when	(y)	{		
								true	->	println("true")
				}
//	WARNING:	Non	exhaustive	'when'	statements	on	Booleans	will	be	prohibited	
//	in	1.7,	add	a	'false'	or	'else'	branch	instead
}

To enable this feature in Kotlin 1.5.30, use language version 1.6. You can also change the warnings to errors by enabling progressive mode.

Kotlin

kotlin	{
				sourceSets.all	{
								languageSettings.apply	{
												languageVersion	=	"1.6"
												//progressiveMode	=	true	//	false	by	default
								}
				}
}

Groovy

kotlin	{
				sourceSets.all	{
								languageSettings	{
												languageVersion	=	'1.6'
												//progressiveMode	=	true	//	false	by	default
								}
				}
}

Suspending
functions
as
supertypes

Kotlin 1.5.30 provides a preview of the ability to use a suspend functional type as a supertype with some limitations.

class	MyClass:	suspend	()	->	Unit	{
				override	suspend	fun	invoke()	{	TODO()	}
}

Use the -language-version 1.6 compiler option to enable the feature:

Kotlin

kotlin	{
				sourceSets.all	{
								languageSettings.apply	{
												languageVersion	=	"1.6"
								}
				}
}

Groovy

kotlin	{
				sourceSets.all	{

Support for suspending functions as supertypes is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below),
and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

235

https://youtrack.jetbrains.com/issue/KT-18707

								languageSettings	{
												languageVersion	=	'1.6'
								}
				}
}

The feature has the following restrictions:

You can't mix an ordinary functional type and a suspend functional type as supertype. This is because of the implementation details of suspend functional types
in the JVM backend. They are represented in it as ordinary functional types with a marker interface. Because of the marker interface, there is no way to tell which
of the superinterfaces are suspended and which are ordinary.

You can't use multiple suspend functional supertypes. If there are type checks, you also can't use multiple ordinary functional supertypes.

Requiring
opt-in
on
implicit
usages
of
experimental
APIs

The author of a library can mark an experimental API as requiring opt-in to inform users about its experimental state. The compiler raises a warning or error when
the API is used and requires explicit consent to suppress it.

In Kotlin 1.5.30, the compiler treats any declaration that has an experimental type in the signature as experimental. Namely, it requires opt-in even for implicit
usages of an experimental API. For example, if the function's return type is marked as an experimental API element, a usage of the function requires you to opt-in
even if the declaration is not marked as requiring an opt-in explicitly.

//	Library	code

@RequiresOptIn(message	=	"This	API	is	experimental.")
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS)
annotation	class	MyDateTime	//	Opt-in	requirement	annotation

@MyDateTime
class	DateProvider	//	A	class	requiring	opt-in

//	Client	code

//	Warning:	experimental	API	usage
fun	createDateSource():	DateProvider	{	/*	...	*/	}

fun	getDate():	Date	{
				val	dateSource	=	createDateSource()	//	Also	warning:	experimental	API	usage
				//	...	
}

Learn more about opt-in requirements.

Changes
to
using
opt-in
requirement
annotations
with
different
targets

Kotlin 1.5.30 presents new rules for using and declaring opt-in requirement annotations on different targets. The compiler now reports an error for use cases that
are impractical to handle at compile time. In Kotlin 1.5.30:

Marking local variables and value parameters with opt-in requirement annotations is forbidden at the use site.

Marking override is allowed only if its basic declaration is also marked.

Marking backing fields and getters is forbidden. You can mark the basic property instead.

Setting TYPE and TYPE_PARAMETER annotation targets is forbidden at the opt-in requirement annotation declaration site.

The opt-in requirement mechanism is Experimental. It may change at any time. See how to opt-in. Use it only for evaluation purposes. We would
appreciate your feedback on it in YouTrack.

The opt-in requirement mechanism is Experimental. It may change at any time. See how to opt-in. Use it only for evaluation purposes. We would
appreciate your feedback on it in YouTrack.

236

https://youtrack.jetbrains.com/issues/KT
https://youtrack.jetbrains.com/issues/KT
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-target/

Learn more about opt-in requirements.

Improvements
to
type
inference
for
recursive
generic
types
In Kotlin and Java, you can define a recursive generic type, which references itself in its type parameters. In Kotlin 1.5.30, the Kotlin compiler can infer a type
argument based only on upper bounds of the corresponding type parameter if it is a recursive generic. This makes it possible to create various patterns with
recursive generic types that are often used in Java to make builder APIs.

//	Kotlin	1.5.20
val	containerA	=	PostgreSQLContainer<Nothing>(DockerImageName.parse("postgres:13-alpine")).apply	{
				withDatabaseName("db")
				withUsername("user")
				withPassword("password")
				withInitScript("sql/schema.sql")
}

//	Kotlin	1.5.30
val	containerB	=	PostgreSQLContainer(DockerImageName.parse("postgres:13-alpine"))
				.withDatabaseName("db")
				.withUsername("user")
				.withPassword("password")
				.withInitScript("sql/schema.sql")

You can enable the improvements by passing the -Xself-upper-bound-inference or the -language-version 1.6 compiler options. See other examples of newly
supported use cases in this YouTrack ticket.

Eliminating
builder
inference
restrictions
Builder inference is a special kind of type inference that allows you to infer the type arguments of a call based on type information from other calls inside its lambda
argument. This can be useful when calling generic builder functions such as buildList() or sequence(): buildList { add("string") }.

Inside such a lambda argument, there was previously a limitation on using the type information that the builder inference tries to infer. This means you can only
specify it and cannot get it. For example, you cannot call get() inside a lambda argument of buildList() without explicitly specified type arguments.

Kotlin 1.5.30 removes these limitations with the -Xunrestricted-builder-inference compiler option. Add this option to enable previously prohibited calls inside a
lambda argument of generic builder functions:

@kotlin.ExperimentalStdlibApi
val	list	=	buildList	{
				add("a")
				add("b")
				set(1,	null)
				val	x	=	get(1)
				if	(x	!=	null)	{
								removeAt(1)
				}
}

@kotlin.ExperimentalStdlibApi
val	map	=	buildMap	{
				put("a",	1)
				put("b",	1.1)
				put("c",	2f)
}

Also, you can enable this feature with the -language-version 1.6 compiler option.

Kotlin/JVM
With Kotlin 1.5.30, Kotlin/JVM receives the following features:

Instantiation of annotation classes

Improved nullability annotation support configuration

See the Gradle section for Kotlin Gradle plugin updates on the JVM platform.

237

https://youtrack.jetbrains.com/issue/KT-40804
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/sequence.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/get.html

Instantiation
of
annotation
classes

With Kotlin 1.5.30 you can now call constructors of annotation classes in arbitrary code to obtain a resulting instance. This feature covers the same use cases as
the Java convention that allows the implementation of an annotation interface.

annotation	class	InfoMarker(val	info:	String)

fun	processInfo(marker:	InfoMarker)	=	...

fun	main(args:	Array<String>)	{
				if	(args.size	!=	0)
								processInfo(getAnnotationReflective(args))
				else
								processInfo(InfoMarker("default"))
}

Use the -language-version 1.6 compiler option to enable this feature. Note that all current annotation class limitations, such as restrictions to define non-val
parameters or members different from secondary constructors, remain intact.

Learn more about instantiation of annotation classes in this KEEP

Improved
nullability
annotation
support
configuration
The Kotlin compiler can read various types of nullability annotations to get nullability information from Java. This information allows it to report nullability
mismatches in Kotlin when calling Java code.

In Kotlin 1.5.30, you can specify whether the compiler reports a nullability mismatch based on the information from specific types of nullability annotations. Just use
the compiler option -Xnullability-annotations=@<package-name>:<report-level>. In the argument, specify the fully qualified nullability annotations package and one
of these report levels:

ignore to ignore nullability mismatches

warn to report warnings

strict to report errors.

See the full list of supported nullability annotations along with their fully qualified package names.

Here is an example showing how to enable error reporting for the newly supported RxJava 3 nullability annotations: -Xnullability-
annotations=@io.reactivex.rxjava3.annotations:strict. Note that all such nullability mismatches are warnings by default.

Kotlin/Native
Kotlin/Native has received various changes and improvements:

Apple silicon support

Improved Kotlin DSL for the CocoaPods Gradle plugin

Experimental interoperability with Swift 5.5 async/await

Improved Swift/Objective-C mapping for objects and companion objects

Deprecation of linkage against DLLs without import libraries for MinGW targets

Apple
silicon
support
Kotlin 1.5.30 introduces native support for Apple silicon.

Previously, the Kotlin/Native compiler and tooling required the Rosetta translation environment for working on Apple silicon hosts. In Kotlin 1.5.30, the translation
environment is no longer needed – the compiler and tooling can run on Apple silicon hardware without requiring any additional actions.

Instantiation of annotation classes is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below), and you should
use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

238

https://youtrack.jetbrains.com/issue/KT-45395
https://github.com/Kotlin/KEEP/blob/master/proposals/annotation-instantiation.md
https://github.com/ReactiveX/RxJava
https://support.apple.com/en-us/HT211814
https://developer.apple.com/documentation/apple-silicon/about-the-rosetta-translation-environment

We've also introduced new targets that make Kotlin code run natively on Apple silicon:

macosArm64

iosSimulatorArm64

watchosSimulatorArm64

tvosSimulatorArm64

They are available on both Intel-based and Apple silicon hosts. All existing targets are available on Apple silicon hosts as well.

Note that in 1.5.30 we provide only basic support for Apple silicon targets in the kotlin-multiplatform Gradle plugin. Particularly, the new simulator targets aren't
included in the[ios, tvos, and watchos target shortcuts. We will keep working to improve the user experience with the new targets.

Improved
Kotlin
DSL
for
the
CocoaPods
Gradle
plugin

New parameters for Kotlin/Native frameworks
Kotlin 1.5.30 introduces the improved CocoaPods Gradle plugin DSL for Kotlin/Native frameworks. In addition to the name of the framework, you can specify other
parameters in the Pod configuration:

Specify the dynamic or static version of the framework

Enable export dependencies explicitly

Enable Bitcode embedding

To use the new DSL, update your project to Kotlin 1.5.30, and specify the parameters in the cocoapods section of your build.gradle(.kts) file:

cocoapods	{
				frameworkName	=	"MyFramework"	//	This	property	is	deprecated	
				//	and	will	be	removed	in	future	versions
				//	New	DSL	for	framework	configuration:
				framework	{
								//	All	Framework	properties	are	supported
								//	Framework	name	configuration.	Use	this	property	instead	of	
								//	deprecated	'frameworkName'
								baseName	=	"MyFramework"
								//	Dynamic	framework	support
								isStatic	=	false
								//	Dependency	export
								export(project(":anotherKMMModule"))
								transitiveExport	=	false	//	This	is	default.
								//	Bitcode	embedding
								embedBitcode(BITCODE)
				}
}

Support custom names for Xcode configuration
The Kotlin CocoaPods Gradle plugin supports custom names in the Xcode build configuration. It will also help you if you're using special names for the build
configuration in Xcode, for example Staging.

To specify a custom name, use the xcodeConfigurationToNativeBuildType parameter in the cocoapods section of your build.gradle(.kts) file:

cocoapods	{
				//	Maps	custom	Xcode	configuration	to	NativeBuildType
				xcodeConfigurationToNativeBuildType["CUSTOM_DEBUG"]	=	NativeBuildType.DEBUG
				xcodeConfigurationToNativeBuildType["CUSTOM_RELEASE"]	=	NativeBuildType.RELEASE
}

This parameter will not appear in the Podspec file. When Xcode runs the Gradle build process, the Kotlin CocoaPods Gradle plugin will select the necessary native
build type.

There's no need to declare the Debug and Release configurations because they are supported by default.

239

Experimental
interoperability
with
Swift
5.5
async/await

We added support for calling Kotlin's suspending functions from Objective-C and Swift in 1.4.0, and now we're improving it to keep up with a new Swift 5.5 feature
– concurrency with async and await modifiers.

The Kotlin/Native compiler now emits the _Nullable_result attribute in the generated Objective-C headers for suspending functions with nullable return types. This
makes it possible to call them from Swift as async functions with the proper nullability.

Note that this feature is experimental and can be affected in the future by changes in both Kotlin and Swift. For now, we're offering a preview of this feature that has
certain limitations, and we are eager to hear what you think. Learn more about its current state and leave your feedback in this YouTrack issue.

Improved
Swift/Objective-C
mapping
for
objects
and
companion
objects
Getting objects and companion objects can now be done in a way that is more intuitive for native iOS developers. For example, if you have the following objects in
Kotlin:

object	MyObject	{
				val	x	=	"Some	value"
}

class	MyClass	{
				companion	object	{
								val	x	=	"Some	value"
				}
}

To access them in Swift, you can use the shared and companion properties:

MyObject.shared
MyObject.shared.x
MyClass.companion
MyClass.Companion.shared

Learn more about Swift/Objective-C interoperability.

Deprecation
of
linkage
against
DLLs
without
import
libraries
for
MinGW
targets
LLD is a linker from the LLVM project, which we plan to start using in Kotlin/Native for MinGW targets because of its benefits over the default ld.bfd – primarily its
better performance.

However, the latest stable version of LLD doesn't support direct linkage against DLL for MinGW (Windows) targets. Such linkage requires using import libraries.
Although they aren't needed with Kotlin/Native 1.5.30, we're adding a warning to inform you that such usage is incompatible with LLD that will become the default
linker for MinGW in the future.

Please share your thoughts and concerns about the transition to the LLD linker in this YouTrack issue.

Kotlin
Multiplatform
1.5.30 brings the following notable updates to Kotlin Multiplatform:

Ability to use custom cinterop libraries in shared native code

Support for XCFrameworks

New default publishing setup for Android artifacts

Ability
to
use
custom
cinterop
libraries
in
shared
native
code
Kotlin Multiplatform gives you an option to use platform-dependent interop libraries in shared source sets. Before 1.5.30, this worked only with platform libraries
shipped with Kotlin/Native distribution. Starting from 1.5.30, you can use it with your custom cinterop libraries. To enable this feature, add the

Concurrency interoperability with Swift async/await is Experimental. It may be dropped or changed at any time. You should use it only for evaluation
purposes. We would appreciate your feedback on it in YouTrack.

240

https://youtrack.jetbrains.com/issue/KT-47610
https://github.com/apple/swift-evolution/blob/main/proposals/0296-async-await.md
https://youtrack.jetbrains.com/issue/KT-47610
https://lld.llvm.org/
https://stackoverflow.com/questions/3573475/how-does-the-import-library-work-details/3573527#3573527
https://youtrack.jetbrains.com/issue/KT-47605

kotlin.mpp.enableCInteropCommonization=true property in your gradle.properties:

kotlin.mpp.enableGranularSourceSetsMetadata=true
kotlin.native.enableDependencyPropagation=false
kotlin.mpp.enableCInteropCommonization=true

Support
for
XCFrameworks
All Kotlin Multiplatform projects can now have XCFrameworks as an output format. Apple introduced XCFrameworks as a replacement for universal (fat)
frameworks. With the help of XCFrameworks you:

Can gather logic for all the target platforms and architectures in a single bundle.

Don't need to remove all unnecessary architectures before publishing the application to the App Store.

XCFrameworks is useful if you want to use your Kotlin framework for devices and simulators on Apple M1.

To use XCFrameworks, update your build.gradle(.kts) script:

Kotlin

import	org.jetbrains.kotlin.gradle.plugin.mpp.apple.XCFramework

plugins	{
				kotlin("multiplatform")
}

kotlin	{
				val	xcf	=	XCFramework()
		
				ios	{
								binaries.framework	{
												baseName	=	"shared"
												xcf.add(this)
								}
				}
				watchos	{
								binaries.framework	{
												baseName	=	"shared"
												xcf.add(this)
								}
				}
				tvos	{
								binaries.framework	{
												baseName	=	"shared"
												xcf.add(this)
								}
				}
}

Groovy

import	org.jetbrains.kotlin.gradle.plugin.mpp.apple.XCFrameworkConfig

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'
}

kotlin	{
				def	xcf	=	new	XCFrameworkConfig(project)

				ios	{
								binaries.framework	{
												baseName	=	"shared"
												xcf.add(it)
								}
				}
				watchos	{
								binaries.framework	{
												baseName	=	"shared"
												xcf.add(it)
								}
				}
				tvos	{

241

								binaries.framework	{
												baseName	=	"shared"
												xcf.add(it)
								}
				}
}

When you declare XCFrameworks, these new Gradle tasks will be registered:

assembleXCFramework

assembleDebugXCFramework (additionally debug artifact that contains dSYMs)

assembleReleaseXCFramework

Learn more about XCFrameworks in this WWDC video.

New
default
publishing
setup
for
Android
artifacts
Using the maven-publish Gradle plugin, you can publish your multiplatform library for the Android target by specifying Android variant names in the build script. The
Kotlin Gradle plugin will generate publications automatically.

Before 1.5.30, the generated publication metadata included the build type attributes for every published Android variant, making it compatible only with the same
build type used by the library consumer. Kotlin 1.5.30 introduces a new default publishing setup:

If all Android variants that the project publishes have the same build type attribute, then the published variants won't have the build type attribute and will be
compatible with any build type.

If the published variants have different build type attributes, then only those with the release value will be published without the build type attribute. This makes
the release variants compatible with any build type on the consumer side, while non-release variants will only be compatible with the matching consumer build
types.

To opt-out and keep the build type attributes for all variants, you can set this Gradle property: kotlin.android.buildTypeAttribute.keep=true.

Kotlin/JS
Two major improvements are coming to Kotlin/JS with 1.5.30:

JS IR compiler backend reaches Beta

Better debugging experience for applications with the Kotlin/JS IR backend

JS
IR
compiler
backend
reaches
Beta
The IR-based compiler backend for Kotlin/JS, which was introduced in 1.4.0 in Alpha, has reached Beta.

Previously, we published the migration guide for the JS IR backend to help you migrate your projects to the new backend. Now we would like to present the
Kotlin/JS Inspection Pack IDE plugin, which displays the required changes directly in IntelliJ IDEA.

Better
debugging
experience
for
applications
with
the
Kotlin/JS
IR
backend
Kotlin 1.5.30 brings JavaScript source map generation for the Kotlin/JS IR backend. This will improve the Kotlin/JS debugging experience when the IR backend is
enabled, with full debugging support that includes breakpoints, stepping, and readable stack traces with proper source references.

Learn how to debug Kotlin/JS in the browser or IntelliJ IDEA Ultimate.

Gradle
As a part of our mission to improve the Kotlin Gradle plugin user experience, we've implemented the following features:

Support for Java toolchains, which includes an ability to specify a JDK home with the UsesKotlinJavaToolchain interface for older Gradle versions

An easier way to explicitly specify the Kotlin daemon's JVM arguments

242

https://developer.apple.com/videos/play/wwdc2019/416/
https://developer.android.com/studio/build/build-variants
https://docs.gradle.org/current/userguide/publishing_gradle_module_metadata.html
https://plugins.jetbrains.com/plugin/17183-kotlin-js-inspection-pack/
https://youtrack.jetbrains.com/issue/KT-45778

Support
for
Java
toolchains
Gradle 6.7 introduced the "Java toolchains support" feature. Using this feature, you can:

Run compilations, tests, and executables using JDKs and JREs that are different from the Gradle ones.

Compile and test code with an unreleased language version.

With toolchains support, Gradle can autodetect local JDKs and install missing JDKs that Gradle requires for the build. Now Gradle itself can run on any JDK and still
reuse the build cache feature.

The Kotlin Gradle plugin supports Java toolchains for Kotlin/JVM compilation tasks. A Java toolchain:

Sets the jdkHome option available for JVM targets.

Sets the kotlinOptions.jvmTarget to the toolchain's JDK version if the user didn't set the jvmTarget option explicitly. If the toolchain is not configured, the
jvmTarget field uses the default value. Learn more about JVM target compatibility.

Affects which JDK kapt workers are running on.

Use the following code to set a toolchain. Replace the placeholder <MAJOR_JDK_VERSION> with the JDK version you would like to use:

Kotlin

kotlin	{
				jvmToolchain	{
								(this	as	JavaToolchainSpec).languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))	//	"8"
				}
}

Groovy

kotlin	{
				jvmToolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))	//	"8"
				}
}

Note that setting a toolchain via the kotlin extension will update the toolchain for Java compile tasks as well.

You can set a toolchain via the java extension, and Kotlin compilation tasks will use it:

java	{
				toolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))	//	"8"
				}
}

For information about setting any JDK version for KotlinCompile tasks, look through the docs about setting the JDK version with the Task DSL.

For Gradle versions from 6.1 to 6.6, use the UsesKotlinJavaToolchain interface to set the JDK home.

Ability
to
specify
JDK
home
with
UsesKotlinJavaToolchain
interface
All Kotlin tasks that support setting the JDK via kotlinOptions now implement the UsesKotlinJavaToolchain interface. To set the JDK home, put a path to your JDK
and replace the <JDK_VERSION> placeholder:

Kotlin

project.tasks
				.withType<UsesKotlinJavaToolchain>()
				.configureEach	{
								it.kotlinJavaToolchain.jdk.use(

The ability to set the jdkHome option directly has been deprecated.

243

https://docs.gradle.org/current/userguide/toolchains.html
https://youtrack.jetbrains.com/issue/KT-46541

												"/path/to/local/jdk",
												JavaVersion.<LOCAL_JDK_VERSION>
)
				}

Groovy

project.tasks
				.withType(UsesKotlinJavaToolchain.class)
				.configureEach	{
								it.kotlinJavaToolchain.jdk.use(
												'/path/to/local/jdk',
												JavaVersion.<LOCAL_JDK_VERSION>
)
				}

Use the UsesKotlinJavaToolchain interface for Gradle versions from 6.1 to 6.6. Starting from Gradle 6.7, use the Java toolchains instead.

When using this feature, note that kapt task workers will only use process isolation mode, and the kapt.workers.isolation property will be ignored.

Easier
way
to
explicitly
specify
Kotlin
daemon
JVM
arguments
In Kotlin 1.5.30, there's a new logic for the Kotlin daemon's JVM arguments. Each of the options in the following list overrides the ones that came before it:

If nothing is specified, the Kotlin daemon inherits arguments from the Gradle daemon (as before). For example, in the gradle.properties file:

org.gradle.jvmargs=-Xmx1500m	-Xms=500m

If the Gradle daemon's JVM arguments have the kotlin.daemon.jvm.options system property, use it as before:

org.gradle.jvmargs=-Dkotlin.daemon.jvm.options=-Xmx1500m	-Xms=500m

You can add thekotlin.daemon.jvmargs property in the gradle.properties file:

kotlin.daemon.jvmargs=-Xmx1500m	-Xms=500m

You can specify arguments in the kotlin extension:

Kotlin

kotlin	{
				kotlinDaemonJvmArgs	=	listOf("-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC")
}

Groovy

kotlin	{
				kotlinDaemonJvmArgs	=	["-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC"]
}

You can specify arguments for a specific task:

Kotlin

tasks
				.matching	{	it.name	==	"compileKotlin"	&&	it	is	CompileUsingKotlinDaemon	}
				.configureEach	{
								(this	as	CompileUsingKotlinDaemon).kotlinDaemonJvmArguments.set(listOf("-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC"))
				}

Groovy

244

https://docs.gradle.org/current/userguide/worker_api.html#changing_the_isolation_mode

tasks
				.matching	{
								it.name	==	"compileKotlin"	&&	it	instanceof	CompileUsingKotlinDaemon
				}
				.configureEach	{
								kotlinDaemonJvmArguments.set(["-Xmx1g",	"-Xms512m"])
				}

For more information about the Kotlin daemon, see the Kotlin daemon and using it with Gradle.

Standard
library
Kotlin 1.5.30 is bringing improvements to the standard library's Duration and Regex APIs:

Changing Duration.toString() output

Parsing Duration from String

Matching with Regex at a particular position

Splitting Regex to a sequence

Changing
Duration.toString()
output

Before Kotlin 1.5.30, the Duration.toString() function would return a string representation of its argument expressed in the unit that yielded the most compact and
readable number value. From now on, it will return a string value expressed as a combination of numeric components, each in its own unit. Each component is a
number followed by the unit's abbreviated name: d, h, m, s. For example:

Example of function call Previous output Current output

Duration.days(45).toString() 45.0d 45d

Duration.days(1.5).toString() 36.0h 1d 12h

Duration.minutes(1230).toString() 20.5h 20h 30m

Duration.minutes(2415).toString() 40.3h 1d 16h 15m

Duration.minutes(920).toString() 920m 15h 20m

Duration.seconds(1.546).toString() 1.55s 1.546s

Duration.milliseconds(25.12).toString() 25.1ms 25.12ms

The way negative durations are represented has also been changed. A negative duration is prefixed with a minus sign (-), and if it consists of multiple components,

In this case a new Kotlin daemon instance can start on task execution. Learn more about the Kotlin daemon's interactions with JVM arguments.

The Duration API is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate hearing your
feedback on it in YouTrack.

245

https://youtrack.jetbrains.com/issues/KT
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-string.html

it is surrounded with parentheses: -12m and -(1h 30m).

Note that small durations of less than one second are represented as a single number with one of the subsecond units. For example, ms (milliseconds), us
(microseconds), or ns (nanoseconds): 140.884ms, 500us, 24ns. Scientific notation is no longer used to represent them.

If you want to express duration in a single unit, use the overloaded Duration.toString(unit, decimals) function.

Parsing
Duration
from
String

In Kotlin 1.5.30, there are new functions in the Duration API:

parse(), which supports parsing the outputs of:

toString().

toString(unit, decimals).

toIsoString().

parseIsoString(), which only parses from the format produced by toIsoString().

parseOrNull() and parseIsoStringOrNull(), which behave like the functions above but return null instead of throwing IllegalArgumentException on invalid duration
formats.

Here are some examples of parse() and parseOrNull() usages:

import	kotlin.time.Duration
import	kotlin.time.ExperimentalTime

@ExperimentalTime
fun	main()	{
//sampleStart
				val	isoFormatString	=	"PT1H30M"
				val	defaultFormatString	=	"1h	30m"
				val	singleUnitFormatString	=	"1.5h"
				val	invalidFormatString	=	"1	hour	30	minutes"
				println(Duration.parse(isoFormatString))	//	"1h	30m"
				println(Duration.parse(defaultFormatString))	//	"1h	30m"
				println(Duration.parse(singleUnitFormatString))	//	"1h	30m"
				//println(Duration.parse(invalidFormatString))	//	throws	exception
				println(Duration.parseOrNull(invalidFormatString))	//	"null"
//sampleEnd
}

And here are some examples of parseIsoString() and parseIsoStringOrNull() usages:

import	kotlin.time.Duration
import	kotlin.time.ExperimentalTime

@ExperimentalTime
fun	main()	{
//sampleStart
				val	isoFormatString	=	"PT1H30M"
				val	defaultFormatString	=	"1h	30m"
				println(Duration.parseIsoString(isoFormatString))	//	"1h	30m"
				//println(Duration.parseIsoString(defaultFormatString))	//	throws	exception
				println(Duration.parseIsoStringOrNull(defaultFormatString))	//	"null"
//sampleEnd
}

We recommend using Duration.toIsoString() in certain cases, including serialization and interchange. Duration.toIsoString() uses the stricter ISO-8601
format instead of Duration.toString().

The Duration API is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate hearing your
feedback on it in this issue.

246

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-iso-string.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://github.com/Kotlin/KEEP/issues/190
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/parse.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-string.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-string.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-iso-string.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/parse-iso-string.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/parse-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/parse-iso-string-or-null.html

Matching
with
Regex
at
a
particular
position

The new Regex.matchAt() and Regex.matchesAt() functions provide a way to check whether a regex has an exact match at a particular position in a String or
CharSequence.

matchesAt() returns a boolean result:

fun	main(){
//sampleStart
				val	releaseText	=	"Kotlin	1.5.30	is	released!"
				//	regular	expression:	one	digit,	dot,	one	digit,	dot,	one	or	more	digits
				val	versionRegex	=	"\\d[.]\\d[.]\\d+".toRegex()
				println(versionRegex.matchesAt(releaseText,	0))	//	"false"
				println(versionRegex.matchesAt(releaseText,	7))	//	"true"
//sampleEnd
}

matchAt() returns the match if one is found or null if one isn't:

fun	main(){
//sampleStart
				val	releaseText	=	"Kotlin	1.5.30	is	released!"
				val	versionRegex	=	"\\d[.]\\d[.]\\d+".toRegex()
				println(versionRegex.matchAt(releaseText,	0))	//	"null"
				println(versionRegex.matchAt(releaseText,	7)?.value)	//	"1.5.30"
//sampleEnd
}

Splitting
Regex
to
a
sequence

The new Regex.splitToSequence() function is a lazy counterpart of split(). It splits the string around matches of the given regex, but it returns the result as a
Sequence so that all operations on this result are executed lazily.

fun	main(){
//sampleStart
				val	colorsText	=	"green,	red	,	brown&blue,	orange,	pink&green"
				val	regex	=	"[,\\s]+".toRegex()
				val	mixedColor	=	regex.splitToSequence(colorsText)
								.onEach	{	println(it)	}
								.firstOrNull	{	it.contains('&')	}
				println(mixedColor)	//	"brown&blue"
//sampleEnd
}

A similar function was also added to CharSequence:

val	mixedColor	=	colorsText.splitToSequence(regex)

Serialization
1.3.0-RC
kotlinx.serialization 1.3.0-RC is here with new JSON serialization capabilities:

Java IO streams serialization

Property-level control over default values

Regex.matchAt() and Regex.matchesAt() functions are Experimental. They may be dropped or changed at any time. Use them only for evaluation
purposes. We would appreciate hearing your feedback on them in YouTrack.

Regex.splitToSequence() and CharSequence.splitToSequence(Regex) functions are Experimental. They may be dropped or changed at any time. Use
them only for evaluation purposes. We would appreciate hearing your feedback on them in YouTrack.

247

https://youtrack.jetbrains.com/issue/KT-34021
https://youtrack.jetbrains.com/issue/KT-23351
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/split.html
https://github.com/Kotlin/kotlinx.serialization/releases/tag/v1.3.0-RC

An option to exclude null values from serialization

Custom class discriminators in polymorphic serialization

Learn more in the changelog.

What's
new
in
Kotlin
1.5.20
Released: 24 June 2021

Kotlin 1.5.20 has fixes for issues discovered in the new features of 1.5.0, and it also includes various tooling improvements.

You can find an overview of the changes in the release blog post and this video:

Watch video online.

Kotlin/JVM
Kotlin 1.5.20 is receiving the following updates on the JVM platform:

String concatenation via invokedynamic

Support for JSpecify nullness annotations

Support for calling Java's Lombok-generated methods within modules that have Kotlin and Java code

String
concatenation
via
invokedynamic
Kotlin 1.5.20 compiles string concatenations into dynamic invocations (invokedynamic) on JVM 9+ targets, thereby keeping up with modern Java versions. More
precisely, it uses StringConcatFactory.makeConcatWithConstants() for string concatenation.

To switch back to concatenation via StringBuilder.append() used in previous versions, add the compiler option -Xstring-concat=inline.

Learn how to add compiler options in Gradle, Maven, and the command-line compiler.

Support
for
JSpecify
nullness
annotations
The Kotlin compiler can read various types of nullability annotations to pass nullability information from Java to Kotlin. Version 1.5.20 introduces support for the
JSpecify project, which includes the standard unified set of Java nullness annotations.

With JSpecify, you can provide more detailed nullability information to help Kotlin keep null-safety interoperating with Java. You can set default nullability for the
declaration, package, or module scope, specify parametric nullability, and more. You can find more details about this in the JSpecify user guide.

Here is the example of how Kotlin can handle JSpecify annotations:

Gif

248

https://github.com/Kotlin/kotlinx.serialization/releases/tag/v1.3.0-RC
https://blog.jetbrains.com/kotlin/2021/06/kotlin-1-5-20-released/
https://youtube.com/v/SV8CgSXQe44
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html#makeConcatWithConstants-java.lang.invoke.MethodHandles.Lookup-java.lang.String-java.lang.invoke.MethodType-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/9/docs/api/java/lang/StringBuilder.html#append-java.lang.String-
https://jspecify.dev/
https://jspecify.dev/user-guide.html

//	JavaClass.java
import	 *;

@NullMarked
public	class	JavaClass	{
		public	String	notNullableString()	{	return	"";	}
		public	@Nullable	String	nullableString()	{	return	"";	}
}

//	Test.kt
fun	kotlinFun()	=	with(JavaClass())	{
		notNullableString().length	//	OK
		nullableString().length				//	Warning:	receiver	nullability	mismatch
}

In 1.5.20, all nullability mismatches according to the JSpecify-provided nullability information are reported as warnings. Use the -Xjspecify-annotations=strict and -
Xtype-enhancement-improvements-strict-mode compiler options to enable strict mode (with error reporting) when working with JSpecify. Please note that the
JSpecify project is under active development. Its API and implementation can change significantly at any time.

Learn more about null-safety and platform types.

Support
for
calling
Java's
Lombok-generated
methods
within
modules
that
have
Kotlin
and
Java
code

Kotlin 1.5.20 introduces an experimental Lombok compiler plugin. This plugin makes it possible to generate and use Java's Lombok declarations within modules
that have Kotlin and Java code. Lombok annotations work only in Java sources and are ignored if you use them in Kotlin code.

The plugin supports the following annotations:

@Getter, @Setter

@NoArgsConstructor, @RequiredArgsConstructor, and @AllArgsConstructor

@Data

@With

@Value

We're continuing to work on this plugin. To find out the detailed current state, visit the Lombok compiler plugin's README.

Currently, we don't have plans to support the @Builder annotation. However, we can consider this if you vote for @Builder in YouTrack.

Learn how to configure the Lombok compiler plugin.

Kotlin/Native
Kotlin/Native 1.5.20 offers a preview of the new feature and the tooling improvements:

Opt-in export of KDoc comments to generated Objective-C headers

Compiler bug fixes

Improved performance of Array.copyInto() inside one array

Opt-in
export
of
KDoc
comments
to
generated
Objective-C
headers

The Lombok compiler plugin is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate your
feedback on it in YouTrack.

The ability to export KDoc comments to generated Objective-C headers is Experimental. It may be dropped or changed at any time. Opt-in is required
(see the details below), and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

249

https://youtrack.jetbrains.com/issue/KT-7112
https://projectlombok.org/
https://github.com/JetBrains/kotlin/blob/master/plugins/lombok/lombok-compiler-plugin/README.md
https://youtrack.jetbrains.com/issue/KT-46959
https://youtrack.jetbrains.com/issue/KT-38600

You can now set the Kotlin/Native compiler to export the documentation comments (KDoc) from Kotlin code to the Objective-C frameworks generated from it,
making them visible to the frameworks' consumers.

For example, the following Kotlin code with KDoc:

/**
	*	Prints	the	sum	of	the	arguments.
	*	Properly	handles	the	case	when	the	sum	doesn't	fit	in	32-bit	integer.
	*/
fun	printSum(a:	Int,	b:	Int)	=	println(a.toLong()	+	b)

produces the following Objective-C headers:

/**
	*	Prints	the	sum	of	the	arguments.
	*	Properly	handles	the	case	when	the	sum	doesn't	fit	in	32-bit	integer.
	*/
+	(void)printSumA:(int32_t)a	b:(int32_t)b	__attribute__((swift_name("printSum(a:b:)")));

This also works well with Swift.

To try out this ability to export KDoc comments to Objective-C headers, use the -Xexport-kdoc compiler option. Add the following lines to build.gradle(.kts) of the
Gradle projects you want to export comments from:

Kotlin

kotlin	{
				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								compilations.get("main").kotlinOptions.freeCompilerArgs	+=	"-Xexport-kdoc"
				}
}

Groovy

kotlin	{
				targets.withType(org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget)	{
								compilations.get("main").kotlinOptions.freeCompilerArgs	+=	"-Xexport-kdoc"
				}
}

We would be very grateful if you would share your feedback with us using this YouTrack ticket.

Compiler
bug
fixes
The Kotlin/Native compiler has received multiple bug fixes in 1.5.20. You can find the complete list in the changelog.

There is an important bug fix that affects compatibility: in previous versions, string constants that contained incorrect UTF surrogate pairs were losing their values
during compilation. Now such values are preserved. Application developers can safely update to 1.5.20 – nothing will break. However, libraries compiled with 1.5.20
are incompatible with earlier compiler versions. See this YouTrack issue for details.

Improved
performance
of
Array.copyInto()
inside
one
array
We've improved the way Array.copyInto() works when its source and destination are the same array. Now such operations finish up to 20 times faster (depending on
the number of objects being copied) due to memory management optimizations for this use case.

Kotlin/JS
With 1.5.20, we're publishing a guide that will help you migrate your projects to the new IR-based backend for Kotlin/JS.

Migration
guide
for
the
JS
IR
backend
The new migration guide for the JS IR backend identifies issues you may encounter during migration and provides solutions for them. If you find any issues that
aren't covered in the guide, please report them to our issue tracker.

250

https://youtrack.jetbrains.com/issue/KT-38600
https://github.com/JetBrains/kotlin/releases/tag/v1.5.20
https://en.wikipedia.org/wiki/Universal_Character_Set_characters#Surrogates
https://youtrack.jetbrains.com/issue/KT-33175
http://kotl.in/issue

Gradle
Kotlin 1.5.20 introduces the following features that can improve the Gradle experience:

Caching for annotation processors classloaders in kapt

Deprecation of the kotlin.parallel.tasks.in.project build property

Caching
for
annotation
processors'
classloaders
in
kapt

There is now a new experimental feature that makes it possible to cache the classloaders of annotation processors in kapt. This feature can increase the speed of
kapt for consecutive Gradle runs.

To enable this feature, use the following properties in your gradle.properties file:

#	positive	value	will	enable	caching
#	use	the	same	value	as	the	number	of	modules	that	use	kapt
kapt.classloaders.cache.size=5

#	disable	for	caching	to	work
kapt.include.compile.classpath=false

Learn more about kapt.

Deprecation
of
the
kotlin.parallel.tasks.in.project
build
property
With this release, Kotlin parallel compilation is controlled by the Gradle parallel execution flag --parallel. Using this flag, Gradle executes tasks concurrently,
increasing the speed of compiling tasks and utilizing the resources more efficiently.

You no longer need to use the kotlin.parallel.tasks.in.project property. This property has been deprecated and will be removed in the next major release.

Standard
library
Kotlin 1.5.20 changes the platform-specific implementations of several functions for working with characters and as a result brings unification across platforms:

Support for all Unicode digits in Char.digitToInt() for Kotlin/Native and Kotlin/JS.

Unification of Char.isLowerCase()/isUpperCase() implementations across platforms.

Support
for
all
Unicode
digits
in
Char.digitToInt()
in
Kotlin/Native
and
Kotlin/JS
Char.digitToInt() returns the numeric value of the decimal digit that the character represents. Before 1.5.20, the function supported all Unicode digit characters only
for Kotlin/JVM: implementations on the Native and JS platforms supported only ASCII digits.

From now, both with Kotlin/Native and Kotlin/JS, you can call Char.digitToInt() on any Unicode digit character and get its numeric representation.

fun	main()	{
//sampleStart
				val	ten	=	'\u0661'.digitToInt()	+	'\u0039'.digitToInt()	//	ARABIC-INDIC	DIGIT	ONE	+	DIGIT	NINE
				println(ten)
//sampleEnd
}

Unification
of
Char.isLowerCase()/isUpperCase()
implementations
across
platforms
The functions Char.isUpperCase() and Char.isLowerCase() return a boolean value depending on the case of the character. For Kotlin/JVM, the implementation
checks both the General_Category and the Other_Uppercase/Other_Lowercase Unicode properties.

Prior to 1.5.20, implementations for other platforms worked differently and considered only the general category. In 1.5.20, implementations are unified across

Caching for annotation processors' classloaders in kapt is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes.
We would appreciate your feedback on it in YouTrack.

251

https://youtrack.jetbrains.com/issue/KT-28901
https://docs.gradle.org/current/userguide/performance.html#parallel_execution
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/digit-to-int.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-upper-case.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-lower-case.html
https://en.wikipedia.org/wiki/Unicode_character_property

platforms and use both properties to determine the character case:

fun	main()	{
//sampleStart
				val	latinCapitalA	=	'A'	//	has	"Lu"	general	category
				val	circledLatinCapitalA	=	'Ⓐ'	//	has	"Other_Uppercase"	property
				println(latinCapitalA.isUpperCase()	&&	circledLatinCapitalA.isUpperCase())
//sampleEnd
}

What's
new
in
Kotlin
1.5.0
Released: 5 May 2021

Kotlin 1.5.0 introduces new language features, stable IR-based JVM compiler backend, performance improvements, and evolutionary changes such as stabilizing
experimental features and deprecating outdated ones.

You can also find an overview of the changes in the release blog post.

Language
features
Kotlin 1.5.0 brings stable versions of the new language features presented for preview in 1.4.30:

JVM records support

Sealed interfaces and sealed class improvements

Inline classes

Detailed descriptions of these features are available in this blog post and the corresponding pages of Kotlin documentation.

JVM
records
support
Java is evolving fast, and to make sure Kotlin remains interoperable with it, we've introduced support for one of its latest features – record classes.

Kotlin's support for JVM records includes bidirectional interoperability:

In Kotlin code, you can use Java record classes like you would use typical classes with properties.

To use a Kotlin class as a record in Java code, make it a data class and mark it with the @JvmRecord annotation.

@JvmRecord
data	class	User(val	name:	String,	val	age:	Int)

Learn more about using JVM records in Kotlin.

Gif

252

https://blog.jetbrains.com/kotlin/2021/04/kotlin-1-5-0-released/
https://blog.jetbrains.com/kotlin/2021/02/new-language-features-preview-in-kotlin-1-4-30/
https://openjdk.java.net/jeps/395

Watch video online.

Sealed
interfaces
Kotlin interfaces can now have the sealed modifier, which works on interfaces in the same way it works on classes: all implementations of a sealed interface are
known at compile time.

sealed	interface	Polygon

You can rely on that fact, for example, to write exhaustive when expressions.

fun	draw(polygon:	Polygon)	=	when	(polygon)	{
			is	Rectangle	->	//	...
			is	Triangle	->	//	...
			//	else	is	not	needed	-	all	possible	implementations	are	covered
}

Additionally, sealed interfaces enable more flexible restricted class hierarchies because a class can directly inherit more than one sealed interface.

class	FilledRectangle:	Polygon,	Fillable

Learn more about sealed interfaces.

Watch video online.

Package-wide
sealed
class
hierarchies
Sealed classes can now have subclasses in all files of the same compilation unit and the same package. Previously, all subclasses had to appear in the same file.

Direct subclasses may be top-level or nested inside any number of other named classes, named interfaces, or named objects.

The subclasses of a sealed class must have a name that is properly qualified – they cannot be local or anonymous objects.

Learn more about sealed class hierarchies.

Inline
classes
Inline classes are a subset of value-based classes that only hold values. You can use them as wrappers for a value of a certain type without the additional overhead
that comes from using memory allocations.

Inline classes can be declared with the value modifier before the name of the class:

value	class	Password(val	s:	String)

The JVM backend also requires a special @JvmInline annotation:

Gif

253

https://youtube.com/v/iyEWXyuuseU
https://youtube.com/v/d_Mor21W_60
https://github.com/Kotlin/KEEP/blob/master/notes/value-classes.md

@JvmInline
value	class	Password(val	s:	String)

The inline modifier is now deprecated with a warning.

Learn more about inline classes.

Watch video online.

Kotlin/JVM
Kotlin/JVM has received a number of improvements, both internal and user-facing. Here are the most notable among them:

Stable JVM IR backend

New default JVM target: 1.8

SAM adapters via invokedynamic

Lambdas via invokedynamic

Deprecation of @JvmDefault and old Xjvm-default modes

Improvements to handling nullability annotations

Stable
JVM
IR
backend
The IR-based backend for the Kotlin/JVM compiler is now Stable and enabled by default.

Starting from Kotlin 1.4.0, early versions of the IR-based backend were available for preview, and it has now become the default for language version 1.5. The old
backend is still used by default for earlier language versions.

You can find more details about the benefits of the IR backend and its future development in this blog post.

If you need to use the old backend in Kotlin 1.5.0, you can add the following lines to the project's configuration file:

In Gradle:

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile>	{
		kotlinOptions.useOldBackend	=	true
}

Groovy

Gif

254

https://youtube.com/v/LpqvtgibbsQ
https://blog.jetbrains.com/kotlin/2021/02/the-jvm-backend-is-in-beta-let-s-make-it-stable-together/

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile)	{
	kotlinOptions.useOldBackend	=	true
}

In Maven:

<configuration>
				<args>
								<arg>-Xuse-old-backend</arg>
				</args>
</configuration>

New
default
JVM
target:
1.8
The default target version for Kotlin/JVM compilations is now 1.8. The 1.6 target is deprecated.

If you need a build for JVM 1.6, you can still switch to this target. Learn how:

in Gradle

in Maven

in the command-line compiler

SAM
adapters
via
invokedynamic
Kotlin 1.5.0 now uses dynamic invocations (invokedynamic) for compiling SAM (Single Abstract Method) conversions:

Over any expression if the SAM type is a Java interface

Over lambda if the SAM type is a Kotlin functional interface

The new implementation uses LambdaMetafactory.metafactory() and auxiliary wrapper classes are no longer generated during compilation. This decreases the size
of the application's JAR, which improves the JVM startup performance.

To roll back to the old implementation scheme based on anonymous class generation, add the compiler option -Xsam-conversions=class.

Learn how to add compiler options in Gradle, Maven, and the command-line compiler.

Lambdas
via
invokedynamic

Kotlin 1.5.0 is introducing experimental support for compiling plain Kotlin lambdas (which are not converted to an instance of a functional interface) into dynamic
invocations (invokedynamic). The implementation produces lighter binaries by using LambdaMetafactory.metafactory(), which effectively generates the necessary
classes at runtime. Currently, it has three limitations compared to ordinary lambda compilation:

A lambda compiled into invokedynamic is not serializable.

Calling toString() on such a lambda produces a less readable string representation.

Experimental reflect API does not support lambdas created with LambdaMetafactory.

To try this feature, add the -Xlambdas=indy compiler option. We would be grateful if you could share your feedback on it using this YouTrack ticket.

Learn how to add compiler options in Gradle, Maven, and command-line compiler.

Deprecation
of
@JvmDefault
and
old
Xjvm-default
modes
Prior to Kotlin 1.4.0, there was the @JvmDefault annotation along with -Xjvm-default=enable and -Xjvm-default=compatibility modes. They served to create the JVM
default method for any particular non-abstract member in the Kotlin interface.

Compiling plain Kotlin lambdas into invokedynamic is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below), and
you should use it only for evaluation purposes. We would appreciate hearing your feedback on it in YouTrack.

255

https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html#metafactory-java.lang.invoke.MethodHandles.Lookup-java.lang.String-java.lang.invoke.MethodType-java.lang.invoke.MethodType-java.lang.invoke.MethodHandle-java.lang.invoke.MethodType-
https://youtrack.jetbrains.com/issue/KT-45375
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html#metafactory-java.lang.invoke.MethodHandles.Lookup-java.lang.String-java.lang.invoke.MethodType-java.lang.invoke.MethodType-java.lang.invoke.MethodHandle-java.lang.invoke.MethodType-
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.jvm/reflect.html
https://youtrack.jetbrains.com/issue/KT-45375

In Kotlin 1.4.0, we introduced the new Xjvm-default modes, which switch on default method generation for the whole project.

In Kotlin 1.5.0, we are deprecating @JvmDefault and the old Xjvm-default modes: -Xjvm-default=enable and -Xjvm-default=compatibility.

Learn more about default methods in the Java interop.

Improvements
to
handling
nullability
annotations
Kotlin supports handling type nullability information from Java with nullability annotations. Kotlin 1.5.0 introduces a number of improvements for the feature:

It reads nullability annotations on type arguments in compiled Java libraries that are used as dependencies.

It supports nullability annotations with the TYPE_USE target for:

Arrays

Varargs

Fields

Type parameters and their bounds

Type arguments of base classes and interfaces

If a nullability annotation has multiple targets applicable to a type, and one of these targets is TYPE_USE, then TYPE_USE is preferred. For example, the method
signature @Nullable String[] f() becomes fun f(): Array<String?>! if @Nullable supports both TYPE_USE and METHODas targets.

For these newly supported cases, using the wrong type nullability when calling Java from Kotlin produces warnings. Use the -Xtype-enhancement-improvements-
strict-mode compiler option to enable strict mode for these cases (with error reporting).

Learn more about null-safety and platform types.

Kotlin/Native
Kotlin/Native is now more performant and stable. The notable changes are:

Performance improvements

Deactivation of the memory leak checker

Performance
improvements
In 1.5.0, Kotlin/Native is receiving a set of performance improvements that speed up both compilation and execution.

Compiler caches are now supported in debug mode for linuxX64 (only on Linux hosts) and iosArm64 targets. With compiler caches enabled, most debug
compilations complete much faster, except for the first one. Measurements showed about a 200% speed increase on our test projects.

To use compiler caches for new targets, opt in by adding the following lines to the project's gradle.properties:

For linuxX64: kotlin.native.cacheKind.linuxX64=static

For iosArm64: kotlin.native.cacheKind.iosArm64=static

If you encounter any issues after enabling the compiler caches, please report them to our issue tracker YouTrack.

Other improvements speed up the execution of Kotlin/Native code:

Trivial property accessors are inlined.

trimIndent() on string literals is evaluated during the compilation.

Deactivation
of
the
memory
leak
checker
The built-in Kotlin/Native memory leak checker has been disabled by default.

It was initially designed for internal use, and it is able to find leaks only in a limited number of cases, not all of them. Moreover, it later turned out to have issues that
can cause application crashes. So we've decided to turn off the memory leak checker.

The memory leak checker can still be useful for certain cases, for example, unit testing. For these cases, you can enable it by adding the following line of code:

256

https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/#kotlin-native
https://kotl.in/issue

Platform.isMemoryLeakCheckerActive	=	true

Note that enabling the checker for the application runtime is not recommended.

Kotlin/JS
Kotlin/JS is receiving evolutionary changes in 1.5.0. We're continuing our work on moving the JS IR compiler backend towards stable and shipping other updates:

Upgrade of webpack to version 5

Frameworks and libraries for the IR compiler

Upgrade
to
webpack
5
The Kotlin/JS Gradle plugin now uses webpack 5 for browser targets instead of webpack 4. This is a major webpack upgrade that brings incompatible changes. If
you're using a custom webpack configuration, be sure to check the webpack 5 release notes.

Learn more about bundling Kotlin/JS projects with webpack.

Frameworks
and
libraries
for
the
IR
compiler

Along with working on the IR-based backend for Kotlin/JS compiler, we encourage and help library authors to build their projects in both mode. This means they are
able to produce artifacts for both Kotlin/JS compilers, therefore growing the ecosystem for the new compiler.

Many well-known frameworks and libraries are already available for the IR backend: KVision, fritz2, doodle, and others. If you're using them in your project, you can
already build it with the IR backend and see the benefits it brings.

If you're writing your own library, compile it in the 'both' mode so that your clients can also use it with the new compiler.

Kotlin
Multiplatform
In Kotlin 1.5.0, choosing a testing dependency for each platform has been simplified and it is now done automatically by the Gradle plugin.

A new API for getting a char category is now available in multiplatform projects.

Standard
library
The standard library has received a range of changes and improvements, from stabilizing experimental parts to adding new features:

Stable unsigned integer types

Stable locale-agnostic API for uppercase/lowercase text

Stable Char-to-integer conversion API

Stable Path API

Floored division and the mod operator

Duration API changes

New API for getting a char category now available in multiplatform code

New collections function firstNotNullOf()

Strict version of String?.toBoolean()

The Kotlin/JS IR compiler is in Alpha. It may change incompatibly and require manual migration in the future. We would appreciate your feedback on it in
YouTrack.

257

https://webpack.js.org/blog/2020-10-10-webpack-5-release/
https://youtrack.jetbrains.com/issues/KT
https://kvision.io/
https://www.fritz2.dev/
https://github.com/nacular/doodle

You can learn more about the standard library changes in this blog post.

Watch video online.

Stable
unsigned
integer
types
The UInt, ULong, UByte, UShort unsigned integer types are now Stable. The same goes for operations on these types, ranges, and progressions of them. Unsigned
arrays and operations on them remain in Beta.

Learn more about unsigned integer types.

Stable
locale-agnostic
API
for
upper/lowercasing
text
This release brings a new locale-agnostic API for uppercase/lowercase text conversion. It provides an alternative to the toLowerCase(), toUpperCase(), capitalize(),
and decapitalize() API functions, which are locale-sensitive. The new API helps you avoid errors due to different locale settings.

Kotlin 1.5.0 provides the following fully Stable alternatives:

For String functions:

Earlier versions 1.5.0 alternative

String.toUpperCase() String.uppercase()

String.toLowerCase() String.lowercase()

String.capitalize() String.replaceFirstChar { it.uppercase() }

String.decapitalize() String.replaceFirstChar { it.lowercase() }

For Char functions:

Earlier versions 1.5.0 alternative

Char.toUpperCase() Char.uppercaseChar(): Char
Char.uppercase(): String

Gif

258

https://blog.jetbrains.com/kotlin/2021/04/kotlin-1-5-0-rc-released
https://youtube.com/v/MyTkiT2I6-8

Char.toLowerCase() Char.lowercaseChar(): Char
Char.lowercase(): String

Char.toTitleCase() Char.titlecaseChar(): Char
Char.titlecase(): String

Earlier versions 1.5.0 alternative

The old API functions are marked as deprecated and will be removed in a future release.

See the full list of changes to the text processing functions in KEEP.

Stable
char-to-integer
conversion
API
Starting from Kotlin 1.5.0, new char-to-code and char-to-digit conversion functions are Stable. These functions replace the current API functions, which were often
confused with the similar string-to-Int conversion.

The new API removes this naming confusion, making the code behavior more transparent and unambiguous.

This release introduces Char conversions that are divided into the following sets of clearly named functions:

Functions to get the integer code of Char and to construct Char from the given code:

fun	Char(code:	Int):	Char
fun	Char(code:	UShort):	Char
val	Char.code:	Int

Functions to convert Char to the numeric value of the digit it represents:

fun	Char.digitToInt(radix:	Int):	Int
fun	Char.digitToIntOrNull(radix:	Int):	Int?

An extension function for Int to convert the non-negative single digit it represents to the corresponding Char representation:

fun	Int.digitToChar(radix:	Int):	Char

The old conversion APIs, including Number.toChar() with its implementations (all except Int.toChar()) and Char extensions for conversion to a numeric type, like
Char.toInt(), are now deprecated.

Learn more about the char-to-integer conversion API in KEEP.

Stable
Path
API
The experimental Path API with extensions for java.nio.file.Path is now Stable.

//	construct	path	with	the	div	(/)	operator
val	baseDir	=	Path("/base")
val	subDir	=	baseDir	/	"subdirectory"

//	list	files	in	a	directory
val	kotlinFiles:	List<Path>	=	Path("/home/user").listDirectoryEntries("*.kt")

Learn more about the Path API.

Floored
division
and
the
mod
operator

For Kotlin/JVM, there are also overloaded uppercase(), lowercase(), and titlecase() functions with an explicit Locale parameter.

259

https://github.com/Kotlin/KEEP/blob/master/proposals/stdlib/locale-agnostic-case-conversions.md
https://github.com/Kotlin/KEEP/blob/master/proposals/stdlib/char-int-conversions.md
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io.path/java.nio.file.-path/

New operations for modular arithmetics have been added to the standard library:

floorDiv() returns the result of floored division. It is available for integer types.

mod() returns the remainder of floored division (modulus). It is available for all numeric types.

These operations look quite similar to the existing division of integers and rem() function (or the %operator), but they work differently on negative numbers:

a.floorDiv(b) differs from a regular / in that floorDiv rounds the result down (towards the lesser integer), whereas / truncates the result to the integer closer to 0.

a.mod(b) is the difference between a and a.floorDiv(b) * b. It's either zero or has the same sign as b, while a % b can have a different one.

fun	main()	{
//sampleStart
				println("Floored	division	-5/3:	${(-5).floorDiv(3)}")
				println("Modulus:	${(-5).mod(3)}")
				
				println("Truncated	division	-5/3:	${-5	/	3}")
				println("Remainder:	${-5	%	3}")
//sampleEnd				
}

Duration
API
changes

There is an experimental Duration class for representing duration amounts in different time units. In 1.5.0, the Duration API has received the following changes:

Internal value representation now uses Long instead of Double to provide better precision.

There is a new API for conversion to a particular time unit in Long. It comes to replace the old API, which operates with Double values and is now deprecated.
For example, Duration.inWholeMinutes returns the value of the duration expressed as Long and replaces Duration.inMinutes.

There are new companion functions for constructing a Duration from a number. For example, Duration.seconds(Int) creates a Duration object representing an
integer number of seconds. Old extension properties like Int.seconds are now deprecated.

import	kotlin.time.Duration
import	kotlin.time.ExperimentalTime

@ExperimentalTime
fun	main()	{
//sampleStart
				val	duration	=	Duration.milliseconds(120000)
				println("There	are	${duration.inWholeSeconds}	seconds	in	${duration.inWholeMinutes}	minutes")
//sampleEnd
}

New
API
for
getting
a
char
category
now
available
in
multiplatform
code
Kotlin 1.5.0 introduces the new API for getting a character's category according to Unicode in multiplatform projects. Several functions are now available in all the
platforms and in the common code.

Functions for checking whether a char is a letter or a digit:

Char.isDigit()

Char.isLetter()

Char.isLetterOrDigit()

fun	main()	{
//sampleStart
				val	chars	=	listOf('a',	'1',	'+')
				val	(letterOrDigitList,	notLetterOrDigitList)	=	chars.partition	{	it.isLetterOrDigit()	}
				println(letterOrDigitList)	//	[a,	1]
				println(notLetterOrDigitList)	//	[+]

The Duration API is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate hearing your
feedback on it in YouTrack.

260

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-int/rem.html
https://youtrack.jetbrains.com/issues/KT
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/in-whole-minutes.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/seconds.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-digit.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-letter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-letter-or-digit.html

//sampleEnd				
}

Functions for checking the case of a char:

Char.isLowerCase()

Char.isUpperCase()

Char.isTitleCase()

fun	main()	{
//sampleStart
				val	chars	=	listOf('ǅ',	'ǈ',	'ǋ',	'ǲ',	'1',	'A',	'a',	'+')
				val	(titleCases,	notTitleCases)	=	chars.partition	{	it.isTitleCase()	}
				println(titleCases)	//	[ǅ,	ǈ,	ǋ,	ǲ]
				println(notTitleCases)	//	[1,	A,	a,	+]
//sampleEnd				
}

Some other functions:

Char.isDefined()

Char.isISOControl()

The property Char.category and its return type enum class CharCategory, which indicates a char's general category according to Unicode, are now also available in
multiplatform projects.

Learn more about characters.

New
collections
function
firstNotNullOf()
The new firstNotNullOf() and firstNotNullOfOrNull() functions combine mapNotNull() with first() or firstOrNull(). They map the original collection with the custom
selector function and return the first non-null value. If there is no such value, firstNotNullOf() throws an exception, and firstNotNullOfOrNull() returns null.

fun	main()	{
//sampleStart
				val	data	=	listOf("Kotlin",	"1.5")
				println(data.firstNotNullOf(String::toDoubleOrNull))
				println(data.firstNotNullOfOrNull(String::toIntOrNull))
//sampleEnd
}

Strict
version
of
String?.toBoolean()
Two new functions introduce case-sensitive strict versions of the existing String?.toBoolean():

String.toBooleanStrict() throws an exception for all inputs except the literals true and false.

String.toBooleanStrictOrNull() returns null for all inputs except the literals true and false.

fun	main()	{
//sampleStart
				println("true".toBooleanStrict())
				println("1".toBooleanStrictOrNull())
				//	println("1".toBooleanStrict())	//	Exception
//sampleEnd				
}

kotlin-test
library
The kotlin-test library introduces some new features:

Simplified test dependencies usage in multiplatform projects

Automatic selection of a testing framework for Kotlin/JVM source sets

261

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-lower-case.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-upper-case.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-title-case.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-defined.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/is-i-s-o-control.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/category.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-char-category/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-not-null-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-not-null-of-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-not-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-boolean.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-boolean-strict.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-boolean-strict-or-null.html
https://kotlinlang.org/api/latest/kotlin.test/

Assertion function updates

Simplified
test
dependencies
usage
in
multiplatform
projects
Now you can use the kotlin-test dependency to add dependencies for testing in the commonTest source set, and the Gradle plugin will infer the corresponding
platform dependencies for each test source set:

kotlin-test-junit for JVM source sets, see automatic choice of a testing framework for Kotlin/JVM source sets

kotlin-test-js for Kotlin/JS source sets

kotlin-test-common and kotlin-test-annotations-common for common source sets

No extra artifact for Kotlin/Native source sets

Additionally, you can use the kotlin-test dependency in any shared or platform-specific source set.

An existing kotlin-test setup with explicit dependencies will continue to work both in Gradle and in Maven.

Learn more about setting dependencies on test libraries.

Automatic
selection
of
a
testing
framework
for
Kotlin/JVM
source
sets
The Gradle plugin now chooses and adds a dependency on a testing framework automatically. All you need to do is add the dependency kotlin-test in the common
source set.

Gradle uses JUnit 4 by default. Therefore, the kotlin("test") dependency resolves to the variant for JUnit 4, namely kotlin-test-junit:

Kotlin

kotlin	{
				sourceSets	{
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))	//	This	brings	the	dependency
																																															//	on	JUnit	4	transitively
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonTest	{
												dependencies	{
																implementation	kotlin("test")	//	This	brings	the	dependency	
																																														//	on	JUnit	4	transitively
												}
								}
				}
}

You can choose JUnit 5 or TestNG by calling useJUnitPlatform() or useTestNG() in the test task:

tasks	{
				test	{
								//	enable	TestNG	support
								useTestNG()
								//	or
								//	enable	JUnit	Platform	(a.k.a.	JUnit	5)	support
								useJUnitPlatform()
				}
}

You can disable automatic testing framework selection by adding the line kotlin.test.infer.jvm.variant=false to the project's gradle.properties.

Learn more about setting dependencies on test libraries.

262

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html#useTestNG

Assertion
function
updates
This release brings new assertion functions and improves the existing ones.

The kotlin-test library now has the following features:

Checking the type of a value

You can use the new assertIs<T> and assertIsNot<T> to check the type of a value:

@Test
fun	testFunction()	{
				val	s:	Any	=	"test"
				assertIs<String>(s)		//	throws	AssertionError	mentioning	the	actual	type	of	s	if	the	assertion	fails
				//	can	now	print	s.length	because	of	contract	in	assertIs
				println("${s.length}")
}

Because of type erasure, this assert function only checks whether the value is of the List type in the following example and doesn't check whether it's a list of
the particular String element type: assertIs<List<String>>(value).

Comparing the container content for arrays, sequences, and arbitrary iterables

There is a new set of overloaded assertContentEquals() functions for comparing content for different collections that don't implement structural equality:

@Test
fun	test()	{
				val	expectedArray	=	arrayOf(1,	2,	3)
				val	actualArray	=	Array(3)	{	it	+	1	}
				assertContentEquals(expectedArray,	actualArray)
}

New overloads to assertEquals() and assertNotEquals() for Double and Float numbers

There are new overloads for the assertEquals() function that make it possible to compare two Double or Float numbers with absolute precision. The precision
value is specified as the third parameter of the function:

	@Test
fun	test()	{
				val	x	=	sin(PI)

				//	precision	parameter
				val	tolerance	=	0.000001

				assertEquals(0.0,	x,	tolerance)
}

New functions for checking the content of collections and elements

You can now check whether the collection or element contains something with the assertContains() function. You can use it with Kotlin collections and elements
that have the contains() operator, such as IntRange, String, and others:

@Test
fun	test()	{
				val	sampleList	=	listOf<String>("sample",	"sample2")
				val	sampleString	=	"sample"
				assertContains(sampleList,	sampleString)		//	element	in	collection
				assertContains(sampleString,	"amp")							//	substring	in	string
}

assertTrue(), assertFalse(), expect() functions are now inline

From now on, you can use these as inline functions, so it's possible to call suspend functions inside a lambda expression:

@Test
fun	test()	=	runBlocking<Unit>	{
				val	deferred	=	async	{	"Kotlin	is	nice"	}
				assertTrue("Kotlin	substring	should	be	present")	{
								deferred.await()	.contains("Kotlin")
				}
}

263

kotlinx
libraries
Along with Kotlin 1.5.0, we are releasing new versions of the kotlinx libraries:

kotlinx.coroutines 1.5.0-RC

kotlinx.serialization 1.2.1

kotlinx-datetime 0.2.0

Coroutines
1.5.0-RC
kotlinx.coroutines 1.5.0-RC is here with:

New channels API

Stable reactive integrations

And more

Starting with Kotlin 1.5.0, experimental coroutines are disabled and the -Xcoroutines=experimental flag is no longer supported.

Learn more in the changelog and the kotlinx.coroutines 1.5.0 release blog post.

Watch video online.

Serialization
1.2.1
kotlinx.serialization 1.2.1 is here with:

Improvements to JSON serialization performance

Support for multiple names in JSON serialization

Experimental .proto schema generation from @Serializable classes

And more

Learn more in the changelog and the kotlinx.serialization 1.2.1 release blog post.

Gif

264

https://github.com/Kotlin/kotlinx.coroutines/releases/tag/1.5.0-RC
https://github.com/Kotlin/kotlinx.coroutines/releases/tag/1.5.0-RC
https://blog.jetbrains.com/kotlin/2021/05/kotlin-coroutines-1-5-0-released/
https://youtube.com/v/EVLnWOcR0is
https://github.com/Kotlin/kotlinx.serialization/releases/tag/v1.2.1
https://github.com/Kotlin/kotlinx.serialization/releases/tag/v1.2.1
https://blog.jetbrains.com/kotlin/2021/05/kotlinx-serialization-1-2-released/

Watch video online.

dateTime
0.2.0
kotlinx-datetime 0.2.0 is here with:

@Serializable Datetime objects

Normalized API of DateTimePeriod and DatePeriod

And more

Learn more in the changelog and the kotlinx-datetime 0.2.0 release blog post.

Migrating
to
Kotlin
1.5.0
IntelliJ IDEA and Android Studio will suggest updating the Kotlin plugin to 1.5.0 once it is available.

To migrate existing projects to Kotlin 1.5.0, just change the Kotlin version to 1.5.0 and re-import your Gradle or Maven project. Learn how to update to Kotlin 1.5.0.

To start a new project with Kotlin 1.5.0, update the Kotlin plugin and run the Project Wizard from File | New | Project.

The new command-line compiler is available for downloading on the GitHub release page.

Kotlin 1.5.0 is a feature release and therefore can bring incompatible changes to the language. Find the detailed list of such changes in the Compatibility Guide for
Kotlin 1.5.

What's
new
in
Kotlin
1.4.30
Released: 3 February 2021

Kotlin 1.4.30 offers preview versions of new language features, promotes the new IR backend of the Kotlin/JVM compiler to Beta, and ships various performance
and functional improvements.

You can also learn about new features in this blog post.

Language
features
Kotlin 1.5.0 is going to deliver new language features – JVM records support, sealed interfaces, and Stable inline classes. In Kotlin 1.4.30, you can try these features
and improvements in preview mode. We would be very grateful if you share your feedback with us in the corresponding YouTrack tickets, as that will allow us to
address it before the release of 1.5.0.

JVM records support

Sealed interfaces and sealed class improvements

Gif

265

https://youtube.com/v/698I_AH8h6s
https://github.com/Kotlin/kotlinx-datetime/releases/tag/v0.2.0
https://github.com/Kotlin/kotlinx-datetime/releases/tag/v0.2.0
https://blog.jetbrains.com/kotlin/2021/05/kotlinx-datetime-0-2-0-is-out/
https://github.com/JetBrains/kotlin/releases/tag/v1.5.0
https://blog.jetbrains.com/kotlin/2021/01/kotlin-1-4-30-released/

Improved inline classes

To enable these language features and improvements in preview mode, you need to opt in by adding specific compiler options. See the sections below for details.

Learn more about the new features preview in this blog post.

JVM
records
support

The JDK 16 release includes plans to stabilize a new Java class type called record. To provide all the benefits of Kotlin and maintain its interoperability with Java,
Kotlin is introducing experimental record class support.

You can use record classes that are declared in Java just like classes with properties in Kotlin. No additional steps are required.

Starting with 1.4.30, you can declare the record class in Kotlin using the @JvmRecord annotation for a data class:

@JvmRecord
data	class	User(val	name:	String,	val	age:	Int)

To try the preview version of JVM records, add the compiler options -Xjvm-enable-preview and -language-version 1.5.

We're continuing to work on JVM records support, and we would be very grateful if you would share your feedback with us using this YouTrack ticket.

Learn more about implementation, restrictions, and the syntax in KEEP.

Sealed
interfaces

In Kotlin 1.4.30, we're shipping the prototype of sealed interfaces. They complement sealed classes and make it possible to build more flexible restricted class
hierarchies.

They can serve as "internal" interfaces that cannot be implemented outside the same module. You can rely on that fact, for example, to write exhaustive when
expressions.

sealed	interface	Polygon

class	Rectangle():	Polygon
class	Triangle():	Polygon

//	when()	is	exhaustive:	no	other	polygon	implementations	can	appear
//	after	the	module	is	compiled
fun	draw(polygon:	Polygon)	=	when	(polygon)	{
				is	Rectangle	->	//	...
				is	Triangle	->	//	...
}

Another use-case: with sealed interfaces, you can inherit a class from two or more sealed superclasses.

sealed	interface	Fillable	{
			fun	fill()
}
sealed	interface	Polygon	{
			val	vertices:	List<Point>
}

class	Rectangle(override	val	vertices:	List<Point>):	Fillable,	Polygon	{
			override	fun	fill()	{	/*...*/	}
}

The JVM records feature is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below), and you should use it only
for evaluation purposes. We would appreciate your feedback on it in YouTrack.

Sealed interfaces are Experimental. They may be dropped or changed at any time. Opt-in is required (see the details below), and you should use them
only for evaluation purposes. We would appreciate your feedback on them in YouTrack.

266

https://blog.jetbrains.com/kotlin/2021/01/new-language-features-preview-in-kotlin-1-4-30
https://youtrack.jetbrains.com/issue/KT-42430
https://openjdk.java.net/projects/jdk/16/
https://openjdk.java.net/jeps/395
https://youtrack.jetbrains.com/issue/KT-42430
https://github.com/Kotlin/KEEP/blob/master/proposals/jvm-records.md
https://youtrack.jetbrains.com/issue/KT-42433

To try the preview version of sealed interfaces, add the compiler option -language-version 1.5. Once you switch to this version, you'll be able to use the sealed
modifier on interfaces. We would be very grateful if you would share your feedback with us using this YouTrack ticket.

Learn more about sealed interfaces.

Package-wide
sealed
class
hierarchies

Sealed classes can now form more flexible hierarchies. They can have subclasses in all files of the same compilation unit and the same package. Previously, all
subclasses had to appear in the same file.

Direct subclasses may be top-level or nested inside any number of other named classes, named interfaces, or named objects. The subclasses of a sealed class
must have a name that is properly qualified – they cannot be local nor anonymous objects.

To try package-wide hierarchies of sealed classes, add the compiler option -language-version 1.5. We would be very grateful if you would share your feedback with
us using this YouTrack ticket.

Learn more about package-wide hierarchies of sealed classes.

Improved
inline
classes

Kotlin 1.4.30 promotes inline classes to Beta and brings the following features and improvements to them:

Since inline classes are value-based, you can define them using the value modifier. The inline and value modifiers are now equivalent to each other. In future
Kotlin versions, we're planning to deprecate the inline modifier.

From now on, Kotlin requires the @JvmInline annotation before a class declaration for the JVM backend:

inline	class	Name(private	val	s:	String)

value	class	Name(private	val	s:	String)

//	For	JVM	backends
@JvmInline
value	class	Name(private	val	s:	String)

Inline classes can have init blocks. You can add code to be executed right after the class is instantiated:

@JvmInline
value	class	Negative(val	x:	Int)	{
		init	{
						require(x	<	0)	{	}
		}
}

Calling functions with inline classes from Java code: before Kotlin 1.4.30, you couldn't call functions that accept inline classes from Java because of mangling.
From now on, you can disable mangling manually. To call such functions from Java code, you should add the @JvmName annotation before the function
declaration:

inline	class	UInt(val	x:	Int)

fun	compute(x:	Int)	{	}

@JvmName("computeUInt")
fun	compute(x:	UInt)	{	}

Package-wide hierarchies of sealed classes are Experimental. They may be dropped or changed at any time. Opt-in is required (see the details below),
and you should use them only for evaluation purposes. We would appreciate your feedback on them in YouTrack.

Inline value classes are in Beta. They are almost stable, but migration steps may be required in the future. We'll do our best to minimize any changes you
have to make. We would appreciate your feedback on the inline classes feature in YouTrack.

267

https://youtrack.jetbrains.com/issue/KT-42433
https://youtrack.jetbrains.com/issue/KT-42433
https://youtrack.jetbrains.com/issue/KT-42433
https://youtrack.jetbrains.com/issue/KT-42434
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/doc-files/ValueBased.html

In this release, we've changed the mangling scheme for functions to fix the incorrect behavior. These changes led to ABI changes.

Starting with 1.4.30, the Kotlin compiler uses a new mangling scheme by default. Use the -Xuse-14-inline-classes-mangling-scheme compiler flag to force the
compiler to use the old 1.4.0 mangling scheme and preserve binary compatibility.

Kotlin 1.4.30 promotes inline classes to Beta and we are planning to make them Stable in future releases. We'd be very grateful if you would share your feedback
with us using this YouTrack ticket.

To try the preview version of inline classes, add the compiler option -Xinline-classes or -language-version 1.5.

Learn more about the mangling algorithm in KEEP.

Learn more about inline classes.

Kotlin/JVM

JVM
IR
compiler
backend
reaches
Beta
The IR-based compiler backend for Kotlin/JVM, which was presented in 1.4.0 in Alpha, has reached Beta. This is the last pre-stable level before the IR backend
becomes the default for the Kotlin/JVM compiler.

We're now dropping the restriction on consuming binaries produced by the IR compiler. Previously, you could use code compiled by the new JVM IR backend only
if you had enabled the new backend. Starting from 1.4.30, there is no such limitation, so you can use the new backend to build components for third-party use,
such as libraries. Try the Beta version of the new backend and share your feedback in our issue tracker.

To enable the new JVM IR backend, add the following lines to the project's configuration file:

In Gradle:

Kotlin

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile::class)	{
		kotlinOptions.useIR	=	true
}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile)	{
		kotlinOptions.useIR	=	true
}

In Maven:

<configuration>
				<args>
								<arg>-Xuse-ir</arg>
				</args>
</configuration>

Learn more about the changes that the JVM IR backend brings in this blog post.

Kotlin/Native

Performance
improvements
Kotlin/Native has received a variety of performance improvements in 1.4.30, which has resulted in faster compilation times. For example, the time required to
rebuild the framework in the Networking and data storage with Kotlin Multiplatform Mobile sample has decreased from 9.5 seconds (in 1.4.10) to 4.5 seconds (in
1.4.30).

268

https://youtrack.jetbrains.com/issue/KT-42434
https://github.com/Kotlin/KEEP/blob/master/proposals/inline-classes.md
https://kotl.in/issue
https://blog.jetbrains.com/kotlin/2021/01/the-jvm-backend-is-in-beta-let-s-make-it-stable-together
https://github.com/kotlin-hands-on/kmm-networking-and-data-storage/tree/final

Apple
watchOS
64-bit
simulator
target
The x86 simulator target has been deprecated for watchOS since version 7.0. To keep up with the latest watchOS versions, Kotlin/Native has the new target
watchosX64 for running the simulator on 64-bit architecture.

Support
for
Xcode
12.2
libraries
We have added support for the new libraries delivered with Xcode 12.2. You can now use them from Kotlin code.

Kotlin/JS

Lazy
initialization
of
top-level
properties

The IR backend for Kotlin/JS is receiving a prototype implementation of lazy initialization for top-level properties. This reduces the need to initialize all top-level
properties when the application starts, and it should significantly improve application start-up times.

We'll keep working on the lazy initialization, and we ask you to try the current prototype and share your thoughts and results in this YouTrack ticket or the #javascript
channel in the official Kotlin Slack (get an invite here).

To use the lazy initialization, add the -Xir-property-lazy-initialization compiler option when compiling the code with the JS IR compiler.

Gradle
project
improvements

Support
the
Gradle
configuration
cache
Starting with 1.4.30, the Kotlin Gradle plugin supports the configuration cache feature. It speeds up the build process: once you run the command, Gradle executes
the configuration phase and calculates the task graph. Gradle caches the result and reuses it for subsequent builds.

To start using this feature, you can use the Gradle command or set up the IntelliJ based IDE.

Standard
library

Locale-agnostic
API
for
upper/lowercasing
text

This release introduces the experimental locale-agnostic API for changing the case of strings and characters. The current toLowerCase(), toUpperCase(),
capitalize(), decapitalize() API functions are locale-sensitive. This means that different platform locale settings can affect code behavior. For example, in the Turkish
locale, when the string "kotlin" is converted using toUpperCase, the result is "KOTLİN", not "KOTLIN".

//	current	API
println("Needs	to	be	capitalized".toUpperCase())	//	NEEDS	TO	BE	CAPITALIZED

//	new	API
println("Needs	to	be	capitalized".uppercase())	//	NEEDS	TO	BE	CAPITALIZED

Kotlin 1.4.30 provides the following alternatives:

For String functions:

Lazy initialization of top-level properties is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below), and you
should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

The locale-agnostic API feature is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate
your feedback on it in YouTrack.

269

https://youtrack.jetbrains.com/issue/KT-44320
https://youtrack.jetbrains.com/issue/KT-44320
https://kotlinlang.slack.com/archives/C0B8L3U69
https://kotlinlang.slack.com
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://docs.gradle.org/current/userguide/configuration_cache.html
https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:usage
https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:ide:intellij
https://youtrack.jetbrains.com/issue/KT-42437

Earlier versions 1.4.30 alternative

String.toUpperCase() String.uppercase()

String.toLowerCase() String.lowercase()

String.capitalize() String.replaceFirstChar { it.uppercase() }

String.decapitalize() String.replaceFirstChar { it.lowercase() }

For Char functions:

Earlier versions 1.4.30 alternative

Char.toUpperCase() Char.uppercaseChar(): Char
Char.uppercase(): String

Char.toLowerCase() Char.lowercaseChar(): Char
Char.lowercase(): String

Char.toTitleCase() Char.titlecaseChar(): Char
Char.titlecase(): String

See the full list of changes to the text processing functions in KEEP.

Clear
Char-to-code
and
Char-to-digit
conversions

The current Char to numbers conversion functions, which return UTF-16 codes expressed in different numeric types, are often confused with the similar String-to-
Int conversion, which returns the numeric value of a string:

"4".toInt()	//	returns	4
'4'.toInt()	//	returns	52
//	and	there	was	no	common	function	that	would	return	the	numeric	value	4	for	Char	'4'

To avoid this confusion we've decided to separate Char conversions into two following sets of clearly named functions:

Functions to get the integer code of Char and to construct Char from the given code:

fun	Char(code:	Int):	Char
fun	Char(code:	UShort):	Char
val	Char.code:	Int

Functions to convert Char to the numeric value of the digit it represents:

For Kotlin/JVM, there are also overloaded uppercase(), lowercase(), and titlecase() functions with an explicit Locale parameter.

The unambiguous API for the Char conversion feature is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We
would appreciate your feedback on it in YouTrack.

270

https://github.com/Kotlin/KEEP/blob/master/proposals/stdlib/locale-agnostic-string-conversions.md
https://youtrack.jetbrains.com/issue/KT-44333

fun	Char.digitToInt(radix:	Int):	Int
fun	Char.digitToIntOrNull(radix:	Int):	Int?

An extension function for Int to convert the non-negative single digit it represents to the corresponding Char representation:

fun	Int.digitToChar(radix:	Int):	Char

See more details in KEEP.

Serialization
updates
Along with Kotlin 1.4.30, we are releasing kotlinx.serialization 1.1.0-RC, which includes some new features:

Inline classes serialization support

Unsigned primitive type serialization support

Inline
classes
serialization
support
Starting with Kotlin 1.4.30, you can make inline classes serializable:

@Serializable
inline	class	Color(val	rgb:	Int)

The serialization framework does not box serializable inline classes when they are used in other serializable classes.

Learn more in the kotlinx.serialization docs.

Unsigned
primitive
type
serialization
support
Starting from 1.4.30, you can use standard JSON serializers of kotlinx.serialization for unsigned primitive types: UInt, ULong, UByte, and UShort:

@Serializable
class	Counter(val	counted:	UByte,	val	description:	String)
fun	main()	{
			val	counted	=	239.toUByte()
			println(Json.encodeToString(Counter(counted,	"tries")))
}

Learn more in the kotlinx.serialization docs.

What's
new
in
Kotlin
1.4.20
Released: 23 November 2020

Kotlin 1.4.20 offers a number of new experimental features and provides fixes and improvements for existing features, including those added in 1.4.0.

You can also learn about new features with more examples in this blog post.

Kotlin/JVM
Improvements of Kotlin/JVM are intended to keep it up with the features of modern Java versions:

Java 15 target

invokedynamic string concatenation

The feature requires the new 1.4.30 IR compiler.

271

https://github.com/Kotlin/KEEP/blob/master/proposals/stdlib/char-int-conversions.md
https://github.com/Kotlin/kotlinx.serialization/releases/tag/v1.1.0-RC
https://github.com/Kotlin/kotlinx.serialization/blob/master/docs/inline-classes.md#serializable-inline-classes
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization/blob/master/docs/inline-classes.md#unsigned-types-support-json-only
https://blog.jetbrains.com/kotlin/2020/11/kotlin-1-4-20-released/

Java
15
target
Now Java 15 is available as a Kotlin/JVM target.

invokedynamic
string
concatenation

Kotlin 1.4.20 can compile string concatenations into dynamic invocations on JVM 9+ targets, therefore improving the performance.

Currently, this feature is experimental and covers the following cases:

String.plus in the operator (a + b), explicit (a.plus(b)), and reference ((a::plus)(b)) form.

toString on inline and data classes.

string templates except for ones with a single non-constant argument (see KT-42457).

To enable invokedynamic string concatenation, add the -Xstring-concat compiler option with one of the following values:

indy-with-constants to perform invokedynamic concatenation on strings with StringConcatFactory.makeConcatWithConstants().

indy to perform invokedynamic concatenation on strings with StringConcatFactory.makeConcat().

inline to switch back to the classic concatenation via StringBuilder.append().

Kotlin/JS
Kotlin/JS keeps evolving fast, and in 1.4.20 you can find a number experimental features and improvements:

Gradle DSL changes

New Wizard templates

Ignoring compilation errors with IR compiler

Gradle
DSL
changes
The Gradle DSL for Kotlin/JS receives a number of updates which simplify project setup and customization. This includes webpack configuration adjustments,
modifications to the auto-generated package.json file, and improved control over transitive dependencies.

Single point for webpack configuration
A new configuration block commonWebpackConfig is available for the browser target. Inside it, you can adjust common settings from a single point, instead of
having to duplicate configurations for the webpackTask, runTask, and testTask.

To enable CSS support by default for all three tasks, add the following snippet in the build.gradle(.kts) of your project:

browser	{
				commonWebpackConfig	{
								cssSupport.enabled	=	true
				}
				binaries.executable()
}

Learn more about configuring webpack bundling.

package.json customization from Gradle
For more control over your Kotlin/JS package management and distribution, you can now add properties to the project file package.json via the Gradle DSL.

To add custom fields to your package.json, use the customField function in the compilation's packageJson block:

invokedynamic string concatenation is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for
evaluation purposes. We appreciate your feedback on it in YouTrack.

272

https://youtrack.jetbrains.com/issues/KT
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://youtrack.jetbrains.com/issue/KT-42457
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html#makeConcatWithConstants-java.lang.invoke.MethodHandles.Lookup-java.lang.String-java.lang.invoke.MethodType-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html#makeConcat-java.lang.invoke.MethodHandles.Lookup-java.lang.String-java.lang.invoke.MethodType-
https://nodejs.dev/learn/the-package-json-guide

kotlin	{
				js(BOTH)	{
								compilations["main"].packageJson	{
												customField("hello",	mapOf("one"	to	1,	"two"	to	2))
								}
				}
}

Learn more about package.json customization.

Selective yarn dependency resolutions

Kotlin 1.4.20 provides a way of configuring Yarn's selective dependency resolutions - the mechanism for overriding dependencies of the packages you depend on.

You can use it through the YarnRootExtension inside the YarnPlugin in Gradle. To affect the resolved version of a package for your project, use the resolution
function passing in the package name selector (as specified by Yarn) and the version to which it should resolve.

rootProject.plugins.withType<YarnPlugin>	{
				rootProject.the<YarnRootExtension>().apply	{
								resolution("react",	"16.0.0")
								resolution("processor/decamelize",	"3.0.0")
				}
}

Here, all of your npm dependencies which require react will receive version 16.0.0, and processor will receive its dependency decamelize as version 3.0.0.

Disabling granular workspaces

To speed up build times, the Kotlin/JS Gradle plugin only installs the dependencies which are required for a particular Gradle task. For example, the webpack-dev-
server package is only installed when you execute one of the *Run tasks, and not when you execute the assemble task. Such behavior can potentially bring
problems when you run multiple Gradle processes in parallel. When the dependency requirements clash, the two installations of npm packages can cause errors.

To resolve this issue, Kotlin 1.4.20 includes an option to disable these so-called granular workspaces. This feature is currently available through the
YarnRootExtension inside the YarnPlugin in Gradle. To use it, add the following snippet to your build.gradle.kts file:

rootProject.plugins.withType<YarnPlugin>	{
				rootProject.the<YarnRootExtension>().disableGranularWorkspaces()
}

New
Wizard
templates
To give you more convenient ways to customize your project during creation, the project wizard for Kotlin comes with new templates for Kotlin/JS applications:

Browser Application - a minimal Kotlin/JS Gradle project that runs in the browser.

React Application - a React app that uses the appropriate kotlin-wrappers. It provides options to enable integrations for style-sheets, navigational components,
or state containers.

Node.js Application - a minimal project for running in a Node.js runtime. It comes with the option to directly include the experimental kotlinx-nodejs package.

Ignoring
compilation
errors
with
IR
compiler

Support for selective yarn dependency resolutions is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We
appreciate your feedback on it in YouTrack.

Disabling granular workspaces is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We appreciate your
feedback on it in YouTrack.

273

https://youtrack.jetbrains.com/issues/KT
https://classic.yarnpkg.com/en/docs/selective-version-resolutions/
https://youtrack.jetbrains.com/issues/KT

The IR compiler for Kotlin/JS comes with a new experimental mode - compilation with errors. In this mode, you can run you code even if it contains errors, for
example, if you want to try certain things it when the whole application is not ready yet.

There are two tolerance policies for this mode:

SEMANTIC: the compiler will accept code which is syntactically correct, but doesn't make sense semantically, such as val x: String = 3.

SYNTAX: the compiler will accept any code, even if it contains syntax errors.

To allow compilation with errors, add the -Xerror-tolerance-policy= compiler option with one of the values listed above.

Learn more about ignoring compilation errors with Kotlin/JS IR compiler.

Kotlin/Native
Kotlin/Native's priorities in 1.4.20 are performance and polishing existing features. These are the notable improvements:

Escape analysis

Performance improvements and bug fixes

Opt-in wrapping of Objective-C exceptions

CocoaPods plugin improvements

Support for Xcode 12 libraries

Escape
analysis

Kotlin/Native receives a prototype of the new escape analysis mechanism. It improves the runtime performance by allocating certain objects on the stack instead of
the heap. This mechanism shows a 10% average performance increase on our benchmarks, and we continue improving it so that it speeds up the program even
more.

The escape analysis runs in a separate compilation phase for the release builds (with the -opt compiler option).

If you want to disable the escape analysis phase, use the -Xdisable-phases=EscapeAnalysis compiler option.

Performance
improvements
and
bug
fixes
Kotlin/Native receives performance improvements and bug fixes in various components, including the ones added in 1.4.0, for example, the code sharing
mechanism.

Opt-in
wrapping
of
Objective-C
exceptions

Kotlin/Native now can handle exceptions thrown from Objective-C code in runtime to avoid program crashes.

You can opt in to wrap NSException's into Kotlin exceptions of type ForeignException. They hold the references to the original NSException's. This lets you get the
information about the root cause and handle it properly.

Ignore compilation errors mode is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it only for
evaluation purposes. We appreciate your feedback on it in YouTrack.

The escape analysis mechanism is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We appreciate your
feedback on it in YouTrack.

The Objective-C exception wrapping mechanism is Experimental. It may be dropped or changed at any time. Opt-in is required (see details below). Use it
only for evaluation purposes. We appreciate your feedback on it in YouTrack.

274

https://youtrack.jetbrains.com/issues/KT
https://youtrack.jetbrains.com/issues/KT
https://en.wikipedia.org/wiki/Escape_analysis
https://youtrack.jetbrains.com/issues/KT

To enable wrapping of Objective-C exceptions, specify the -Xforeign-exception-mode objc-wrap option in the cinterop call or add foreignExceptionMode = objc-
wrap property to .def file. If you use CocoaPods integration, specify the option in the pod {} build script block of a dependency like this:

pod("foo")	{
				extraOpts	=	listOf("-Xforeign-exception-mode",	"objc-wrap")
}

The default behavior remains unchanged: the program terminates when an exception is thrown from the Objective-C code.

CocoaPods
plugin
improvements
Kotlin 1.4.20 continues the set of improvements in CocoaPods integration. Namely, you can try the following new features:

Improved task execution

Extended DSL

Updated integration with Xcode

Improved task execution
CocoaPods plugin gets an improved task execution flow. For example, if you add a new CocoaPods dependency, existing dependencies are not rebuilt. Adding an
extra target also doesn't affect rebuilding dependencies for existing ones.

Extended DSL
The DSL of adding CocoaPods dependencies to your Kotlin project receives new capabilites.

In addition to local Pods and Pods from the CocoaPods repository, you can add dependencies on the following types of libraries:

A library from a custom spec repository.

A remote library from a Git repository.

A library from an archive (also available by arbitrary HTTP address).

A static library.

A library with custom cinterop options.

Learn more about adding CocoaPods dependencies in Kotlin projects. Find examples in the Kotlin with CocoaPods sample.

Updated integration with Xcode
To work correctly with Xcode, Kotlin requires some Podfile changes:

If your Kotlin Pod has any Git, HTTP, or specRepo Pod dependency, you should also specify it in the Podfile.

When you add a library from the custom spec, you also should specify the location of specs at the beginning of your Podfile.

Now integration errors have a detailed description in IDEA. So if you have problems with your Podfile, you will immediately know how to fix them.

Learn more about creating Kotlin pods.

Support
for
Xcode
12
libraries
We have added support for new libraries delivered with Xcode 12. Now you can use them from the Kotlin code.

Kotlin
Multiplatform

Updated
structure
of
multiplatform
library
publications
Starting from Kotlin 1.4.20, there is no longer a separate metadata publication. Metadata artifacts are now included in the root publication which stands for the
whole library and is automatically resolved to the appropriate platform-specific artifacts when added as a dependency to the common source set.

Learn more about publishing a multiplatform library.

275

https://github.com/Kotlin/kmm-with-cocoapods-sample
https://guides.cocoapods.org/syntax/podfile.html#source

Compatibility with earlier versions
This change of structure breaks the compatibility between projects with hierarchical project structure. If a multiplatform project and a library it depends on both
have the hierarchical project structure, then you need to update them to Kotlin 1.4.20 or higher simultaneously. Libraries published with Kotlin 1.4.20 are not
available for using from project published with earlier versions.

Projects and libraries without the hierarchical project structure remain compatible.

Standard
library
The standard library of Kotlin 1.4.20 offers new extensions for working with files and a better performance.

Extensions for java.nio.file.Path

Improved String.replace function performance

Extensions
for
java.nio.file.Path

Now the standard library provides experimental extensions for java.nio.file.Path. Working with the modern JVM file API in an idiomatic Kotlin way is now similar to
working with java.io.File extensions from the kotlin.io package.

//	construct	path	with	the	div	(/)	operator
val	baseDir	=	Path("/base")
val	subDir	=	baseDir	/	"subdirectory"	

//	list	files	in	a	directory
val	kotlinFiles:	List<Path>	=	Path("/home/user").listDirectoryEntries("*.kt")

The extensions are available in the kotlin.io.path package in the kotlin-stdlib-jdk7 module. To use the extensions, opt-in to the experimental annotation
@ExperimentalPathApi.

Improved
String.replace
function
performance
The new implementation of String.replace() speeds up the function execution. The case-sensitive variant uses a manual replacement loop based on indexOf, while
the case-insensitive one uses regular expression matching.

Kotlin
Android
Extensions
In 1.4.20 the Kotlin Android Extensions plugin becomes deprecated and Parcelable implementation generator moves to a separate plugin.

Deprecation of synthetic views

New plugin for Parcelable implementation generator

Deprecation
of
synthetic
views
Synthetic views were presented in the Kotlin Android Extensions plugin a while ago to simplify the interaction with UI elements and reduce boilerplate. Now Google
offers a native mechanism that does the same - Android Jetpack's view bindings, and we're deprecating synthetic views in favor of those.

We extract the Parcelable implementations generator from kotlin-android-extensions and start the deprecation cycle for the rest of it - synthetic views. For now,
they will keep working with a deprecation warning. In the future, you'll need to switch your project to another solution. Here are the guidelines that will help you
migrate your Android project from synthetics to view bindings.

New
plugin
for
Parcelable
implementation
generator
The Parcelable implementation generator is now available in the new kotlin-parcelize plugin. Apply this plugin instead of kotlin-android-extensions.

Extensions for java.nio.file.Path are Experimental. They may be dropped or changed at any time. Opt-in is required (see details below). Use them only for
evaluation purposes. We appreciate your feedback on them in YouTrack.

276

https://youtrack.jetbrains.com/issues/KT
https://developer.android.com/topic/libraries/view-binding
https://goo.gle/kotlin-android-extensions-deprecation

The @Parcelize annotation is moved to the kotlinx.parcelize package.

Learn more about Parcelable implementation generator in the Android documentation.

What's
new
in
Kotlin
1.4.0
Released: 17 August 2020

In Kotlin 1.4.0, we ship a number of improvements in all of its components, with the focus on quality and performance. Below you will find the list of the most
important changes in Kotlin 1.4.0.

Language
features
and
improvements
Kotlin 1.4.0 comes with a variety of different language features and improvements. They include:

SAM conversions for Kotlin interfaces

Explicit API mode for library authors

Mixing named and positional arguments

Trailing comma

Callable reference improvements

break and continue inside when included in loops

SAM
conversions
for
Kotlin
interfaces
Before Kotlin 1.4.0, you could apply SAM (Single Abstract Method) conversions only when working with Java methods and Java interfaces from Kotlin. From now
on, you can use SAM conversions for Kotlin interfaces as well. To do so, mark a Kotlin interface explicitly as functional with the fun modifier.

SAM conversion applies if you pass a lambda as an argument when an interface with only one single abstract method is expected as a parameter. In this case, the
compiler automatically converts the lambda to an instance of the class that implements the abstract member function.

fun	interface	IntPredicate	{
				fun	accept(i:	Int):	Boolean
}

val	isEven	=	IntPredicate	{	it	%	2	==	0	}

fun	main()	{	
				println("Is	7	even?	-	${isEven.accept(7)}")
}

Learn more about Kotlin functional interfaces and SAM conversions.

Explicit
API
mode
for
library
authors
Kotlin compiler offers explicit API mode for library authors. In this mode, the compiler performs additional checks that help make the library's API clearer and more
consistent. It adds the following requirements for declarations exposed to the library's public API:

Visibility modifiers are required for declarations if the default visibility exposes them to the public API. This helps ensure that no declarations are exposed to the
public API unintentionally.

Explicit type specifications are required for properties and functions that are exposed to the public API. This guarantees that API users are aware of the types of
API members they use.

Depending on your configuration, these explicit APIs can produce errors (strict mode) or warnings (warning mode). Certain kinds of declarations are excluded from
such checks for the sake of readability and common sense:

kotlin-parcelize and kotlin-android-extensions can't be applied together in one module.

277

https://developer.android.com/kotlin/parcelize
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/

primary constructors

properties of data classes

property getters and setters

override methods

Explicit API mode analyzes only the production sources of a module.

To compile your module in the explicit API mode, add the following lines to your Gradle build script:

Kotlin

kotlin	{				
				//	for	strict	mode
				explicitApi()	
				//	or
				explicitApi	=	ExplicitApiMode.Strict
				
				//	for	warning	mode
				explicitApiWarning()
				//	or
				explicitApi	=	ExplicitApiMode.Warning
}

Groovy

kotlin	{				
				//	for	strict	mode
				explicitApi()	
				//	or
				explicitApi	=	'strict'
				
				//	for	warning	mode
				explicitApiWarning()
				//	or
				explicitApi	=	'warning'
}

When using the command-line compiler, switch to explicit API mode by adding the -Xexplicit-api compiler option with the value strict or warning.

-Xexplicit-api={strict|warning}

Find more details about the explicit API mode in the KEEP.

Mixing
named
and
positional
arguments
In Kotlin 1.3, when you called a function with named arguments, you had to place all the arguments without names (positional arguments) before the first named
argument. For example, you could call f(1, y = 2), but you couldn't call f(x = 1, 2).

It was really annoying when all the arguments were in their correct positions but you wanted to specify a name for one argument in the middle. It was especially
helpful for making absolutely clear which attribute a boolean or null value belongs to.

In Kotlin 1.4, there is no such limitation – you can now specify a name for an argument in the middle of a set of positional arguments. Moreover, you can mix
positional and named arguments any way you like, as long as they remain in the correct order.

fun	reformat(
				str:	String,
				uppercaseFirstLetter:	Boolean	=	true,
				wordSeparator:	Char	=	'	'
)	{
				//	...
}

//Function	call	with	a	named	argument	in	the	middle
reformat("This	is	a	String!",	uppercaseFirstLetter	=	false	,	'-')

278

https://github.com/Kotlin/KEEP/blob/master/proposals/explicit-api-mode.md

Trailing
comma
With Kotlin 1.4 you can now add a trailing comma in enumerations such as argument and parameter lists, when entries, and components of destructuring
declarations. With a trailing comma, you can add new items and change their order without adding or removing commas.

This is especially helpful if you use multi-line syntax for parameters or values. After adding a trailing comma, you can then easily swap lines with parameters or
values.

fun	reformat(
				str:	String,
				uppercaseFirstLetter:	Boolean	=	true,
				wordSeparator:	Character	=	'	',	//trailing	comma
)	{
				//	...
}

val	colors	=	listOf(
				"red",
				"green",
				"blue",	//trailing	comma
)

Callable
reference
improvements
Kotlin 1.4 supports more cases for using callable references:

References to functions with default argument values

Function references in Unit-returning functions

References that adapt based on the number of arguments in a function

Suspend conversion on callable references

References to functions with default argument values
Now you can use callable references to functions with default argument values. If the callable reference to the function foo takes no arguments, the default value 0
is used.

fun	foo(i:	Int	=	0):	String	=	"$i!"

fun	apply(func:	()	->	String):	String	=	func()

fun	main()	{
				println(apply(::foo))
}

Previously, you had to write additional overloads for the function apply to use the default argument values.

//	some	new	overload
fun	applyInt(func:	(Int)	->	String):	String	=	func(0)	

Function references in Unit-returning functions
In Kotlin 1.4, you can use callable references to functions returning any type in Unit-returning functions. Before Kotlin 1.4, you could only use lambda arguments in
this case. Now you can use both lambda arguments and callable references.

fun	foo(f:	()	->	Unit)	{	}
fun	returnsInt():	Int	=	42

fun	main()	{
				foo	{	returnsInt()	}	//	this	was	the	only	way	to	do	it		before	1.4
				foo(::returnsInt)	//	starting	from	1.4,	this	also	works
}

References that adapt based on the number of arguments in a function
Now you can adapt callable references to functions when passing a variable number of arguments (vararg) . You can pass any number of parameters of the same

279

type at the end of the list of passed arguments.

fun	foo(x:	Int,	vararg	y:	String)	{}

fun	use0(f:	(Int)	->	Unit)	{}
fun	use1(f:	(Int,	String)	->	Unit)	{}
fun	use2(f:	(Int,	String,	String)	->	Unit)	{}

fun	test()	{
				use0(::foo)	
				use1(::foo)	
				use2(::foo)	
}

Suspend conversion on callable references
In addition to suspend conversion on lambdas, Kotlin now supports suspend conversion on callable references starting from version 1.4.0.

fun	call()	{}
fun	takeSuspend(f:	suspend	()	->	Unit)	{}

fun	test()	{
				takeSuspend	{	call()	}	//	OK	before	1.4
				takeSuspend(::call)	//	In	Kotlin	1.4,	it	also	works
}

Using
break
and
continue
inside
when
expressions
included
in
loops
In Kotlin 1.3, you could not use unqualified break and continue inside when expressions included in loops. The reason was that these keywords were reserved for
possible fall-through behavior in when expressions.

That's why if you wanted to use break and continue inside when expressions in loops, you had to label them, which became rather cumbersome.

fun	test(xs:	List<Int>)	{
				LOOP@for	(x	in	xs)	{
								when	(x)	{
												2	->	continue@LOOP
												17	->	break@LOOP
												else	->	println(x)
								}
				}
}

In Kotlin 1.4, you can use break and continue without labels inside when expressions included in loops. They behave as expected by terminating the nearest
enclosing loop or proceeding to its next step.

fun	test(xs:	List<Int>)	{
				for	(x	in	xs)	{
								when	(x)	{
												2	->	continue
												17	->	break
												else	->	println(x)
								}
				}
}

The fall-through behavior inside when is subject to further design.

New
tools
in
the
IDE
With Kotlin 1.4, you can use the new tools in IntelliJ IDEA to simplify Kotlin development:

New flexible Project Wizard

Coroutine Debugger

280

https://en.wikipedia.org/wiki/Switch_statement#Fallthrough

New
flexible
Project
Wizard
With the flexible new Kotlin Project Wizard, you have a place to easily create and configure different types of Kotlin projects, including multiplatform projects, which
can be difficult to configure without a UI.

Kotlin Project Wizard – Multiplatform project

The new Kotlin Project Wizard is both simple and flexible:

1. Select the project template, depending on what you're trying to do. More templates will be added in the future.

2. Select the build system – Gradle (Kotlin or Groovy DSL), Maven, or IntelliJ IDEA.
The Kotlin Project Wizard will only show the build systems supported on the selected project template.

3. Preview the project structure directly on the main screen.

Then you can finish creating your project or, optionally, configure the project on the next screen:

4. Add/remove modules and targets supported for this project template.

5. Configure module and target settings, for example, the target JVM version, target template, and test framework.

281

Kotlin Project Wizard - Configure targets

In the future, we are going to make the Kotlin Project Wizard even more flexible by adding more configuration options and templates.

You can try out the new Kotlin Project Wizard by working through these tutorials:

Create a console application based on Kotlin/JVM

Create a Kotlin/JS application for React

Create a Kotlin/Native application

Coroutine
Debugger
Many people already use coroutines for asynchronous programming. But when it came to debugging, working with coroutines before Kotlin 1.4, could be a real
pain. Since coroutines jumped between threads, it was difficult to understand what a specific coroutine was doing and check its context. In some cases, tracking
steps over breakpoints simply didn't work. As a result, you had to rely on logging or mental effort to debug code that used coroutines.

In Kotlin 1.4, debugging coroutines is now much more convenient with the new functionality shipped with the Kotlin plugin.

The Debug Tool Window now contains a new Coroutines tab. In this tab, you can find information about both currently running and suspended coroutines. The
coroutines are grouped by the dispatcher they are running on.

Debugging works for versions 1.3.8 or later of kotlinx-coroutines-core.

282

Debugging coroutines

Now you can:

Easily check the state of each coroutine.

See the values of local and captured variables for both running and suspended coroutines.

See a full coroutine creation stack, as well as a call stack inside the coroutine. The stack includes all frames with variable values, even those that would be lost
during standard debugging.

If you need a full report containing the state of each coroutine and its stack, right-click inside the Coroutines tab, and then click Get Coroutines Dump. Currently,
the coroutines dump is rather simple, but we're going to make it more readable and helpful in future versions of Kotlin.

Coroutines Dump

Learn more about debugging coroutines in this blog post and IntelliJ IDEA documentation.

New
compiler
The new Kotlin compiler is going to be really fast; it will unify all the supported platforms and provide an API for compiler extensions. It's a long-term project, and
we've already completed several steps in Kotlin 1.4.0:

New, more powerful type inference algorithm is enabled by default.

New JVM and JS IR backends. They will become the default once we stabilize them.

New
more
powerful
type
inference
algorithm
Kotlin 1.4 uses a new, more powerful type inference algorithm. This new algorithm was already available to try in Kotlin 1.3 by specifying a compiler option, and now
it's used by default. You can find the full list of issues fixed in the new algorithm in YouTrack. Here you can find some of the most noticeable improvements:

More cases where type is inferred automatically

Smart casts for a lambda's last expression

Smart casts for callable references

Better inference for delegated properties

SAM conversion for Java interfaces with different arguments

Java SAM interfaces in Kotlin

More cases where type is inferred automatically
The new inference algorithm infers types for many cases where the old algorithm required you to specify them explicitly. For instance, in the following example the
type of the lambda parameter it is correctly inferred to String?:

//sampleStart
val	rulesMap:	Map<String,	(String?)	->	Boolean>	=	mapOf(

283

https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-rc-debugging-coroutines/
https://www.jetbrains.com/help/idea/debug-kotlin-coroutines.html
https://youtrack.jetbrains.com/issues/KT?q=Tag:%20fixed-in-new-inference%20

				"weak"	to	{	it	!=	null	},
				"medium"	to	{	!it.isNullOrBlank()	},
				"strong"	to	{	it	!=	null	&&	"^[a-zA-Z0-9]+$".toRegex().matches(it)	}
)
//sampleEnd

fun	main()	{
				println(rulesMap.getValue("weak")("abc!"))
				println(rulesMap.getValue("strong")("abc"))
				println(rulesMap.getValue("strong")("abc!"))
}

In Kotlin 1.3, you needed to introduce an explicit lambda parameter or replace to with a Pair constructor with explicit generic arguments to make it work.

Smart casts for a lambda's last expression
In Kotlin 1.3, the last expression inside a lambda wasn't smart cast unless you specified the expected type. Thus, in the following example, Kotlin 1.3 infers String?
as the type of the result variable:

val	result	=	run	{
				var	str	=	currentValue()
				if	(str	==	null)	{
								str	=	"test"
				}
				str	//	the	Kotlin	compiler	knows	that	str	is	not	null	here
}
//	The	type	of	'result'	is	String?	in	Kotlin	1.3	and	String	in	Kotlin	1.4

In Kotlin 1.4, thanks to the new inference algorithm, the last expression inside a lambda gets smart cast, and this new, more precise type is used to infer the
resulting lambda type. Thus, the type of the result variable becomes String.

In Kotlin 1.3, you often needed to add explicit casts (either !! or type casts like as String) to make such cases work, and now these casts have become unnecessary.

Smart casts for callable references
In Kotlin 1.3, you couldn't access a member reference of a smart cast type. Now in Kotlin 1.4 you can:

import	kotlin.reflect.KFunction

sealed	class	Animal
class	Cat	:	Animal()	{
				fun	meow()	{
								println("meow")
				}
}

class	Dog	:	Animal()	{
				fun	woof()	{
								println("woof")
				}
}

//sampleStart
fun	perform(animal:	Animal)	{
				val	kFunction:	KFunction<*>	=	when	(animal)	{
								is	Cat	->	animal::meow
								is	Dog	->	animal::woof
				}
				kFunction.call()
}
//sampleEnd

fun	main()	{
				perform(Cat())
}

You can use different member references animal::meow and animal::woof after the animal variable has been smart cast to specific types Cat and Dog. After type
checks, you can access member references corresponding to subtypes.

Better inference for delegated properties
The type of a delegated property wasn't taken into account while analyzing the delegate expression which follows the by keyword. For instance, the following code
didn't compile before, but now the compiler correctly infers the types of the old and new parameters as String?:

284

import	kotlin.properties.Delegates

fun	main()	{
				var	prop:	String?	by	Delegates.observable(null)	{	p,	old,	new	->
								println("$old	→	$new")
				}
				prop	=	"abc"
				prop	=	"xyz"
}

SAM conversion for Java interfaces with different arguments
Kotlin has supported SAM conversions for Java interfaces from the beginning, but there was one case that wasn't supported, which was sometimes annoying when
working with existing Java libraries. If you called a Java method that took two SAM interfaces as parameters, both arguments needed to be either lambdas or
regular objects. You couldn't pass one argument as a lambda and another as an object.

The new algorithm fixes this issue, and you can pass a lambda instead of a SAM interface in any case, which is the way you'd naturally expect it to work.

//	FILE:	A.java
public	class	A	{
				public	static	void	foo(Runnable	r1,	Runnable	r2)	{}
}

//	FILE:	test.kt
fun	test(r1:	Runnable)	{
				A.foo(r1)	{}		//	Works	in	Kotlin	1.4
}

Java SAM interfaces in Kotlin
In Kotlin 1.4, you can use Java SAM interfaces in Kotlin and apply SAM conversions to them.

import	java.lang.Runnable

fun	foo(r:	Runnable)	{}

fun	test()	{	
				foo	{	}	//	OK
}

In Kotlin 1.3, you would have had to declare the function foo above in Java code to perform a SAM conversion.

Unified
backends
and
extensibility
In Kotlin, we have three backends that generate executables: Kotlin/JVM, Kotlin/JS, and Kotlin/Native. Kotlin/JVM and Kotlin/JS don't share much code since they
were developed independently of each other. Kotlin/Native is based on a new infrastructure built around an intermediate representation (IR) for Kotlin code.

We are now migrating Kotlin/JVM and Kotlin/JS to the same IR. As a result, all three backends share a lot of logic and have a unified pipeline. This allows us to
implement most features, optimizations, and bug fixes only once for all platforms. Both new IR-based back-ends are in Alpha.

A common backend infrastructure also opens the door for multiplatform compiler extensions. You will be able to plug into the pipeline and add custom processing
and transformations that will automatically work for all platforms.

We encourage you to use our new JVM IR and JS IR backends, which are currently in Alpha, and share your feedback with us.

Kotlin/JVM
Kotlin 1.4.0 includes a number of JVM-specific improvements, such as:

New JVM IR backend

New modes for generating default methods in interfaces

Unified exception type for null checks

Type annotations in the JVM bytecode

285

New
JVM
IR
backend
Along with Kotlin/JS, we are migrating Kotlin/JVM to the unified IR backend, which allows us to implement most features and bug fixes once for all platforms. You
will also be able to benefit from this by creating multiplatform extensions that will work for all platforms.

Kotlin 1.4.0 does not provide a public API for such extensions yet, but we are working closely with our partners, including Jetpack Compose, who are already
building their compiler plugins using our new backend.

We encourage you to try out the new Kotlin/JVM backend, which is currently in Alpha, and to file any issues and feature requests to our issue tracker. This will help
us to unify the compiler pipelines and bring compiler extensions like Jetpack Compose to the Kotlin community more quickly.

To enable the new JVM IR backend, specify an additional compiler option in your Gradle build script:

kotlinOptions.useIR	=	true

When using the command-line compiler, add the compiler option -Xuse-ir.

New
modes
for
generating
default
methods
When compiling Kotlin code to targets JVM 1.8 and above, you could compile non-abstract methods of Kotlin interfaces into Java's default methods. For this
purpose, there was a mechanism that includes the @JvmDefault annotation for marking such methods and the -Xjvm-default compiler option that enables
processing of this annotation.

In 1.4.0, we've added a new mode for generating default methods: -Xjvm-default=all compiles all non-abstract methods of Kotlin interfaces to default Java
methods. For compatibility with the code that uses the interfaces compiled without default, we also added all-compatibility mode.

For more information about default methods in the Java interop, see the interoperability documentation and this blog post.

Unified
exception
type
for
null
checks
Starting from Kotlin 1.4.0, all runtime null checks will throw a java.lang.NullPointerException instead of KotlinNullPointerException, IllegalStateException,
IllegalArgumentException, and TypeCastException. This applies to: the !! operator, parameter null checks in the method preamble, platform-typed expression null
checks, and the as operator with a non-nullable type. This doesn't apply to lateinit null checks and explicit library function calls like checkNotNull or requireNotNull.

This change increases the number of possible null check optimizations that can be performed either by the Kotlin compiler or by various kinds of bytecode
processing tools, such as the Android R8 optimizer.

Note that from a developer's perspective, things won't change that much: the Kotlin code will throw exceptions with the same error messages as before. The type
of exception changes, but the information passed stays the same.

Type
annotations
in
the
JVM
bytecode
Kotlin can now generate type annotations in the JVM bytecode (target version 1.8+), so that they become available in Java reflection at runtime. To emit the type
annotation in the bytecode, follow these steps:

1. Make sure that your declared annotation has a proper annotation target (Java's ElementType.TYPE_USE or Kotlin's AnnotationTarget.TYPE) and retention
(AnnotationRetention.RUNTIME).

2. Compile the annotation class declaration to JVM bytecode target version 1.8+. You can specify it with -jvm-target=1.8 compiler option.

3. Compile the code that uses the annotation to JVM bytecode target version 1.8+ (-jvm-target=1.8) and add the -Xemit-jvm-type-annotations compiler option.

Note that the type annotations from the standard library aren't emitted in the bytecode for now because the standard library is compiled with the target version 1.6.

So far, only the basic cases are supported:

Type annotations on method parameters, method return types and property types;

If you enable Jetpack Compose, you will automatically be opted in to the new JVM backend without needing to specify the compiler option in
kotlinOptions.

You can use code compiled by the new JVM IR backend only if you've enabled the new backend. Otherwise, you will get an error. Considering this, we
don't recommend that library authors switch to the new backend in production.

286

https://developer.android.com/jetpack/compose
https://youtrack.jetbrains.com/issues/KT
https://developer.android.com/jetpack/compose/setup?hl=en
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://developer.android.com/studio/build/shrink-code

Invariant projections of type arguments, such as Smth<@Ann Foo>, Array<@Ann Foo>.

In the following example, the @Foo annotation on the String type can be emitted to the bytecode and then used by the library code:

@Target(AnnotationTarget.TYPE)
annotation	class	Foo

class	A	{
				fun	foo():	@Foo	String	=	"OK"
}

Kotlin/JS
On the JS platform, Kotlin 1.4.0 provides the following improvements:

New Gradle DSL

New JS IR backend

New
Gradle
DSL
The kotlin.js Gradle plugin comes with an adjusted Gradle DSL, which provides a number of new configuration options and is more closely aligned to the DSL used
by the kotlin-multiplatform plugin. Some of the most impactful changes include:

Explicit toggles for the creation of executable files via binaries.executable(). Read more about the executing Kotlin/JS and its environment here.

Configuration of webpack's CSS and style loaders from within the Gradle configuration via cssSupport. Read more about using CSS and style loaders here.

Improved management for npm dependencies, with mandatory version numbers or semver version ranges, as well as support for development, peer, and
optional npm dependencies using devNpm, optionalNpm and peerNpm. Read more about dependency management for npm packages directly from Gradle
here.

Stronger integrations for Dukat, the generator for Kotlin external declarations. External declarations can now be generated at build time, or can be manually
generated via a Gradle task.

New
JS
IR
backend
The IR backend for Kotlin/JS, which currently has Alpha stability, provides some new functionality specific to the Kotlin/JS target which is focused around the
generated code size through dead code elimination, and improved interoperation with JavaScript and TypeScript, among others.

To enable the Kotlin/JS IR backend, set the key kotlin.js.compiler=ir in your gradle.properties, or pass the IR compiler type to the js function of your Gradle build
script:

kotlin	{
				js(IR)	{	//	or:	LEGACY,	BOTH
								//	...
				}
				binaries.executable()
}

For more detailed information about how to configure the new backend, check out the Kotlin/JS IR compiler documentation.

With the new @JsExport annotation and the ability to generate TypeScript definitions from Kotlin code, the Kotlin/JS IR compiler backend improves JavaScript &
TypeScript interoperability. This also makes it easier to integrate Kotlin/JS code with existing tooling, to create hybrid applications and leverage code-sharing
functionality in multiplatform projects.

Learn more about the available features in the Kotlin/JS IR compiler backend.

Kotlin/Native
In 1.4.0, Kotlin/Native got a significant number of new features and improvements, including:

Support for suspending functions in Swift and Objective-C

Objective-C generics support by default

287

https://docs.npmjs.com/misc/semver#versions
https://github.com/Kotlin/dukat

Exception handling in Objective-C/Swift interop

Generate release .dSYMs on Apple targets by default

Performance improvements

Simplified management of CocoaPods dependencies

Support
for
Kotlin's
suspending
functions
in
Swift
and
Objective-C
In 1.4.0, we add the basic support for suspending functions in Swift and Objective-C. Now, when you compile a Kotlin module into an Apple framework, suspending
functions are available in it as functions with callbacks (completionHandler in the Swift/Objective-C terminology). When you have such functions in the generated
framework's header, you can call them from your Swift or Objective-C code and even override them.

For example, if you write this Kotlin function:

suspend	fun	queryData(id:	Int):	String	=	...

...then you can call it from Swift like so:

queryData(id:	17)	{	result,	error	in
			if	let	e	=	error	{
							print("ERROR:	\(e)")
			}	else	{
							print(result!)
			}
}

Learn more about using suspending functions in Swift and Objective-C.

Objective-C
generics
support
by
default
Previous versions of Kotlin provided experimental support for generics in Objective-C interop. Since 1.4.0, Kotlin/Native generates Apple frameworks with generics
from Kotlin code by default. In some cases, this may break existing Objective-C or Swift code calling Kotlin frameworks. To have the framework header written
without generics, add the -Xno-objc-generics compiler option.

kotlin	{
				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								binaries.all	{
												freeCompilerArgs	+=	"-Xno-objc-generics"
								}
				}
}

Please note that all specifics and limitations listed in the documentation on interoperability with Objective-C are still valid.

Exception
handling
in
Objective-C/Swift
interop
In 1.4.0, we slightly change the Swift API generated from Kotlin with respect to the way exceptions are translated. There is a fundamental difference in error
handling between Kotlin and Swift. All Kotlin exceptions are unchecked, while Swift has only checked errors. Thus, to make Swift code aware of expected
exceptions, Kotlin functions should be marked with a @Throws annotation specifying a list of potential exception classes.

When compiling to Swift or the Objective-C framework, functions that have or are inheriting @Throws annotation are represented as NSError*-producing methods in
Objective-C and as throws methods in Swift.

Previously, any exceptions other than RuntimeException and Error were propagated as NSError. Now this behavior changes: now NSError is thrown only for
exceptions that are instances of classes specified as parameters of @Throws annotation (or their subclasses). Other Kotlin exceptions that reach Swift/Objective-C
are considered unhandled and cause program termination.

Generate
release
.dSYMs
on
Apple
targets
by
default
Starting with 1.4.0, the Kotlin/Native compiler produces debug symbol files (.dSYMs) for release binaries on Darwin platforms by default. This can be disabled with
the -Xadd-light-debug=disable compiler option. On other platforms, this option is disabled by default. To toggle this option in Gradle, use:

kotlin	{

288

https://developer.apple.com/documentation/xcode/building_your_app_to_include_debugging_information

				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								binaries.all	{
												freeCompilerArgs	+=	"-Xadd-light-debug={enable|disable}"
								}
				}
}

Learn more about crash report symbolication.

Performance
improvements
Kotlin/Native has received a number of performance improvements that speed up both the development process and execution. Here are some examples:

To improve the speed of object allocation, we now offer the mimalloc memory allocator as an alternative to the system allocator. mimalloc works up to two times
faster on some benchmarks. Currently, the usage of mimalloc in Kotlin/Native is experimental; you can switch to it using the -Xallocator=mimalloc compiler
option.

We've reworked how C interop libraries are built. With the new tooling, Kotlin/Native produces interop libraries up to 4 times as fast as before, and artifacts are
25% to 30% the size they used to be.

Overall runtime performance has improved because of optimizations in GC. This improvement will be especially apparent in projects with a large number of
long-lived objects. HashMap and HashSet collections now work faster by escaping redundant boxing.

In 1.3.70 we introduced two new features for improving the performance of Kotlin/Native compilation: caching project dependencies and running the compiler
from the Gradle daemon. Since that time, we've managed to fix numerous issues and improve the overall stability of these features.

Simplified
management
of
CocoaPods
dependencies
Previously, once you integrated your project with the dependency manager CocoaPods, you could build an iOS, macOS, watchOS, or tvOS part of your project only
in Xcode, separate from other parts of your multiplatform project. These other parts could be built in IntelliJ IDEA.

Moreover, every time you added a dependency on an Objective-C library stored in CocoaPods (Pod library), you had to switch from IntelliJ IDEA to Xcode, call pod
install, and run the Xcode build there.

Now you can manage Pod dependencies right in IntelliJ IDEA while enjoying the benefits it provides for working with code, such as code highlighting and
completion. You can also build the whole Kotlin project with Gradle, without having to switch to Xcode. This means you only have to go to Xcode when you need to
write Swift/Objective-C code or run your application on a simulator or device.

Now you can also work with Pod libraries stored locally.

Depending on your needs, you can add dependencies between:

A Kotlin project and Pod libraries stored remotely in the CocoaPods repository or stored locally on your machine.

A Kotlin Pod (Kotlin project used as a CocoaPods dependency) and an Xcode project with one or more targets.

Complete the initial configuration, and when you add a new dependency to cocoapods, just re-import the project in IntelliJ IDEA. The new dependency will be
added automatically. No additional steps are required.

Learn how to add dependencies.

Kotlin
Multiplatform

Kotlin Multiplatform reduces time spent writing and maintaining the same code for different platforms while retaining the flexibility and benefits of native
programming. We continue investing our effort in multiplatform features and improvements:

Sharing code in several targets with the hierarchical project structure

Leveraging native libs in the hierarchical structure

Specifying kotlinx dependencies only once

Support for multiplatform projects is in Alpha. It may change incompatibly and require manual migration in the future. We appreciate your feedback on it
in YouTrack.

289

https://github.com/microsoft/mimalloc
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/#kotlin-native
https://youtrack.jetbrains.com/issues/KT

Sharing
code
in
several
targets
with
the
hierarchical
project
structure
With the new hierarchical project structure support, you can share code among several platforms in a multiplatform project.

Previously, any code added to a multiplatform project could be placed either in a platform-specific source set, which is limited to one target and can't be reused by
any other platform, or in a common source set, like commonMain or commonTest, which is shared across all the platforms in the project. In the common source
set, you could only call a platform-specific API by using an expect declaration that needs platform-specific actual implementations.

This made it easy to share code on all platforms, but it was not so easy to share between only some of the targets, especially similar ones that could potentially
reuse a lot of the common logic and third-party APIs.

For example, in a typical multiplatform project targeting iOS, there are two iOS-related targets: one for iOS ARM64 devices, and the other for the x64 simulator.
They have separate platform-specific source sets, but in practice, there is rarely a need for different code for the device and simulator, and their dependencies are
much alike. So iOS-specific code could be shared between them.

Apparently, in this setup, it would be desirable to have a shared source set for two iOS targets, with Kotlin/Native code that could still directly call any of the APIs
that are common to both the iOS device and the simulator.

Code shared for iOS targets

Now you can do this with the hierarchical project structure support, which infers and adapts the API and language features available in each source set based on
which targets consume them.

For common combinations of targets, you can create a hierarchical structure with target shortcuts. For example, create two iOS targets and the shared source set
shown above with the ios() shortcut:

kotlin	{
				ios()	//	iOS	device	and	simulator	targets;	iosMain	and	iosTest	source	sets
}

For other combinations of targets, create a hierarchy manually by connecting the source sets with the dependsOn relation.

Hierarchical structure

Multiplatform projects require Gradle 6.0 or later.

290

Kotlin

kotlin{
				sourceSets	{
								val	desktopMain	by	creating	{
												dependsOn(commonMain)
								}
								val	linuxX64Main	by	getting	{
												dependsOn(desktopMain)
								}
								val	mingwX64Main	by	getting	{
												dependsOn(desktopMain)
								}
								val	macosX64Main	by	getting	{
												dependsOn(desktopMain)
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								desktopMain	{
												dependsOn(commonMain)
								}
								linuxX64Main	{
												dependsOn(desktopMain)
								}
								mingwX64Main	{
												dependsOn(desktopMain)
								}
								macosX64Main	{
												dependsOn(desktopMain)
								}
				}
}

Thanks to the hierarchical project structure, libraries can also provide common APIs for a subset of targets. Learn more about sharing code in libraries.

Leveraging
native
libs
in
the
hierarchical
structure
You can use platform-dependent libraries, such as Foundation, UIKit, and POSIX, in source sets shared among several native targets. This can help you share more
native code without being limited by platform-specific dependencies.

No additional steps are required – everything is done automatically. IntelliJ IDEA will help you detect common declarations that you can use in the shared code.

Learn more about usage of platform-dependent libraries.

Specifying
dependencies
only
once
From now on, instead of specifying dependencies on different variants of the same library in shared and platform-specific source sets where it is used, you should
specify a dependency only once in the shared source set.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
												}
								}
				}
}

Groovy

kotlin	{

291

				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
												}
								}
				}
}

Don't use kotlinx library artifact names with suffixes specifying the platform, such as -common, -native, or similar, as they are NOT supported anymore. Instead,
use the library base artifact name, which in the example above is kotlinx-coroutines-core.

However, the change doesn't currently affect:

The stdlib library – starting from Kotlin 1.4.0, the stdlib dependency is added automatically.

The kotlin.test library – you should still use test-common and test-annotations-common. These dependencies will be addressed later.

If you need a dependency only for a specific platform, you can still use platform-specific variants of standard and kotlinx libraries with such suffixes as -jvm or-js,
for example kotlinx-coroutines-core-jvm.

Learn more about configuring dependencies.

Gradle
project
improvements
Besides Gradle project features and improvements that are specific to Kotlin Multiplatform, Kotlin/JVM, Kotlin/Native, and Kotlin/JS, there are several changes
applicable to all Kotlin Gradle projects:

Dependency on the standard library is now added by default

Kotlin projects require a recent version of Gradle

Improved support for Kotlin Gradle DSL in the IDE

Dependency
on
the
standard
library
added
by
default
You no longer need to declare a dependency on the stdlib library in any Kotlin Gradle project, including a multiplatform one. The dependency is added by default.

The automatically added standard library will be the same version of the Kotlin Gradle plugin, since they have the same versioning.

For platform-specific source sets, the corresponding platform-specific variant of the library is used, while a common standard library is added to the rest. The Kotlin
Gradle plugin will select the appropriate JVM standard library depending on the kotlinOptions.jvmTarget compiler option of your Gradle build script.

Learn how to change the default behavior.

Minimum
Gradle
version
for
Kotlin
projects
To enjoy the new features in your Kotlin projects, update Gradle to the latest version. Multiplatform projects require Gradle 6.0 or later, while other Kotlin projects
work with Gradle 5.4 or later.

Improved
*.gradle.kts
support
in
the
IDE
In 1.4.0, we continued improving the IDE support for Gradle Kotlin DSL scripts (*.gradle.kts files). Here is what the new version brings:

Explicit loading of script configurations for better performance. Previously, the changes you make to the build script were loaded automatically in the
background. To improve the performance, we've disabled the automatic loading of build script configuration in 1.4.0. Now the IDE loads the changes only when
you explicitly apply them.

In Gradle versions earlier than 6.0, you need to manually load the script configuration by clicking Load Configuration in the editor.

292

https://gradle.org/releases/

*.gradle.kts – Load Configuration

In Gradle 6.0 and above, you can explicitly apply changes by clicking Load Gradle Changes or by reimporting the Gradle project.

We've added one more action in IntelliJ IDEA 2020.1 with Gradle 6.0 and above – Load Script Configurations, which loads changes to the script configurations
without updating the whole project. This takes much less time than reimporting the whole project.

*.gradle.kts – Load Script Changes and Load Gradle Changes

You should also Load Script Configurations for newly created scripts or when you open a project with new Kotlin plugin for the first time.

With Gradle 6.0 and above, you are now able to load all scripts at once as opposed to the previous implementation where they were loaded individually. Since
each request requires the Gradle configuration phase to be executed, this could be resource-intensive for large Gradle projects.

Currently, such loading is limited to build.gradle.kts and settings.gradle.kts files (please vote for the related issue). To enable highlighting for init.gradle.kts or
applied script plugins, use the old mechanism – adding them to standalone scripts. Configuration for that scripts will be loaded separately when you need it. You
can also enable auto-reload for such scripts.

*.gradle.kts – Add to standalone scripts

Better error reporting. Previously you could only see errors from the Gradle Daemon in separate log files. Now the Gradle Daemon returns all the information
about errors directly and shows it in the Build tool window. This saves you both time and effort.

Standard
library
Here is the list of the most significant changes to the Kotlin standard library in 1.4.0:

Common exception processing API

New functions for arrays and collections

293

https://github.com/gradle/gradle/issues/12640
https://docs.gradle.org/current/userguide/plugins.html#sec:script_plugins

Functions for string manipulations

Bit operations

Delegated properties improvements

Converting from KType to Java Type

Proguard configurations for Kotlin reflection

Improving the existing API

module-info descriptors for stdlib artifacts

Deprecations

Exclusion of the deprecated experimental coroutines

Common
exception
processing
API
The following API elements have been moved to the common library:

Throwable.stackTraceToString() extension function, which returns the detailed description of this throwable with its stack trace, and Throwable.printStackTrace(),
which prints this description to the standard error output.

Throwable.addSuppressed() function, which lets you specify the exceptions that were suppressed in order to deliver the exception, and the
Throwable.suppressedExceptions property, which returns a list of all the suppressed exceptions.

@Throws annotation, which lists exception types that will be checked when the function is compiled to a platform method (on JVM or native platforms).

New
functions
for
arrays
and
collections

Collections
In 1.4.0, the standard library includes a number of useful functions for working with collections:

setOfNotNull(), which makes a set consisting of all the non-null items among the provided arguments.

fun	main()	{
//sampleStart
				val	set	=	setOfNotNull(null,	1,	2,	0,	null)
				println(set)
//sampleEnd
}

shuffled() for sequences.

fun	main()	{
//sampleStart
				val	numbers	=	(0	until	50).asSequence()
				val	result	=	numbers.map	{	it	*	2	}.shuffled().take(5)
				println(result.toList())	//five	random	even	numbers	below	100
//sampleEnd
}

*Indexed() counterparts for onEach() and flatMap(). The operation that they apply to the collection elements has the element index as a parameter.

fun	main()	{
//sampleStart
				listOf("a",	"b",	"c",	"d").onEachIndexed	{
								index,	item	->	println(index.toString()	+	":"	+	item)
				}

			val	list	=	listOf("hello",	"kot",	"lin",	"world")
										val	kotlin	=	list.flatMapIndexed	{	index,	item	->
														if	(index	in	1..2)	item.toList()	else	emptyList()	
										}
//sampleEnd
										println(kotlin)
}

294

*OrNull() counterparts randomOrNull(), reduceOrNull(), and reduceIndexedOrNull(). They return null on empty collections.

fun	main()	{
//sampleStart
					val	empty	=	emptyList<Int>()
					empty.reduceOrNull	{	a,	b	->	a	+	b	}
					//empty.reduce	{	a,	b	->	a	+	b	}	//	Exception:	Empty	collection	can't	be	reduced.
//sampleEnd
}

runningFold(), its synonym scan(), and runningReduce() apply the given operation to the collection elements sequentially, similarly tofold() and reduce(); the
difference is that these new functions return the whole sequence of intermediate results.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(0,	1,	2,	3,	4,	5)
				val	runningReduceSum	=	numbers.runningReduce	{	sum,	item	->	sum	+	item	}
				val	runningFoldSum	=	numbers.runningFold(10)	{	sum,	item	->	sum	+	item	}
//sampleEnd
				println(runningReduceSum.toString())
				println(runningFoldSum.toString())
}

sumOf() takes a selector function and returns a sum of its values for all elements of a collection. sumOf() can produce sums of the types Int, Long, Double, UInt,
and ULong. On the JVM, BigInteger and BigDecimal are also available.

data	class	OrderItem(val	name:	String,	val	price:	Double,	val	count:	Int)

fun	main()	{
//sampleStart
				val	order	=	listOf<OrderItem>(
								OrderItem("Cake",	price	=	10.0,	count	=	1),
								OrderItem("Coffee",	price	=	2.5,	count	=	3),
								OrderItem("Tea",	price	=	1.5,	count	=	2))

				val	total	=	order.sumOf	{	it.price	*	it.count	}	//	Double
				val	count	=	order.sumOf	{	it.count	}	//	Int
//sampleEnd
				println("You've	ordered	$count	items	that	cost	$total	in	total")
}

The min() and max() functions have been renamed to minOrNull() and maxOrNull() to comply with the naming convention used across the Kotlin collections API.
An *OrNull suffix in the function name means that it returns null if the receiver collection is empty. The same applies to minBy(), maxBy(), minWith(), maxWith() –
in 1.4, they have *OrNull() synonyms.

The new minOf() and maxOf() extension functions return the minimum and the maximum value of the given selector function on the collection items.

data	class	OrderItem(val	name:	String,	val	price:	Double,	val	count:	Int)

fun	main()	{
//sampleStart
				val	order	=	listOf<OrderItem>(
								OrderItem("Cake",	price	=	10.0,	count	=	1),
								OrderItem("Coffee",	price	=	2.5,	count	=	3),
								OrderItem("Tea",	price	=	1.5,	count	=	2))
				val	highestPrice	=	order.maxOf	{	it.price	}
//sampleEnd
				println("The	most	expensive	item	in	the	order	costs	$highestPrice")
}

There are also minOfWith() and maxOfWith(), which take a Comparator as an argument, and *OrNull() versions of all four functions that return null on empty
collections.

New overloads for flatMap and flatMapTo let you use transformations with return types that don't match the receiver type, namely:

Transformations to Sequence on Iterable, Array, and Map

Transformations to Iterable on Sequence

fun	main()	{

295

//sampleStart
				val	list	=	listOf("kot",	"lin")
				val	lettersList	=	list.flatMap	{	it.asSequence()	}
				val	lettersSeq	=	list.asSequence().flatMap	{	it.toList()	}				
//sampleEnd
				println(lettersList)
				println(lettersSeq.toList())
}

removeFirst() and removeLast() shortcuts for removing elements from mutable lists, and *orNull() counterparts of these functions.

Arrays
To provide a consistent experience when working with different container types, we've also added new functions for arrays:

shuffle() puts the array elements in a random order.

onEach() performs the given action on each array element and returns the array itself.

associateWith() and associateWithTo() build maps with the array elements as keys.

reverse() for array subranges reverses the order of the elements in the subrange.

sortDescending() for array subranges sorts the elements in the subrange in descending order.

sort() and sortWith() for array subranges are now available in the common library.

fun	main()	{
//sampleStart
				var	language	=	""
				val	letters	=	arrayOf("k",	"o",	"t",	"l",	"i",	"n")
				val	fileExt	=	letters.onEach	{	language	+=	it	}
							.filterNot	{	it	in	"aeuio"	}.take(2)
							.joinToString(prefix	=	".",	separator	=	"")
				println(language)	//	"kotlin"
				println(fileExt)	//	".kt"

				letters.shuffle()
				letters.reverse(0,	3)
				letters.sortDescending(2,	5)
				println(letters.contentToString())	//	[k,	o,	t,	l,	i,	n]
//sampleEnd
}

Additionally, there are new functions for conversions between CharArray/ByteArray and String:

ByteArray.decodeToString() and String.encodeToByteArray()

CharArray.concatToString() and String.toCharArray()

fun	main()	{
//sampleStart
	val	str	=	"kotlin"
				val	array	=	str.toCharArray()
				println(array.concatToString())
//sampleEnd
}

ArrayDeque
We've also added the ArrayDeque class – an implementation of a double-ended queue. A double-ended queue lets you add or remove elements both at the
beginning or end of the queue in an amortized constant time. You can use a double-ended queue by default when you need a queue or a stack in your code.

fun	main()	{
				val	deque	=	ArrayDeque(listOf(1,	2,	3))

				deque.addFirst(0)
				deque.addLast(4)
				println(deque)	//	[0,	1,	2,	3,	4]

				println(deque.first())	//	0
				println(deque.last())	//	4

296

				deque.removeFirst()
				deque.removeLast()
				println(deque)	//	[1,	2,	3]
}

The ArrayDeque implementation uses a resizable array underneath: it stores the contents in a circular buffer, an Array, and resizes this Array only when it becomes
full.

Functions
for
string
manipulations
The standard library in 1.4.0 includes a number of improvements in the API for string manipulation:

StringBuilder has useful new extension functions: set(), setRange(), deleteAt(), deleteRange(), appendRange(), and others.

fun	main()	{
//sampleStart
				val	sb	=	StringBuilder("Bye	Kotlin	1.3.72")
				sb.deleteRange(0,	3)
				sb.insertRange(0,	"Hello",	0	,5)
				sb.set(15,	'4')
				sb.setRange(17,	19,	"0")
				print(sb.toString())
//sampleEnd
}

Some existing functions of StringBuilder are available in the common library. Among them are append(), insert(), substring(), setLength(), and more.

New functions Appendable.appendLine() and StringBuilder.appendLine() have been added to the common library. They replace the JVM-only appendln()
functions of these classes.

fun	main()	{
//sampleStart
				println(buildString	{
								appendLine("Hello,")
								appendLine("world")
				})
//sampleEnd
}

Bit
operations
New functions for bit manipulations:

countOneBits()

countLeadingZeroBits()

countTrailingZeroBits()

takeHighestOneBit()

takeLowestOneBit()

rotateLeft() and rotateRight() (experimental)

fun	main()	{
//sampleStart
				val	number	=	"1010000".toInt(radix	=	2)
				println(number.countOneBits())
				println(number.countTrailingZeroBits())
				println(number.takeHighestOneBit().toString(2))
//sampleEnd
}

Delegated
properties
improvements
In 1.4.0, we have added new features to improve your experience with delegated properties in Kotlin:

Now a property can be delegated to another property.

297

A new interface PropertyDelegateProvider helps create delegate providers in a single declaration.

ReadWriteProperty now extends ReadOnlyProperty so you can use both of them for read-only properties.

Aside from the new API, we've made some optimizations that reduce the resulting bytecode size. These optimizations are described in this blog post.

Learn more about delegated properties.

Converting
from
KType
to
Java
Type
A new extension property KType.javaType (currently experimental) in the stdlib helps you obtain a java.lang.reflect.Type from a Kotlin type without using the whole
kotlin-reflect dependency.

import	kotlin.reflect.javaType
import	kotlin.reflect.typeOf

@OptIn(ExperimentalStdlibApi::class)
inline	fun	<reified	T>	accessReifiedTypeArg()	{
			val	kType	=	typeOf<T>()
			println("Kotlin	type:	$kType")
			println("Java	type:	${kType.javaType}")
}

@OptIn(ExperimentalStdlibApi::class)
fun	main()	{
			accessReifiedTypeArg<String>()
			//	Kotlin	type:	kotlin.String
			//	Java	type:	class	java.lang.String
		
			accessReifiedTypeArg<List<String>>()
			//	Kotlin	type:	kotlin.collections.List<kotlin.String>
			//	Java	type:	java.util.List<java.lang.String>
}

Proguard
configurations
for
Kotlin
reflection
Starting from 1.4.0, we have embedded Proguard/R8 configurations for Kotlin Reflection in kotlin-reflect.jar. With this in place, most Android projects using R8 or
Proguard should work with kotlin-reflect without needing any additional configuration. You no longer need to copy-paste the Proguard rules for kotlin-reflect
internals. But note that you still need to explicitly list all the APIs you're going to reflect on.

Improving
the
existing
API
Several functions now work on null receivers, for example:

toBoolean() on strings

contentEquals(), contentHashcode(), contentToString() on arrays

NaN, NEGATIVE_INFINITY, and POSITIVE_INFINITY in Double and Float are now defined as const, so you can use them as annotation arguments.

New constants SIZE_BITS and SIZE_BYTES in Double and Float contain the number of bits and bytes used to represent an instance of the type in binary form.

The maxOf() and minOf() top-level functions can accept a variable number of arguments (vararg).

module-info
descriptors
for
stdlib
artifacts
Kotlin 1.4.0 adds module-info.java module information to default standard library artifacts. This lets you use them with jlink tool, which generates custom Java
runtime images containing only the platform modules that are required for your app. You could already use jlink with Kotlin standard library artifacts, but you had to
use separate artifacts to do so – the ones with the "modular" classifier – and the whole setup wasn't straightforward.
In Android, make sure you use the Android Gradle plugin version 3.2 or higher, which can correctly process jar files with module-info.

Deprecations

toShort() and toByte() of Double and Float
We've deprecated the functions toShort() and toByte() on Double and Float because they could lead to unexpected results because of the narrow value range and
smaller variable size.

298

https://blog.jetbrains.com/kotlin/2019/12/what-to-expect-in-kotlin-1-4-and-beyond/#delegated-properties
https://docs.oracle.com/en/java/javase/11/tools/jlink.html

To convert floating-point numbers to Byte or Short, use the two-step conversion: first, convert them to Int, and then convert them again to the target type.

contains(), indexOf(), and lastIndexOf() on floating-point arrays
We've deprecated the contains(), indexOf(), and lastIndexOf() extension functions of FloatArray and DoubleArray because they use the IEEE 754 standard equality,
which contradicts the total order equality in some corner cases. See this issue for details.

min() and max() collection functions
We've deprecated the min() and max() collection functions in favor of minOrNull() and maxOrNull(), which more properly reflect their behavior – returning null on
empty collections. See this issue for details.

Exclusion
of
the
deprecated
experimental
coroutines
The kotlin.coroutines.experimental API was deprecated in favor of kotlin.coroutines in 1.3.0. In 1.4.0, we're completing the deprecation cycle for
kotlin.coroutines.experimental by removing it from the standard library. For those who still use it on the JVM, we've provided a compatibility artifact kotlin-
coroutines-experimental-compat.jar with all the experimental coroutines APIs. We've published it to Maven, and we include it in the Kotlin distribution alongside the
standard library.

Stable
JSON
serialization
With Kotlin 1.4.0, we are shipping the first stable version of kotlinx.serialization - 1.0.0-RC. Now we are pleased to declare the JSON serialization API in kotlinx-
serialization-core (previously known as kotlinx-serialization-runtime) stable. Libraries for other serialization formats remain experimental, along with some advanced
parts of the core library.

We have significantly reworked the API for JSON serialization to make it more consistent and easier to use. From now on, we'll continue developing the JSON
serialization API in a backward-compatible manner. However, if you have used previous versions of it, you'll need to rewrite some of your code when migrating to
1.0.0-RC. To help you with this, we also offer the Kotlin Serialization Guide – the complete set of documentation for kotlinx.serialization. It will guide you through the
process of using the most important features and it can help you address any issues that you might face.

Scripting
and
REPL
In 1.4.0, scripting in Kotlin benefits from a number of functional and performance improvements along with other updates. Here are some of the key changes:

New dependencies resolution API

New REPL API

Compiled scripts cache

Artifacts renaming

To help you become more familiar with scripting in Kotlin, we've prepared a project with examples. It contains examples of the standard scripts (*.main.kts) and
examples of uses of the Kotlin Scripting API and custom script definitions. Please give it a try and share your feedback using our issue tracker.

New
dependencies
resolution
API
In 1.4.0, we've introduced a new API for resolving external dependencies (such as Maven artifacts), along with implementations for it. This API is published in the
new artifacts kotlin-scripting-dependencies and kotlin-scripting-dependencies-maven. The previous dependency resolution functionality in kotlin-script-util library is
now deprecated.

New
REPL
API
The new experimental REPL API is now a part of the Kotlin Scripting API. There are also several implementations of it in the published artifacts, and some have
advanced functionality, such as code completion. We use this API in the Kotlin Jupyter kernel and now you can try it in your own custom shells and REPLs.

Compiled
scripts
cache
The Kotlin Scripting API now provides the ability to implement a compiled scripts cache, significantly speeding up subsequent executions of unchanged scripts.

Note: kotlinx-serialization 1.0.0-RC only works with Kotlin compiler 1.4. Earlier compiler versions are not compatible.

299

https://en.wikipedia.org/wiki/IEEE_754
https://youtrack.jetbrains.com/issue/KT-28753
https://youtrack.jetbrains.com/issue/KT-38854
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization/blob/master/docs/serialization-guide.md
https://github.com/Kotlin/kotlin-script-examples
https://youtrack.jetbrains.com/issues/KT
https://blog.jetbrains.com/kotlin/2020/05/kotlin-kernel-for-jupyter-notebook-v0-8/

Our default advanced script implementation kotlin-main-kts already has its own cache.

Artifacts
renaming
In order to avoid confusion about artifact names, we've renamed kotlin-scripting-jsr223-embeddable and kotlin-scripting-jvm-host-embeddable to just kotlin-
scripting-jsr223 and kotlin-scripting-jvm-host. These artifacts depend on the kotlin-compiler-embeddable artifact, which shades the bundled third-party libraries to
avoid usage conflicts. With this renaming, we're making the usage of kotlin-compiler-embeddable (which is safer in general) the default for scripting artifacts. If, for
some reason, you need artifacts that depend on the unshaded kotlin-compiler, use the artifact versions with the -unshaded suffix, such as kotlin-scripting-jsr223-
unshaded. Note that this renaming affects only the scripting artifacts that are supposed to be used directly; names of other artifacts remain unchanged.

Migrating
to
Kotlin
1.4.0
The Kotlin plugin's migration tools help you migrate your projects from earlier versions of Kotlin to 1.4.0.

Just change the Kotlin version to 1.4.0 and re-import your Gradle or Maven project. The IDE will then ask you about migration.

If you agree, it will run migration code inspections that will check your code and suggest corrections for anything that doesn't work or that is not recommended in
1.4.0.

Run migration

Code inspections have different severity levels, to help you decide which suggestions to accept and which to ignore.

Migration inspections

Kotlin 1.4.0 is a feature release and therefore can bring incompatible changes to the language. Find the detailed list of such changes in the Compatibility Guide for
Kotlin 1.4.

What's
new
in
Kotlin
1.3
Released: 29 October 2018

Coroutines
release
After some long and extensive battle testing, coroutines are now released! It means that from Kotlin 1.3 the language support and the API are fully stable. Check out
the new coroutines overview page.

300

https://www.jetbrains.com/help/idea/configuring-inspection-severities.html

Kotlin 1.3 introduces callable references on suspend-functions and support of coroutines in the reflection API.

Kotlin/Native
Kotlin 1.3 continues to improve and polish the Native target. See the Kotlin/Native overview for details.

Multiplatform
projects
In 1.3, we've completely reworked the model of multiplatform projects in order to improve expressiveness and flexibility, and to make sharing common code easier.
Also, Kotlin/Native is now supported as one of the targets!

The key differences to the old model are:

In the old model, common and platform-specific code needed to be placed in separate modules, linked by expectedBy dependencies. Now, common and
platform-specific code is placed in different source roots of the same module, making projects easier to configure.

There is now a large number of preset platform configurations for different supported platforms.

The dependencies configuration has been changed; dependencies are now specified separately for each source root.

Source sets can now be shared between an arbitrary subset of platforms (for example, in a module that targets JS, Android and iOS, you can have a source set
that is shared only between Android and iOS).

Publishing multiplatform libraries is now supported.

For more information, please refer to the multiplatform programming documentation.

Contracts
The Kotlin compiler does extensive static analysis to provide warnings and reduce boilerplate. One of the most notable features is smartcasts — with the ability to
perform a cast automatically based on the performed type checks:

fun	foo(s:	String?)	{
				if	(s	!=	null)	s.length	//	Compiler	automatically	casts	's'	to	'String'
}

However, as soon as these checks are extracted in a separate function, all the smartcasts immediately disappear:

fun	String?.isNotNull():	Boolean	=	this	!=	null

fun	foo(s:	String?)	{
				if	(s.isNotNull())	s.length	//	No	smartcast	:(
}

To improve the behavior in such cases, Kotlin 1.3 introduces experimental mechanism called contracts.

Contracts allow a function to explicitly describe its behavior in a way which is understood by the compiler. Currently, two wide classes of cases are supported:

Improving smartcasts analysis by declaring the relation between a function's call outcome and the passed arguments values:

fun	require(condition:	Boolean)	{
				//	This	is	a	syntax	form	which	tells	the	compiler:
				//	"if	this	function	returns	successfully,	then	the	passed	'condition'	is	true"
				contract	{	returns()	implies	condition	}
				if	(!condition)	throw	IllegalArgumentException(...)
}

fun	foo(s:	String?)	{
				require(s	is	String)
				//	s	is	smartcast	to	'String'	here,	because	otherwise
				//	'require'	would	have	thrown	an	exception
}

Improving the variable initialization analysis in the presence of higher-order functions:

301

fun	synchronize(lock:	Any?,	block:	()	->	Unit)	{
				//	It	tells	the	compiler:
				//	"This	function	will	invoke	'block'	here	and	now,	and	exactly	one	time"
				contract	{	callsInPlace(block,	EXACTLY_ONCE)	}
}

fun	foo()	{
				val	x:	Int
				synchronize(lock)	{
								x	=	42	//	Compiler	knows	that	lambda	passed	to	'synchronize'	is	called
															//	exactly	once,	so	no	reassignment	is	reported
				}
				println(x)	//	Compiler	knows	that	lambda	will	be	definitely	called,	performing
															//	initialization,	so	'x'	is	considered	to	be	initialized	here
}

Contracts
in
stdlib
stdlib already makes use of contracts, which leads to improvements in the analyses described above. This part of contracts is stable, meaning that you can benefit
from the improved analysis right now without any additional opt-ins:

//sampleStart
fun	bar(x:	String?)	{
				if	(!x.isNullOrEmpty())	{
								println("length	of	'$x'	is	${x.length}")	//	Yay,	smartcast	to	not-null!
				}
}
//sampleEnd
fun	main()	{
				bar(null)
				bar("42")
}

Custom
contracts
It is possible to declare contracts for your own functions, but this feature is experimental, as the current syntax is in a state of early prototype and will most
probably be changed. Also please note that currently the Kotlin compiler does not verify contracts, so it's the responsibility of the programmer to write correct and
sound contracts.

Custom contracts are introduced by a call to contract stdlib function, which provides DSL scope:

fun	String?.isNullOrEmpty():	Boolean	{
				contract	{
								returns(false)	implies	(this@isNullOrEmpty	!=	null)
				}
				return	this	==	null	||	isEmpty()
}

See the details on the syntax as well as the compatibility notice in the KEEP.

Capturing
when
subject
in
a
variable
In Kotlin 1.3, it is now possible to capture the when subject into a variable:

fun	Request.getBody()	=
								when	(val	response	=	executeRequest())	{
												is	Success	->	response.body
												is	HttpError	->	throw	HttpException(response.status)
								}

While it was already possible to extract this variable just before when, val in when has its scope properly restricted to the body of when, and so preventing
namespace pollution. See the full documentation on when here.

@JvmStatic
and
@JvmField
in
companions
of
interfaces
With Kotlin 1.3, it is possible to mark members of a companion object of interfaces with annotations @JvmStatic and @JvmField. In the classfile, such members will

302

https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md

be lifted to the corresponding interface and marked as static.

For example, the following Kotlin code:

interface	Foo	{
				companion	object	{
								@JvmField
								val	answer:	Int	=	42

								@JvmStatic
								fun	sayHello()	{
												println("Hello,	world!")
								}
				}
}

It is equivalent to this Java code:

interface	Foo	{
				public	static	int	answer	=	42;
				public	static	void	sayHello()	{
								//	...
				}
}

Nested
declarations
in
annotation
classes
In Kotlin 1.3, it is possible for annotations to have nested classes, interfaces, objects, and companions:

annotation	class	Foo	{
				enum	class	Direction	{	UP,	DOWN,	LEFT,	RIGHT	}
				
				annotation	class	Bar

				companion	object	{
								fun	foo():	Int	=	42
								val	bar:	Int	=	42
				}
}

Parameterless
main
By convention, the entry point of a Kotlin program is a function with a signature like main(args: Array<String>), where args represent the command-line arguments
passed to the program. However, not every application supports command-line arguments, so this parameter often ends up not being used.

Kotlin 1.3 introduced a simpler form of main which takes no parameters. Now "Hello, World" in Kotlin is 19 characters shorter!

fun	main()	{
				println("Hello,	world!")
}

Functions
with
big
arity
In Kotlin, functional types are represented as generic classes taking a different number of parameters: Function0<R>, Function1<P0, R>, Function2<P0, P1, R>, ...
This approach has a problem in that this list is finite, and it currently ends with Function22.

Kotlin 1.3 relaxes this limitation and adds support for functions with bigger arity:

fun	trueEnterpriseComesToKotlin(block:	(Any,	Any,	...	/*	42	more	*/,	Any)	->	Any)	{
				block(Any(),	Any(),	...,	Any())
}

303

Progressive
mode
Kotlin cares a lot about stability and backward compatibility of code: Kotlin compatibility policy says that breaking changes (e.g., a change which makes the code
that used to compile fine, not compile anymore) can be introduced only in the major releases (1.2, 1.3, etc.).

We believe that a lot of users could use a much faster cycle where critical compiler bug fixes arrive immediately, making the code more safe and correct. So, Kotlin
1.3 introduces the progressive compiler mode, which can be enabled by passing the argument -progressive to the compiler.

In the progressive mode, some fixes in language semantics can arrive immediately. All these fixes have two important properties:

They preserve backward compatibility of source code with older compilers, meaning that all the code which is compilable by the progressive compiler will be
compiled fine by non-progressive one.

They only make code safer in some sense — e.g., some unsound smartcast can be forbidden, behavior of the generated code may be changed to be more
predictable/stable, and so on.

Enabling the progressive mode can require you to rewrite some of your code, but it shouldn't be too much — all the fixes enabled under progressive are carefully
handpicked, reviewed, and provided with tooling migration assistance. We expect that the progressive mode will be a nice choice for any actively maintained
codebases which are updated to the latest language versions quickly.

Inline
classes

Kotlin 1.3 introduces a new kind of declaration — inline class. Inline classes can be viewed as a restricted version of the usual classes, in particular, inline classes
must have exactly one property:

inline	class	Name(val	s:	String)

The Kotlin compiler will use this restriction to aggressively optimize runtime representation of inline classes and substitute their instances with the value of the
underlying property where possible removing constructor calls, GC pressure, and enabling other optimizations:

inline	class	Name(val	s:	String)
//sampleStart
fun	main()	{
				//	In	the	next	line	no	constructor	call	happens,	and
				//	at	the	runtime	'name'	contains	just	string	"Kotlin"
				val	name	=	Name("Kotlin")
				println(name.s)	
}
//sampleEnd

See reference for inline classes for details.

Unsigned
integers

Kotlin 1.3 introduces unsigned integer types:

kotlin.UByte: an unsigned 8-bit integer, ranges from 0 to 255

kotlin.UShort: an unsigned 16-bit integer, ranges from 0 to 65535

kotlin.UInt: an unsigned 32-bit integer, ranges from 0 to 2^32 - 1

kotlin.ULong: an unsigned 64-bit integer, ranges from 0 to 2^64 - 1

Inline classes are in Alpha. They may change incompatibly and require manual migration in the future. We appreciate your feedback on it in YouTrack. See
details in the reference.

Unsigned integers are in Beta. Their implementation is almost stable, but migration steps may be required in the future. We'll do our best to minimize any
changes you will have to make.

304

https://youtrack.jetbrains.com/issues/KT

Most of the functionality of signed types are supported for unsigned counterparts too:

fun	main()	{
//sampleStart
//	You	can	define	unsigned	types	using	literal	suffixes
val	uint	=	42u	
val	ulong	=	42uL
val	ubyte:	UByte	=	255u

//	You	can	convert	signed	types	to	unsigned	and	vice	versa	via	stdlib	extensions:
val	int	=	uint.toInt()
val	byte	=	ubyte.toByte()
val	ulong2	=	byte.toULong()

//	Unsigned	types	support	similar	operators:
val	x	=	20u	+	22u
val	y	=	1u	shl	8
val	z	=	"128".toUByte()
val	range	=	1u..5u
//sampleEnd
println("ubyte:	$ubyte,	byte:	$byte,	ulong2:	$ulong2")
println("x:	$x,	y:	$y,	z:	$z,	range:	$range")
}

See reference for details.

@JvmDefault

Kotlin targets a wide range of the Java versions, including Java 6 and Java 7, where default methods in the interfaces are not allowed. For your convenience, the
Kotlin compiler works around that limitation, but this workaround isn't compatible with the default methods, introduced in Java 8.

This could be an issue for Java-interoperability, so Kotlin 1.3 introduces the @JvmDefault annotation. Methods annotated with this annotation will be generated as
default methods for JVM:

interface	Foo	{
				//	Will	be	generated	as	'default'	method
				@JvmDefault
				fun	foo():	Int	=	42
}

Standard
library

Multiplatform
random
Prior to Kotlin 1.3, there was no uniform way to generate random numbers on all platforms — we had to resort to platform-specific solutions like java.util.Random
on JVM. This release fixes this issue by introducing the class kotlin.random.Random, which is available on all platforms:

import	kotlin.random.Random

fun	main()	{
//sampleStart
				val	number	=	Random.nextInt(42)		//	number	is	in	range	[0,	limit)
				println(number)
//sampleEnd
}

@JvmDefault is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We appreciate your feedback on it in
YouTrack.

Warning! Annotating your API with @JvmDefault has serious implications on binary compatibility. Make sure to carefully read the reference page before
using @JvmDefault in production.

305

https://youtrack.jetbrains.com/issues/KT
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-default/index.html

isNullOrEmpty
and
orEmpty
extensions
isNullOrEmpty and orEmpty extensions for some types are already present in stdlib. The first one returns true if the receiver is null or empty, and the second one
falls back to an empty instance if the receiver is null. Kotlin 1.3 provides similar extensions on collections, maps, and arrays of objects.

Copy
elements
between
two
existing
arrays
The array.copyInto(targetArray, targetOffset, startIndex, endIndex) functions for the existing array types, including the unsigned arrays, make it easier to implement
array-based containers in pure Kotlin.

fun	main()	{
//sampleStart
				val	sourceArr	=	arrayOf("k",	"o",	"t",	"l",	"i",	"n")
				val	targetArr	=	sourceArr.copyInto(arrayOfNulls<String>(6),	3,	startIndex	=	3,	endIndex	=	6)
				println(targetArr.contentToString())
				
				sourceArr.copyInto(targetArr,	startIndex	=	0,	endIndex	=	3)
				println(targetArr.contentToString())
//sampleEnd
}

associateWith
It is quite a common situation to have a list of keys and want to build a map by associating each of these keys with some value. It was possible to do it before with
the associate { it to getValue(it) } function, but now we're introducing a more efficient and easy to explore alternative: keys.associateWith { getValue(it) }.

fun	main()	{
//sampleStart
				val	keys	=	'a'..'f'
				val	map	=	keys.associateWith	{	it.toString().repeat(5).capitalize()	}
				map.forEach	{	println(it)	}
//sampleEnd
}

ifEmpty
and
ifBlank
functions
Collections, maps, object arrays, char sequences, and sequences now have an ifEmpty function, which allows specifying a fallback value that will be used instead
of the receiver if it is empty:

fun	main()	{
//sampleStart
				fun	printAllUppercase(data:	List<String>)	{
								val	result	=	data
								.filter	{	it.all	{	c	->	c.isUpperCase()	}	}
												.ifEmpty	{	listOf("<no	uppercase>")	}
								result.forEach	{	println(it)	}
				}
				
				printAllUppercase(listOf("foo",	"Bar"))
				printAllUppercase(listOf("FOO",	"BAR"))
//sampleEnd
}

Char sequences and strings in addition have an ifBlank extension that does the same thing as ifEmpty but checks for a string being all whitespace instead of
empty.

fun	main()	{
//sampleStart
				val	s	=	"				\n"
				println(s.ifBlank	{	"<blank>"	})
				println(s.ifBlank	{	null	})
//sampleEnd
}

Sealed
classes
in
reflection
We've added a new API to kotlin-reflect that can be used to enumerate all the direct subtypes of a sealed class, namely KClass.sealedSubclasses.

306

Smaller
changes

Boolean type now has companion.

Any?.hashCode() extension that returns 0 for null.

Char now provides MIN_VALUE and MAX_VALUE constants.

SIZE_BYTES and SIZE_BITS constants in primitive type companions.

Tooling

Code
style
support
in
IDE
Kotlin 1.3 introduces support for the recommended code style in IntelliJ IDEA. Check out this page for the migration guidelines.

kotlinx.serialization
kotlinx.serialization is a library which provides multiplatform support for (de)serializing objects in Kotlin. Previously, it was a separate project, but since Kotlin 1.3, it
ships with the Kotlin compiler distribution on par with the other compiler plugins. The main difference is that you don't need to manually watch out for the
Serialization IDE Plugin being compatible with the Kotlin IDE plugin version you're using: now the Kotlin IDE plugin already includes serialization!

See here for details.

Scripting
update

Kotlin 1.3 continues to evolve and improve scripting API, introducing some experimental support for scripts customization, such as adding external properties,
providing static or dynamic dependencies, and so on.

For additional details, please consult the KEEP-75.

Scratches
support
Kotlin 1.3 introduces support for runnable Kotlin scratch files. Scratch file is a kotlin script file with the .kts extension that you can run and get evaluation results
directly in the editor.

Consult the general Scratches documentation for details.

What's
new
in
Kotlin
1.2
Released: 28 November 2017

Table
of
contents
Multiplatform projects

Other language features

Standard library

JVM backend

JavaScript backend

Even though kotlinx.serialization now ships with the Kotlin Compiler distribution, it is still considered to be an experimental feature in Kotlin 1.3.

Scripting is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We appreciate your feedback on it in YouTrack.

307

https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization#current-project-status
https://youtrack.jetbrains.com/issues/KT
https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md
https://www.jetbrains.com/help/idea/scratches.html

Multiplatform
projects
(experimental)
Multiplatform projects are a new experimental feature in Kotlin 1.2, allowing you to reuse code between target platforms supported by Kotlin – JVM, JavaScript, and
(in the future) Native. In a multiplatform project, you have three kinds of modules:

A common module contains code that is not specific to any platform, as well as declarations without implementation of platform-dependent APIs.

A platform module contains implementations of platform-dependent declarations in the common module for a specific platform, as well as other platform-
dependent code.

A regular module targets a specific platform and can either be a dependency of platform modules or depend on platform modules.

When you compile a multiplatform project for a specific platform, the code for both the common and platform-specific parts is generated.

A key feature of the multiplatform project support is the possibility to express dependencies of common code on platform-specific parts through expected and
actual declarations. An expected declaration specifies an API (class, interface, annotation, top-level declaration etc.). An actual declaration is either a platform-
dependent implementation of the API or a type alias referring to an existing implementation of the API in an external library. Here's an example:

In the common code:

//	expected	platform-specific	API:
expect	fun	hello(world:	String):	String

fun	greet()	{
				//	usage	of	the	expected	API:
				val	greeting	=	hello("multiplatform	world")
				println(greeting)
}

expect	class	URL(spec:	String)	{
				open	fun	getHost():	String
				open	fun	getPath():	String
}

In the JVM platform code:

actual	fun	hello(world:	String):	String	=
				"Hello,	$world,	on	the	JVM	platform!"

//	using	existing	platform-specific	implementation:
actual	typealias	URL	=	java.net.URL

See the multiplatform programming documentation for details and steps to build a multiplatform project.

Other
language
features

Array
literals
in
annotations
Starting with Kotlin 1.2, array arguments for annotations can be passed with the new array literal syntax instead of the arrayOf function:

@CacheConfig(cacheNames	=	["books",	"default"])
public	class	BookRepositoryImpl	{
				//	...
}

The array literal syntax is constrained to annotation arguments.

Lateinit
top-level
properties
and
local
variables
The lateinit modifier can now be used on top-level properties and local variables. The latter can be used, for example, when a lambda passed as a constructor
argument to one object refers to another object which has to be defined later:

class	Node<T>(val	value:	T,	val	next:	()	->	Node<T>)

fun	main(args:	Array<String>)	{
				//	A	cycle	of	three	nodes:
				lateinit	var	third:	Node<Int>

308

				val	second	=	Node(2,	next	=	{	third	})
				val	first	=	Node(1,	next	=	{	second	})

				third	=	Node(3,	next	=	{	first	})

				val	nodes	=	generateSequence(first)	{	it.next()	}
				println("Values	in	the	cycle:	${nodes.take(7).joinToString	{	it.value.toString()	}},	...")
}

Check
whether
a
lateinit
var
is
initialized
You can now check whether a lateinit var has been initialized using isInitialized on the property reference:

class	Foo	{
				lateinit	var	lateinitVar:	String

				fun	initializationLogic()	{
//sampleStart
								println("isInitialized	before	assignment:	"	+	this::lateinitVar.isInitialized)
								lateinitVar	=	"value"
								println("isInitialized	after	assignment:	"	+	this::lateinitVar.isInitialized)
//sampleEnd
				}
}

fun	main(args:	Array<String>)	{
	Foo().initializationLogic()
}

Inline
functions
with
default
functional
parameters
Inline functions are now allowed to have default values for their inlined functional parameters:

//sampleStart
inline	fun	<E>	Iterable<E>.strings(transform:	(E)	->	String	=	{	it.toString()	})	=
				map	{	transform(it)	}

val	defaultStrings	=	listOf(1,	2,	3).strings()
val	customStrings	=	listOf(1,	2,	3).strings	{	"($it)"	}	
//sampleEnd

fun	main(args:	Array<String>)	{
				println("defaultStrings	=	$defaultStrings")
				println("customStrings	=	$customStrings")
}

Information
from
explicit
casts
is
used
for
type
inference
The Kotlin compiler can now use information from type casts in type inference. If you're calling a generic method that returns a type parameter T and casting the
return value to a specific type Foo, the compiler now understands that T for this call needs to be bound to the type Foo.

This is particularly important for Android developers, since the compiler can now correctly analyze generic findViewById calls in Android API level 26:

val	button	=	findViewById(R.id.button)	as	Button

Smart
cast
improvements
When a variable is assigned from a safe call expression and checked for null, the smart cast is now applied to the safe call receiver as well:

fun	countFirst(s:	Any):	Int	{
//sampleStart
				val	firstChar	=	(s	as?	CharSequence)?.firstOrNull()
				if	(firstChar	!=	null)
				return	s.count	{	it	==	firstChar	}	//	s:	Any	is	smart	cast	to	CharSequence

				val	firstItem	=	(s	as?	Iterable<*>)?.firstOrNull()
				if	(firstItem	!=	null)
				return	s.count	{	it	==	firstItem	}	//	s:	Any	is	smart	cast	to	Iterable<*>
//sampleEnd

309

				return	-1
}

fun	main(args:	Array<String>)	{
		val	string	=	"abacaba"
		val	countInString	=	countFirst(string)
		println("called	on	\"$string\":	$countInString")

		val	list	=	listOf(1,	2,	3,	1,	2)
		val	countInList	=	countFirst(list)
		println("called	on	$list:	$countInList")
}

Also, smart casts in a lambda are now allowed for local variables that are only modified before the lambda:

fun	main(args:	Array<String>)	{
//sampleStart
				val	flag	=	args.size	==	0
				var	x:	String?	=	null
				if	(flag)	x	=	"Yahoo!"

				run	{
								if	(x	!=	null)	{
												println(x.length)	//	x	is	smart	cast	to	String
								}
				}
//sampleEnd
}

Support
for
::foo
as
a
shorthand
for
this::foo
A bound callable reference to a member of this can now be written without explicit receiver, ::foo instead of this::foo. This also makes callable references more
convenient to use in lambdas where you refer to a member of the outer receiver.

Breaking
change:
sound
smart
casts
after
try
blocks
Earlier, Kotlin used assignments made inside a try block for smart casts after the block, which could break type- and null-safety and lead to runtime failures. This
release fixes this issue, making the smart casts more strict, but breaking some code that relied on such smart casts.

To switch to the old smart casts behavior, pass the fallback flag -Xlegacy-smart-cast-after-try as the compiler argument. It will become deprecated in Kotlin 1.3.

Deprecation:
data
classes
overriding
copy
When a data class derived from a type that already had the copy function with the same signature, the copy implementation generated for the data class used the
defaults from the supertype, leading to counter-intuitive behavior, or failed at runtime if there were no default parameters in the supertype.

Inheritance that leads to a copy conflict has become deprecated with a warning in Kotlin 1.2 and will be an error in Kotlin 1.3.

Deprecation:
nested
types
in
enum
entries
Inside enum entries, defining a nested type that is not an inner class has been deprecated due to issues in the initialization logic. This causes a warning in Kotlin 1.2
and will become an error in Kotlin 1.3.

Deprecation:
single
named
argument
for
vararg
For consistency with array literals in annotations, passing a single item for a vararg parameter in the named form (foo(items = i)) has been deprecated. Please use
the spread operator with the corresponding array factory functions:

foo(items	=	*arrayOf(1))

There is an optimization that removes redundant arrays creation in such cases, which prevents performance degradation. The single-argument form produces
warnings in Kotlin 1.2 and is to be dropped in Kotlin 1.3.

Deprecation:
inner
classes
of
generic
classes
extending
Throwable
Inner classes of generic types that inherit from Throwable could violate type-safety in a throw-catch scenario and thus have been deprecated, with a warning in
Kotlin 1.2 and an error in Kotlin 1.3.

310

Deprecation:
mutating
backing
field
of
a
read-only
property
Mutating the backing field of a read-only property by assigning field = ... in the custom getter has been deprecated, with a warning in Kotlin 1.2 and an error in
Kotlin 1.3.

Standard
library

Kotlin
standard
library
artifacts
and
split
packages
The Kotlin standard library is now fully compatible with the Java 9 module system, which forbids split packages (multiple jar files declaring classes in the same
package). In order to support that, new artifacts kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 are introduced, which replace the old kotlin-stdlib-jre7 and kotlin-stdlib-jre8.

The declarations in the new artifacts are visible under the same package names from the Kotlin point of view, but have different package names for Java. Therefore,
switching to the new artifacts will not require any changes to your source code.

Another change made to ensure compatibility with the new module system is removing the deprecated declarations in the kotlin.reflect package from the kotlin-
reflect library. If you were using them, you need to switch to using the declarations in the kotlin.reflect.full package, which is supported since Kotlin 1.1.

windowed,
chunked,
zipWithNext
New extensions for Iterable<T>, Sequence<T>, and CharSequence cover such use cases as buffering or batch processing (chunked), sliding window and
computing sliding average (windowed) , and processing pairs of subsequent items (zipWithNext):

fun	main(args:	Array<String>)	{
//sampleStart
				val	items	=	(1..9).map	{	it	*	it	}

				val	chunkedIntoLists	=	items.chunked(4)
				val	points3d	=	items.chunked(3)	{	(x,	y,	z)	->	Triple(x,	y,	z)	}
				val	windowed	=	items.windowed(4)
				val	slidingAverage	=	items.windowed(4)	{	it.average()	}
				val	pairwiseDifferences	=	items.zipWithNext	{	a,	b	->	b	-	a	}
//sampleEnd

				println("items:	$items\n")

				println("chunked	into	lists:	$chunkedIntoLists")
				println("3D	points:	$points3d")
				println("windowed	by	4:	$windowed")
				println("sliding	average	by	4:	$slidingAverage")
				println("pairwise	differences:	$pairwiseDifferences")
}

fill,
replaceAll,
shuffle/shuffled
A set of extension functions was added for manipulating lists: fill, replaceAll and shuffle for MutableList, and shuffled for read-only List:

fun	main(args:	Array<String>)	{
//sampleStart
				val	items	=	(1..5).toMutableList()
				
				items.shuffle()
				println("Shuffled	items:	$items")
				
				items.replaceAll	{	it	*	2	}
				println("Items	doubled:	$items")
				
				items.fill(5)
				println("Items	filled	with	5:	$items")
//sampleEnd
}

Math
operations
in
kotlin-stdlib
Satisfying the longstanding request, Kotlin 1.2 adds the kotlin.math API for math operations that is common for JVM and JS and contains the following:

311

Constants: PI and E

Trigonometric: cos, sin, tan and inverse of them: acos, asin, atan, atan2

Hyperbolic: cosh, sinh, tanh and their inverse: acosh, asinh, atanh

Exponentation: pow (an extension function), sqrt, hypot, exp, expm1

Logarithms: log, log2, log10, ln, ln1p

Rounding:

ceil, floor, truncate, round (half to even) functions

roundToInt, roundToLong (half to integer) extension functions

Sign and absolute value:

abs and sign functions

absoluteValue and sign extension properties

withSign extension function

max and min of two values

Binary representation:

ulp extension property

nextUp, nextDown, nextTowards extension functions

toBits, toRawBits, Double.fromBits (these are in the kotlin package)

The same set of functions (but without constants) is also available for Float arguments.

Operators
and
conversions
for
BigInteger
and
BigDecimal
Kotlin 1.2 introduces a set of functions for operating with BigInteger and BigDecimal and creating them from other numeric types. These are:

toBigInteger for Int and Long

toBigDecimal for Int, Long, Float, Double, and BigInteger

Arithmetic and bitwise operator functions:

Binary operators +, -, *, /, % and infix functions and, or, xor, shl, shr

Unary operators -, ++, --, and a function inv

Floating
point
to
bits
conversions
New functions were added for converting Double and Float to and from their bit representations:

toBits and toRawBits returning Long for Double and Int for Float

Double.fromBits and Float.fromBits for creating floating point numbers from the bit representation

Regex
is
now
serializable
The kotlin.text.Regex class has become Serializable and can now be used in serializable hierarchies.

Closeable.use
calls
Throwable.addSuppressed
if
available
The Closeable.use function calls Throwable.addSuppressed when an exception is thrown during closing the resource after some other exception.

To enable this behavior you need to have kotlin-stdlib-jdk7 in your dependencies.

312

JVM
backend

Constructor
calls
normalization
Ever since version 1.0, Kotlin supported expressions with complex control flow, such as try-catch expressions and inline function calls. Such code is valid
according to the Java Virtual Machine specification. Unfortunately, some bytecode processing tools do not handle such code quite well when such expressions are
present in the arguments of constructor calls.

To mitigate this problem for the users of such bytecode processing tools, we've added a command-line compiler option (-Xnormalize-constructor-calls=MODE) that
tells the compiler to generate more Java-like bytecode for such constructs. Here MODE is one of:

disable (default) – generate bytecode in the same way as in Kotlin 1.0 and 1.1.

enable – generate Java-like bytecode for constructor calls. This can change the order in which the classes are loaded and initialized.

preserve-class-initialization – generate Java-like bytecode for constructor calls, ensuring that the class initialization order is preserved. This can affect overall
performance of your application; use it only if you have some complex state shared between multiple classes and updated on class initialization.

The "manual" workaround is to store the values of sub-expressions with control flow in variables, instead of evaluating them directly inside the call arguments. It's
similar to -Xnormalize-constructor-calls=enable.

Java-default
method
calls
Before Kotlin 1.2, interface members overriding Java-default methods while targeting JVM 1.6 produced a warning on super calls: Super calls to Java default
methods are deprecated in JVM target 1.6. Recompile with '-jvm-target 1.8'. In Kotlin 1.2, there's an error instead, thus requiring any such code to be compiled with
JVM target 1.8.

Breaking
change:
consistent
behavior
of
x.equals(null)
for
platform
types
Calling x.equals(null) on a platform type that is mapped to a Java primitive (Int!, Boolean!, Short!, Long!, Float!, Double!, Char!) incorrectly returned true when x was
null. Starting with Kotlin 1.2, calling x.equals(...) on a null value of a platform type throws an NPE (but x == ... does not).

To return to the pre-1.2 behavior, pass the flag -Xno-exception-on-explicit-equals-for-boxed-null to the compiler.

Breaking
change:
fix
for
platform
null
escaping
through
an
inlined
extension
receiver
Inline extension functions that were called on a null value of a platform type did not check the receiver for null and would thus allow null to escape into the other
code. Kotlin 1.2 forces this check at the call sites, throwing an exception if the receiver is null.

To switch to the old behavior, pass the fallback flag -Xno-receiver-assertions to the compiler.

JavaScript
backend

TypedArrays
support
enabled
by
default
The JS typed arrays support that translates Kotlin primitive arrays, such as IntArray, DoubleArray, into JavaScript typed arrays, that was previously an opt-in
feature, has been enabled by default.

Tools

Warnings
as
errors
The compiler now provides an option to treat all warnings as errors. Use -Werror on the command line, or the following Gradle snippet:

compileKotlin	{
				kotlinOptions.allWarningsAsErrors	=	true
}

313

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

What's
new
in
Kotlin
1.1
Released: 15 February 2016

Table
of
contents
Coroutines

Other language features

Standard library

JVM backend

JavaScript backend

JavaScript
Starting with Kotlin 1.1, the JavaScript target is no longer considered experimental. All language features are supported, and there are many new tools for
integration with the frontend development environment. See below for a more detailed list of changes.

Coroutines
(experimental)
The key new feature in Kotlin 1.1 is coroutines, bringing the support of async/await, yield, and similar programming patterns. The key feature of Kotlin's design is
that the implementation of coroutine execution is part of the libraries, not the language, so you aren't bound to any specific programming paradigm or concurrency
library.

A coroutine is effectively a light-weight thread that can be suspended and resumed later. Coroutines are supported through suspending functions: a call to such a
function can potentially suspend a coroutine, and to start a new coroutine we usually use an anonymous suspending functions (i.e. suspending lambdas).

Let's look at async/await which is implemented in an external library, kotlinx.coroutines:

//	runs	the	code	in	the	background	thread	pool
fun	asyncOverlay()	=	async(CommonPool)	{
				//	start	two	async	operations
				val	original	=	asyncLoadImage("original")
				val	overlay	=	asyncLoadImage("overlay")
				//	and	then	apply	overlay	to	both	results
				applyOverlay(original.await(),	overlay.await())
}

//	launches	new	coroutine	in	UI	context
launch(UI)	{
				//	wait	for	async	overlay	to	complete
				val	image	=	asyncOverlay().await()
				//	and	then	show	it	in	UI
				showImage(image)
}

Here, async { ... } starts a coroutine and, when we use await(), the execution of the coroutine is suspended while the operation being awaited is executed, and is
resumed (possibly on a different thread) when the operation being awaited completes.

The standard library uses coroutines to support lazily generated sequences with yield and yieldAll functions. In such a sequence, the block of code that returns
sequence elements is suspended after each element has been retrieved, and resumed when the next element is requested. Here's an example:

import	kotlin.coroutines.experimental.*

fun	main(args:	Array<String>)	{
				val	seq	=	buildSequence	{
						for	(i	in	1..5)	{
										//	yield	a	square	of	i
										yield(i	*	i)
						}
						//	yield	a	range
						yieldAll(26..28)
				}

314

https://github.com/kotlin/kotlinx.coroutines

				//	print	the	sequence
				println(seq.toList())
}

Run the code above to see the result. Feel free to edit it and run again!

For more information, please refer to the coroutines documentation and tutorial.

Note that coroutines are currently considered an experimental feature, meaning that the Kotlin team is not committing to supporting the backwards compatibility of
this feature after the final 1.1 release.

Other
language
features

Type
aliases
A type alias allows you to define an alternative name for an existing type. This is most useful for generic types such as collections, as well as for function types.
Here is an example:

//sampleStart
typealias	OscarWinners	=	Map<String,	String>

fun	countLaLaLand(oscarWinners:	OscarWinners)	=
								oscarWinners.count	{	it.value.contains("La	La	Land")	}

//	Note	that	the	type	names	(initial	and	the	type	alias)	are	interchangeable:
fun	checkLaLaLandIsTheBestMovie(oscarWinners:	Map<String,	String>)	=
								oscarWinners["Best	picture"]	==	"La	La	Land"
//sampleEnd

fun	oscarWinners():	OscarWinners	{
				return	mapOf(
												"Best	song"	to	"City	of	Stars	(La	La	Land)",
												"Best	actress"	to	"Emma	Stone	(La	La	Land)",
												"Best	picture"	to	"Moonlight"	/*	...	*/)
}

fun	main(args:	Array<String>)	{
				val	oscarWinners	=	oscarWinners()

				val	laLaLandAwards	=	countLaLaLand(oscarWinners)
				println("LaLaLandAwards	=	$laLaLandAwards	(in	our	small	example),	but	actually	it's	6.")

				val	laLaLandIsTheBestMovie	=	checkLaLaLandIsTheBestMovie(oscarWinners)
				println("LaLaLandIsTheBestMovie	=	$laLaLandIsTheBestMovie")
}

See the type aliases documentation and KEEP for more details.

Bound
callable
references
You can now use the :: operator to get a member reference pointing to a method or property of a specific object instance. Previously this could only be expressed
with a lambda. Here's an example:

//sampleStart
val	numberRegex	=	"\\d+".toRegex()
val	numbers	=	listOf("abc",	"123",	"456").filter(numberRegex::matches)
//sampleEnd

fun	main(args:	Array<String>)	{
				println("Result	is	$numbers")
}

Read the documentation and KEEP for more details.

Sealed
and
data
classes
Kotlin 1.1 removes some of the restrictions on sealed and data classes that were present in Kotlin 1.0. Now you can define subclasses of a top-level sealed class on
the top level in the same file, and not just as nested classes of the sealed class. Data classes can now extend other classes. This can be used to define a hierarchy

315

https://github.com/Kotlin/KEEP/blob/master/proposals/type-aliases.md
https://github.com/Kotlin/KEEP/blob/master/proposals/bound-callable-references.md

of expression classes nicely and cleanly:

//sampleStart
sealed	class	Expr

data	class	Const(val	number:	Double)	:	Expr()
data	class	Sum(val	e1:	Expr,	val	e2:	Expr)	:	Expr()
object	NotANumber	:	Expr()

fun	eval(expr:	Expr):	Double	=	when	(expr)	{
				is	Const	->	expr.number
				is	Sum	->	eval(expr.e1)	+	eval(expr.e2)
				NotANumber	->	Double.NaN
}
val	e	=	eval(Sum(Const(1.0),	Const(2.0)))
//sampleEnd

fun	main(args:	Array<String>)	{
				println("e	is	$e")	//	3.0
}

Read the sealed classes documentation or KEEPs for sealed class and data class for more detail.

Destructuring
in
lambdas
You can now use the destructuring declaration syntax to unpack the arguments passed to a lambda. Here's an example:

fun	main(args:	Array<String>)	{
//sampleStart
				val	map	=	mapOf(1	to	"one",	2	to	"two")
				//	before
				println(map.mapValues	{	entry	->
						val	(key,	value)	=	entry
						"$key	->	$value!"
				})
				//	now
				println(map.mapValues	{	(key,	value)	->	"$key	->	$value!"	})
//sampleEnd
}

Read the destructuring declarations documentation and KEEP for more details.

Underscores
for
unused
parameters
For a lambda with multiple parameters, you can use the _ character to replace the names of the parameters you don't use:

fun	main(args:	Array<String>)	{
				val	map	=	mapOf(1	to	"one",	2	to	"two")

//sampleStart
				map.forEach	{	_,	value	->	println("$value!")	}
//sampleEnd
}

This also works in destructuring declarations:

data	class	Result(val	value:	Any,	val	status:	String)

fun	getResult()	=	Result(42,	"ok").also	{	println("getResult()	returns	$it")	}

fun	main(args:	Array<String>)	{
//sampleStart
				val	(_,	status)	=	getResult()
//sampleEnd
				println("status	is	'$status'")
}

Read the KEEP for more details.

Underscores
in
numeric
literals

316

https://github.com/Kotlin/KEEP/blob/master/proposals/sealed-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/data-class-inheritance.md
https://github.com/Kotlin/KEEP/blob/master/proposals/destructuring-in-parameters.md
https://github.com/Kotlin/KEEP/blob/master/proposals/underscore-for-unused-parameters.md

Just as in Java 8, Kotlin now allows to use underscores in numeric literals to separate groups of digits:

//sampleStart
val	oneMillion	=	1_000_000
val	hexBytes	=	0xFF_EC_DE_5E
val	bytes	=	0b11010010_01101001_10010100_10010010
//sampleEnd

fun	main(args:	Array<String>)	{
				println(oneMillion)
				println(hexBytes.toString(16))
				println(bytes.toString(2))
}

Read the KEEP for more details.

Shorter
syntax
for
properties
For properties with the getter defined as an expression body, the property type can now be omitted:

//sampleStart
				data	class	Person(val	name:	String,	val	age:	Int)	{
				val	isAdult	get()	=	age	>=	20	//	Property	type	inferred	to	be	'Boolean'
}
//sampleEnd
fun	main(args:	Array<String>)	{
				val	akari	=	Person("Akari",	26)
				println("$akari.isAdult	=	${akari.isAdult}")
}

Inline
property
accessors
You can now mark property accessors with the inline modifier if the properties don't have a backing field. Such accessors are compiled in the same way as inline
functions.

//sampleStart
public	val	<T>	List<T>.lastIndex:	Int
				inline	get()	=	this.size	-	1
//sampleEnd

fun	main(args:	Array<String>)	{
				val	list	=	listOf('a',	'b')
				//	the	getter	will	be	inlined
				println("Last	index	of	$list	is	${list.lastIndex}")
}

You can also mark the entire property as inline - then the modifier is applied to both accessors.

Read the inline functions documentation and KEEP for more details.

Local
delegated
properties
You can now use the delegated property syntax with local variables. One possible use is defining a lazily evaluated local variable:

import	java.util.Random

fun	needAnswer()	=	Random().nextBoolean()

fun	main(args:	Array<String>)	{
//sampleStart
				val	answer	by	lazy	{
								println("Calculating	the	answer...")
								42
				}
				if	(needAnswer())	{																					//	returns	the	random	value
								println("The	answer	is	$answer.")			//	answer	is	calculated	at	this	point
				}
				else	{
								println("Sometimes	no	answer	is	the	answer...")
				}
//sampleEnd

317

https://github.com/Kotlin/KEEP/blob/master/proposals/underscores-in-numeric-literals.md
https://github.com/Kotlin/KEEP/blob/master/proposals/inline-properties.md

}

Read the KEEP for more details.

Interception
of
delegated
property
binding
For delegated properties, it is now possible to intercept delegate to property binding using the provideDelegate operator. For example, if we want to check the
property name before binding, we can write something like this:

class	ResourceLoader<T>(id:	ResourceID<T>)	{
				operator	fun	provideDelegate(thisRef:	MyUI,	prop:	KProperty<*>):	ReadOnlyProperty<MyUI,	T>	{
								checkProperty(thisRef,	prop.name)
								...	//	property	creation
				}

				private	fun	checkProperty(thisRef:	MyUI,	name:	String)	{	...	}
}

fun	<T>	bindResource(id:	ResourceID<T>):	ResourceLoader<T>	{	...	}

class	MyUI	{
				val	image	by	bindResource(ResourceID.image_id)
				val	text	by	bindResource(ResourceID.text_id)
}

The provideDelegate method will be called for each property during the creation of a MyUI instance, and it can perform the necessary validation right away.

Read the delegated properties documentation for more details.

Generic
enum
value
access
It is now possible to enumerate the values of an enum class in a generic way.

//sampleStart
enum	class	RGB	{	RED,	GREEN,	BLUE	}

inline	fun	<reified	T	:	Enum<T>>	printAllValues()	{
				print(enumValues<T>().joinToString	{	it.name	})
}
//sampleEnd

fun	main(args:	Array<String>)	{
				printAllValues<RGB>()	//	prints	RED,	GREEN,	BLUE
}

Scope
control
for
implicit
receivers
in
DSLs
The @DslMarker annotation allows to restrict the use of receivers from outer scopes in a DSL context. Consider the canonical HTML builder example:

table	{
				tr	{
								td	{	+	"Text"	}
				}
}

In Kotlin 1.0, code in the lambda passed to td has access to three implicit receivers: the one passed to table, to tr and to td. This allows you to call methods that
make no sense in the context - for example to call tr inside td and thus to put a <tr> tag in a <td>.

In Kotlin 1.1, you can restrict that, so that only methods defined on the implicit receiver of td will be available inside the lambda passed to td. You do that by
defining your annotation marked with the @DslMarker meta-annotation and applying it to the base class of the tag classes.

Read the type safe builders documentation and KEEP for more details.

rem
operator
The mod operator is now deprecated, and rem is used instead. See this issue for motivation.

318

https://github.com/Kotlin/KEEP/blob/master/proposals/local-delegated-properties.md
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-dsl-marker/index.html
https://github.com/Kotlin/KEEP/blob/master/proposals/scope-control-for-implicit-receivers.md
https://youtrack.jetbrains.com/issue/KT-14650

Standard
library

String
to
number
conversions
There is a bunch of new extensions on the String class to convert it to a number without throwing an exception on invalid number: String.toIntOrNull(): Int?,
String.toDoubleOrNull(): Double? etc.

val	port	=	System.getenv("PORT")?.toIntOrNull()	?:	80

Also integer conversion functions, like Int.toString(), String.toInt(), String.toIntOrNull(), each got an overload with radix parameter, which allows to specify the base of
conversion (2 to 36).

onEach()
onEach is a small, but useful extension function for collections and sequences, which allows to perform some action, possibly with side-effects, on each element of
the collection/sequence in a chain of operations. On iterables it behaves like forEach but also returns the iterable instance further. And on sequences it returns a
wrapping sequence, which applies the given action lazily as the elements are being iterated.

inputDir.walk()
								.filter	{	it.isFile	&&	it.name.endsWith(".txt")	}
								.onEach	{	println("Moving	$it	to	$outputDir")	}
								.forEach	{	moveFile(it,	File(outputDir,	it.toRelativeString(inputDir)))	}

also(),
takeIf(),
and
takeUnless()
These are three general-purpose extension functions applicable to any receiver.

also is like apply: it takes the receiver, does some action on it, and returns that receiver. The difference is that in the block inside apply the receiver is available as
this, while in the block inside also it's available as it (and you can give it another name if you want). This comes handy when you do not want to shadow this from
the outer scope:

class	Block	{
				lateinit	var	content:	String
}

//sampleStart
fun	Block.copy()	=	Block().also	{
				it.content	=	this.content
}
//sampleEnd

//	using	'apply'	instead
fun	Block.copy1()	=	Block().apply	{
				this.content	=	this@copy1.content
}

fun	main(args:	Array<String>)	{
				val	block	=	Block().apply	{	content	=	"content"	}
				val	copy	=	block.copy()
				println("Testing	the	content	was	copied:")
				println(block.content	==	copy.content)
}

takeIf is like filter for a single value. It checks whether the receiver meets the predicate, and returns the receiver, if it does or null if it doesn't. Combined with an elvis
operator (?:) and early returns it allows writing constructs like:

val	outDirFile	=	File(outputDir.path).takeIf	{	it.exists()	}	?:	return	false
//	do	something	with	existing	outDirFile

fun	main(args:	Array<String>)	{
				val	input	=	"Kotlin"
				val	keyword	=	"in"

//sampleStart
				val	index	=	input.indexOf(keyword).takeIf	{	it	>=	0	}	?:	error("keyword	not	found")
				//	do	something	with	index	of	keyword	in	input	string,	given	that	it's	found
//sampleEnd

319

				
				println("'$keyword'	was	found	in	'$input'")
				println(input)
				println("	".repeat(index)	+	"^")
}

takeUnless is the same as takeIf, but it takes the inverted predicate. It returns the receiver when it doesn't meet the predicate and null otherwise. So one of the
examples above could be rewritten with takeUnless as following:

val	index	=	input.indexOf(keyword).takeUnless	{	it	<	0	}	?:	error("keyword	not	found")

It is also convenient to use when you have a callable reference instead of the lambda:

private	fun	testTakeUnless(string:	String)	{
//sampleStart
				val	result	=	string.takeUnless(String::isEmpty)
//sampleEnd

				println("string	=	\"$string\";	result	=	\"$result\"")
}

fun	main(args:	Array<String>)	{
				testTakeUnless("")
				testTakeUnless("abc")
}

groupingBy()
This API can be used to group a collection by key and fold each group simultaneously. For example, it can be used to count the number of words starting with each
letter:

fun	main(args:	Array<String>)	{
				val	words	=	"one	two	three	four	five	six	seven	eight	nine	ten".split('	')
//sampleStart
				val	frequencies	=	words.groupingBy	{	it.first()	}.eachCount()
//sampleEnd
				println("Counting	first	letters:	$frequencies.")

				//	The	alternative	way	that	uses	'groupBy'	and	'mapValues'	creates	an	intermediate	map,	
				//	while	'groupingBy'	way	counts	on	the	fly.
				val	groupBy	=	words.groupBy	{	it.first()	}.mapValues	{	(_,	list)	->	list.size	}
				println("Comparing	the	result	with	using	'groupBy':	${groupBy	==	frequencies}.")
}

Map.toMap()
and
Map.toMutableMap()
These functions can be used for easy copying of maps:

class	ImmutablePropertyBag(map:	Map<String,	Any>)	{
				private	val	mapCopy	=	map.toMap()
}

Map.minus(key)
The operator plus provides a way to add key-value pair(s) to a read-only map producing a new map, however there was not a simple way to do the opposite: to
remove a key from the map you have to resort to less straightforward ways to like Map.filter() or Map.filterKeys(). Now the operator minus fills this gap. There are 4
overloads available: for removing a single key, a collection of keys, a sequence of keys and an array of keys.

fun	main(args:	Array<String>)	{
//sampleStart
				val	map	=	mapOf("key"	to	42)
				val	emptyMap	=	map	-	"key"
//sampleEnd
				
				println("map:	$map")
				println("emptyMap:	$emptyMap")
}

320

minOf()
and
maxOf()
These functions can be used to find the lowest and greatest of two or three given values, where values are primitive numbers or Comparable objects. There is also
an overload of each function that take an additional Comparator instance if you want to compare objects that are not comparable themselves.

fun	main(args:	Array<String>)	{
//sampleStart
				val	list1	=	listOf("a",	"b")
				val	list2	=	listOf("x",	"y",	"z")
				val	minSize	=	minOf(list1.size,	list2.size)
				val	longestList	=	maxOf(list1,	list2,	compareBy	{	it.size	})
//sampleEnd
				
				println("minSize	=	$minSize")
				println("longestList	=	$longestList")
}

Array-like
List
instantiation
functions
Similar to the Array constructor, there are now functions that create List and MutableList instances and initialize each element by calling a lambda:

fun	main(args:	Array<String>)	{
//sampleStart
				val	squares	=	List(10)	{	index	->	index	*	index	}
				val	mutable	=	MutableList(10)	{	0	}
//sampleEnd

				println("squares:	$squares")
				println("mutable:	$mutable")
}

Map.getValue()
This extension on Map returns an existing value corresponding to the given key or throws an exception, mentioning which key was not found. If the map was
produced with withDefault, this function will return the default value instead of throwing an exception.

fun	main(args:	Array<String>)	{
//sampleStart				
				val	map	=	mapOf("key"	to	42)
				//	returns	non-nullable	Int	value	42
				val	value:	Int	=	map.getValue("key")

				val	mapWithDefault	=	map.withDefault	{	k	->	k.length	}
				//	returns	4
				val	value2	=	mapWithDefault.getValue("key2")

				//	map.getValue("anotherKey")	//	<-	this	will	throw	NoSuchElementException
//sampleEnd
				
				println("value	is	$value")
				println("value2	is	$value2")
}

Abstract
collections
These abstract classes can be used as base classes when implementing Kotlin collection classes. For implementing read-only collections there are
AbstractCollection, AbstractList, AbstractSet and AbstractMap, and for mutable collections there are AbstractMutableCollection, AbstractMutableList,
AbstractMutableSet and AbstractMutableMap. On JVM, these abstract mutable collections inherit most of their functionality from JDK's abstract collections.

Array
manipulation
functions
The standard library now provides a set of functions for element-by-element operations on arrays: comparison (contentEquals and contentDeepEquals), hash code
calculation (contentHashCode and contentDeepHashCode), and conversion to a string (contentToString and contentDeepToString). They're supported both for the
JVM (where they act as aliases for the corresponding functions in java.util.Arrays) and for JS (where the implementation is provided in the Kotlin standard library).

fun	main(args:	Array<String>)	{
//sampleStart
				val	array	=	arrayOf("a",	"b",	"c")
				println(array.toString())		//	JVM	implementation:	type-and-hash	gibberish

321

				println(array.contentToString())		//	nicely	formatted	as	list
//sampleEnd
}

JVM
Backend

Java
8
bytecode
support
Kotlin has now the option of generating Java 8 bytecode (-jvm-target 1.8 command line option or the corresponding options in Ant/Maven/Gradle). For now this
doesn't change the semantics of the bytecode (in particular, default methods in interfaces and lambdas are generated exactly as in Kotlin 1.0), but we plan to make
further use of this later.

Java
8
standard
library
support
There are now separate versions of the standard library supporting the new JDK APIs added in Java 7 and 8. If you need access to the new APIs, use kotlin-stdlib-
jre7 and kotlin-stdlib-jre8 maven artifacts instead of the standard kotlin-stdlib. These artifacts are tiny extensions on top of kotlin-stdlib and they bring it to your
project as a transitive dependency.

Parameter
names
in
the
bytecode
Kotlin now supports storing parameter names in the bytecode. This can be enabled using the -java-parameters command line option.

Constant
inlining
The compiler now inlines values of const val properties into the locations where they are used.

Mutable
closure
variables
The box classes used for capturing mutable closure variables in lambdas no longer have volatile fields. This change improves performance, but can lead to new
race conditions in some rare usage scenarios. If you're affected by this, you need to provide your own synchronization for accessing the variables.

javax.script
support
Kotlin now integrates with the javax.script API (JSR-223). The API allows to evaluate snippets of code at runtime:

val	engine	=	ScriptEngineManager().getEngineByExtension("kts")!!
engine.eval("val	x	=	3")
println(engine.eval("x	+	2"))		//	Prints	out	5

See here for a larger example project using the API.

kotlin.reflect.full
To prepare for Java 9 support, the extension functions and properties in the kotlin-reflect.jar library have been moved to the package kotlin.reflect.full. The names in
the old package (kotlin.reflect) are deprecated and will be removed in Kotlin 1.2. Note that the core reflection interfaces (such as KClass) are part of the Kotlin
standard library, not kotlin-reflect, and are not affected by the move.

JavaScript
backend

Unified
standard
library
A much larger part of the Kotlin standard library can now be used from code compiled to JavaScript. In particular, key classes such as collections (ArrayList,
HashMap etc.), exceptions (IllegalArgumentException etc.) and a few others (StringBuilder, Comparator) are now defined under the kotlin package. On the JVM, the
names are type aliases for the corresponding JDK classes, and on the JS, the classes are implemented in the Kotlin standard library.

Better
code
generation
JavaScript backend now generates more statically checkable code, which is friendlier to JS code processing tools, like minifiers, optimisers, linters, etc.

322

https://docs.oracle.com/javase/8/docs/api/javax/script/package-summary.html
https://github.com/JetBrains/kotlin/tree/master/libraries/examples/kotlin-jsr223-local-example
https://blog.jetbrains.com/kotlin/2017/01/kotlin-1-1-whats-coming-in-the-standard-library/

The
external
modifier
If you need to access a class implemented in JavaScript from Kotlin in a typesafe way, you can write a Kotlin declaration using the external modifier. (In Kotlin 1.0,
the @native annotation was used instead.) Unlike the JVM target, the JS one permits to use external modifier with classes and properties. For example, here's how
you can declare the DOM Node class:

external	class	Node	{
				val	firstChild:	Node

				fun	appendChild(child:	Node):	Node

				fun	removeChild(child:	Node):	Node

				//	etc
}

Improved
import
handling
You can now describe declarations which should be imported from JavaScript modules more precisely. If you add the @JsModule("<module-name>") annotation on
an external declaration it will be properly imported to a module system (either CommonJS or AMD) during the compilation. For example, with CommonJS the
declaration will be imported via require(...) function. Additionally, if you want to import a declaration either as a module or as a global JavaScript object, you can use
the @JsNonModule annotation.

For example, here's how you can import JQuery into a Kotlin module:

external	interface	JQuery	{
				fun	toggle(duration:	Int	=	definedExternally):	JQuery
				fun	click(handler:	(Event)	->	Unit):	JQuery
}

@JsModule("jquery")
@JsNonModule
@JsName("$")
external	fun	jquery(selector:	String):	JQuery

In this case, JQuery will be imported as a module named jquery. Alternatively, it can be used as a $-object, depending on what module system Kotlin compiler is
configured to use.

You can use these declarations in your application like this:

fun	main(args:	Array<String>)	{
				jquery(".toggle-button").click	{
								jquery(".toggle-panel").toggle(300)
				}
}

Kotlin
releases
We ship different types of releases:

Feature releases (1.x) that bring major changes in the language.

Incremental releases (1.x.y) that are shipped between feature releases and include updates in the tooling, performance improvements, and bug fixes.

Bug fix releases (1.x.yz) that include bug fixes for incremental releases.

For example, for the feature release 1.3 we had several incremental releases including 1.3.10, 1.3.20, and 1.3.70. For 1.3.70, we had 2 bug fix releases – 1.3.71 and
1.3.72.

For each incremental and feature release, we also ship several preview (EAP) versions for you to try new features before they are released. See Early Access
Preview for details.

Learn more about types of Kotlin releases and their compatibility.

Update
to
a
new
release

323

IntelliJ IDEA and Android Studio suggest updating to a new release once it is out. When you accept the suggestion, it automatically updates the Kotlin plugin to the
new version. You can check the Kotlin version in Tools | Kotlin | Configure Kotlin Plugin Updates.

If you have projects created with earlier Kotlin versions, change the Kotlin version in your projects and update kotlinx libraries if necessary.

If you are migrating to the new feature release, Kotlin plugin's migration tools will help you with the migration.

IDE
support
The IDE support for the latest version of the language is available for the following versions of IntelliJ IDEA and Android Studio:

IntelliJ IDEA:

Latest stable

Previous stable

Early access versions

Android Studio:

Latest released version

Early access versions

Release
details
The following table lists details of the latest Kotlin releases.

You can also use preview versions of Kotlin.

Build info Build highlights

1.9.20

Released:
November 1,
2023

Release on

GitHub

A feature release with Kotlin K2 compiler in Beta and Stable Kotlin Multiplatform.

Learn more in:

What's new in Kotlin 1.9.20,

1.9.10

Released:
August 23,
2023

Release on

GitHub

A bug fix release for Kotlin 1.9.0.

Learn more about Kotlin 1.9.0 in What's new in Kotlin 1.9.0.

Learn more about the latest Kotlin-related updates in IntelliJ IDEA in the Kotlin section of the What's new in IntelliJ IDEA page.

For Android Studio Giraffe and Hedgehog, the Kotlin plugin 1.9.10 will be delivered with upcoming Android Studios updates.

324

https://www.jetbrains.com/resources/eap/
https://developer.android.com/studio
https://developer.android.com/studio/preview
https://www.jetbrains.com/idea/whatsnew/
https://github.com/JetBrains/kotlin/releases/tag/v1.9.20
https://github.com/JetBrains/kotlin/releases/tag/v1.9.10

1.9.0

Released:
July 6, 2023

Release on

GitHub

A feature release with Kotlin K2 compiler updates, new enum class values function, new operator for open-ended ranges, preview of Gradle
configuration cache in Kotlin Multiplatform, changes to Android target support in Kotlin Multiplatform, preview of custom memory allocator in
Kotlin/Native.

Learn more in:

What's new in Kotlin 1.9.0

What's new in Kotlin YouTube video

1.8.22

Released:
June 8, 2023

Release on

GitHub

A bug fix release for Kotlin 1.8.20.

Learn more about Kotlin 1.8.20 in What's new in Kotlin 1.8.20.

1.8.21

Released:
April 25, 2023

Release on

GitHub

A bug fix release for Kotlin 1.8.20.

Learn more about Kotlin 1.8.20 in What's new in Kotlin 1.8.20.

1.8.20

Released:
April 3, 2023

Release on

GitHub

A feature release with Kotlin K2 compiler updates, AutoCloseable interface and Base64 encoding in stdlib, new JVM incremental compilation
enabled by default, new Kotlin/Wasm compiler backend.

Learn more in:

What's new in Kotlin 1.8.20

What's new in Kotlin YouTube video

1.8.10

Released:
February 2,
2023

Release on

GitHub

A bug fix release for Kotlin 1.8.0.

Learn more about Kotlin 1.8.0.

1.8.0

Released:
December 28,
2022

Release on

GitHub

A feature release with improved kotlin-reflect performance, new recursively copy or delete directory content experimental functions for JVM,
improved Objective-C/Swift interoperability.

Learn more in:

What's new in Kotlin 1.8.0

Compatibility guide for Kotlin 1.8.0

Build info Build highlights

For Android Studio Flamingo and Giraffe, the Kotlin plugin 1.8.21 will be delivered with upcoming Android Studios updates.

For Android Studio Electric Eel and Flamingo, the Kotlin plugin 1.8.10 will be delivered with upcoming Android Studios updates.

325

https://github.com/JetBrains/kotlin/releases/tag/v1.9.0
https://www.youtube.com/embed/fvwTZc-dxsM
https://github.com/JetBrains/kotlin/releases/tag/v1.8.22
https://github.com/JetBrains/kotlin/releases/tag/v1.8.21
https://github.com/JetBrains/kotlin/releases/tag/v1.8.20
https://youtu.be/R1JpkpPzyBU
https://github.com/JetBrains/kotlin/releases/tag/v1.8.10
https://github.com/JetBrains/kotlin/releases/tag/v1.8.0
https://github.com/JetBrains/kotlin/releases/tag/v1.8.0

1.7.21

Released:
November 9,
2022

Release on

GitHub

A bug fix release for Kotlin 1.7.20.

Learn more about Kotlin 1.7.20 in What's new in Kotlin 1.7.20.

1.7.20

Released:
September
29, 2022

Release on

GitHub

An incremental release with new language features, the support for several compiler plugins in the Kotlin K2 compiler, the new Kotlin/Native
memory manager enabled by default, and the support for Gradle 7.1.

Learn more in:

What's new in Kotlin 1.7.20

What's new in Kotlin YouTube video

Compatibility guide for Kotlin 1.7.20

Learn more about Kotlin 1.7.20.

1.7.10

Released:
July 7, 2022

Release on

GitHub

A bug fix release for Kotlin 1.7.0.

Learn more about Kotlin 1.7.0.

1.7.0

Released:
June 9, 2022

Release on

GitHub

A feature release with Kotlin K2 compiler in Alpha for JVM, stabilized language features, performance improvements, and evolutionary changes
such as stabilizing experimental APIs.

Learn more in:

What's new in Kotlin 1.7.0

What's new in Kotlin YouTube video

Compatibility guide for Kotlin 1.7.0

1.6.21

Released:
April 20, 2022

Release on

GitHub

A bug fix release for Kotlin 1.6.20.

Learn more about Kotlin 1.6.20.

Build info Build highlights

For Android Studio Dolphin, Electric Eel, and Flamingo, the Kotlin plugin 1.7.21 will be delivered with upcoming Android Studios
updates.

For Android Studio Dolphin (213) and Android Studio Electric Eel (221), the Kotlin plugin 1.7.10 will be delivered with upcoming Android
Studios updates.

326

https://github.com/JetBrains/kotlin/releases/tag/v1.7.21
https://github.com/JetBrains/kotlin/releases/tag/v1.7.20
https://youtu.be/OG9npowJgE8
https://github.com/JetBrains/kotlin/releases/tag/v1.7.20
https://github.com/JetBrains/kotlin/releases/tag/v1.7.10
https://github.com/JetBrains/kotlin/releases/tag/v1.7.0
https://github.com/JetBrains/kotlin/releases/tag/v1.7.0
https://youtu.be/54WEfLKtCGk
https://github.com/JetBrains/kotlin/releases/tag/v1.6.21

1.6.20

Released:
April 4, 2022

Release on

GitHub

An incremental release with various improvements such as:

Prototype of context receivers

Callable references to functional interface constructors

Kotlin/Native: performance improvements for the new memory manager

Multiplatform: hierarchical project structure by default

Kotlin/JS: IR compiler improvements

Gradle: compiler execution strategies

Learn more about Kotlin 1.6.20.

1.6.10

Released:
December 14,
2021

Release on

GitHub

A bug fix release for Kotlin 1.6.0.

Learn more about Kotlin 1.6.0.

1.6.0

Released:
November 16,
2021

Release on

GitHub

A feature release with new language features, performance improvements, and evolutionary changes such as stabilizing experimental APIs.

Learn more in:

Release blog post

What's new in Kotlin 1.6.0

Compatibility guide

1.5.32

Released:
November 29,
2021

Release on

GitHub

A bug fix release for Kotlin 1.5.31.

Learn more about Kotlin 1.5.30.

1.5.31

Released:
September
20, 2021

Release on

GitHub

A bug fix release for Kotlin 1.5.30.

Learn more about Kotlin 1.5.30.

Build info Build highlights

327

https://github.com/JetBrains/kotlin/releases/tag/v1.6.20
https://github.com/JetBrains/kotlin/releases/tag/v1.6.10
https://github.com/JetBrains/kotlin/releases/tag/v1.6.0
https://github.com/JetBrains/kotlin/releases/tag/v1.6.0
https://blog.jetbrains.com/kotlin/2021/11/kotlin-1-6-0-is-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.5.32
https://github.com/JetBrains/kotlin/releases/tag/v1.5.31

1.5.30

Released:
August 23,
2021

Release on

GitHub

An incremental release with various improvements such as:

Instantiation of annotation classes on JVM

Improved opt-in requirement mechanism and type inference

Kotlin/JS IR backend in Beta

Support for Apple Silicon targets

Improved CocoaPods support

Gradle: Java toolchain support and improved daemon configuration

Learn more in:

Release blog post

What's new in Kotlin 1.5.30

1.5.21

Released:
July 13, 2021

Release on

GitHub

A bug fix release for Kotlin 1.5.20.

Learn more about Kotlin 1.5.20.

1.5.20

Released:
June 24, 2021

Release on

GitHub

An incremental release with various improvements such as:

String concatenation via invokedynamic on JVM by default

Improved support for Lombok and support for JSpecify

Kotlin/Native: KDoc export to Objective-C headers and faster Array.copyInto() inside one array

Gradle: caching of annotation processors' classloaders and support for the --parallel Gradle property

Aligned behavior of stdlib functions across platforms

Learn more in:

Release blog post

What's new in Kotlin 1.5.20

1.5.10

Released:
May 24, 2021

Release on

GitHub

A bug fix release for Kotlin 1.5.0.

Learn more about Kotlin 1.5.0.

Build info Build highlights

328

https://github.com/JetBrains/kotlin/releases/tag/v1.5.30
https://blog.jetbrains.com/kotlin/2021/08/kotlin-1-5-30-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.5.21
https://github.com/JetBrains/kotlin/releases/tag/v1.5.20
https://blog.jetbrains.com/kotlin/2021/06/kotlin-1-5-20-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.5.10
https://blog.jetbrains.com/kotlin/2021/04/kotlin-1-5-0-released/

1.5.0

Released:
May 5, 2021

Release on

GitHub

A feature release with new language features, performance improvements, and evolutionary changes such as stabilizing experimental APIs.

Learn more in:

Release blog post

What's new in Kotlin 1.5.0

Compatibility guide

1.4.32

Released:
March 22,
2021

Release on

GitHub

A bug fix release for Kotlin 1.4.30.

Learn more about Kotlin 1.4.30.

1.4.31

Released:
February 25,
2021

Release on

GitHub

A bug fix release for Kotlin 1.4.30

Learn more about Kotlin 1.4.30.

1.4.30

Released:
February 3,
2021

Release on

GitHub

An incremental release with various improvements such as:

New JVM backend, now in Beta

Preview of new language features

Improved Kotlin/Native performance

Standard library API improvements

Learn more in:

Release blog post

What's new in Kotlin 1.4.30

1.4.21

Released:
December 7,
2020

Release on

GitHub

A bug fix release for Kotlin 1.4.20

Learn more about Kotlin 1.4.20.

Build info Build highlights

329

https://github.com/JetBrains/kotlin/releases/tag/v1.5.0
https://blog.jetbrains.com/kotlin/2021/04/kotlin-1-5-0-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.4.32
https://github.com/JetBrains/kotlin/releases/tag/v1.4.31
https://github.com/JetBrains/kotlin/releases/tag/v1.4.30
https://blog.jetbrains.com/kotlin/2021/01/kotlin-1-4-30-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.4.21

1.4.20

Released:
November 23,
2020

Release on

GitHub

An incremental release with various improvements such as:

Supporting new JVM features, like string concatenation via invokedynamic

Improved performance and exception handling for Kotlin Multiplatform Mobile projects

Extensions for JDK Path: Path("dir") / "file.txt"

Learn more in:

Release blog post

What's new in Kotlin 1.4.20

1.4.10

Released:
September 7,
2020

Release on

GitHub

A bug fix release for Kotlin 1.4.0.

Learn more about Kotlin 1.4.0.

1.4.0

Released:
August 17,
2020

Release on

GitHub

A feature release with many features and improvements that mostly focus on quality and performance.

Learn more in:

Release blog post

What's new in Kotlin 1.4.0

Compatibility guide

Migrating to Kotlin 1.4.0

1.3.72

Released:
April 15, 2020

Release on

GitHub

A bug fix release for Kotlin 1.3.70.

Learn more about Kotlin 1.3.70.

Build info Build highlights

Kotlin
roadmap

Last modified on July 2023

Next update December 2023

Welcome to the Kotlin roadmap! Get a sneak peek into the priorities of the Kotlin Team.

Key
priorities

330

https://github.com/JetBrains/kotlin/releases/tag/v1.4.20
https://blog.jetbrains.com/kotlin/2020/11/kotlin-1-4-20-released/
https://github.com/JetBrains/kotlin/releases/tag/v1.4.10
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/
https://github.com/JetBrains/kotlin/releases/tag/v1.4.0
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/
https://github.com/JetBrains/kotlin/releases/tag/v1.3.72
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/

The goal of this roadmap is to give you a big picture. Here's a list of our key projects – the most important things we focus on delivering:

K2 compiler: a rewrite of the Kotlin compiler optimized for speed, parallelism, and unification. It will also let us introduce many anticipated language features.

K2-based IntelliJ plugin: much faster code completion, highlighting, and search, together with more stable code analysis.

Kotlin Multiplatform: promote the technology to Stable by improving the toolchain stability and documentation, and ensuring compatibility guarantees.

Experience of library authors: a set of documentation and tools helping to set up, develop, and publish Kotlin libraries.

Kotlin
roadmap
by
subsystem
To view the biggest projects we're working on, visit the YouTrack board or the Roadmap details table.

If you have any questions or feedback about the roadmap or the items on it, feel free to post them to YouTrack tickets or in the #kotlin-roadmap channel of Kotlin
Slack (request an invite).

YouTrack
board
Visit the roadmap board in our issue tracker YouTrack

Roadmap board in YouTrack

Roadmap
details

Subsystem In focus now

Language

Compiler �� Promote K2 compiler to Stable

�� Support debugging inline functions on Android

�� Promote Kotlin/Wasm to Alpha

�� Make Kotlin/Wasm suitable for standalone Wasm VMs

List of all upcoming language features

331

https://youtrack.jetbrains.com/agiles/153-1251/current
https://youtrack.jetbrains.com/issues?q=project:%20KT,%20KTIJ%20tag:%20%257BRoadmap%20Item%257D%20%2523Unresolved%20
https://kotlinlang.slack.com/archives/C01AAJSG3V4
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://youtrack.jetbrains.com/agiles/153-1251/current
https://youtrack.jetbrains.com/issue/KT-54620
https://youtrack.jetbrains.com/issue/KT-60255
https://youtrack.jetbrains.com/issue/KT-60276
https://youtrack.jetbrains.com/issue/KT-60277
https://youtrack.jetbrains.com/issue/KT-60278

Multiplatform Promote Kotlin Multiplatform Mobile to Stable

Improve the new Kotlin/Native memory manager robustness and performance and deprecate the old

one

Stabilize klib: make binary compatibility easier for library authors

Improve exporting Kotlin code to Objective-C

Improve Kotlin/Native compilation time

Tooling �� Improve Kotlin build reports

First public release of K2-based IntelliJ plugin

Improve performance and code analysis stability of the current IDE plugin

Expose stable compiler arguments in Gradle DSL

Improve Kotlin scripting and experience with .gradle.kts

Library ecosystem �� Provide initial series of kotlinx-io releases

Release kotlinx-metadata-jvm as Stable

Promote kotlinx-kover to Stable

Release Dokka as Stable

Ktor and Exposed roadmaps:

Ktor framework roadmap

Exposed library roadmap

Subsystem In focus now

What's
changed
since
December
2022

Completed
items
We've completed the following items from the previous roadmap:

✅ Language: Introduce special syntax for until operator

✅ Language: Provide modern and performant replacement for Enum.values()

✅ Language: Design and implement a solution for toString, equals and hashCode on objects (data object)

✅ Compiler: Release K2 Beta

✅ Compiler: Fix issues related to inline classes on the JVM

This roadmap is not an exhaustive list of all things the team is working on, only the biggest projects.

There's no commitment to delivering specific features or fixes in specific versions.

We will adjust our priorities as we go and update the roadmap approximately every six months.

332

https://youtrack.jetbrains.com/issue/KT-55513
https://youtrack.jetbrains.com/issue/KT-55512
https://youtrack.jetbrains.com/issue/KT-52600
https://youtrack.jetbrains.com/issue/KT-42297
https://youtrack.jetbrains.com/issue/KT-42294
https://youtrack.jetbrains.com/issue/KT-60279
https://youtrack.jetbrains.com/issue/KTIJ-23988
https://youtrack.jetbrains.com/issue/KTIJ-23989
https://youtrack.jetbrains.com/issue/KT-55515
https://youtrack.jetbrains.com/issue/KT-49511
https://youtrack.jetbrains.com/issue/KT-60280
https://youtrack.jetbrains.com/issue/KT-48011
https://youtrack.jetbrains.com/issue/KT-49527
https://youtrack.jetbrains.com/issue/KT-48998
https://blog.jetbrains.com/ktor/2022/12/16/ktor-2023-roadmap/
https://blog.jetbrains.com/kotlin/2023/08/exposed-moving-forward/
https://youtrack.jetbrains.com/issue/KT-15613
https://youtrack.jetbrains.com/issue/KT-48872
https://youtrack.jetbrains.com/issue/KT-4107
https://youtrack.jetbrains.com/issue/KT-52604
https://youtrack.jetbrains.com/issue/KT-49514

✅ Compiler: Implement an experimental version of Kotlin/Wasm compiler backend

✅ Tooling: Provide better experience with Kotlin Daemon

✅ Tooling: Improve the performance of Gradle incremental compilation

✅ Tooling: Release the Experimental version of the Kotlin Notebooks IJ IDEA plugin

✅ Library ecosystem: Release kotlinx-coroutines 1.7

✅ Library ecosystem: Improve kotlinx-datetime library

✅ Library ecosystem: Continue to develop and stabilize the standard library

New
items
We've added the following items to the roadmap:

�� Compiler: Release Kotlin 2.0

�� Compiler: Support debugging inline functions on Android

�� Compiler: Promote Kotlin/Wasm to Alpha

�� Compiler: Make Kotlin/Wasm suitable for standalone Wasm VMs (without JavaScript support)

�� Tooling: Improve Kotlin build reports

�� Library ecosystem: Provide initial series of kotlinx-io releases

Removed
items
We've removed the following items from the roadmap:

❌ Language: Support non-local break and continue

❌ Compiler: Stabilize JVM-specific experimental features

❌ Library ecosystem: Stabilize and document atomicfu

❌ Library ecosystem: Improve KDoc experience

❌ Library ecosystem: Provide a Kotlin API guide for libraries authors

Items
in
progress
All other previously identified roadmap items are in progress. You can check their YouTrack tickets for updates.

Basic
syntax
This is a collection of basic syntax elements with examples. At the end of every section, you'll find a link to a detailed description of the related topic.

You can also learn all the Kotlin essentials with the free Kotlin Core track by JetBrains Academy.

Package
definition
and
imports
Package specification should be at the top of the source file.

package	my.demo

import	kotlin.text.*

Some items were removed from the roadmap but not dropped completely. In some cases, we've merged previous roadmap items with the current ones.

333

https://youtrack.jetbrains.com/issue/KT-46773
https://youtrack.jetbrains.com/issue/KT-49532
https://youtrack.jetbrains.com/issue/KT-42309
https://youtrack.jetbrains.com/issue/KTIJ-23990
https://youtrack.jetbrains.com/issue/KT-49529
https://youtrack.jetbrains.com/issue/KT-42315
https://youtrack.jetbrains.com/issue/KT-52601
https://youtrack.jetbrains.com/issue/KT-60255
https://youtrack.jetbrains.com/issue/KT-60276
https://youtrack.jetbrains.com/issue/KT-60277
https://youtrack.jetbrains.com/issue/KT-60278
https://youtrack.jetbrains.com/issue/KT-60279
https://youtrack.jetbrains.com/issue/KT-60280
https://youtrack.jetbrains.com/issue/KT-1436
https://youtrack.jetbrains.com/issue/KT-46770
https://youtrack.jetbrains.com/issue/KT-46786
https://youtrack.jetbrains.com/issue/KT-55073
https://youtrack.jetbrains.com/issue/KT-55077
https://youtrack.jetbrains.com/issues?q=project:%20KT,%20KTIJ%20tag:%20%257BRoadmap%20Item%257D%20%2523Unresolved%20
https://hyperskill.org/tracks?category=4&utm_source=jbkotlin_hs&utm_medium=referral&utm_campaign=kotlinlang-docs&utm_content=button_1&utm_term=22.03.23

//	...

It is not required to match directories and packages: source files can be placed arbitrarily in the file system.

See Packages.

Program
entry
point
An entry point of a Kotlin application is the main function.

fun	main()	{
				println("Hello	world!")
}

Another form of main accepts a variable number of String arguments.

fun	main(args:	Array<String>)	{
				println(args.contentToString())
}

Print
to
the
standard
output
print prints its argument to the standard output.

fun	main()	{
//sampleStart
				print("Hello	")
				print("world!")
//sampleEnd
}

println prints its arguments and adds a line break, so that the next thing you print appears on the next line.

fun	main()	{
//sampleStart
				println("Hello	world!")
				println(42)
//sampleEnd
}

Functions
A function with two Int parameters and Int return type.

//sampleStart
fun	sum(a:	Int,	b:	Int):	Int	{
				return	a	+	b
}
//sampleEnd

fun	main()	{
				print("sum	of	3	and	5	is	")
				println(sum(3,	5))
}

A function body can be an expression. Its return type is inferred.

//sampleStart
fun	sum(a:	Int,	b:	Int)	=	a	+	b
//sampleEnd

fun	main()	{
				println("sum	of	19	and	23	is	${sum(19,	23)}")

334

}

A function that returns no meaningful value.

//sampleStart
fun	printSum(a:	Int,	b:	Int):	Unit	{
				println("sum	of	$a	and	$b	is	${a	+	b}")
}
//sampleEnd

fun	main()	{
				printSum(-1,	8)
}

Unit return type can be omitted.

//sampleStart
fun	printSum(a:	Int,	b:	Int)	{
				println("sum	of	$a	and	$b	is	${a	+	b}")
}
//sampleEnd

fun	main()	{
				printSum(-1,	8)
}

See Functions.

Variables
Read-only local variables are defined using the keyword val. They can be assigned a value only once.

fun	main()	{
//sampleStart
				val	a:	Int	=	1		//	immediate	assignment
				val	b	=	2			//	`Int`	type	is	inferred
				val	c:	Int		//	Type	required	when	no	initializer	is	provided
				c	=	3							//	deferred	assignment
//sampleEnd
				println("a	=	$a,	b	=	$b,	c	=	$c")
}

Variables that can be reassigned use the var keyword.

fun	main()	{
//sampleStart
				var	x	=	5	//	`Int`	type	is	inferred
				x	+=	1
//sampleEnd
				println("x	=	$x")
}

You can declare variables at the top level.

//sampleStart
val	PI	=	3.14
var	x	=	0

fun	incrementX()	{	
				x	+=	1	
}
//sampleEnd

fun	main()	{
				println("x	=	$x;	PI	=	$PI")
				incrementX()
				println("incrementX()")
				println("x	=	$x;	PI	=	$PI")
}

335

See also Properties.

Creating
classes
and
instances
To define a class, use the class keyword.

class	Shape

Properties of a class can be listed in its declaration or body.

class	Rectangle(var	height:	Double,	var	length:	Double)	{
				var	perimeter	=	(height	+	length)	*	2	
}

The default constructor with parameters listed in the class declaration is available automatically.

class	Rectangle(var	height:	Double,	var	length:	Double)	{
				var	perimeter	=	(height	+	length)	*	2	
}
fun	main()	{
//sampleStart
				val	rectangle	=	Rectangle(5.0,	2.0)
				println("The	perimeter	is	${rectangle.perimeter}")
//sampleEnd
}

Inheritance between classes is declared by a colon (:). Classes are final by default; to make a class inheritable, mark it as open.

open	class	Shape

class	Rectangle(var	height:	Double,	var	length:	Double):	Shape()	{
				var	perimeter	=	(height	+	length)	*	2	
}

See classes and objects and instances.

Comments
Just like most modern languages, Kotlin supports single-line (or end-of-line) and multi-line (block) comments.

//	This	is	an	end-of-line	comment

/*	This	is	a	block	comment
			on	multiple	lines.	*/

Block comments in Kotlin can be nested.

/*	The	comment	starts	here
/*	contains	a	nested	comment	*⁠/					
and	ends	here.	*/

See Documenting Kotlin Code for information on the documentation comment syntax.

String
templates

fun	main()	{
//sampleStart
				var	a	=	1
				//	simple	name	in	template:
				val	s1	=	"a	is	$a"	
				
				a	=	2

336

				//	arbitrary	expression	in	template:
				val	s2	=	"${s1.replace("is",	"was")},	but	now	is	$a"
//sampleEnd
				println(s2)
}

See String templates for details.

Conditional
expressions

//sampleStart
fun	maxOf(a:	Int,	b:	Int):	Int	{
				if	(a	>	b)	{
								return	a
				}	else	{
								return	b
				}
}
//sampleEnd

fun	main()	{
				println("max	of	0	and	42	is	${maxOf(0,	42)}")
}

In Kotlin, if can also be used as an expression.

//sampleStart
fun	maxOf(a:	Int,	b:	Int)	=	if	(a	>	b)	a	else	b
//sampleEnd

fun	main()	{
				println("max	of	0	and	42	is	${maxOf(0,	42)}")
}

See if-expressions.

for
loop

fun	main()	{
//sampleStart
				val	items	=	listOf("apple",	"banana",	"kiwifruit")
				for	(item	in	items)	{
								println(item)
				}
//sampleEnd
}

or

fun	main()	{
//sampleStart
				val	items	=	listOf("apple",	"banana",	"kiwifruit")
				for	(index	in	items.indices)	{
								println("item	at	$index	is	${items[index]}")
				}
//sampleEnd
}

See for loop.

while
loop

fun	main()	{
//sampleStart
				val	items	=	listOf("apple",	"banana",	"kiwifruit")
				var	index	=	0

337

				while	(index	<	items.size)	{
								println("item	at	$index	is	${items[index]}")
								index++
				}
//sampleEnd
}

See while loop.

when
expression

//sampleStart
fun	describe(obj:	Any):	String	=
				when	(obj)	{
								1										->	"One"
								"Hello"				->	"Greeting"
								is	Long				->	"Long"
								!is	String	->	"Not	a	string"
								else							->	"Unknown"
				}
//sampleEnd

fun	main()	{
				println(describe(1))
				println(describe("Hello"))
				println(describe(1000L))
				println(describe(2))
				println(describe("other"))
}

See when expression.

Ranges
Check if a number is within a range using in operator.

fun	main()	{
//sampleStart
				val	x	=	10
				val	y	=	9
				if	(x	in	1..y+1)	{
								println("fits	in	range")
				}
//sampleEnd
}

Check if a number is out of range.

fun	main()	{
//sampleStart
				val	list	=	listOf("a",	"b",	"c")
				
				if	(-1	!in	0..list.lastIndex)	{
								println("-1	is	out	of	range")
				}
				if	(list.size	!in	list.indices)	{
								println("list	size	is	out	of	valid	list	indices	range,	too")
				}
//sampleEnd
}

Iterate over a range.

fun	main()	{
//sampleStart
				for	(x	in	1..5)	{
								print(x)
				}
//sampleEnd
}

338

Or over a progression.

fun	main()	{
//sampleStart
				for	(x	in	1..10	step	2)	{
								print(x)
				}
				println()
				for	(x	in	9	downTo	0	step	3)	{
								print(x)
				}
//sampleEnd
}

See Ranges and progressions.

Collections
Iterate over a collection.

fun	main()	{
				val	items	=	listOf("apple",	"banana",	"kiwifruit")
//sampleStart
				for	(item	in	items)	{
								println(item)
				}
//sampleEnd
}

Check if a collection contains an object using in operator.

fun	main()	{
				val	items	=	setOf("apple",	"banana",	"kiwifruit")
//sampleStart
				when	{
								"orange"	in	items	->	println("juicy")
								"apple"	in	items	->	println("apple	is	fine	too")
				}
//sampleEnd
}

Using lambda expressions to filter and map collections:

fun	main()	{
//sampleStart
				val	fruits	=	listOf("banana",	"avocado",	"apple",	"kiwifruit")
				fruits
						.filter	{	it.startsWith("a")	}
						.sortedBy	{	it	}
						.map	{	it.uppercase()	}
						.forEach	{	println(it)	}
//sampleEnd
}

See Collections overview.

Nullable
values
and
null
checks
A reference must be explicitly marked as nullable when null value is possible. Nullable type names have ? at the end.

Return null if str does not hold an integer:

fun	parseInt(str:	String):	Int?	{
				//	...
}

339

Use a function returning nullable value:

fun	parseInt(str:	String):	Int?	{
				return	str.toIntOrNull()
}

//sampleStart
fun	printProduct(arg1:	String,	arg2:	String)	{
				val	x	=	parseInt(arg1)
				val	y	=	parseInt(arg2)

				//	Using	`x	*	y`	yields	error	because	they	may	hold	nulls.
				if	(x	!=	null	&&	y	!=	null)	{
								//	x	and	y	are	automatically	cast	to	non-nullable	after	null	check
								println(x	*	y)
				}
				else	{
								println("'$arg1'	or	'$arg2'	is	not	a	number")
				}				
}
//sampleEnd

fun	main()	{
				printProduct("6",	"7")
				printProduct("a",	"7")
				printProduct("a",	"b")
}

or

fun	parseInt(str:	String):	Int?	{
				return	str.toIntOrNull()
}

fun	printProduct(arg1:	String,	arg2:	String)	{
				val	x	=	parseInt(arg1)
				val	y	=	parseInt(arg2)
				
//sampleStart
				//	...
				if	(x	==	null)	{
								println("Wrong	number	format	in	arg1:	'$arg1'")
								return
				}
				if	(y	==	null)	{
								println("Wrong	number	format	in	arg2:	'$arg2'")
								return
				}

				//	x	and	y	are	automatically	cast	to	non-nullable	after	null	check
				println(x	*	y)
//sampleEnd
}

fun	main()	{
				printProduct("6",	"7")
				printProduct("a",	"7")
				printProduct("99",	"b")
}

See Null-safety.

Type
checks
and
automatic
casts
The is operator checks if an expression is an instance of a type. If an immutable local variable or property is checked for a specific type, there's no need to cast it
explicitly:

//sampleStart
fun	getStringLength(obj:	Any):	Int?	{
				if	(obj	is	String)	{
								//	`obj`	is	automatically	cast	to	`String`	in	this	branch
								return	obj.length
				}

340

				//	`obj`	is	still	of	type	`Any`	outside	of	the	type-checked	branch
				return	null
}
//sampleEnd

fun	main()	{
				fun	printLength(obj:	Any)	{
								println("Getting	the	length	of	'$obj'.	Result:	${getStringLength(obj)	?:	"Error:	The	object	is	not	a	string"}	")
				}
				printLength("Incomprehensibilities")
				printLength(1000)
				printLength(listOf(Any()))
}

or

//sampleStart
fun	getStringLength(obj:	Any):	Int?	{
				if	(obj	!is	String)	return	null

				//	`obj`	is	automatically	cast	to	`String`	in	this	branch
				return	obj.length
}
//sampleEnd

fun	main()	{
				fun	printLength(obj:	Any)	{
								println("Getting	the	length	of	'$obj'.	Result:	${getStringLength(obj)	?:	"Error:	The	object	is	not	a	string"}	")
				}
				printLength("Incomprehensibilities")
				printLength(1000)
				printLength(listOf(Any()))
}

or even

//sampleStart
fun	getStringLength(obj:	Any):	Int?	{
				//	`obj`	is	automatically	cast	to	`String`	on	the	right-hand	side	of	`&&`
				if	(obj	is	String	&&	obj.length	>	0)	{
								return	obj.length
				}

				return	null
}
//sampleEnd

fun	main()	{
				fun	printLength(obj:	Any)	{
								println("Getting	the	length	of	'$obj'.	Result:	${getStringLength(obj)	?:	"Error:	The	object	is	not	a	string"}	")
				}
				printLength("Incomprehensibilities")
				printLength("")
				printLength(1000)
}

See Classes and Type casts.

Idioms
A collection of random and frequently used idioms in Kotlin. If you have a favorite idiom, contribute it by sending a pull request.

Create
DTOs
(POJOs/POCOs)

data	class	Customer(val	name:	String,	val	email:	String)

provides a Customer class with the following functionality:

getters (and setters in case of vars) for all properties

341

equals()

hashCode()

toString()

copy()

component1(), component2(), ..., for all properties (see Data classes)

Default
values
for
function
parameters

fun	foo(a:	Int	=	0,	b:	String	=	"")	{	...	}

Filter
a
list

val	positives	=	list.filter	{	x	->	x	>	0	}

Or alternatively, even shorter:

val	positives	=	list.filter	{	it	>	0	}

Learn the difference between Java and Kotlin filtering.

Check
the
presence
of
an
element
in
a
collection

if	("john@example.com"	in	emailsList)	{	...	}

if	("jane@example.com"	!in	emailsList)	{	...	}

String
interpolation

println("Name	$name")

Learn the difference between Java and Kotlin string concatenation.

Instance
checks

when	(x)	{
				is	Foo	->	...
				is	Bar	->	...
				else			->	...
}

Read-only
list

val	list	=	listOf("a",	"b",	"c")

Read-only
map

val	map	=	mapOf("a"	to	1,	"b"	to	2,	"c"	to	3)

342

Access
a
map
entry

println(map["key"])
map["key"]	=	value

Traverse
a
map
or
a
list
of
pairs

for	((k,	v)	in	map)	{
				println("$k	->	$v")
}

k and v can be any convenient names, such as name and age.

Iterate
over
a
range

for	(i	in	1..100)	{	...	}		//	closed-ended	range:	includes	100
for	(i	in	1..<100)	{	...	}	//	open-ended	range:	does	not	include	100
for	(x	in	2..10	step	2)	{	...	}
for	(x	in	10	downTo	1)	{	...	}
(1..10).forEach	{	...	}

Lazy
property

val	p:	String	by	lazy	{	//	the	value	is	computed	only	on	first	access
				//	compute	the	string
}

Extension
functions

fun	String.spaceToCamelCase()	{	...	}

"Convert	this	to	camelcase".spaceToCamelCase()

Create
a
singleton

object	Resource	{
				val	name	=	"Name"
}

Instantiate
an
abstract
class

abstract	class	MyAbstractClass	{
				abstract	fun	doSomething()
				abstract	fun	sleep()
}

fun	main()	{
				val	myObject	=	object	:	MyAbstractClass()	{
								override	fun	doSomething()	{
												//	...
								}

								override	fun	sleep()	{	//	...

343

								}
				}
				myObject.doSomething()
}

If-not-null
shorthand

val	files	=	File("Test").listFiles()

println(files?.size)	//	size	is	printed	if	files	is	not	null

If-not-null-else
shorthand

val	files	=	File("Test").listFiles()

//	For	simple	fallback	values:
println(files?.size	?:	"empty")	//	if	files	is	null,	this	prints	"empty"

//	To	calculate	a	more	complicated	fallback	value	in	a	code	block,	use	`run`
val	filesSize	=	files?.size	?:	run	{	
				val	someSize	=	getSomeSize()
				someSize	*	2
}
println(filesSize)

Execute
a
statement
if
null

val	values	=	...
val	email	=	values["email"]	?:	throw	IllegalStateException("Email	is	missing!")

Get
first
item
of
a
possibly
empty
collection

val	emails	=	...	//	might	be	empty
val	mainEmail	=	emails.firstOrNull()	?:	""

Learn the difference between Java and Kotlin first item getting.

Execute
if
not
null

val	value	=	...

value?.let	{
				...	//	execute	this	block	if	not	null
}

Map
nullable
value
if
not
null

val	value	=	...

val	mapped	=	value?.let	{	transformValue(it)	}	?:	defaultValue	
//	defaultValue	is	returned	if	the	value	or	the	transform	result	is	null.

Return
on
when
statement

344

fun	transform(color:	String):	Int	{
				return	when	(color)	{
								"Red"	->	0
								"Green"	->	1
								"Blue"	->	2
								else	->	throw	IllegalArgumentException("Invalid	color	param	value")
				}
}

try-catch
expression

fun	test()	{
				val	result	=	try	{
								count()
				}	catch	(e:	ArithmeticException)	{
								throw	IllegalStateException(e)
				}

				//	Working	with	result
}

if
expression

val	y	=	if	(x	==	1)	{
				"one"
}	else	if	(x	==	2)	{
				"two"
}	else	{
				"other"
}

Builder-style
usage
of
methods
that
return
Unit

fun	arrayOfMinusOnes(size:	Int):	IntArray	{
				return	IntArray(size).apply	{	fill(-1)	}
}

Single-expression
functions

fun	theAnswer()	=	42

This is equivalent to

fun	theAnswer():	Int	{
				return	42
}

This can be effectively combined with other idioms, leading to shorter code. For example, with the when expression:

fun	transform(color:	String):	Int	=	when	(color)	{
				"Red"	->	0
				"Green"	->	1
				"Blue"	->	2
				else	->	throw	IllegalArgumentException("Invalid	color	param	value")
}

Call
multiple
methods
on
an
object
instance
(with)

345

class	Turtle	{
				fun	penDown()
				fun	penUp()
				fun	turn(degrees:	Double)
				fun	forward(pixels:	Double)
}

val	myTurtle	=	Turtle()
with(myTurtle)	{	//draw	a	100	pix	square
				penDown()
				for	(i	in	1..4)	{
								forward(100.0)
								turn(90.0)
				}
				penUp()
}

Configure
properties
of
an
object
(apply)

val	myRectangle	=	Rectangle().apply	{
				length	=	4
				breadth	=	5
				color	=	0xFAFAFA
}

This is useful for configuring properties that aren't present in the object constructor.

Java
7's
try-with-resources

val	stream	=	Files.newInputStream(Paths.get("/some/file.txt"))
stream.buffered().reader().use	{	reader	->
				println(reader.readText())
}

Generic
function
that
requires
the
generic
type
information

//		public	final	class	Gson	{
//					...
//					public	<T>	T	fromJson(JsonElement	json,	Class<T>	classOfT)	throws	JsonSyntaxException	{
//					...

inline	fun	<reified	T:	Any>	Gson.fromJson(json:	JsonElement):	T	=	this.fromJson(json,	T::class.java)

Swap
two
variables

var	a	=	1
var	b	=	2
a	=	b.also	{	b	=	a	}

Mark
code
as
incomplete
(TODO)
Kotlin's standard library has a TODO() function that will always throw a NotImplementedError. Its return type is Nothing so it can be used regardless of expected
type. There's also an overload that accepts a reason parameter:

fun	calcTaxes():	BigDecimal	=	TODO("Waiting	for	feedback	from	accounting")

IntelliJ IDEA's kotlin plugin understands the semantics of TODO() and automatically adds a code pointer in the TODO tool window.

346

What's
next?
Solve Advent of Code puzzles using the idiomatic Kotlin style.

Learn how to perform typical tasks with strings in Java and Kotlin.

Learn how to perform typical tasks with collections in Java and Kotlin.

Learn how to handle nullability in Java and Kotlin.

Coding
conventions
Commonly known and easy-to-follow coding conventions are vital for any programming language. Here we provide guidelines on the code style and code
organization for projects that use Kotlin.

Configure
style
in
IDE
Two most popular IDEs for Kotlin - IntelliJ IDEA and Android Studio provide powerful support for code styling. You can configure them to automatically format your
code in consistence with the given code style.

Apply
the
style
guide

1. Go to Settings/Preferences | Editor | Code Style | Kotlin.

2. Click Set from....

3. Select Kotlin style guide.

Verify
that
your
code
follows
the
style
guide

1. Go to Settings/Preferences | Editor | Inspections | General.

2. Switch on Incorrect formatting inspection. Additional inspections that verify other issues described in the style guide (such as naming conventions) are enabled
by default.

Source
code
organization

Directory
structure
In pure Kotlin projects, the recommended directory structure follows the package structure with the common root package omitted. For example, if all the code in
the project is in the org.example.kotlin package and its subpackages, files with the org.example.kotlin package should be placed directly under the source root, and
files in org.example.kotlin.network.socket should be in the network/socket subdirectory of the source root.

Source
file
names
If a Kotlin file contains a single class or interface (potentially with related top-level declarations), its name should be the same as the name of the class, with the .kt
extension appended. It applies to all types of classes and interfaces. If a file contains multiple classes, or only top-level declarations, choose a name describing
what the file contains, and name the file accordingly. Use an upper camel case with an uppercase first letter (also known as Pascal case), for example,
ProcessDeclarations.kt.

The name of the file should describe what the code in the file does. Therefore, you should avoid using meaningless words such as Util in file names.

Multiplatform projects

On JVM: In projects where Kotlin is used together with Java, Kotlin source files should reside in the same source root as the Java source files, and follow
the same directory structure: each file should be stored in the directory corresponding to each package statement.

347

https://www.jetbrains.com/idea/
https://developer.android.com/studio/
https://en.wikipedia.org/wiki/Camel_case

In multiplatform projects, files with top-level declarations in platform-specific source sets should have a suffix associated with the name of the source set. For
example:

jvmMain/kotlin/Platform.jvm.kt

androidMain/kotlin/Platform.android.kt

iosMain/kotlin/Platform.ios.kt

As for the common source set, files with top-level declarations should not have a suffix. For example, commonMain/kotlin/Platform.kt.

Technical details
We recommend following this file naming scheme in multiplatform projects due to JVM limitations: it doesn't allow top-level members (functions, properties).

To work around this, the Kotlin JVM compiler creates wrapper classes (so-called "file facades") that contain top-level member declarations. File facades have an
internal name derived from the file name.

In turn, JVM doesn't allow several classes with the same fully qualified name (FQN). This might lead to situations when a Kotlin project cannot be compiled to JVM:

root
|-	commonMain/kotlin/myPackage/Platform.kt	//	contains	'fun	count()	{	}'
|-	jvmMain/kotlin/myPackage/Platform.kt	//	contains	'fun	multiply()	{	}'

Here both Platform.kt files are in the same package, so the Kotlin JVM compiler produces two file facades, both of which have FQN myPackage.PlatformKt. This
produces the "Duplicate JVM classes" error.

The simplest way to avoid that is renaming one of the files according to the guideline above. This naming scheme helps avoid clashes while retaining code
readability.

Source
file
organization
Placing multiple declarations (classes, top-level functions or properties) in the same Kotlin source file is encouraged as long as these declarations are closely related
to each other semantically, and the file size remains reasonable (not exceeding a few hundred lines).

In particular, when defining extension functions for a class which are relevant for all clients of this class, put them in the same file with the class itself. When defining
extension functions that make sense only for a specific client, put them next to the code of that client. Avoid creating files just to hold all extensions of some class.

Class
layout
The contents of a class should go in the following order:

1. Property declarations and initializer blocks

2. Secondary constructors

3. Method declarations

4. Companion object

Do not sort the method declarations alphabetically or by visibility, and do not separate regular methods from extension methods. Instead, put related stuff together,
so that someone reading the class from top to bottom can follow the logic of what's happening. Choose an order (either higher-level stuff first, or vice versa) and
stick to it.

Put nested classes next to the code that uses those classes. If the classes are intended to be used externally and aren't referenced inside the class, put them in the
end, after the companion object.

There are two cases when these recommendations may seem redundant, but we still advise to follow them:

Non-JVM platforms don't have issues with duplicating file facades. However, this naming scheme can help you keep file naming consistent.

On JVM, if source files don't have top-level declarations, the file facades aren't generated, and you won't face naming clashes.

However, this naming scheme can help you avoid situations when a simple refactoring or an addition could include a top-level function and result in
the same "Duplicate JVM classes" error.

348

Interface
implementation
layout
When implementing an interface, keep the implementing members in the same order as members of the interface (if necessary, interspersed with additional private
methods used for the implementation).

Overload
layout
Always put overloads next to each other in a class.

Naming
rules
Package and class naming rules in Kotlin are quite simple:

Names of packages are always lowercase and do not use underscores (org.example.project). Using multi-word names is generally discouraged, but if you do
need to use multiple words, you can either just concatenate them together or use the camel case (org.example.myProject).

Names of classes and objects start with an uppercase letter and use the camel case:

open	class	DeclarationProcessor	{	/*...*/	}

object	EmptyDeclarationProcessor	:	DeclarationProcessor()	{	/*...*/	}

Function
names
Names of functions, properties and local variables start with a lowercase letter and use the camel case and no underscores:

fun	processDeclarations()	{	/*...*/	}
var	declarationCount	=	1

Exception: factory functions used to create instances of classes can have the same name as the abstract return type:

interface	Foo	{	/*...*/	}

class	FooImpl	:	Foo	{	/*...*/	}

fun	Foo():	Foo	{	return	FooImpl()	}

Names
for
test
methods
In tests (and only in tests), you can use method names with spaces enclosed in backticks. Note that such method names are currently not supported by the
Android runtime. Underscores in method names are also allowed in test code.

class	MyTestCase	{
					@Test	fun	`ensure	everything	works`()	{	/*...*/	}
					
					@Test	fun	ensureEverythingWorks_onAndroid()	{	/*...*/	}
}

Property
names
Names of constants (properties marked with const, or top-level or object val properties with no custom get function that hold deeply immutable data) should use
uppercase underscore-separated (screaming snake case) names:

const	val	MAX_COUNT	=	8
val	USER_NAME_FIELD	=	"UserName"

Names of top-level or object properties which hold objects with behavior or mutable data should use camel case names:

val	mutableCollection:	MutableSet<String>	=	HashSet()

Names of properties holding references to singleton objects can use the same naming style as object declarations:

349

https://en.wikipedia.org/wiki/Snake_case

val	PersonComparator:	Comparator<Person>	=	/*...*/

For enum constants, it's OK to use either uppercase underscore-separated names (screaming snake case) (enum class Color { RED, GREEN }) or upper camel case
names, depending on the usage.

Names
for
backing
properties
If a class has two properties which are conceptually the same but one is part of a public API and another is an implementation detail, use an underscore as the
prefix for the name of the private property:

class	C	{
				private	val	_elementList	=	mutableListOf<Element>()

				val	elementList:	List<Element>
									get()	=	_elementList
}

Choose
good
names
The name of a class is usually a noun or a noun phrase explaining what the class is: List, PersonReader.

The name of a method is usually a verb or a verb phrase saying what the method does: close, readPersons. The name should also suggest if the method is
mutating the object or returning a new one. For instance sort is sorting a collection in place, while sorted is returning a sorted copy of the collection.

The names should make it clear what the purpose of the entity is, so it's best to avoid using meaningless words (Manager, Wrapper) in names.

When using an acronym as part of a declaration name, capitalize it if it consists of two letters (IOStream); capitalize only the first letter if it is longer (XmlFormatter,
HttpInputStream).

Formatting

Indentation
Use four spaces for indentation. Do not use tabs.

For curly braces, put the opening brace at the end of the line where the construct begins, and the closing brace on a separate line aligned horizontally with the
opening construct.

if	(elements	!=	null)	{
				for	(element	in	elements)	{
								//	...
				}
}

Horizontal
whitespace
Put spaces around binary operators (a + b). Exception: don't put spaces around the "range to" operator (0..i).

Do not put spaces around unary operators (a++).

Put spaces between control flow keywords (if, when, for, and while) and the corresponding opening parenthesis.

Do not put a space before an opening parenthesis in a primary constructor declaration, method declaration or method call.

class	A(val	x:	Int)

fun	foo(x:	Int)	{	...	}

fun	bar()	{
				foo(1)

In Kotlin, semicolons are optional, and therefore line breaks are significant. The language design assumes Java-style braces, and you may encounter
surprising behavior if you try to use a different formatting style.

350

https://en.wikipedia.org/wiki/Snake_case

}

Never put a space after (, [, or before],)

Never put a space around . or ?.: foo.bar().filter { it > 2 }.joinToString(), foo?.bar()

Put a space after //: // This is a comment

Do not put spaces around angle brackets used to specify type parameters: class Map<K, V> { ... }

Do not put spaces around ::: Foo::class, String::length

Do not put a space before ? used to mark a nullable type: String?

As a general rule, avoid horizontal alignment of any kind. Renaming an identifier to a name with a different length should not affect the formatting of either the
declaration or any of the usages.

Colon
Put a space before : in the following cases:

when it's used to separate a type and a supertype

when delegating to a superclass constructor or a different constructor of the same class

after the object keyword

Don't put a space before : when it separates a declaration and its type.

Always put a space after :.

abstract	class	Foo<out	T	:	Any>	:	IFoo	{
				abstract	fun	foo(a:	Int):	T
}

class	FooImpl	:	Foo()	{
				constructor(x:	String)	:	this(x)	{	/*...*/	}
				
				val	x	=	object	:	IFoo	{	/*...*/	}	
}	

Class
headers
Classes with a few primary constructor parameters can be written in a single line:

class	Person(id:	Int,	name:	String)

Classes with longer headers should be formatted so that each primary constructor parameter is in a separate line with indentation. Also, the closing parenthesis
should be on a new line. If you use inheritance, the superclass constructor call, or the list of implemented interfaces should be located on the same line as the
parenthesis:

class	Person(
				id:	Int,
				name:	String,
				surname:	String
)	:	Human(id,	name)	{	/*...*/	}

For multiple interfaces, the superclass constructor call should be located first and then each interface should be located in a different line:

class	Person(
				id:	Int,
				name:	String,
				surname:	String
)	:	Human(id,	name),
				KotlinMaker	{	/*...*/	}

For classes with a long supertype list, put a line break after the colon and align all supertype names horizontally:

351

class	MyFavouriteVeryLongClassHolder	:
				MyLongHolder<MyFavouriteVeryLongClass>(),
				SomeOtherInterface,
				AndAnotherOne	{

				fun	foo()	{	/*...*/	}
}

To clearly separate the class header and body when the class header is long, either put a blank line following the class header (as in the example above), or put the
opening curly brace on a separate line:

class	MyFavouriteVeryLongClassHolder	:
				MyLongHolder<MyFavouriteVeryLongClass>(),
				SomeOtherInterface,
				AndAnotherOne	
{
				fun	foo()	{	/*...*/	}
}

Use regular indent (four spaces) for constructor parameters. This ensures that properties declared in the primary constructor have the same indentation as
properties declared in the body of a class.

Modifiers
order
If a declaration has multiple modifiers, always put them in the following order:

public	/	protected	/	private	/	internal
expect	/	actual
final	/	open	/	abstract	/	sealed	/	const
external
override
lateinit
tailrec
vararg
suspend
inner
enum	/	annotation	/	fun	//	as	a	modifier	in	`fun	interface`	
companion
inline	/	value
infix
operator
data

Place all annotations before modifiers:

@Named("Foo")
private	val	foo:	Foo

Unless you're working on a library, omit redundant modifiers (for example, public).

Annotations
Place annotations on separate lines before the declaration to which they are attached, and with the same indentation:

@Target(AnnotationTarget.PROPERTY)
annotation	class	JsonExclude

Annotations without arguments may be placed on the same line:

@JsonExclude	@JvmField
var	x:	String

A single annotation without arguments may be placed on the same line as the corresponding declaration:

@Test	fun	foo()	{	/*...*/	}

352

File
annotations
File annotations are placed after the file comment (if any), before the package statement, and are separated from package with a blank line (to emphasize the fact
that they target the file and not the package).

/**	License,	copyright	and	whatever	*/
@file:JvmName("FooBar")

package	foo.bar

Functions
If the function signature doesn't fit on a single line, use the following syntax:

fun	longMethodName(
				argument:	ArgumentType	=	defaultValue,
				argument2:	AnotherArgumentType,
):	ReturnType	{
				//	body
}

Use regular indent (four spaces) for function parameters. It helps ensure consistency with constructor parameters.

Prefer using an expression body for functions with the body consisting of a single expression.

fun	foo():	Int	{					//	bad
				return	1	
}

fun	foo()	=	1								//	good

Expression
bodies
If the function has an expression body whose first line doesn't fit on the same line as the declaration, put the = sign on the first line and indent the expression body
by four spaces.

fun	f(x:	String,	y:	String,	z:	String)	=
				veryLongFunctionCallWithManyWords(andLongParametersToo(),	x,	y,	z)

Properties
For very simple read-only properties, consider one-line formatting:

val	isEmpty:	Boolean	get()	=	size	==	0

For more complex properties, always put get and set keywords on separate lines:

val	foo:	String
				get()	{	/*...*/	}

For properties with an initializer, if the initializer is long, add a line break after the = sign and indent the initializer by four spaces:

private	val	defaultCharset:	Charset?	=
				EncodingRegistry.getInstance().getDefaultCharsetForPropertiesFiles(file)

Control
flow
statements
If the condition of an if or when statement is multiline, always use curly braces around the body of the statement. Indent each subsequent line of the condition by
four spaces relative to the statement start. Put the closing parentheses of the condition together with the opening curly brace on a separate line:

if	(!component.isSyncing	&&
				!hasAnyKotlinRuntimeInScope(module)
)	{

353

				return	createKotlinNotConfiguredPanel(module)
}

This helps align the condition and statement bodies.

Put the else, catch, finally keywords, as well as the while keyword of a do-while loop, on the same line as the preceding curly brace:

if	(condition)	{
				//	body
}	else	{
				//	else	part
}

try	{
				//	body
}	finally	{
				//	cleanup
}

In a when statement, if a branch is more than a single line, consider separating it from adjacent case blocks with a blank line:

private	fun	parsePropertyValue(propName:	String,	token:	Token)	{
				when	(token)	{
								is	Token.ValueToken	->
												callback.visitValue(propName,	token.value)

								Token.LBRACE	->	{	//	...
								}
				}
}

Put short branches on the same line as the condition, without braces.

when	(foo)	{
				true	->	bar()	//	good
				false	->	{	baz()	}	//	bad
}

Method
calls
In long argument lists, put a line break after the opening parenthesis. Indent arguments by four spaces. Group multiple closely related arguments on the same line.

drawSquare(
				x	=	10,	y	=	10,
				width	=	100,	height	=	100,
				fill	=	true
)

Put spaces around the = sign separating the argument name and value.

Wrap
chained
calls
When wrapping chained calls, put the . character or the ?. operator on the next line, with a single indent:

val	anchor	=	owner
				?.firstChild!!
				.siblings(forward	=	true)
				.dropWhile	{	it	is	PsiComment	||	it	is	PsiWhiteSpace	}

The first call in the chain should usually have a line break before it, but it's OK to omit it if the code makes more sense that way.

Lambdas
In lambda expressions, spaces should be used around the curly braces, as well as around the arrow which separates the parameters from the body. If a call takes a
single lambda, pass it outside parentheses whenever possible.

list.filter	{	it	>	10	}

354

If assigning a label for a lambda, do not put a space between the label and the opening curly brace:

fun	foo()	{
				ints.forEach	lit@{
								//	...
				}
}

When declaring parameter names in a multiline lambda, put the names on the first line, followed by the arrow and the newline:

appendCommaSeparated(properties)	{	prop	->
				val	propertyValue	=	prop.get(obj)		//	...
}

If the parameter list is too long to fit on a line, put the arrow on a separate line:

foo	{
			context:	Context,
			environment:	Env
			->
			context.configureEnv(environment)
}

Trailing
commas
A trailing comma is a comma symbol after the last item in a series of elements:

class	Person(
				val	firstName:	String,
				val	lastName:	String,
				val	age:	Int,	//	trailing	comma
)

Using trailing commas has several benefits:

It makes version-control diffs cleaner – as all the focus is on the changed value.

It makes it easy to add and reorder elements – there is no need to add or delete the comma if you manipulate elements.

It simplifies code generation, for example, for object initializers. The last element can also have a comma.

Trailing commas are entirely optional – your code will still work without them. The Kotlin style guide encourages the use of trailing commas at the declaration site
and leaves it at your discretion for the call site.

To enable trailing commas in the IntelliJ IDEA formatter, go to Settings/Preferences | Editor | Code Style | Kotlin, open the Other tab and select the Use trailing
comma option.

Enumerations

enum	class	Direction	{
				NORTH,
				SOUTH,
				WEST,
				EAST,	//	trailing	comma
}

Value arguments

fun	shift(x:	Int,	y:	Int)	{	/*...*/	}
shift(
				25,
				20,	//	trailing	comma
)
val	colors	=	listOf(

355

				"red",
				"green",
				"blue",	//	trailing	comma
)

Class properties and parameters

class	Customer(
				val	name:	String,
				val	lastName:	String,	//	trailing	comma
)
class	Customer(
				val	name:	String,
				lastName:	String,	//	trailing	comma
)

Function value parameters

fun	powerOf(
				number:	Int,	
				exponent:	Int,	//	trailing	comma
)	{	/*...*/	}
constructor(
				x:	Comparable<Number>,
				y:	Iterable<Number>,	//	trailing	comma
)	{}
fun	print(
				vararg	quantity:	Int,
				description:	String,	//	trailing	comma
)	{}

Parameters with optional type (including setters)

val	sum:	(Int,	Int,	Int)	->	Int	=	fun(
				x,
				y,
				z,	//	trailing	comma
):	Int	{
				return	x	+	y	+	x
}
println(sum(8,	8,	8))

Indexing suffix

class	Surface	{
				operator	fun	get(x:	Int,	y:	Int)	=	2	*	x	+	4	*	y	-	10
}
fun	getZValue(mySurface:	Surface,	xValue:	Int,	yValue:	Int)	=
				mySurface[
								xValue,
								yValue,	//	trailing	comma
]

Parameters in lambdas

fun	main()	{
				val	x	=	{
												x:	Comparable<Number>,
												y:	Iterable<Number>,	//	trailing	comma
								->
								println("1")
				}
				println(x)
}

356

when entry

fun	isReferenceApplicable(myReference:	KClass<*>)	=	when	(myReference)	{
				Comparable::class,
				Iterable::class,
				String::class,	//	trailing	comma
								->	true
				else	->	false
}

Collection literals (in annotations)

annotation	class	ApplicableFor(val	services:	Array<String>)
@ApplicableFor([
				"serializer",
				"balancer",
				"database",
				"inMemoryCache",	//	trailing	comma
])
fun	run()	{}

Type arguments

fun	<T1,	T2>	foo()	{}
fun	main()	{
				foo<
												Comparable<Number>,
												Iterable<Number>,	//	trailing	comma
												>()
}

Type parameters

class	MyMap<
								MyKey,
								MyValue,	//	trailing	comma
								>	{}

Destructuring declarations

data	class	Car(val	manufacturer:	String,	val	model:	String,	val	year:	Int)
val	myCar	=	Car("Tesla",	"Y",	2019)
val	(
				manufacturer,
				model,
				year,	//	trailing	comma
)	=	myCar
val	cars	=	listOf<Car>()
fun	printMeanValue()	{
				var	meanValue:	Int	=	0
				for	((
								_,
								_,
								year,	//	trailing	comma
)	in	cars)	{
								meanValue	+=	year
				}
				println(meanValue/cars.size)
}
printMeanValue()

Documentation
comments
For longer documentation comments, place the opening /** on a separate line and begin each subsequent line with an asterisk:

357

/**
	*	This	is	a	documentation	comment
	*	on	multiple	lines.
	*/

Short comments can be placed on a single line:

/**	This	is	a	short	documentation	comment.	*/

Generally, avoid using @param and @return tags. Instead, incorporate the description of parameters and return values directly into the documentation comment,
and add links to parameters wherever they are mentioned. Use @param and @return only when a lengthy description is required which doesn't fit into the flow of the
main text.

//	Avoid	doing	this:

/**
	*	Returns	the	absolute	value	of	the	given	number.
	*	@param	number	The	number	to	return	the	absolute	value	for.
	*	@return	The	absolute	value.
	*/
fun	abs(number:	Int):	Int	{	/*...*/	}

//	Do	this	instead:

/**
	*	Returns	the	absolute	value	of	the	given	[number].
	*/
fun	abs(number:	Int):	Int	{	/*...*/	}

Avoid
redundant
constructs
In general, if a certain syntactic construction in Kotlin is optional and highlighted by the IDE as redundant, you should omit it in your code. Do not leave unnecessary
syntactic elements in code just "for clarity".

Unit
return
type
If a function returns Unit, the return type should be omitted:

fun	foo()	{	//	":	Unit"	is	omitted	here

}

Semicolons
Omit semicolons whenever possible.

String
templates
Don't use curly braces when inserting a simple variable into a string template. Use curly braces only for longer expressions.

println("$name	has	${children.size}	children")

Idiomatic
use
of
language
features

Immutability
Prefer using immutable data to mutable. Always declare local variables and properties as val rather than var if they are not modified after initialization.

Always use immutable collection interfaces (Collection, List, Set, Map) to declare collections which are not mutated. When using factory functions to create
collection instances, always use functions that return immutable collection types when possible:

358

//	Bad:	use	of	a	mutable	collection	type	for	value	which	will	not	be	mutated
fun	validateValue(actualValue:	String,	allowedValues:	HashSet<String>)	{	...	}

//	Good:	immutable	collection	type	used	instead
fun	validateValue(actualValue:	String,	allowedValues:	Set<String>)	{	...	}

//	Bad:	arrayListOf()	returns	ArrayList<T>,	which	is	a	mutable	collection	type
val	allowedValues	=	arrayListOf("a",	"b",	"c")

//	Good:	listOf()	returns	List<T>
val	allowedValues	=	listOf("a",	"b",	"c")

Default
parameter
values
Prefer declaring functions with default parameter values to declaring overloaded functions.

//	Bad
fun	foo()	=	foo("a")
fun	foo(a:	String)	{	/*...*/	}

//	Good
fun	foo(a:	String	=	"a")	{	/*...*/	}

Type
aliases
If you have a functional type or a type with type parameters which is used multiple times in a codebase, prefer defining a type alias for it:

typealias	MouseClickHandler	=	(Any,	MouseEvent)	->	Unit
typealias	PersonIndex	=	Map<String,	Person>

If you use a private or internal type alias for avoiding name collision, prefer the import ... as ... mentioned in Packages and Imports.

Lambda
parameters
In lambdas which are short and not nested, it's recommended to use the it convention instead of declaring the parameter explicitly. In nested lambdas with
parameters, always declare parameters explicitly.

Returns
in
a
lambda
Avoid using multiple labeled returns in a lambda. Consider restructuring the lambda so that it will have a single exit point. If that's not possible or not clear enough,
consider converting the lambda into an anonymous function.

Do not use a labeled return for the last statement in a lambda.

Named
arguments
Use the named argument syntax when a method takes multiple parameters of the same primitive type, or for parameters of Boolean type, unless the meaning of all
parameters is absolutely clear from context.

drawSquare(x	=	10,	y	=	10,	width	=	100,	height	=	100,	fill	=	true)

Conditional
statements
Prefer using the expression form of try, if, and when.

return	if	(x)	foo()	else	bar()

return	when(x)	{
				0	->	"zero"
				else	->	"nonzero"
}

The above is preferable to:

359

if	(x)
				return	foo()
else
				return	bar()

when(x)	{
				0	->	return	"zero"
				else	->	return	"nonzero"
}				

if
versus
when
Prefer using if for binary conditions instead of when. For example, use this syntax with if:

if	(x	==	null)	...	else	...

instead of this one with when:

when	(x)	{
				null	->	//	...
				else	->	//	...
}

Prefer using when if there are three or more options.

Nullable
Boolean
values
in
conditions
If you need to use a nullable Boolean in a conditional statement, use if (value == true) or if (value == false) checks.

Loops
Prefer using higher-order functions (filter, map etc.) to loops. Exception: forEach (prefer using a regular for loop instead, unless the receiver of forEach is nullable or
forEach is used as part of a longer call chain).

When making a choice between a complex expression using multiple higher-order functions and a loop, understand the cost of the operations being performed in
each case and keep performance considerations in mind.

Loops
on
ranges
Use the ..< operator to loop over an open-ended range:

for	(i	in	0..n	-	1)	{	/*...*/	}		//	bad
for	(i	in	0..<n)	{	/*...*/	}		//	good

Strings
Prefer string templates to string concatenation.

Prefer multiline strings to embedding \n escape sequences into regular string literals.

To maintain indentation in multiline strings, use trimIndent when the resulting string does not require any internal indentation, or trimMargin when internal
indentation is required:

fun	main()	{
//sampleStart
			println("""
				Not
				trimmed
				text
				"""
)

			println("""

360

				Trimmed
				text
				""".trimIndent()
)

			println()

			val	a	=	"""Trimmed	to	margin	text:
										|if(a	>	1)	{
										|				return	a
										|}""".trimMargin()

			println(a)
//sampleEnd
}

Learn the difference between Java and Kotlin multiline strings.

Functions
vs
properties
In some cases, functions with no arguments might be interchangeable with read-only properties. Although the semantics are similar, there are some stylistic
conventions on when to prefer one to another.

Prefer a property over a function when the underlying algorithm:

does not throw

is cheap to calculate (or cached on the first run)

returns the same result over invocations if the object state hasn't changed

Extension
functions
Use extension functions liberally. Every time you have a function that works primarily on an object, consider making it an extension function accepting that object
as a receiver. To minimize API pollution, restrict the visibility of extension functions as much as it makes sense. As necessary, use local extension functions,
member extension functions, or top-level extension functions with private visibility.

Infix
functions
Declare a function as infix only when it works on two objects which play a similar role. Good examples: and, to, zip. Bad example: add.

Do not declare a method as infix if it mutates the receiver object.

Factory
functions
If you declare a factory function for a class, avoid giving it the same name as the class itself. Prefer using a distinct name, making it clear why the behavior of the
factory function is special. Only if there is really no special semantics, you can use the same name as the class.

class	Point(val	x:	Double,	val	y:	Double)	{
				companion	object	{
								fun	fromPolar(angle:	Double,	radius:	Double)	=	Point(...)
				}
}

If you have an object with multiple overloaded constructors that don't call different superclass constructors and can't be reduced to a single constructor with default
argument values, prefer to replace the overloaded constructors with factory functions.

Platform
types
A public function/method returning an expression of a platform type must declare its Kotlin type explicitly:

fun	apiCall():	String	=	MyJavaApi.getProperty("name")

Any property (package-level or class-level) initialized with an expression of a platform type must declare its Kotlin type explicitly:

class	Person	{
				val	name:	String	=	MyJavaApi.getProperty("name")

361

}

A local value initialized with an expression of a platform type may or may not have a type declaration:

fun	main()	{
				val	name	=	MyJavaApi.getProperty("name")
				println(name)
}

Scope
functions
apply/with/run/also/let
Kotlin provides a set of functions to execute a block of code in the context of a given object: let, run, with, apply, and also. For the guidance on choosing the right
scope function for your case, refer to Scope Functions.

Coding
conventions
for
libraries
When writing libraries, it's recommended to follow an additional set of rules to ensure API stability:

Always explicitly specify member visibility (to avoid accidentally exposing declarations as public API)

Always explicitly specify function return types and property types (to avoid accidentally changing the return type when the implementation changes)

Provide KDoc comments for all public members, except for overrides that do not require any new documentation (to support generating documentation for the
library)

Learn more about best practices and ideas to consider when writing an API for your library in library creators' guidelines.

Basic
types
In Kotlin, everything is an object in the sense that you can call member functions and properties on any variable. Some types can have a special internal
representation – for example, numbers, characters and booleans can be represented as primitive values at runtime – but to the user they look like ordinary classes.

This section describes the basic types used in Kotlin:

Numbers and their unsigned counterparts

Booleans

Characters

Strings

Arrays

Numbers

Integer
types
Kotlin provides a set of built-in types that represent numbers.
For integer numbers, there are four types with different sizes and, hence, value ranges:

Type Size (bits) Min value Max value

Byte 8 -128 127

Short 16 -32768 32767

362

Int 32 -2,147,483,648 (-231) 2,147,483,647 (231 - 1)

Long 64 -9,223,372,036,854,775,808 (-263) 9,223,372,036,854,775,807 (263 - 1)

Type Size (bits) Min value Max value

When you initialize a variable with no explicit type specification, the compiler automatically infers the type with the smallest range enough to represent the value
starting from Int. If it is not exceeding the range of Int, the type is Int. If it exceeds, the type is Long. To specify the Long value explicitly, append the suffix L to the
value. Explicit type specification triggers the compiler to check the value not to exceed the range of the specified type.

val	one	=	1	//	Int
val	threeBillion	=	3000000000	//	Long
val	oneLong	=	1L	//	Long
val	oneByte:	Byte	=	1

Floating-point
types
For real numbers, Kotlin provides floating-point types Float and Double that adhere to the IEEE 754 standard. Float reflects the IEEE 754 single precision, while
Double reflects double precision.

These types differ in their size and provide storage for floating-point numbers with different precision:

Type Size (bits) Significant bits Exponent bits Decimal digits

Float 32 24 8 6-7

Double 64 53 11 15-16

You can initialize Double and Float variables with numbers having a fractional part. It's separated from the integer part by a period (.) For variables initialized with
fractional numbers, the compiler infers the Double type:

val	pi	=	3.14	//	Double
//	val	one:	Double	=	1	//	Error:	type	mismatch
val	oneDouble	=	1.0	//	Double

To explicitly specify the Float type for a value, add the suffix f or F. If such a value contains more than 6-7 decimal digits, it will be rounded:

val	e	=	2.7182818284	//	Double
val	eFloat	=	2.7182818284f	//	Float,	actual	value	is	2.7182817

Unlike some other languages, there are no implicit widening conversions for numbers in Kotlin. For example, a function with a Double parameter can be called only
on Double values, but not Float, Int, or other numeric values:

fun	main()	{
				fun	printDouble(d:	Double)	{	print(d)	}

				val	i	=	1				
				val	d	=	1.0
				val	f	=	1.0f	

				printDouble(d)
//				printDouble(i)	//	Error:	Type	mismatch
//				printDouble(f)	//	Error:	Type	mismatch

In addition to integer types, Kotlin also provides unsigned integer types. For more information, see Unsigned integer types.

363

https://en.wikipedia.org/wiki/IEEE_754

}

To convert numeric values to different types, use explicit conversions.

Literal
constants
for
numbers
There are the following kinds of literal constants for integral values:

Decimals: 123

Longs are tagged by a capital L: 123L

Hexadecimals: 0x0F

Binaries: 0b00001011

Kotlin also supports a conventional notation for floating-point numbers:

Doubles by default: 123.5, 123.5e10

Floats are tagged by f or F: 123.5f

You can use underscores to make number constants more readable:

val	oneMillion	=	1_000_000
val	creditCardNumber	=	1234_5678_9012_3456L
val	socialSecurityNumber	=	999_99_9999L
val	hexBytes	=	0xFF_EC_DE_5E
val	bytes	=	0b11010010_01101001_10010100_10010010

Numbers
representation
on
the
JVM
On the JVM platform, numbers are stored as primitive types: int, double, and so on. Exceptions are cases when you create a nullable number reference such as Int?
or use generics. In these cases numbers are boxed in Java classes Integer, Double, and so on.

Nullable references to the same number can refer to different objects:

fun	main()	{
//sampleStart
				val	a:	Int	=	100
				val	boxedA:	Int?	=	a
				val	anotherBoxedA:	Int?	=	a
				
				val	b:	Int	=	10000
				val	boxedB:	Int?	=	b
				val	anotherBoxedB:	Int?	=	b
				
				println(boxedA	===	anotherBoxedA)	//	true
				println(boxedB	===	anotherBoxedB)	//	false
//sampleEnd
}

All nullable references to a are actually the same object because of the memory optimization that JVM applies to Integers between -128 and 127. It doesn't apply to
the b references, so they are different objects.

On the other hand, they are still equal:

fun	main()	{

Octal literals are not supported in Kotlin.

There are also special tags for unsigned integer literals.
Read more about literals for unsigned integer types.

364

//sampleStart
				val	b:	Int	=	10000
				println(b	==	b)	//	Prints	'true'
				val	boxedB:	Int?	=	b
				val	anotherBoxedB:	Int?	=	b
				println(boxedB	==	anotherBoxedB)	//	Prints	'true'
//sampleEnd
}

Explicit
number
conversions
Due to different representations, smaller types are not subtypes of bigger ones. If they were, we would have troubles of the following sort:

//	Hypothetical	code,	does	not	actually	compile:
val	a:	Int?	=	1	//	A	boxed	Int	(java.lang.Integer)
val	b:	Long?	=	a	//	Implicit	conversion	yields	a	boxed	Long	(java.lang.Long)
print(b	==	a)	//	Surprise!	This	prints	"false"	as	Long's	equals()	checks	whether	the	other	is	Long	as	well

So equality would have been lost silently, not to mention identity.

As a consequence, smaller types are NOT implicitly converted to bigger types. This means that assigning a value of type Byte to an Int variable requires an explicit
conversion:

fun	main()	{
//sampleStart
				val	b:	Byte	=	1	//	OK,	literals	are	checked	statically
				//	val	i:	Int	=	b	//	ERROR
				val	i1:	Int	=	b.toInt()
//sampleEnd
}

All number types support conversions to other types:

toByte(): Byte

toShort(): Short

toInt(): Int

toLong(): Long

toFloat(): Float

toDouble(): Double

In many cases, there is no need for explicit conversions because the type is inferred from the context, and arithmetical operations are overloaded for appropriate
conversions, for example:

val	l	=	1L	+	3	//	Long	+	Int	=>	Long

Operations
on
numbers
Kotlin supports the standard set of arithmetical operations over numbers: +, -, *, /, %. They are declared as members of appropriate classes:

fun	main()	{
//sampleStart
				println(1	+	2)
				println(2_500_000_000L	-	1L)
				println(3.14	*	2.71)
				println(10.0	/	3)
//sampleEnd
}

You can also override these operators for custom classes. See Operator overloading for details.

365

Division
of
integers
Division between integers numbers always returns an integer number. Any fractional part is discarded.

fun	main()	{
//sampleStart
				val	x	=	5	/	2
				//println(x	==	2.5)	//	ERROR:	Operator	'=='	cannot	be	applied	to	'Int'	and	'Double'
				println(x	==	2)
//sampleEnd
}

This is true for a division between any two integer types:

fun	main()	{
//sampleStart
				val	x	=	5L	/	2
				println(x	==	2L)
//sampleEnd
}

To return a floating-point type, explicitly convert one of the arguments to a floating-point type:

fun	main()	{
//sampleStart
				val	x	=	5	/	2.toDouble()
				println(x	==	2.5)
//sampleEnd
}

Bitwise
operations
Kotlin provides a set of bitwise operations on integer numbers. They operate on the binary level directly with bits of the numbers' representation. Bitwise operations
are represented by functions that can be called in infix form. They can be applied only to Int and Long:

val	x	=	(1	shl	2)	and	0x000FF000

Here is the complete list of bitwise operations:

shl(bits) – signed shift left

shr(bits) – signed shift right

ushr(bits) – unsigned shift right

and(bits) – bitwise AND

or(bits) – bitwise OR

xor(bits) – bitwise XOR

inv() – bitwise inversion

Floating-point
numbers
comparison
The operations on floating-point numbers discussed in this section are:

Equality checks: a == b and a != b

Comparison operators: a < b, a > b, a <= b, a >= b

Range instantiation and range checks: a..b, x in a..b, x !in a..b

When the operands a and b are statically known to be Float or Double or their nullable counterparts (the type is declared or inferred or is a result of a smart cast),
the operations on the numbers and the range that they form follow the IEEE 754 Standard for Floating-Point Arithmetic.

However, to support generic use cases and provide total ordering, the behavior is different for operands that are not statically typed as floating-point numbers. For
example, Any, Comparable<...>, or Collection<T> types. In this case, the operations use the equals and compareTo implementations for Float and Double. As a
result:

366

https://en.wikipedia.org/wiki/IEEE_754

NaN is considered equal to itself

NaN is considered greater than any other element including POSITIVE_INFINITY

-0.0 is considered less than 0.0

Here is an example that shows the difference in behavior between operands statically typed as floating-point numbers (Double.NaN) and operands not statically
typed as floating-point numbers (listOf(T)).

fun	main()	{
				//sampleStart
				//	Operand	statically	typed	as	floating-point	number
				println(Double.NaN	==	Double.NaN)																	//	false
				//	Operand	NOT	statically	typed	as	floating-point	number
				//	So	NaN	is	equal	to	itself
				println(listOf(Double.NaN)	==	listOf(Double.NaN))	//	true

				//	Operand	statically	typed	as	floating-point	number
				println(0.0	==	-0.0)																														//	true
				//	Operand	NOT	statically	typed	as	floating-point	number
				//	So	-0.0	is	less	than	0.0
				println(listOf(0.0)	==	listOf(-0.0))														//	false

				println(listOf(Double.NaN,	Double.POSITIVE_INFINITY,	0.0,	-0.0).sorted())
				//	[-0.0,	0.0,	Infinity,	NaN]
				//sampleEnd
}

Unsigned
integer
types
In addition to integer types, Kotlin provides the following types for unsigned integer numbers:

UByte: an unsigned 8-bit integer, ranges from 0 to 255

UShort: an unsigned 16-bit integer, ranges from 0 to 65535

UInt: an unsigned 32-bit integer, ranges from 0 to 2^32 - 1

ULong: an unsigned 64-bit integer, ranges from 0 to 2^64 - 1

Unsigned types support most of the operations of their signed counterparts.

Unsigned
arrays
and
ranges

Same as for primitives, each of unsigned type has corresponding type that represents arrays of that type:

UByteArray: an array of unsigned bytes

UShortArray: an array of unsigned shorts

UIntArray: an array of unsigned ints

ULongArray: an array of unsigned longs

Same as for signed integer arrays, they provide similar API to Array class without boxing overhead.

When you use unsigned arrays, you'll get a warning that indicates that this feature is not stable yet. To remove the warning, opt-in the
@ExperimentalUnsignedTypes annotation. It's up to you to decide if your clients have to explicitly opt-in into usage of your API, but keep in mind that unsigned
arrays are not a stable feature, so API which uses them can be broken by changes in the language. Learn more about opt-in requirements.

Unsigned numbers are implemented as inline classes with the single storage property of the corresponding signed counterpart type of the same width.
Nevertheless, changing type from unsigned type to signed counterpart (and vice versa) is a binary incompatible change.

Unsigned arrays and operations on them are in Beta. They can be changed incompatibly at any time. Opt-in is required (see the details below).

367

Ranges and progressions are supported for UInt and ULong by classes UIntRange,UIntProgression, ULongRange, and ULongProgression. Together with the
unsigned integer types, these classes are stable.

Unsigned
integers
literals
To make unsigned integers easier to use, Kotlin provides an ability to tag an integer literal with a suffix indicating a specific unsigned type (similarly to Float or
Long):

u and U tag is for unsigned literals. The exact type is determined based on the expected type. If no expected type is provided, compiler will use UInt or ULong
depending on the size of literal:

val	b:	UByte	=	1u		//	UByte,	expected	type	provided
val	s:	UShort	=	1u	//	UShort,	expected	type	provided
val	l:	ULong	=	1u		//	ULong,	expected	type	provided

val	a1	=	42u	//	UInt:	no	expected	type	provided,	constant	fits	in	UInt
val	a2	=	0xFFFF_FFFF_FFFFu	//	ULong:	no	expected	type	provided,	constant	doesn't	fit	in	UInt

uL and UL explicitly tag literal as unsigned long:

val	a	=	1UL	//	ULong,	even	though	no	expected	type	provided	and	constant	fits	into	UInt

Use
cases
The main use case of unsigned numbers is utilizing the full bit range of an integer to represent positive values.
For example, to represent hexadecimal constants that do not fit in signed types such as color in 32-bit AARRGGBB format:

data	class	Color(val	representation:	UInt)

val	yellow	=	Color(0xFFCC00CCu)

You can use unsigned numbers to initialize byte arrays without explicit toByte() literal casts:

val	byteOrderMarkUtf8	=	ubyteArrayOf(0xEFu,	0xBBu,	0xBFu)

Another use case is interoperability with native APIs. Kotlin allows representing native declarations that contain unsigned types in the signature. The mapping won't
substitute unsigned integers with signed ones keeping the semantics unaltered.

Non-goals
While unsigned integers can only represent positive numbers and zero, it's not a goal to use them where application domain requires non-negative integers. For
example, as a type of collection size or collection index value.

There are a couple of reasons:

Using signed integers can help to detect accidental overflows and signal error conditions, such as List.lastIndex being -1 for an empty list.

Unsigned integers cannot be treated as a range-limited version of signed ones because their range of values is not a subset of the signed integers range. Neither
signed, nor unsigned integers are subtypes of each other.

Booleans
The type Boolean represents boolean objects that can have two values: true and false.

Boolean has a nullable counterpart Boolean? that also has the null value.

Built-in operations on booleans include:

|| – disjunction (logical OR)

368

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last-index.html

&& – conjunction (logical AND)

! – negation (logical NOT)

|| and && work lazily.

fun	main()	{
//sampleStart
				val	myTrue:	Boolean	=	true
				val	myFalse:	Boolean	=	false
				val	boolNull:	Boolean?	=	null
				
				println(myTrue	||	myFalse)
				println(myTrue	&&	myFalse)
				println(!myTrue)
//sampleEnd
}

Characters
Characters are represented by the type Char. Character literals go in single quotes: '1'.

Special characters start from an escaping backslash \. The following escape sequences are supported:

\t – tab

\b – backspace

\n – new line (LF)

\r – carriage return (CR)

\' – single quotation mark

\" – double quotation mark

\\ – backslash

\$ – dollar sign

To encode any other character, use the Unicode escape sequence syntax: '\uFF00'.

fun	main()	{
//sampleStart
				val	aChar:	Char	=	'a'
	
				println(aChar)
				println('\n')	//	Prints	an	extra	newline	character
				println('\uFF00')
//sampleEnd
}

If a value of character variable is a digit, you can explicitly convert it to an Int number using the digitToInt() function.

Strings
Strings in Kotlin are represented by the type String. Generally, a string value is a sequence of characters in double quotes ("):

val	str	=	"abcd	123"

On JVM: nullable references to boolean objects are boxed similarly to numbers.

On JVM: Like numbers, characters are boxed when a nullable reference is needed. Identity is not preserved by the boxing operation.

369

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/digit-to-int.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/

Elements of a string are characters that you can access via the indexing operation: s[i]. You can iterate over these characters with a for loop:

fun	main()	{
val	str	=	"abcd"
//sampleStart
for	(c	in	str)	{
				println(c)
}
//sampleEnd
}

Strings are immutable. Once you initialize a string, you can't change its value or assign a new value to it. All operations that transform strings return their results in a
new String object, leaving the original string unchanged:

fun	main()	{
//sampleStart
				val	str	=	"abcd"
				println(str.uppercase())	//	Create	and	print	a	new	String	object
				println(str)	//	The	original	string	remains	the	same
//sampleEnd
}

To concatenate strings, use the + operator. This also works for concatenating strings with values of other types, as long as the first element in the expression is a
string:

fun	main()	{
//sampleStart
val	s	=	"abc"	+	1
println(s	+	"def")
//sampleEnd
}

String
literals
Kotlin has two types of string literals:

Escaped strings

Multiline strings

Escaped
strings
Escaped strings can contain escaped characters.
Here's an example of an escaped string:

val	s	=	"Hello,	world!\n"

Escaping is done in the conventional way, with a backslash (\).
See Characters page for the list of supported escape sequences.

Multiline
strings
Multiline strings can contain newlines and arbitrary text. It is delimited by a triple quote ("""), contains no escaping and can contain newlines and any other
characters:

val	text	=	"""
				for	(c	in	"foo")
								print(c)
"""

To remove leading whitespace from multiline strings, use the trimMargin() function:

In most cases using string templates or multiline strings is preferable to string concatenation.

370

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/trim-margin.html

val	text	=	"""
				|Tell	me	and	I	forget.
				|Teach	me	and	I	remember.
				|Involve	me	and	I	learn.
				|(Benjamin	Franklin)
				""".trimMargin()

By default, a pipe symbol | is used as margin prefix, but you can choose another character and pass it as a parameter, like trimMargin(">").

String
templates
String literals may contain template expressions – pieces of code that are evaluated and whose results are concatenated into the string. A template expression
starts with a dollar sign ($) and consists of either a name:

fun	main()	{
//sampleStart
				val	i	=	10
				println("i	=	$i")	//	Prints	"i	=	10"
//sampleEnd
}

or an expression in curly braces:

fun	main()	{
//sampleStart
				val	s	=	"abc"
				println("$s.length	is	${s.length}")	//	Prints	"abc.length	is	3"
//sampleEnd
}

You can use templates both in multiline and escaped strings. To insert the dollar sign $ in a multiline string (which doesn't support backslash escaping) before any
symbol, which is allowed as a beginning of an identifier, use the following syntax:

val	price	=	"""
${'$'}_9.99
"""

Arrays
An array is a data structure that holds a fixed number of values of the same type or its subtypes. The most common type of array in Kotlin is the object-type array,
represented by the Array class.

When
to
use
arrays
Use arrays in Kotlin when you have specialized low-level requirements that you need to meet. For example, if you have performance requirements beyond what is
needed for regular applications, or you need to build custom data structures. If you don't have these sorts of restrictions, use collections instead.

Collections have the following benefits compared to arrays:

Collections can be read-only, which gives you more control and allows you to write robust code that has a clear intent.

It is easy to add or remove elements from collections. In comparison, arrays are fixed in size. The only way to add or remove elements from an array is to create
a new array each time, which is very inefficient:

fun	main()	{
//sampleStart
				var	riversArray	=	arrayOf("Nile",	"Amazon",	"Yangtze")

If you use primitives in an object-type array, this has a performance impact because your primitives are boxed into objects. To avoid boxing overhead,
use primitive-type arrays instead.

371

https://kotlinlang.org/docs/reference/grammar.html#identifiers
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-array/
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

				//	Using	the	+=	assignment	operation	creates	a	new	riversArray,
				//	copies	over	the	original	elements	and	adds	"Mississippi"
				riversArray	+=	"Mississippi"
				println(riversArray.joinToString())
				//	Nile,	Amazon,	Yangtze,	Mississippi
//sampleEnd
}

You can use the equality operator (==) to check if collections are structurally equal. You can't use this operator for arrays. Instead, you have to use a special
function, which you can read more about in Compare arrays.

For more information about collections, see Collections overview.

Create
arrays
To create arrays in Kotlin, you can use:

functions, such as arrayOf(), arrayOfNulls() or emptyArray().

the Array constructor.

This example uses the arrayOf() function and passes item values to it:

fun	main()	{
//sampleStart
				//	Creates	an	array	with	values	[1,	2,	3]
				val	simpleArray	=	arrayOf(1,	2,	3)
				println(simpleArray.joinToString())
				//	1,	2,	3
//sampleEnd
}

This example uses the arrayOfNulls() function to create an array of a given size filled with null elements:

fun	main()	{
//sampleStart
				//	Creates	an	array	with	values	[null,	null,	null]
				val	nullArray:	Array<Int?>	=	arrayOfNulls(3)
				println(nullArray.joinToString())
				//	null,	null,	null
//sampleEnd
}

This example uses the emptyArray() function to create an empty array :

var	exampleArray	=	emptyArray<String>()

The Array constructor takes the array size and a function that returns values for array elements given its index:

fun	main()	{
//sampleStart
				//	Creates	an	Array<Int>	that	initializes	with	zeros	[0,	0,	0]
				val	initArray	=	Array<Int>(3)	{	0	}
				println(initArray.joinToString())
				//	0,	0,	0

You can specify the type of the empty array on the left-hand or right-hand side of the assignment due to Kotlin's type inference.

For example:

var	exampleArray	=	emptyArray<String>()

var	exampleArray:	Array<String>	=	emptyArray()

372

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/array-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/array-of-nulls.html#kotlin$arrayOfNulls(kotlin.Int)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/empty-array.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/array-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/array-of-nulls.html#kotlin$arrayOfNulls(kotlin.Int)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/empty-array.html

				//	Creates	an	Array<String>	with	values	["0",	"1",	"4",	"9",	"16"]
				val	asc	=	Array(5)	{	i	->	(i	*	i).toString()	}
				asc.forEach	{	print(it)	}
				//	014916
//sampleEnd
}

Nested
arrays
Arrays can be nested within each other to create multidimensional arrays:

fun	main()	{
//sampleStart
				//	Creates	a	two-dimensional	array
				val	twoDArray	=	Array(2)	{	Array<Int>(2)	{	0	}	}
				println(twoDArray.contentDeepToString())
				//	[[0,	0],	[0,	0]]

				//	Creates	a	three-dimensional	array
				val	threeDArray	=	Array(3)	{	Array(3)	{	Array<Int>(3)	{	0	}	}	}
				println(threeDArray.contentDeepToString())
				//	[[[0,	0,	0],	[0,	0,	0],	[0,	0,	0]],	[[0,	0,	0],	[0,	0,	0],	[0,	0,	0]],	[[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]]
//sampleEnd
}

Access
and
modify
elements
Arrays are always mutable. To access and modify elements in an array, use the indexed access operator[]:

fun	main()	{
//sampleStart
				val	simpleArray	=	arrayOf(1,	2,	3)
				val	twoDArray	=	Array(2)	{	Array<Int>(2)	{	0	}	}

				//	Accesses	the	element	and	modifies	it
				simpleArray[0]	=	10
				twoDArray[0][0]	=	2

				//	Prints	the	modified	element
				println(simpleArray[0].toString())	//	10
				println(twoDArray[0][0].toString())	//	2
//sampleEnd
}

Arrays in Kotlin are invariant. This means that Kotlin doesn't allow you to assign an Array<String> to an Array<Any> to prevent a possible runtime failure. Instead,
you can use Array<out Any>. For more information, see Type Projections.

Work
with
arrays
In Kotlin, you can work with arrays by using them to pass a variable number of arguments to a function or perform operations on the arrays themselves. For
example, comparing arrays, transforming their contents or converting them to collections.

Pass
variable
number
of
arguments
to
a
function
In Kotlin, you can pass a variable number of arguments to a function via the vararg parameter. This is useful when you don't know the number of arguments in
advance, like when formatting a message or creating an SQL query.

To pass an array containing a variable number of arguments to a function, use the spread operator (*). The spread operator passes each element of the array as
individual arguments to your chosen function:

Like in most programming languages, indices start from 0 in Kotlin.

Nested arrays don't have to be the same type or the same size.

373

fun	main()	{
				val	lettersArray	=	arrayOf("c",	"d")
				printAllStrings("a",	"b",	*lettersArray)
				//	abcd
}

fun	printAllStrings(vararg	strings:	String)	{
				for	(string	in	strings)	{
								print(string)
				}
}

For more information, see Variable number of arguments (varargs).

Compare
arrays
To compare whether two arrays have the same elements in the same order, use the .contentEquals() and .contentDeepEquals() functions:

fun	main()	{
//sampleStart
				val	simpleArray	=	arrayOf(1,	2,	3)
				val	anotherArray	=	arrayOf(1,	2,	3)

				//	Compares	contents	of	arrays
				println(simpleArray.contentEquals(anotherArray))
				//	true

				//	Using	infix	notation,	compares	contents	of	arrays	after	an	element	
				//	is	changed
				simpleArray[0]	=	10
				println(simpleArray	contentEquals	anotherArray)
				//	false
//sampleEnd
}

Transform
arrays
Kotlin has many useful functions to transform arrays. This document highlights a few but this isn't an exhaustive list. For the full list of functions, see our API
reference.

Sum
To return the sum of all elements in an array, use the .sum() function:

fun	main()	{
//sampleStart
				val	sumArray	=	arrayOf(1,	2,	3)

				//	Sums	array	elements
				println(sumArray.sum())
				//	6
//sampleEnd
}

Shuffle
To randomly shuffle the elements in an array, use the .shuffle() function:

fun	main()	{

Don't use equality (==) and inequality (!=) operators to compare the contents of arrays. These operators check whether the assigned variables point to the
same object.

To learn more about why arrays in Kotlin behave this way, see our blog post.

The .sum() function can only be used with arrays of numeric data types, such as Int.

374

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/content-equals.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/content-deep-equals.html
https://blog.jetbrains.com/kotlin/2015/09/feedback-request-limitations-on-data-classes/#Appendix.Comparingarrays
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sum.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/shuffle.html

//sampleStart
				val	simpleArray	=	arrayOf(1,	2,	3)

				//	Shuffles	elements	[3,	2,	1]
				simpleArray.shuffle()
				println(simpleArray.joinToString())

				//	Shuffles	elements	again	[2,	3,	1]
				simpleArray.shuffle()
				println(simpleArray.joinToString())
//sampleEnd
}

Convert
arrays
to
collections
If you work with different APIs where some use arrays and some use collections, then you can convert your arrays to collections and vice versa.

Convert to List or Set
To convert an array to a List or Set, use the .toList() and .toSet() functions.

fun	main()	{
//sampleStart
				val	simpleArray	=	arrayOf("a",	"b",	"c",	"c")

				//	Converts	to	a	Set
				println(simpleArray.toSet())
				//	[a,	b,	c]

				//	Converts	to	a	List
				println(simpleArray.toList())
				//	[a,	b,	c,	c]
//sampleEnd
}

Convert to Map
To convert an array to a map, use the .toMap() function.

Only an array of Pair<K,V> can be converted to a map. The first value of a Pair instance becomes a key, and the second becomes a value. This example uses the
infix notation to call the to function to create tuples of Pair:

fun	main()	{
//sampleStart
				val	pairArray	=	arrayOf("apple"	to	120,	"banana"	to	150,	"cherry"	to	90,	"apple"	to	140)

				//	Converts	to	a	Map
				//	The	keys	are	fruits	and	the	values	are	their	number	of	calories
				//	Note	how	keys	must	be	unique,	so	the	latest	value	of	"apple"
				//	overwrites	the	first
				println(pairArray.toMap())
				//	{apple=140,	banana=150,	cherry=90}

//sampleEnd
}

Primitive-type
arrays
If you use the Array class with primitive values, these values are boxed into objects. As an alternative, you can use primitive-type arrays, which allow you to store
primitives in an array without the side effect of boxing overhead:

Primitive-type array Equivalent in Java

BooleanArray boolean[]

375

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-set.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-pair/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-boolean-array/

ByteArray byte[]

CharArray char[]

DoubleArray double[]

FloatArray float[]

IntArray int[]

LongArray long[]

ShortArray short[]

Primitive-type array Equivalent in Java

These classes have no inheritance relation to the Array class, but they have the same set of functions and properties.

This example creates an instance of the IntArray class:

fun	main()	{
//sampleStart
				//	Creates	an	array	of	Int	of	size	5	with	values
				val	exampleArray	=	IntArray(5)
				println(exampleArray.joinToString())
				//	0,	0,	0,	0,	0
//sampleEnd
}

What's
next?
To learn more about why we recommend using collections for most use cases, read our Collections overview.

Learn about other basic types.

If you are a Java developer, read our Java to Kotlin migration guide for Collections.

Type
checks
and
casts
In Kotlin, you can perform type checks to check the type of an object at runtime. Type casts convert objects to a different type.

is
and
!is
operators

To convert primitive-type arrays to object-type arrays, use the .toTypedArray() function.

To convert object-type arrays to primitive-type arrays, use .toBooleanArray(), .toByteArray(), .toCharArray(), and so on.

To learn specifically about generics type checks and casts, for example List<T>, Map<K,V>, see Generics type checks and casts.

376

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-byte-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-char-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-double-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-float-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-int-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-long-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-short-array/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-typed-array.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-boolean-array.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-byte-array.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-char-array.html

Use the is operator or its negated form !is to perform a runtime check that identifies whether an object conforms to a given type:

if	(obj	is	String)	{
				print(obj.length)
}

if	(obj	!is	String)	{	//	Same	as	!(obj	is	String)
				print("Not	a	String")
}	else	{
				print(obj.length)
}

Smart
casts
In most cases, you don't need to use explicit cast operators in Kotlin because the compiler tracks the is-checks and explicit casts for immutable values and inserts
(safe) casts automatically when necessary:

fun	demo(x:	Any)	{
				if	(x	is	String)	{
								print(x.length)	//	x	is	automatically	cast	to	String
				}
}

The compiler is smart enough to know that a cast is safe if a negative check leads to a return:

if	(x	!is	String)	return

print(x.length)	//	x	is	automatically	cast	to	String

Or if it is on the right-hand side of && or || and the proper check (regular or negative) is on the left-hand side:

//	x	is	automatically	cast	to	String	on	the	right-hand	side	of	`||`
if	(x	!is	String	||	x.length	==	0)	return

//	x	is	automatically	cast	to	String	on	the	right-hand	side	of	`&&`
if	(x	is	String	&&	x.length	>	0)	{
				print(x.length)	//	x	is	automatically	cast	to	String
}

Smart casts work for when expressions and while loops as well:

when	(x)	{
				is	Int	->	print(x	+	1)
				is	String	->	print(x.length	+	1)
				is	IntArray	->	print(x.sum())
}

Smart casts can be used in the following conditions:

val local
variables

Always, except local delegated properties.

val
properties

If the property is private, internal, or if the check is performed in the same module where the property is declared. Smart casts can't be used on
open properties or properties that have custom getters.

var local
variables

If the variable is not modified between the check and its usage, is not captured in a lambda that modifies it, and is not a local delegated property.

Note that smart casts work only when the compiler can guarantee that the variable won't change between the check and its usage.

377

var
properties

Never, because the variable can be modified at any time by other code.

"Unsafe"
cast
operator
Usually, the cast operator throws an exception if the cast isn't possible. Thus, it's called unsafe. The unsafe cast in Kotlin is done by the infix operator as.

val	x:	String	=	y	as	String

Note that null cannot be cast to String, as this type is not nullable. If y is null, the code above throws an exception. To make code like this correct for null values,
use the nullable type on the right-hand side of the cast:

val	x:	String?	=	y	as	String?

"Safe"
(nullable)
cast
operator
To avoid exceptions, use the safe cast operator as?, which returns null on failure.

val	x:	String?	=	y	as?	String

Note that despite the fact that the right-hand side of as? is a non-nullable type String, the result of the cast is nullable.

Conditions
and
loops

If
expression
In Kotlin, if is an expression: it returns a value. Therefore, there is no ternary operator (condition ? then : else) because ordinary if works fine in this role.

fun	main()	{
				val	a	=	2
				val	b	=	3

				//sampleStart
				var	max	=	a
				if	(a	<	b)	max	=	b

				//	With	else
				if	(a	>	b)	{
						max	=	a
				}	else	{
						max	=	b
				}

				//	As	expression
				max	=	if	(a	>	b)	a	else	b

				//	You	can	also	use	`else	if`	in	expressions:
				val	maxLimit	=	1
				val	maxOrLimit	=	if	(maxLimit	>	a)	maxLimit	else	if	(a	>	b)	a	else	b

				//sampleEnd
				println("max	is	$max")
				println("maxOrLimit	is	$maxOrLimit")
}

Branches of an if expression can be blocks. In this case, the last expression is the value of a block:

val	max	=	if	(a	>	b)	{
				print("Choose	a")
				a

378

}	else	{
				print("Choose	b")
				b
}

If you're using if as an expression, for example, for returning its value or assigning it to a variable, the else branch is mandatory.

When
expression
when defines a conditional expression with multiple branches. It is similar to the switch statement in C-like languages. Its simple form looks like this.

when	(x)	{
				1	->	print("x	==	1")
				2	->	print("x	==	2")
				else	->	{
								print("x	is	neither	1	nor	2")
				}
}

when matches its argument against all branches sequentially until some branch condition is satisfied.

when can be used either as an expression or as a statement. If it is used as an expression, the value of the first matching branch becomes the value of the overall
expression. If it is used as a statement, the values of individual branches are ignored. Just like with if, each branch can be a block, and its value is the value of the
last expression in the block.

The else branch is evaluated if none of the other branch conditions are satisfied.

If when is used as an expression, the else branch is mandatory, unless the compiler can prove that all possible cases are covered with branch conditions, for
example, with enum class entries and sealed class subtypes).

enum	class	Bit	{
				ZERO,	ONE
}

val	numericValue	=	when	(getRandomBit())	{
				Bit.ZERO	->	0
				Bit.ONE	->	1
				//	'else'	is	not	required	because	all	cases	are	covered
}

In when statements, the else branch is mandatory in the following conditions:

when has a subject of a Boolean, enum, or sealed type, or their nullable counterparts.

branches of when don't cover all possible cases for this subject.

enum	class	Color	{
				RED,	GREEN,	BLUE
}

when	(getColor())	{		
				Color.RED	->	println("red")
				Color.GREEN	->	println("green")			
				Color.BLUE	->	println("blue")
				//	'else'	is	not	required	because	all	cases	are	covered
}

when	(getColor())	{
				Color.RED	->	println("red")	//	no	branches	for	GREEN	and	BLUE
				else	->	println("not	red")	//	'else'	is	required
}

To define a common behavior for multiple cases, combine their conditions in a single line with a comma:

when	(x)	{
				0,	1	->	print("x	==	0	or	x	==	1")
				else	->	print("otherwise")
}

379

You can use arbitrary expressions (not only constants) as branch conditions

when	(x)	{
				s.toInt()	->	print("s	encodes	x")
				else	->	print("s	does	not	encode	x")
}

You can also check a value for being in or !in a range or a collection:

when	(x)	{
				in	1..10	->	print("x	is	in	the	range")
				in	validNumbers	->	print("x	is	valid")
				!in	10..20	->	print("x	is	outside	the	range")
				else	->	print("none	of	the	above")
}

Another option is checking that a value is or !is of a particular type. Note that, due to smart casts, you can access the methods and properties of the type without
any extra checks.

fun	hasPrefix(x:	Any)	=	when(x)	{
				is	String	->	x.startsWith("prefix")
				else	->	false
}

when can also be used as a replacement for an if-else if chain. If no argument is supplied, the branch conditions are simply boolean expressions, and a branch is
executed when its condition is true:

when	{
				x.isOdd()	->	print("x	is	odd")
				y.isEven()	->	print("y	is	even")
				else	->	print("x+y	is	odd")
}

You can capture when subject in a variable using following syntax:

fun	Request.getBody()	=
				when	(val	response	=	executeRequest())	{
								is	Success	->	response.body
								is	HttpError	->	throw	HttpException(response.status)
				}

The scope of variable introduced in when subject is restricted to the body of this when.

For
loops
The for loop iterates through anything that provides an iterator. This is equivalent to the foreach loop in languages like C#. The syntax of for is the following:

for	(item	in	collection)	print(item)

The body of for can be a block.

for	(item:	Int	in	ints)	{
				//	...
}

As mentioned before, for iterates through anything that provides an iterator. This means that it:

has a member or an extension function iterator() that returns Iterator<>:

has a member or an extension function next()

has a member or an extension function hasNext() that returns Boolean.

All of these three functions need to be marked as operator.

380

To iterate over a range of numbers, use a range expression:

fun	main()	{
//sampleStart
				for	(i	in	1..3)	{
								println(i)
				}
				for	(i	in	6	downTo	0	step	2)	{
								println(i)
				}
//sampleEnd
}

A for loop over a range or an array is compiled to an index-based loop that does not create an iterator object.

If you want to iterate through an array or a list with an index, you can do it this way:

fun	main()	{
val	array	=	arrayOf("a",	"b",	"c")
//sampleStart
				for	(i	in	array.indices)	{
								println(array[i])
				}
//sampleEnd
}

Alternatively, you can use the withIndex library function:

fun	main()	{
				val	array	=	arrayOf("a",	"b",	"c")
//sampleStart
				for	((index,	value)	in	array.withIndex())	{
								println("the	element	at	$index	is	$value")
				}
//sampleEnd
}

While
loops
while and do-while loops execute their body continuously while their condition is satisfied. The difference between them is the condition checking time:

while checks the condition and, if it's satisfied, executes the body and then returns to the condition check.

do-while executes the body and then checks the condition. If it's satisfied, the loop repeats. So, the body of do-while executes at least once regardless of the
condition.

while	(x	>	0)	{
				x--
}

do	{
				val	y	=	retrieveData()
}	while	(y	!=	null)	//	y	is	visible	here!

Break
and
continue
in
loops
Kotlin supports traditional break and continue operators in loops. See Returns and jumps.

Returns
and
jumps
Kotlin has three structural jump expressions:

return by default returns from the nearest enclosing function or anonymous function.

break terminates the nearest enclosing loop.

381

continue proceeds to the next step of the nearest enclosing loop.

All of these expressions can be used as part of larger expressions:

val	s	=	person.name	?:	return

The type of these expressions is the Nothing type.

Break
and
continue
labels
Any expression in Kotlin may be marked with a label. Labels have the form of an identifier followed by the @ sign, such as abc@ or fooBar@. To label an expression,
just add a label in front of it.

loop@	for	(i	in	1..100)	{
				//	...
}

Now, we can qualify a break or a continue with a label:

loop@	for	(i	in	1..100)	{
				for	(j	in	1..100)	{
								if	(...)	break@loop
				}
}

A break qualified with a label jumps to the execution point right after the loop marked with that label. A continue proceeds to the next iteration of that loop.

Return
to
labels
In Kotlin, functions can be nested using function literals, local functions, and object expressions. Qualified returns allow us to return from an outer function. The
most important use case is returning from a lambda expression. Recall that when we write the following, the return-expression returns from the nearest enclosing
function - foo:

//sampleStart
fun	foo()	{
				listOf(1,	2,	3,	4,	5).forEach	{
								if	(it	==	3)	return	//	non-local	return	directly	to	the	caller	of	foo()
								print(it)
				}
				println("this	point	is	unreachable")
}
//sampleEnd

fun	main()	{
				foo()
}

Note that such non-local returns are supported only for lambda expressions passed to inline functions. To return from a lambda expression, label it and qualify the
return:

//sampleStart
fun	foo()	{
				listOf(1,	2,	3,	4,	5).forEach	lit@{
								if	(it	==	3)	return@lit	//	local	return	to	the	caller	of	the	lambda	-	the	forEach	loop
								print(it)
				}
				print("	done	with	explicit	label")
}
//sampleEnd

fun	main()	{
				foo()
}

Now, it returns only from the lambda expression. Often it is more convenient to use implicit labels, because such a label has the same name as the function to

382

which the lambda is passed.

//sampleStart
fun	foo()	{
				listOf(1,	2,	3,	4,	5).forEach	{
								if	(it	==	3)	return@forEach	//	local	return	to	the	caller	of	the	lambda	-	the	forEach	loop
								print(it)
				}
				print("	done	with	implicit	label")
}
//sampleEnd

fun	main()	{
				foo()
}

Alternatively, you can replace the lambda expression with an anonymous function. A return statement in an anonymous function will return from the anonymous
function itself.

//sampleStart
fun	foo()	{
				listOf(1,	2,	3,	4,	5).forEach(fun(value:	Int)	{
								if	(value	==	3)	return		//	local	return	to	the	caller	of	the	anonymous	function	-	the	forEach	loop
								print(value)
				})
				print("	done	with	anonymous	function")
}
//sampleEnd

fun	main()	{
				foo()
}

Note that the use of local returns in the previous three examples is similar to the use of continue in regular loops.

There is no direct equivalent for break, but it can be simulated by adding another nesting lambda and non-locally returning from it:

//sampleStart
fun	foo()	{
				run	loop@{
								listOf(1,	2,	3,	4,	5).forEach	{
												if	(it	==	3)	return@loop	//	non-local	return	from	the	lambda	passed	to	run
												print(it)
								}
				}
				print("	done	with	nested	loop")
}
//sampleEnd

fun	main()	{
				foo()
}

When returning a value, the parser gives preference to the qualified return:

return@a	1

This means "return 1 at label @a" rather than "return a labeled expression (@a 1)".

Exceptions

Exception
classes
All exception classes in Kotlin inherit the Throwable class. Every exception has a message, a stack trace, and an optional cause.

To throw an exception object, use the throw expression:

fun	main()	{

383

//sampleStart
				throw	Exception("Hi	There!")
//sampleEnd
}

To catch an exception, use the try...catch expression:

try	{
				//	some	code
}	catch	(e:	SomeException)	{
				//	handler
}	finally	{
				//	optional	finally	block
}

There may be zero or more catch blocks, and the finally block may be omitted. However, at least one catch or finally block is required.

Try
is
an
expression
try is an expression, which means it can have a return value:

val	a:	Int?	=	try	{	input.toInt()	}	catch	(e:	NumberFormatException)	{	null	}

The returned value of a try expression is either the last expression in the try block or the last expression in the catch block (or blocks). The contents of the finally
block don't affect the result of the expression.

Checked
exceptions
Kotlin does not have checked exceptions. There are many reasons for this, but we will provide a simple example that illustrates why it is the case.

The following is an example interface from the JDK implemented by the StringBuilder class:

Appendable	append(CharSequence	csq)	throws	IOException;

This signature says that every time I append a string to something (a StringBuilder, some kind of a log, a console, etc.), I have to catch the IOExceptions. Why?
Because the implementation might be performing IO operations (Writer also implements Appendable). The result is code like this all over the place:

try	{
				log.append(message)
}	catch	(IOException	e)	{
				//	Must	be	safe
}

And that's not good. Just take a look at Effective Java, 3rd Edition, Item 77: Don't ignore exceptions.

Bruce Eckel says this about checked exceptions:

And here are some additional thoughts on the matter:

Java's checked exceptions were a mistake (Rod Waldhoff)

The Trouble with Checked Exceptions (Anders Hejlsberg)

If you want to alert callers about possible exceptions when calling Kotlin code from Java, Swift, or Objective-C, you can use the @Throws annotation. Read more
about using this annotation for Java and for Swift and Objective-C.

The
Nothing
type

Examination of small programs leads to the conclusion that requiring exception specifications could both enhance developer productivity and enhance
code quality, but experience with large software projects suggests a different result – decreased productivity and little or no increase in code quality.

384

https://www.oracle.com/technetwork/java/effectivejava-136174.html
https://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
https://www.artima.com/intv/handcuffs.html

throw is an expression in Kotlin, so you can use it, for example, as part of an Elvis expression:

val	s	=	person.name	?:	throw	IllegalArgumentException("Name	required")

The throw expression has the type Nothing. This type has no values and is used to mark code locations that can never be reached. In your own code, you can use
Nothing to mark a function that never returns:

fun	fail(message:	String):	Nothing	{
				throw	IllegalArgumentException(message)
}

When you call this function, the compiler will know that the execution doesn't continue beyond the call:

val	s	=	person.name	?:	fail("Name	required")
println(s)					//	's'	is	known	to	be	initialized	at	this	point

You may also encounter this type when dealing with type inference. The nullable variant of this type, Nothing?, has exactly one possible value, which is null. If you
use null to initialize a value of an inferred type and there's no other information that can be used to determine a more specific type, the compiler will infer the
Nothing? type:

val	x	=	null											//	'x'	has	type	`Nothing?`
val	l	=	listOf(null)			//	'l'	has	type	`List<Nothing?>

Java
interoperability
Please see the section on exceptions in the Java interoperability page for information about Java interoperability.

Packages
and
imports
A source file may start with a package declaration:

package	org.example

fun	printMessage()	{	/*...*/	}
class	Message	{	/*...*/	}

//	...

All the contents, such as classes and functions, of the source file are included in this package. So, in the example above, the full name of printMessage() is
org.example.printMessage, and the full name of Message is org.example.Message.

If the package is not specified, the contents of such a file belong to the default package with no name.

Default
imports
A number of packages are imported into every Kotlin file by default:

kotlin.*

kotlin.annotation.*

kotlin.collections.*

kotlin.comparisons.*

kotlin.io.*

kotlin.ranges.*

kotlin.sequences.*

385

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.comparisons/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/index.html

kotlin.text.*

Additional packages are imported depending on the target platform:

JVM:

java.lang.*

kotlin.jvm.*

JS:

kotlin.js.*

Imports
Apart from the default imports, each file may contain its own import directives.

You can import either a single name:

import	org.example.Message	//	Message	is	now	accessible	without	qualification

or all the accessible contents of a scope: package, class, object, and so on:

import	org.example.*	//	everything	in	'org.example'	becomes	accessible

If there is a name clash, you can disambiguate by using as keyword to locally rename the clashing entity:

import	org.example.Message	//	Message	is	accessible
import	org.test.Message	as	TestMessage	//	TestMessage	stands	for	'org.test.Message'

The import keyword is not restricted to importing classes; you can also use it to import other declarations:

top-level functions and properties

functions and properties declared in object declarations

enum constants

Visibility
of
top-level
declarations
If a top-level declaration is marked private, it is private to the file it's declared in (see Visibility modifiers).

Classes
Classes in Kotlin are declared using the keyword class:

class	Person	{	/*...*/	}

The class declaration consists of the class name, the class header (specifying its type parameters, the primary constructor, and some other things), and the class
body surrounded by curly braces. Both the header and the body are optional; if the class has no body, the curly braces can be omitted.

class	Empty

Constructors
A class in Kotlin has a primary constructor and possibly one or more secondary constructors. The primary constructor is declared in the class header, and it goes
after the class name and optional type parameters.

386

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/index.html

class	Person	constructor(firstName:	String)	{	/*...*/	}

If the primary constructor does not have any annotations or visibility modifiers, the constructor keyword can be omitted:

class	Person(firstName:	String)	{	/*...*/	}

The primary constructor initializes a class instance and its properties in the class header. The class header can't contain any runnable code. If you want to run some
code during object creation, use initializer blocks inside the class body. Initializer blocks are declared with the init keyword followed by curly braces. Write any code
that you want to run within the curly braces.

During the initialization of an instance, the initializer blocks are executed in the same order as they appear in the class body, interleaved with the property initializers:

//sampleStart
class	InitOrderDemo(name:	String)	{
				val	firstProperty	=	"First	property:	$name".also(::println)
				
				init	{
								println("First	initializer	block	that	prints	$name")
				}
				
				val	secondProperty	=	"Second	property:	${name.length}".also(::println)
				
				init	{
								println("Second	initializer	block	that	prints	${name.length}")
				}
}
//sampleEnd

fun	main()	{
				InitOrderDemo("hello")
}

Primary constructor parameters can be used in the initializer blocks. They can also be used in property initializers declared in the class body:

class	Customer(name:	String)	{
				val	customerKey	=	name.uppercase()
}

Kotlin has a concise syntax for declaring properties and initializing them from the primary constructor:

class	Person(val	firstName:	String,	val	lastName:	String,	var	age:	Int)

Such declarations can also include default values of the class properties:

class	Person(val	firstName:	String,	val	lastName:	String,	var	isEmployed:	Boolean	=	true)

You can use a trailing comma when you declare class properties:

class	Person(
				val	firstName:	String,
				val	lastName:	String,
				var	age:	Int,	//	trailing	comma
)	{	/*...*/	}

Much like regular properties, properties declared in the primary constructor can be mutable (var) or read-only (val).

If the constructor has annotations or visibility modifiers, the constructor keyword is required and the modifiers go before it:

class	Customer	public	@Inject	constructor(name:	String)	{	/*...*/	}

Learn more about visibility modifiers.

Secondary
constructors
A class can also declare secondary constructors, which are prefixed with constructor:

387

class	Person(val	pets:	MutableList<Pet>	=	mutableListOf())

class	Pet	{
				constructor(owner:	Person)	{
								owner.pets.add(this)	//	adds	this	pet	to	the	list	of	its	owner's	pets
				}
}

If the class has a primary constructor, each secondary constructor needs to delegate to the primary constructor, either directly or indirectly through another
secondary constructor(s). Delegation to another constructor of the same class is done using the this keyword:

class	Person(val	name:	String)	{
				val	children:	MutableList<Person>	=	mutableListOf()
				constructor(name:	String,	parent:	Person)	:	this(name)	{
								parent.children.add(this)
				}
}

Code in initializer blocks effectively becomes part of the primary constructor. Delegation to the primary constructor happens at the moment of access to the first
statement of a secondary constructor, so the code in all initializer blocks and property initializers is executed before the body of the secondary constructor.

Even if the class has no primary constructor, the delegation still happens implicitly, and the initializer blocks are still executed:

//sampleStart
class	Constructors	{
				init	{
								println("Init	block")
				}

				constructor(i:	Int)	{
								println("Constructor	$i")
				}
}
//sampleEnd

fun	main()	{
				Constructors(1)
}

If a non-abstract class does not declare any constructors (primary or secondary), it will have a generated primary constructor with no arguments. The visibility of the
constructor will be public.

If you don't want your class to have a public constructor, declare an empty primary constructor with non-default visibility:

class	DontCreateMe	private	constructor()	{	/*...*/	}

Creating
instances
of
classes
To create an instance of a class, call the constructor as if it were a regular function:

val	invoice	=	Invoice()

val	customer	=	Customer("Joe	Smith")

On the JVM, if all of the primary constructor parameters have default values, the compiler will generate an additional parameterless constructor which will
use the default values. This makes it easier to use Kotlin with libraries such as Jackson or JPA that create class instances through parameterless
constructors.

class	Customer(val	customerName:	String	=	"")

Kotlin does not have a new keyword.

388

The process of creating instances of nested, inner, and anonymous inner classes is described in Nested classes.

Class
members
Classes can contain:

Constructors and initializer blocks

Functions

Properties

Nested and inner classes

Object declarations

Inheritance
Classes can be derived from each other and form inheritance hierarchies. Learn more about inheritance in Kotlin.

Abstract
classes
A class may be declared abstract, along with some or all of its members. An abstract member does not have an implementation in its class. You don't need to
annotate abstract classes or functions with open.

abstract	class	Polygon	{
				abstract	fun	draw()
}

class	Rectangle	:	Polygon()	{
				override	fun	draw()	{
								//	draw	the	rectangle
				}
}

You can override a non-abstract open member with an abstract one.

open	class	Polygon	{
				open	fun	draw()	{
								//	some	default	polygon	drawing	method
				}
}

abstract	class	WildShape	:	Polygon()	{
				//	Classes	that	inherit	WildShape	need	to	provide	their	own
				//	draw	method	instead	of	using	the	default	on	Polygon
				abstract	override	fun	draw()
}

Companion
objects
If you need to write a function that can be called without having a class instance but that needs access to the internals of a class (such as a factory method), you
can write it as a member of an object declaration inside that class.

Even more specifically, if you declare a companion object inside your class, you can access its members using only the class name as a qualifier.

Inheritance
All classes in Kotlin have a common superclass, Any, which is the default superclass for a class with no supertypes declared:

class	Example	//	Implicitly	inherits	from	Any

389

Any has three methods: equals(), hashCode(), and toString(). Thus, these methods are defined for all Kotlin classes.

By default, Kotlin classes are final – they can't be inherited. To make a class inheritable, mark it with the open keyword:

open	class	Base	//	Class	is	open	for	inheritance

To declare an explicit supertype, place the type after a colon in the class header:

open	class	Base(p:	Int)

class	Derived(p:	Int)	:	Base(p)

If the derived class has a primary constructor, the base class can (and must) be initialized in that primary constructor according to its parameters.

If the derived class has no primary constructor, then each secondary constructor has to initialize the base type using the super keyword or it has to delegate to
another constructor which does. Note that in this case different secondary constructors can call different constructors of the base type:

class	MyView	:	View	{
				constructor(ctx:	Context)	:	super(ctx)

				constructor(ctx:	Context,	attrs:	AttributeSet)	:	super(ctx,	attrs)
}

Overriding
methods
Kotlin requires explicit modifiers for overridable members and overrides:

open	class	Shape	{
				open	fun	draw()	{	/*...*/	}
				fun	fill()	{	/*...*/	}
}

class	Circle()	:	Shape()	{
				override	fun	draw()	{	/*...*/	}
}

The override modifier is required for Circle.draw(). If it's missing, the compiler will complain. If there is no open modifier on a function, like Shape.fill(), declaring a
method with the same signature in a subclass is not allowed, either with override or without it. The open modifier has no effect when added to members of a final
class – a class without an open modifier.

A member marked override is itself open, so it may be overridden in subclasses. If you want to prohibit re-overriding, use final:

open	class	Rectangle()	:	Shape()	{
				final	override	fun	draw()	{	/*...*/	}
}

Overriding
properties
The overriding mechanism works on properties in the same way that it does on methods. Properties declared on a superclass that are then redeclared on a derived
class must be prefaced with override, and they must have a compatible type. Each declared property can be overridden by a property with an initializer or by a
property with a get method:

open	class	Shape	{
				open	val	vertexCount:	Int	=	0
}

class	Rectangle	:	Shape()	{
				override	val	vertexCount	=	4
}

You can also override a val property with a var property, but not vice versa. This is allowed because a val property essentially declares a get method, and overriding
it as a var additionally declares a set method in the derived class.

390

Note that you can use the override keyword as part of the property declaration in a primary constructor:

interface	Shape	{
				val	vertexCount:	Int
}

class	Rectangle(override	val	vertexCount:	Int	=	4)	:	Shape	//	Always	has	4	vertices

class	Polygon	:	Shape	{
				override	var	vertexCount:	Int	=	0		//	Can	be	set	to	any	number	later
}

Derived
class
initialization
order
During the construction of a new instance of a derived class, the base class initialization is done as the first step (preceded only by evaluation of the arguments for
the base class constructor), which means that it happens before the initialization logic of the derived class is run.

//sampleStart
open	class	Base(val	name:	String)	{

				init	{	println("Initializing	a	base	class")	}

				open	val	size:	Int	=	
								name.length.also	{	println("Initializing	size	in	the	base	class:	$it")	}
}

class	Derived(
				name:	String,
				val	lastName:	String,
)	:	Base(name.replaceFirstChar	{	it.uppercase()	}.also	{	println("Argument	for	the	base	class:	$it")	})	{

				init	{	println("Initializing	a	derived	class")	}

				override	val	size:	Int	=
								(super.size	+	lastName.length).also	{	println("Initializing	size	in	the	derived	class:	$it")	}
}
//sampleEnd

fun	main()	{
				println("Constructing	the	derived	class(\"hello\",	\"world\")")
				Derived("hello",	"world")
}

This means that when the base class constructor is executed, the properties declared or overridden in the derived class have not yet been initialized. Using any of
those properties in the base class initialization logic (either directly or indirectly through another overridden open member implementation) may lead to incorrect
behavior or a runtime failure. When designing a base class, you should therefore avoid using open members in the constructors, property initializers, or init blocks.

Calling
the
superclass
implementation
Code in a derived class can call its superclass functions and property accessor implementations using the super keyword:

open	class	Rectangle	{
				open	fun	draw()	{	println("Drawing	a	rectangle")	}
				val	borderColor:	String	get()	=	"black"
}

class	FilledRectangle	:	Rectangle()	{
				override	fun	draw()	{
								super.draw()
								println("Filling	the	rectangle")
				}

				val	fillColor:	String	get()	=	super.borderColor
}

Inside an inner class, accessing the superclass of the outer class is done using the super keyword qualified with the outer class name: super@Outer:

open	class	Rectangle	{
				open	fun	draw()	{	println("Drawing	a	rectangle")	}

391

				val	borderColor:	String	get()	=	"black"
}

//sampleStart
class	FilledRectangle:	Rectangle()	{
				override	fun	draw()	{
								val	filler	=	Filler()
								filler.drawAndFill()
				}
				
				inner	class	Filler	{
								fun	fill()	{	println("Filling")	}
								fun	drawAndFill()	{
												super@FilledRectangle.draw()	//	Calls	Rectangle's	implementation	of	draw()
												fill()
												println("Drawn	a	filled	rectangle	with	color	${super@FilledRectangle.borderColor}")	//	Uses	Rectangle's	implementation	
of	borderColor's	get()
								}
				}
}
//sampleEnd

fun	main()	{
				val	fr	=	FilledRectangle()
								fr.draw()
}

Overriding
rules
In Kotlin, implementation inheritance is regulated by the following rule: if a class inherits multiple implementations of the same member from its immediate
superclasses, it must override this member and provide its own implementation (perhaps, using one of the inherited ones).

To denote the supertype from which the inherited implementation is taken, use super qualified by the supertype name in angle brackets, such as super<Base>:

open	class	Rectangle	{
				open	fun	draw()	{	/*	...	*/	}
}

interface	Polygon	{
				fun	draw()	{	/*	...	*/	}	//	interface	members	are	'open'	by	default
}

class	Square()	:	Rectangle(),	Polygon	{
				//	The	compiler	requires	draw()	to	be	overridden:
				override	fun	draw()	{
								super<Rectangle>.draw()	//	call	to	Rectangle.draw()
								super<Polygon>.draw()	//	call	to	Polygon.draw()
				}
}

It's fine to inherit from both Rectangle and Polygon, but both of them have their implementations of draw(), so you need to override draw() in Square and provide a
separate implementation for it to eliminate the ambiguity.

Properties

Declaring
properties
Properties in Kotlin classes can be declared either as mutable, using the var keyword, or as read-only, using the val keyword.

class	Address	{
				var	name:	String	=	"Holmes,	Sherlock"
				var	street:	String	=	"Baker"
				var	city:	String	=	"London"
				var	state:	String?	=	null
				var	zip:	String	=	"123456"
}

To use a property, simply refer to it by its name:

392

fun	copyAddress(address:	Address):	Address	{
				val	result	=	Address()	//	there's	no	'new'	keyword	in	Kotlin
				result.name	=	address.name	//	accessors	are	called
				result.street	=	address.street
				//	...
				return	result
}

Getters
and
setters
The full syntax for declaring a property is as follows:

var	<propertyName>[:	<PropertyType>]	[=	<property_initializer>]
				[<getter>]
				[<setter>]

The initializer, getter, and setter are optional. The property type is optional if it can be inferred from the initializer or the getter's return type, as shown below:

var	initialized	=	1	//	has	type	Int,	default	getter	and	setter
//	var	allByDefault	//	ERROR:	explicit	initializer	required,	default	getter	and	setter	implied

The full syntax of a read-only property declaration differs from a mutable one in two ways: it starts with val instead of var and does not allow a setter:

val	simple:	Int?	//	has	type	Int,	default	getter,	must	be	initialized	in	constructor
val	inferredType	=	1	//	has	type	Int	and	a	default	getter

You can define custom accessors for a property. If you define a custom getter, it will be called every time you access the property (this way you can implement a
computed property). Here's an example of a custom getter:

//sampleStart
class	Rectangle(val	width:	Int,	val	height:	Int)	{
				val	area:	Int	//	property	type	is	optional	since	it	can	be	inferred	from	the	getter's	return	type
								get()	=	this.width	*	this.height
}
//sampleEnd
fun	main()	{
				val	rectangle	=	Rectangle(3,	4)
				println("Width=${rectangle.width},	height=${rectangle.height},	area=${rectangle.area}")
}

You can omit the property type if it can be inferred from the getter:

val	area	get()	=	this.width	*	this.height

If you define a custom setter, it will be called every time you assign a value to the property, except its initialization. A custom setter looks like this:

var	stringRepresentation:	String
				get()	=	this.toString()
				set(value)	{
								setDataFromString(value)	//	parses	the	string	and	assigns	values	to	other	properties
				}

By convention, the name of the setter parameter is value, but you can choose a different name if you prefer.

If you need to annotate an accessor or change its visibility, but you don't want to change the default implementation, you can define the accessor without defining
its body:

var	setterVisibility:	String	=	"abc"
				private	set	//	the	setter	is	private	and	has	the	default	implementation

var	setterWithAnnotation:	Any?	=	null
				@Inject	set	//	annotate	the	setter	with	Inject

393

Backing
fields
In Kotlin, a field is only used as a part of a property to hold its value in memory. Fields cannot be declared directly. However, when a property needs a backing field,
Kotlin provides it automatically. This backing field can be referenced in the accessors using the field identifier:

var	counter	=	0	//	the	initializer	assigns	the	backing	field	directly
				set(value)	{
								if	(value	>=	0)
												field	=	value
												//	counter	=	value	//	ERROR	StackOverflow:	Using	actual	name	'counter'	would	make	setter	recursive
				}

The field identifier can only be used in the accessors of the property.

A backing field will be generated for a property if it uses the default implementation of at least one of the accessors, or if a custom accessor references it through
the field identifier.

For example, there would be no backing field in the following case:

val	isEmpty:	Boolean
				get()	=	this.size	==	0

Backing
properties
If you want to do something that does not fit into this implicit backing field scheme, you can always fall back to having a backing property:

private	var	_table:	Map<String,	Int>?	=	null
public	val	table:	Map<String,	Int>
				get()	{
								if	(_table	==	null)	{
												_table	=	HashMap()	//	Type	parameters	are	inferred
								}
								return	_table	?:	throw	AssertionError("Set	to	null	by	another	thread")
				}

Compile-time
constants
If the value of a read-only property is known at compile time, mark it as a compile time constant using the const modifier. Such a property needs to fulfil the
following requirements:

It must be a top-level property, or a member of an object declaration or a companion object.

It must be initialized with a value of type String or a primitive type

It cannot be a custom getter

The compiler will inline usages of the constant, replacing the reference to the constant with its actual value. However, the field will not be removed and therefore
can be interacted with using reflection.

Such properties can also be used in annotations:

const	val	SUBSYSTEM_DEPRECATED:	String	=	"This	subsystem	is	deprecated"

@Deprecated(SUBSYSTEM_DEPRECATED)	fun	foo()	{	...	}

Late-initialized
properties
and
variables
Normally, properties declared as having a non-nullable type must be initialized in the constructor. However, it is often the case that doing so is not convenient. For
example, properties can be initialized through dependency injection, or in the setup method of a unit test. In these cases, you cannot supply a non-nullable initializer
in the constructor, but you still want to avoid null checks when referencing the property inside the body of a class.

On the JVM: Access to private properties with default getters and setters is optimized to avoid function call overhead.

394

To handle such cases, you can mark the property with the lateinit modifier:

public	class	MyTest	{
				lateinit	var	subject:	TestSubject

				@SetUp	fun	setup()	{
								subject	=	TestSubject()
				}

				@Test	fun	test()	{
								subject.method()		//	dereference	directly
				}
}

This modifier can be used on var properties declared inside the body of a class (not in the primary constructor, and only when the property does not have a custom
getter or setter), as well as for top-level properties and local variables. The type of the property or variable must be non-nullable, and it must not be a primitive type.

Accessing a lateinit property before it has been initialized throws a special exception that clearly identifies the property being accessed and the fact that it hasn't
been initialized.

Checking
whether
a
lateinit
var
is
initialized
To check whether a lateinit var has already been initialized, use .isInitialized on the reference to that property:

if	(foo::bar.isInitialized)	{
				println(foo.bar)
}

This check is only available for properties that are lexically accessible when declared in the same type, in one of the outer types, or at top level in the same file.

Overriding
properties
See Overriding properties

Delegated
properties
The most common kind of property simply reads from (and maybe writes to) a backing field, but custom getters and setters allow you to use properties so one can
implement any sort of behavior of a property. Somewhere in between the simplicity of the first kind and variety of the second, there are common patterns for what
properties can do. A few examples: lazy values, reading from a map by a given key, accessing a database, notifying a listener on access.

Such common behaviors can be implemented as libraries using delegated properties.

Interfaces
Interfaces in Kotlin can contain declarations of abstract methods, as well as method implementations. What makes them different from abstract classes is that
interfaces cannot store state. They can have properties, but these need to be abstract or provide accessor implementations.

An interface is defined using the keyword interface:

interface	MyInterface	{
				fun	bar()
				fun	foo()	{
						//	optional	body
				}
}

Implementing
interfaces
A class or object can implement one or more interfaces:

395

class	Child	:	MyInterface	{
				override	fun	bar()	{
								//	body
				}
}

Properties
in
interfaces
You can declare properties in interfaces. A property declared in an interface can either be abstract or provide implementations for accessors. Properties declared in
interfaces can't have backing fields, and therefore accessors declared in interfaces can't reference them:

interface	MyInterface	{
				val	prop:	Int	//	abstract

				val	propertyWithImplementation:	String
								get()	=	"foo"

				fun	foo()	{
								print(prop)
				}
}

class	Child	:	MyInterface	{
				override	val	prop:	Int	=	29
}

Interfaces
Inheritance
An interface can derive from other interfaces, meaning it can both provide implementations for their members and declare new functions and properties. Quite
naturally, classes implementing such an interface are only required to define the missing implementations:

interface	Named	{
				val	name:	String
}

interface	Person	:	Named	{
				val	firstName:	String
				val	lastName:	String
				
				override	val	name:	String	get()	=	"$firstName	$lastName"
}

data	class	Employee(
				//	implementing	'name'	is	not	required
				override	val	firstName:	String,
				override	val	lastName:	String,
				val	position:	Position
)	:	Person

Resolving
overriding
conflicts
When you declare many types in your supertype list, you may inherit more than one implementation of the same method:

interface	A	{
				fun	foo()	{	print("A")	}
				fun	bar()
}

interface	B	{
				fun	foo()	{	print("B")	}
				fun	bar()	{	print("bar")	}
}

class	C	:	A	{
				override	fun	bar()	{	print("bar")	}
}

class	D	:	A,	B	{

396

				override	fun	foo()	{
								super<A>.foo()
								super.foo()
				}

				override	fun	bar()	{
								super.bar()
				}
}

Interfaces A and B both declare functions foo() and bar(). Both of them implement foo(), but only B implements bar() (bar() is not marked as abstract in A, because
this is the default for interfaces if the function has no body). Now, if you derive a concrete class C from A, you have to override bar() and provide an implementation.

However, if you derive D from A and B, you need to implement all the methods that you have inherited from multiple interfaces, and you need to specify how exactly
D should implement them. This rule applies both to methods for which you've inherited a single implementation (bar()) and to those for which you've inherited
multiple implementations (foo()).

Functional
(SAM)
interfaces
An interface with only one abstract method is called a functional interface, or a Single Abstract Method (SAM) interface. The functional interface can have several
non-abstract members but only one abstract member.

To declare a functional interface in Kotlin, use the fun modifier.

fun	interface	KRunnable	{
			fun	invoke()
}

SAM
conversions
For functional interfaces, you can use SAM conversions that help make your code more concise and readable by using lambda expressions.

Instead of creating a class that implements a functional interface manually, you can use a lambda expression. With a SAM conversion, Kotlin can convert any
lambda expression whose signature matches the signature of the interface's single method into the code, which dynamically instantiates the interface
implementation.

For example, consider the following Kotlin functional interface:

fun	interface	IntPredicate	{
			fun	accept(i:	Int):	Boolean
}

If you don't use a SAM conversion, you will need to write code like this:

//	Creating	an	instance	of	a	class
val	isEven	=	object	:	IntPredicate	{
			override	fun	accept(i:	Int):	Boolean	{
							return	i	%	2	==	0
			}
}

By leveraging Kotlin's SAM conversion, you can write the following equivalent code instead:

//	Creating	an	instance	using	lambda
val	isEven	=	IntPredicate	{	it	%	2	==	0	}

A short lambda expression replaces all the unnecessary code.

fun	interface	IntPredicate	{
			fun	accept(i:	Int):	Boolean
}

val	isEven	=	IntPredicate	{	it	%	2	==	0	}

397

fun	main()	{
			println("Is	7	even?	-	${isEven.accept(7)}")
}

You can also use SAM conversions for Java interfaces.

Migration
from
an
interface
with
constructor
function
to
a
functional
interface
Starting from 1.6.20, Kotlin supports callable references to functional interface constructors, which adds a source-compatible way to migrate from an interface with
a constructor function to a functional interface. Consider the following code:

interface	Printer	{	
				fun	print()	
}

fun	Printer(block:	()	->	Unit):	Printer	=	object	:	Printer	{	override	fun	print()	=	block()	}

With callable references to functional interface constructors enabled, this code can be replaced with just a functional interface declaration:

fun	interface	Printer	{	
				fun	print()
}

Its constructor will be created implicitly, and any code using the ::Printer function reference will compile. For example:

documentsStorage.addPrinter(::Printer)

Preserve the binary compatibility by marking the legacy function Printer with the @Deprecated annotation with DeprecationLevel.HIDDEN:

@Deprecated(message	=	"Your	message	about	the	deprecation",	level	=	DeprecationLevel.HIDDEN)
fun	Printer(...)	{...}

Functional
interfaces
vs.
type
aliases
You can also simply rewrite the above using a type alias for a functional type:

typealias	IntPredicate	=	(i:	Int)	->	Boolean

val	isEven:	IntPredicate	=	{	it	%	2	==	0	}

fun	main()	{
			println("Is	7	even?	-	${isEven(7)}")
}

However, functional interfaces and type aliases serve different purposes. Type aliases are just names for existing types – they don't create a new type, while
functional interfaces do. You can provide extensions that are specific to a particular functional interface to be inapplicable for plain functions or their type aliases.

Type aliases can have only one member, while functional interfaces can have multiple non-abstract members and one abstract member. Functional interfaces can
also implement and extend other interfaces.

Functional interfaces are more flexible and provide more capabilities than type aliases, but they can be more costly both syntactically and at runtime because they
can require conversions to a specific interface. When you choose which one to use in your code, consider your needs:

If your API needs to accept a function (any function) with some specific parameter and return types – use a simple functional type or define a type alias to give a
shorter name to the corresponding functional type.

If your API accepts a more complex entity than a function – for example, it has non-trivial contracts and/or operations on it that can't be expressed in a
functional type's signature – declare a separate functional interface for it.

Visibility
modifiers

398

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-deprecated/

Classes, objects, interfaces, constructors, and functions, as well as properties and their setters, can have visibility modifiers. Getters always have the same visibility
as their properties.

There are four visibility modifiers in Kotlin: private, protected, internal, and public. The default visibility is public.

On this page, you'll learn how the modifiers apply to different types of declaring scopes.

Packages
Functions, properties, classes, objects, and interfaces can be declared at the "top-level" directly inside a package:

//	file	name:	example.kt
package	foo

fun	baz()	{	...	}
class	Bar	{	...	}

If you don't use a visibility modifier, public is used by default, which means that your declarations will be visible everywhere.

If you mark a declaration as private, it will only be visible inside the file that contains the declaration.

If you mark it as internal, it will be visible everywhere in the same module.

The protected modifier is not available for top-level declarations.

Examples:

//	file	name:	example.kt
package	foo

private	fun	foo()	{	...	}	//	visible	inside	example.kt

public	var	bar:	Int	=	5	//	property	is	visible	everywhere
				private	set									//	setter	is	visible	only	in	example.kt
				
internal	val	baz	=	6				//	visible	inside	the	same	module

Class
members
For members declared inside a class:

private means that the member is visible inside this class only (including all its members).

protected means that the member has the same visibility as one marked as private, but that it is also visible in subclasses.

internal means that any client inside this module who sees the declaring class sees its internal members.

public means that any client who sees the declaring class sees its public members.

If you override a protected or an internal member and do not specify the visibility explicitly, the overriding member will also have the same visibility as the original.

Examples:

open	class	Outer	{
				private	val	a	=	1
				protected	open	val	b	=	2
				internal	open	val	c	=	3
				val	d	=	4		//	public	by	default
				

To use a visible top-level declaration from another package, you should import it.

In Kotlin, an outer class does not see private members of its inner classes.

399

				protected	class	Nested	{
								public	val	e:	Int	=	5
				}
}

class	Subclass	:	Outer()	{
				//	a	is	not	visible
				//	b,	c	and	d	are	visible
				//	Nested	and	e	are	visible

				override	val	b	=	5			//	'b'	is	protected
				override	val	c	=	7			//	'c'	is	internal
}

class	Unrelated(o:	Outer)	{
				//	o.a,	o.b	are	not	visible
				//	o.c	and	o.d	are	visible	(same	module)
				//	Outer.Nested	is	not	visible,	and	Nested::e	is	not	visible	either	
}

Constructors
Use the following syntax to specify the visibility of the primary constructor of a class:

class	C	private	constructor(a:	Int)	{	...	}

Here the constructor is private. By default, all constructors are public, which effectively amounts to them being visible everywhere the class is visible (this means
that a constructor of an internal class is only visible within the same module).

Local
declarations
Local variables, functions, and classes can't have visibility modifiers.

Modules
The internal visibility modifier means that the member is visible within the same module. More specifically, a module is a set of Kotlin files compiled together, for
example:

An IntelliJ IDEA module.

A Maven project.

A Gradle source set (with the exception that the test source set can access the internal declarations of main).

A set of files compiled with one invocation of the <kotlinc> Ant task.

Extensions
Kotlin provides the ability to extend a class or an interface with new functionality without having to inherit from the class or use design patterns such as Decorator.
This is done via special declarations called extensions.

For example, you can write new functions for a class or an interface from a third-party library that you can't modify. Such functions can be called in the usual way,
as if they were methods of the original class. This mechanism is called an extension function. There are also extension properties that let you define new properties
for existing classes.

Extension
functions
To declare an extension function, prefix its name with a receiver type, which refers to the type being extended. The following adds a swap function to
MutableList<Int>:

You need to add an explicit constructor keyword.

400

fun	MutableList<Int>.swap(index1:	Int,	index2:	Int)	{
				val	tmp	=	this[index1]	//	'this'	corresponds	to	the	list
				this[index1]	=	this[index2]
				this[index2]	=	tmp
}

The this keyword inside an extension function corresponds to the receiver object (the one that is passed before the dot). Now, you can call such a function on any
MutableList<Int>:

val	list	=	mutableListOf(1,	2,	3)
list.swap(0,	2)	//	'this'	inside	'swap()'	will	hold	the	value	of	'list'

This function makes sense for any MutableList<T>, and you can make it generic:

fun	<T>	MutableList<T>.swap(index1:	Int,	index2:	Int)	{
				val	tmp	=	this[index1]	//	'this'	corresponds	to	the	list
				this[index1]	=	this[index2]
				this[index2]	=	tmp
}

You need to declare the generic type parameter before the function name to make it available in the receiver type expression. For more information about generics,
see generic functions.

Extensions
are
resolved
statically
Extensions do not actually modify the classes they extend. By defining an extension, you are not inserting new members into a class, only making new functions
callable with the dot-notation on variables of this type.

Extension functions are dispatched statically. So which extension function is called is already known at compile time based on the receiver type. For example:

fun	main()	{
//sampleStart
				open	class	Shape
				class	Rectangle:	Shape()
				
				fun	Shape.getName()	=	"Shape"
				fun	Rectangle.getName()	=	"Rectangle"
				
				fun	printClassName(s:	Shape)	{
								println(s.getName())
				}
				
				printClassName(Rectangle())
//sampleEnd
}

This example prints Shape, because the extension function called depends only on the declared type of the parameter s, which is the Shape class.

If a class has a member function, and an extension function is defined which has the same receiver type, the same name, and is applicable to given arguments, the
member always wins. For example:

fun	main()	{
//sampleStart
				class	Example	{
								fun	printFunctionType()	{	println("Class	method")	}
				}
				
				fun	Example.printFunctionType()	{	println("Extension	function")	}
				
				Example().printFunctionType()
//sampleEnd
}

This code prints Class method.

However, it's perfectly OK for extension functions to overload member functions that have the same name but a different signature:

401

fun	main()	{
//sampleStart
				class	Example	{
								fun	printFunctionType()	{	println("Class	method")	}
				}
				
				fun	Example.printFunctionType(i:	Int)	{	println("Extension	function	#$i")	}
				
				Example().printFunctionType(1)
//sampleEnd
}

Nullable
receiver
Note that extensions can be defined with a nullable receiver type. These extensions can be called on an object variable even if its value is null. If the receiver is null,
then this is also null. So when defining an extension with a nullable receiver type, we recommend performing a this == null check inside the function body to avoid
compiler errors.

You can call toString() in Kotlin without checking for null, as the check already happens inside the extension function:

fun	Any?.toString():	String	{
				if	(this	==	null)	return	"null"
				//	After	the	null	check,	'this'	is	autocast	to	a	non-nullable	type,	so	the	toString()	below
				//	resolves	to	the	member	function	of	the	Any	class
				return	toString()
}

Extension
properties
Kotlin supports extension properties much like it supports functions:

val	<T>	List<T>.lastIndex:	Int
				get()	=	size	-	1

Example:

val	House.number	=	1	//	error:	initializers	are	not	allowed	for	extension	properties

Companion
object
extensions
If a class has a companion object defined, you can also define extension functions and properties for the companion object. Just like regular members of the
companion object, they can be called using only the class name as the qualifier:

class	MyClass	{
				companion	object	{	}		//	will	be	called	"Companion"
}

fun	MyClass.Companion.printCompanion()	{	println("companion")	}

fun	main()	{
				MyClass.printCompanion()
}

Scope
of
extensions

Since extensions do not actually insert members into classes, there's no efficient way for an extension property to have a backing field. This is why
initializers are not allowed for extension properties. Their behavior can only be defined by explicitly providing getters/setters.

402

In most cases, you define extensions on the top level, directly under packages:

package	org.example.declarations

fun	List<String>.getLongestString()	{	/*...*/}

To use an extension outside its declaring package, import it at the call site:

package	org.example.usage

import	org.example.declarations.getLongestString

fun	main()	{
				val	list	=	listOf("red",	"green",	"blue")
				list.getLongestString()
}

See Imports for more information.

Declaring
extensions
as
members
You can declare extensions for one class inside another class. Inside such an extension, there are multiple implicit receivers - objects whose members can be
accessed without a qualifier. An instance of a class in which the extension is declared is called a dispatch receiver, and an instance of the receiver type of the
extension method is called an extension receiver.

class	Host(val	hostname:	String)	{
				fun	printHostname()	{	print(hostname)	}
}

class	Connection(val	host:	Host,	val	port:	Int)	{
				fun	printPort()	{	print(port)	}

				fun	Host.printConnectionString()	{
								printHostname()			//	calls	Host.printHostname()
								print(":")
								printPort()			//	calls	Connection.printPort()
				}

				fun	connect()	{
								/*...*/
								host.printConnectionString()			//	calls	the	extension	function
				}
}

fun	main()	{
				Connection(Host("kotl.in"),	443).connect()
				//Host("kotl.in").printConnectionString()		//	error,	the	extension	function	is	unavailable	outside	Connection
}

In the event of a name conflict between the members of a dispatch receiver and an extension receiver, the extension receiver takes precedence. To refer to the
member of the dispatch receiver, you can use the qualified this syntax.

class	Connection	{
				fun	Host.getConnectionString()	{
								toString()									//	calls	Host.toString()
								this@Connection.toString()		//	calls	Connection.toString()
				}
}

Extensions declared as members can be declared as open and overridden in subclasses. This means that the dispatch of such functions is virtual with regard to the
dispatch receiver type, but static with regard to the extension receiver type.

open	class	Base	{	}

class	Derived	:	Base()	{	}

open	class	BaseCaller	{
				open	fun	Base.printFunctionInfo()	{
								println("Base	extension	function	in	BaseCaller")
				}

403

				open	fun	Derived.printFunctionInfo()	{
								println("Derived	extension	function	in	BaseCaller")
				}

				fun	call(b:	Base)	{
								b.printFunctionInfo()			//	call	the	extension	function
				}
}

class	DerivedCaller:	BaseCaller()	{
				override	fun	Base.printFunctionInfo()	{
								println("Base	extension	function	in	DerivedCaller")
				}

				override	fun	Derived.printFunctionInfo()	{
								println("Derived	extension	function	in	DerivedCaller")
				}
}

fun	main()	{
				BaseCaller().call(Base())			//	"Base	extension	function	in	BaseCaller"
				DerivedCaller().call(Base())		//	"Base	extension	function	in	DerivedCaller"	-	dispatch	receiver	is	resolved	virtually
				DerivedCaller().call(Derived())		//	"Base	extension	function	in	DerivedCaller"	-	extension	receiver	is	resolved	statically
}

Note
on
visibility
Extensions utilize the same visibility modifiers as regular functions declared in the same scope would. For example:

An extension declared at the top level of a file has access to the other private top-level declarations in the same file.

If an extension is declared outside its receiver type, it cannot access the receiver's private or protected members.

Data
classes
Data classes in Kotlin are classes whose main purpose is to hold data. Data classes come automatically with additional member functions that allow you to print an
instance to readable output, compare instances, copy instances, and more. Data classes are marked with data:

data	class	User(val	name:	String,	val	age:	Int)

The compiler automatically derives the following members from all properties declared in the primary constructor:

.equals()/.hashCode() pair

.toString() of the form "User(name=John, age=42)"

.componentN() functions corresponding to the properties in their order of declaration.

.copy() function (see below).

To ensure consistency and meaningful behavior of the generated code, data classes have to fulfill the following requirements:

The primary constructor needs to have at least one parameter.

All primary constructor parameters need to be marked as val or var.

Data classes cannot be abstract, open, sealed, or inner.

Additionally, the generation of data class members follows these rules with regard to the members' inheritance:

If there are explicit implementations of .equals(), .hashCode(), or .toString() in the data class body or final implementations in a superclass, then these functions
are not generated, and the existing implementations are used.

If a supertype has .componentN() functions that are open and return compatible types, the corresponding functions are generated for the data class and override
those of the supertype. If the functions of the supertype cannot be overridden due to incompatible signatures or due to their being final, an error is reported.

Providing explicit implementations for the .componentN() and .copy() functions is not allowed.

404

Data classes may extend other classes (see Sealed classes for examples).

data	class	User(val	name:	String	=	"",	val	age:	Int	=	0)

Properties
declared
in
the
class
body
The compiler only uses the properties defined inside the primary constructor for the automatically generated functions. To exclude a property from the generated
implementations, declare it inside the class body:

data	class	Person(val	name:	String)	{
				var	age:	Int	=	0
}

In this example, only the name property can be used inside the .toString(), .equals(), .hashCode(), and .copy() implementations, and there is only one component
function .component1(). The age property can't be used inside the .toString(), .equals(), .hashCode(), and .copy() implementations because it's declared inside the
class body. If two Person objects have different ages but the same name, then they are treated as equal. This is because the .equals() function can only check for
equality of the name property. For example:

data	class	Person(val	name:	String)	{
				var	age:	Int	=	0
}
fun	main()	{
//sampleStart
				val	person1	=	Person("John")
				val	person2	=	Person("John")
				person1.age	=	10
				person2.age	=	20

				println("person1	==	person2:	${person1	==	person2}")
				//	person1	==	person2:	true
		
				println("person1	with	age	${person1.age}:	${person1}")
				//	person1	with	age	10:	Person(name=John)
		
				println("person2	with	age	${person2.age}:	${person2}")
				//	person2	with	age	20:	Person(name=John)
//sampleEnd
}

Copying
Use the .copy() function to copy an object, allowing you to alter some of its properties while keeping the rest unchanged. The implementation of this function for the
User class above would be as follows:

fun	copy(name:	String	=	this.name,	age:	Int	=	this.age)	=	User(name,	age)

You can then write the following:

val	jack	=	User(name	=	"Jack",	age	=	1)
val	olderJack	=	jack.copy(age	=	2)

Data
classes
and
destructuring
declarations
Component functions generated for data classes make it possible to use them in destructuring declarations:

val	jane	=	User("Jane",	35)
val	(name,	age)	=	jane

On the JVM, if the generated class needs to have a parameterless constructor, default values for the properties have to be specified (see Constructors).

405

println("$name,	$age	years	of	age")	
//	Jane,	35	years	of	age

Standard
data
classes
The standard library provides the Pair and Triple classes. In most cases, though, named data classes are a better design choice because they make the code easier
to read by providing meaningful names for the properties.

Sealed
classes
and
interfaces
Sealed classes and interfaces represent restricted class hierarchies that provide more control over inheritance. All direct subclasses of a sealed class are known at
compile time. No other subclasses may appear outside the module and package within which the sealed class is defined. For example, third-party clients can't
extend your sealed class in their code. Thus, each instance of a sealed class has a type from a limited set that is known when this class is compiled.

The same works for sealed interfaces and their implementations: once a module with a sealed interface is compiled, no new implementations can appear.

In some sense, sealed classes are similar to enum classes: the set of values for an enum type is also restricted, but each enum constant exists only as a single
instance, whereas a subclass of a sealed class can have multiple instances, each with its own state.

As an example, consider a library's API. It's likely to contain error classes to let the library users handle errors that it can throw. If the hierarchy of such error classes
includes interfaces or abstract classes visible in the public API, then nothing prevents implementing or extending them in the client code. However, the library
doesn't know about errors declared outside it, so it can't treat them consistently with its own classes. With a sealed hierarchy of error classes, library authors can
be sure that they know all possible error types and no other ones can appear later.

To declare a sealed class or interface, put the sealed modifier before its name:

sealed	interface	Error

sealed	class	IOError():	Error

class	FileReadError(val	file:	File):	IOError()
class	DatabaseError(val	source:	DataSource):	IOError()

object	RuntimeError	:	Error

A sealed class is abstract by itself, it cannot be instantiated directly and can have abstract members.

Constructors of sealed classes can have one of two visibilities: protected (by default) or private:

sealed	class	IOError	{
				constructor()	{	/*...*/	}	//	protected	by	default
				private	constructor(description:	String):	this()	{	/*...*/	}	//	private	is	OK
				//	public	constructor(code:	Int):	this()	{}	//	Error:	public	and	internal	are	not	allowed
}

Location
of
direct
subclasses
Direct subclasses of sealed classes and interfaces must be declared in the same package. They may be top-level or nested inside any number of other named
classes, named interfaces, or named objects. Subclasses can have any visibility as long as they are compatible with normal inheritance rules in Kotlin.

Subclasses of sealed classes must have a proper qualified name. They can't be local nor anonymous objects.

These restrictions don't apply to indirect subclasses. If a direct subclass of a sealed class is not marked as sealed, it can be extended in any way that its modifiers
allow:

sealed	interface	Error	//	has	implementations	only	in	same	package	and	module

sealed	class	IOError():	Error	//	extended	only	in	same	package	and	module

enum classes can't extend a sealed class (as well as any other class), but they can implement sealed interfaces.

406

open	class	CustomError():	Error	//	can	be	extended	wherever	it's	visible

Inheritance
in
multiplatform
projects
There is one more inheritance restriction in multiplatform projects: direct subclasses of sealed classes must reside in the same source set. It applies to sealed
classes without the expected and actual modifiers.

If a sealed class is declared as expect in a common source set and have actual implementations in platform source sets, both expect and actual versions can have
subclasses in their source sets. Moreover, if you use a hierarchical structure, you can create subclasses in any source set between the expect and actual
declarations.

Learn more about the hierarchical structure of multiplatform projects.

Sealed
classes
and
when
expression
The key benefit of using sealed classes comes into play when you use them in a when expression. If it's possible to verify that the statement covers all cases, you
don't need to add an else clause to the statement:

fun	log(e:	Error)	=	when(e)	{
				is	FileReadError	->	{	println("Error	while	reading	file	${e.file}")	}
				is	DatabaseError	->	{	println("Error	while	reading	from	database	${e.source}")	}
				is	RuntimeError	->		{	println("Runtime	error")	}
				//	the	`else`	clause	is	not	required	because	all	the	cases	are	covered
}

Generics:
in,
out,
where
Classes in Kotlin can have type parameters, just like in Java:

class	Box<T>(t:	T)	{
				var	value	=	t
}

To create an instance of such a class, simply provide the type arguments:

val	box:	Box<Int>	=	Box<Int>(1)

But if the parameters can be inferred, for example, from the constructor arguments, you can omit the type arguments:

val	box	=	Box(1)	//	1	has	type	Int,	so	the	compiler	figures	out	that	it	is	Box<Int>

Variance
One of the trickiest aspects of Java's type system is the wildcard types (see Java Generics FAQ). Kotlin doesn't have these. Instead, Kotlin has declaration-site
variance and type projections.

Let's think about why Java needs these mysterious wildcards. The problem is explained well in Effective Java, 3rd Edition, Item 31: Use bounded wildcards to
increase API flexibility. First, generic types in Java are invariant, meaning that List<String> is not a subtype of List<Object>. If List were not invariant, it would have
been no better than Java's arrays, as the following code would have compiled but caused an exception at runtime:

//	Java
List<String>	strs	=	new	ArrayList<String>();
List<Object>	objs	=	strs;	//	!!!	A	compile-time	error	here	saves	us	from	a	runtime	exception	later.
objs.add(1);	//	Put	an	Integer	into	a	list	of	Strings

when expressions on expect sealed classes in the common code of multiplatform projects still require an else branch. This happens because subclasses
of actual platform implementations aren't known in the common code.

407

http://www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html
http://www.oracle.com/technetwork/java/effectivejava-136174.html

String	s	=	strs.get(0);	//	!!!	ClassCastException:	Cannot	cast	Integer	to	String

Java prohibits such things in order to guarantee run-time safety. But this has implications. For example, consider the addAll() method from the Collection interface.
What's the signature of this method? Intuitively, you'd write it this way:

//	Java
interface	Collection<E>	...	{
				void	addAll(Collection<E>	items);
}

But then, you would not be able to do the following (which is perfectly safe):

//	Java
void	copyAll(Collection<Object>	to,	Collection<String>	from)	{
				to.addAll(from);
				//	!!!	Would	not	compile	with	the	naive	declaration	of	addAll:
				//	Collection<String>	is	not	a	subtype	of	Collection<Object>
}

(In Java, you probably learned this the hard way, see Effective Java, 3rd Edition, Item 28: Prefer lists to arrays)

That's why the actual signature of addAll() is the following:

//	Java
interface	Collection<E>	...	{
				void	addAll(Collection<?	extends	E>	items);
}

The wildcard type argument ? extends E indicates that this method accepts a collection of objects of E or a subtype of E, not just E itself. This means that you can
safely read E's from items (elements of this collection are instances of a subclass of E), but cannot write to it as you don't know what objects comply with that
unknown subtype of E. In return for this limitation, you get the desired behavior: Collection<String> is a subtype of Collection<? extends Object>. In other words,
the wildcard with an extends-bound (upper bound) makes the type covariant.

The key to understanding why this works is rather simple: if you can only take items from a collection, then using a collection of Strings and reading Objects from it
is fine. Conversely, if you can only put items into the collection, it's okay to take a collection of Objects and put Strings into it: in Java there is List<? super String>,
which accepts Strings or any of its supertypes.

The latter is called contravariance, and you can only call methods that take String as an argument on List<? super String> (for example, you can call add(String) or
set(int, String)). If you call something that returns T in List<T>, you don't get a String, but rather an Object.

Joshua Bloch gives the name Producers to objects you only read from and Consumers to those you only write to. He recommends:

Declaration-site
variance
Let's suppose that there is a generic interface Source<T> that does not have any methods that take T as a parameter, only methods that return T:

//	Java
interface	Source<T>	{
				T	nextT();
}

Then, it would be perfectly safe to store a reference to an instance of Source<String> in a variable of type Source<Object> - there are no consumer-methods to
call. But Java does not know this, and still prohibits it:

"For maximum flexibility, use wildcard types on input parameters that represent producers or consumers", and proposes the following mnemonic:

PECS stands for Producer-Extends, Consumer-Super.

If you use a producer-object, say, List<? extends Foo>, you are not allowed to call add() or set() on this object, but this does not mean that it is
immutable: for example, nothing prevents you from calling clear() to remove all the items from the list, since clear() does not take any parameters at all.

The only thing guaranteed by wildcards (or other types of variance) is type safety. Immutability is a completely different story.

408

http://www.oracle.com/technetwork/java/effectivejava-136174.html

//	Java
void	demo(Source<String>	strs)	{
				Source<Object>	objects	=	strs;	//	!!!	Not	allowed	in	Java
				//	...
}

To fix this, you should declare objects of type Source<? extends Object>. Doing so is meaningless, because you can call all the same methods on such a variable
as before, so there's no value added by the more complex type. But the compiler does not know that.

In Kotlin, there is a way to explain this sort of thing to the compiler. This is called declaration-site variance: you can annotate the type parameter T of Source to
make sure that it is only returned (produced) from members of Source<T>, and never consumed. To do this, use the out modifier:

interface	Source<out	T>	{
				fun	nextT():	T
}

fun	demo(strs:	Source<String>)	{
				val	objects:	Source<Any>	=	strs	//	This	is	OK,	since	T	is	an	out-parameter
				//	...
}

The general rule is this: when a type parameter T of a class C is declared out, it may occur only in the out-position in the members of C, but in return C<Base> can
safely be a supertype of C<Derived>.

In other words, you can say that the class C is covariant in the parameter T, or that T is a covariant type parameter. You can think of C as being a producer of T's,
and NOT a consumer of T's.

The out modifier is called a variance annotation, and since it is provided at the type parameter declaration site, it provides declaration-site variance. This is in
contrast with Java's use-site variance where wildcards in the type usages make the types covariant.

In addition to out, Kotlin provides a complementary variance annotation: in. It makes a type parameter contravariant, meaning it can only be consumed and never
produced. A good example of a contravariant type is Comparable:

interface	Comparable<in	T>	{
				operator	fun	compareTo(other:	T):	Int
}

fun	demo(x:	Comparable<Number>)	{
				x.compareTo(1.0)	//	1.0	has	type	Double,	which	is	a	subtype	of	Number
				//	Thus,	you	can	assign	x	to	a	variable	of	type	Comparable<Double>
				val	y:	Comparable<Double>	=	x	//	OK!
}

The words in and out seem to be self-explanatory (as they've already been used successfully in C# for quite some time), and so the mnemonic mentioned above is
not really needed. It can in fact be rephrased at a higher level of abstraction:

The Existential Transformation: Consumer in, Producer out!:-)

Type
projections

Use-site
variance:
type
projections
It is very easy to declare a type parameter T as out and avoid trouble with subtyping on the use site, but some classes can't actually be restricted to only return T's!
A good example of this is Array:

class	Array<T>(val	size:	Int)	{
				operator	fun	get(index:	Int):	T	{	...	}
				operator	fun	set(index:	Int,	value:	T)	{	...	}
}

This class can be neither co- nor contravariant in T. And this imposes certain inflexibilities. Consider the following function:

fun	copy(from:	Array<Any>,	to:	Array<Any>)	{
				assert(from.size	==	to.size)
				for	(i	in	from.indices)
								to[i]	=	from[i]
}

409

https://en.wikipedia.org/wiki/Existentialism

This function is supposed to copy items from one array to another. Let's try to apply it in practice:

val	ints:	Array<Int>	=	arrayOf(1,	2,	3)
val	any	=	Array<Any>(3)	{	""	}	
copy(ints,	any)
//			^	type	is	Array<Int>	but	Array<Any>	was	expected

Here you run into the same familiar problem: Array<T> is invariant in T, and so neither Array<Int> nor Array<Any> is a subtype of the other. Why not? Again, this is
because copy could have an unexpected behavior, for example, it may attempt to write a String to from, and if you actually pass an array of Int there, a
ClassCastException will be thrown later.

To prohibit the copy function from writing to from, you can do the following:

fun	copy(from:	Array<out	Any>,	to:	Array<Any>)	{	...	}

This is type projection, which means that from is not a simple array, but is rather a restricted (projected) one. You can only call methods that return the type
parameter T, which in this case means that you can only call get(). This is our approach to use-site variance, and it corresponds to Java's Array<? extends Object>
while being slightly simpler.

You can project a type with in as well:

fun	fill(dest:	Array<in	String>,	value:	String)	{	...	}

Array<in String> corresponds to Java's Array<? super String>. This means that you can pass an array of CharSequence or an array of Object to the fill() function.

Star-projections
Sometimes you want to say that you know nothing about the type argument, but you still want to use it in a safe way. The safe way here is to define such a
projection of the generic type, that every concrete instantiation of that generic type will be a subtype of that projection.

Kotlin provides so-called star-projection syntax for this:

For Foo<out T : TUpper>, where T is a covariant type parameter with the upper bound TUpper, Foo<*> is equivalent to Foo<out TUpper>. This means that when
the T is unknown you can safely read values of TUpper from Foo<*>.

For Foo<in T>, where T is a contravariant type parameter, Foo<*> is equivalent to Foo<in Nothing>. This means there is nothing you can write to Foo<*> in a
safe way when T is unknown.

For Foo<T : TUpper>, where T is an invariant type parameter with the upper bound TUpper, Foo<*> is equivalent to Foo<out TUpper> for reading values and to
Foo<in Nothing> for writing values.

If a generic type has several type parameters, each of them can be projected independently. For example, if the type is declared as interface Function<in T, out U>
you could use the following star-projections:

Function<*, String> means Function<in Nothing, String>.

Function<Int, *> means Function<Int, out Any?>.

Function<*, *> means Function<in Nothing, out Any?>.

Generic
functions
Classes aren't the only declarations that can have type parameters. Functions can, too. Type parameters are placed before the name of the function:

fun	<T>	singletonList(item:	T):	List<T>	{
				//	...
}

fun	<T>	T.basicToString():	String	{	//	extension	function
				//	...

Star-projections are very much like Java's raw types, but safe.

410

}

To call a generic function, specify the type arguments at the call site after the name of the function:

val	l	=	singletonList<Int>(1)

Type arguments can be omitted if they can be inferred from the context, so the following example works as well:

val	l	=	singletonList(1)

Generic
constraints
The set of all possible types that can be substituted for a given type parameter may be restricted by generic constraints.

Upper
bounds
The most common type of constraint is an upper bound, which corresponds to Java's extends keyword:

fun	<T	:	Comparable<T>>	sort(list:	List<T>)	{		...	}

The type specified after a colon is the upper bound, indicating that only a subtype of Comparable<T> can be substituted for T. For example:

sort(listOf(1,	2,	3))	//	OK.	Int	is	a	subtype	of	Comparable<Int>
sort(listOf(HashMap<Int,	String>()))	//	Error:	HashMap<Int,	String>	is	not	a	subtype	of	Comparable<HashMap<Int,	String>>

The default upper bound (if there was none specified) is Any?. Only one upper bound can be specified inside the angle brackets. If the same type parameter needs
more than one upper bound, you need a separate where-clause:

fun	<T>	copyWhenGreater(list:	List<T>,	threshold:	T):	List<String>
				where	T	:	CharSequence,
										T	:	Comparable<T>	{
				return	list.filter	{	it	>	threshold	}.map	{	it.toString()	}
}

The passed type must satisfy all conditions of the where clause simultaneously. In the above example, the T type must implement both CharSequence and
Comparable.

Definitely
non-nullable
types
To make interoperability with generic Java classes and interfaces easier, Kotlin supports declaring a generic type parameter as definitely non-nullable.

To declare a generic type T as definitely non-nullable, declare the type with & Any. For example: T & Any.

A definitely non-nullable type must have a nullable upper bound.

The most common use case for declaring definitely non-nullable types is when you want to override a Java method that contains @NotNull as an argument. For
example, consider the load() method:

import	 *;

public	interface	Game<T>	{
				public	T	save(T	x)	{}
				@NotNull
				public	T	load(@NotNull	T	x)	{}
}

To override the load() method in Kotlin successfully, you need T1 to be declared as definitely non-nullable:

interface	ArcadeGame<T1>	:	Game<T1>	{
				override	fun	save(x:	T1):	T1
				//	T1	is	definitely	non-nullable

411

				override	fun	load(x:	T1	&	Any):	T1	&	Any
}

When working only with Kotlin, it's unlikely that you will need to declare definitely non-nullable types explicitly because Kotlin's type inference takes care of this for
you.

Type
erasure
The type safety checks that Kotlin performs for generic declaration usages are done at compile time. At runtime, the instances of generic types do not hold any
information about their actual type arguments. The type information is said to be erased. For example, the instances of Foo<Bar> and Foo<Baz?> are erased to just
Foo<*>.

Generics
type
checks
and
casts
Due to the type erasure, there is no general way to check whether an instance of a generic type was created with certain type arguments at runtime, and the
compiler prohibits such is-checks such as ints is List<Int> or list is T (type parameter). However, you can check an instance against a star-projected type:

if	(something	is	List<*>)	{
				something.forEach	{	println(it)	}	//	The	items	are	typed	as	`Any?`
}

Similarly, when you already have the type arguments of an instance checked statically (at compile time), you can make an is-check or a cast that involves the non-
generic part of the type. Note that angle brackets are omitted in this case:

fun	handleStrings(list:	MutableList<String>)	{
				if	(list	is	ArrayList)	{
								//	`list`	is	smart-cast	to	`ArrayList<String>`
				}
}

The same syntax but with the type arguments omitted can be used for casts that do not take type arguments into account: list as ArrayList.

The type arguments of generic function calls are also only checked at compile time. Inside the function bodies, the type parameters cannot be used for type checks,
and type casts to type parameters (foo as T) are unchecked. The only exclusion is inline functions with reified type parameters, which have their actual type
arguments inlined at each call site. This enables type checks and casts for the type parameters. However, the restrictions described above still apply for instances
of generic types used inside checks or casts. For example, in the type check arg is T, if arg is an instance of a generic type itself, its type arguments are still erased.

//sampleStart
inline	fun	<reified	A,	reified	B>	Pair<*,	*>.asPairOf():	Pair<A,	B>?	{
				if	(first	!is	A	||	second	!is	B)	return	null
				return	first	as	A	to	second	as	B
}

val	somePair:	Pair<Any?,	Any?>	=	"items"	to	listOf(1,	2,	3)

val	stringToSomething	=	somePair.asPairOf<String,	Any>()
val	stringToInt	=	somePair.asPairOf<String,	Int>()
val	stringToList	=	somePair.asPairOf<String,	List<*>>()
val	stringToStringList	=	somePair.asPairOf<String,	List<String>>()	//	Compiles	but	breaks	type	safety!
//	Expand	the	sample	for	more	details

//sampleEnd

fun	main()	{
				println("stringToSomething	=	"	+	stringToSomething)
				println("stringToInt	=	"	+	stringToInt)
				println("stringToList	=	"	+	stringToList)
				println("stringToStringList	=	"	+	stringToStringList)
				//println(stringToStringList?.second?.forEach()	{it.length})	//	This	will	throw	ClassCastException	as	list	items	are	not	String
}

Unchecked
casts
Type casts to generic types with concrete type arguments such as foo as List<String> cannot be checked at runtime.
These unchecked casts can be used when type safety is implied by the high-level program logic but cannot be inferred directly by the compiler. See the example
below.

412

fun	readDictionary(file:	File):	Map<String,	*>	=	file.inputStream().use	{	
				TODO("Read	a	mapping	of	strings	to	arbitrary	elements.")
}

//	We	saved	a	map	with	`Int`s	into	this	file
val	intsFile	=	File("ints.dictionary")

//	Warning:	Unchecked	cast:	`Map<String,	*>`	to	`Map<String,	Int>`
val	intsDictionary:	Map<String,	Int>	=	readDictionary(intsFile)	as	Map<String,	Int>

A warning appears for the cast in the last line. The compiler can't fully check it at runtime and provides no guarantee that the values in the map are Int.

To avoid unchecked casts, you can redesign the program structure. In the example above, you could use the DictionaryReader<T> and DictionaryWriter<T>
interfaces with type-safe implementations for different types. You can introduce reasonable abstractions to move unchecked casts from the call site to the
implementation details. Proper use of generic variance can also help.

For generic functions, using reified type parameters makes casts like arg as T checked, unless arg's type has its own type arguments that are erased.

An unchecked cast warning can be suppressed by annotating the statement or the declaration where it occurs with @Suppress("UNCHECKED_CAST"):

inline	fun	<reified	T>	List<*>.asListOfType():	List<T>?	=
				if	(all	{	it	is	T	})
								@Suppress("UNCHECKED_CAST")
								this	as	List<T>	else
								null

Underscore
operator
for
type
arguments
The underscore operator _ can be used for type arguments. Use it to automatically infer a type of the argument when other types are explicitly specified:

abstract	class	SomeClass<T>	{
				abstract	fun	execute()	:	T
}

class	SomeImplementation	:	SomeClass<String>()	{
				override	fun	execute():	String	=	"Test"
}

class	OtherImplementation	:	SomeClass<Int>()	{
				override	fun	execute():	Int	=	42
}

object	Runner	{
				inline	fun	<reified	S:	SomeClass<T>,	T>	run()	:	T	{
								return	S::class.java.getDeclaredConstructor().newInstance().execute()
				}
}

fun	main()	{
				//	T	is	inferred	as	String	because	SomeImplementation	derives	from	SomeClass<String>
				val	s	=	Runner.run<SomeImplementation,	_>()
				assert(s	==	"Test")

				//	T	is	inferred	as	Int	because	OtherImplementation	derives	from	SomeClass<Int>
				val	n	=	Runner.run<OtherImplementation,	_>()
				assert(n	==	42)
}

Nested
and
inner
classes
Classes can be nested in other classes:

On the JVM: array types (Array<Foo>) retain information about the erased type of their elements, and type casts to an array type are partially checked: the
nullability and actual type arguments of the element type are still erased. For example, the cast foo as Array<List<String>?> will succeed if foo is an array
holding any List<*>, whether it is nullable or not.

413

class	Outer	{
				private	val	bar:	Int	=	1
				class	Nested	{
								fun	foo()	=	2
				}
}

val	demo	=	Outer.Nested().foo()	//	==	2

You can also use interfaces with nesting. All combinations of classes and interfaces are possible: You can nest interfaces in classes, classes in interfaces, and
interfaces in interfaces.

interface	OuterInterface	{
				class	InnerClass
				interface	InnerInterface
}

class	OuterClass	{
				class	InnerClass
				interface	InnerInterface
}

Inner
classes
A nested class marked as inner can access the members of its outer class. Inner classes carry a reference to an object of an outer class:

class	Outer	{
				private	val	bar:	Int	=	1
				inner	class	Inner	{
								fun	foo()	=	bar
				}
}

val	demo	=	Outer().Inner().foo()	//	==	1

See Qualified this expressions to learn about disambiguation of this in inner classes.

Anonymous
inner
classes
Anonymous inner class instances are created using an object expression:

window.addMouseListener(object	:	MouseAdapter()	{

				override	fun	mouseClicked(e:	MouseEvent)	{	...	}

				override	fun	mouseEntered(e:	MouseEvent)	{	...	}
})

Enum
classes
The most basic use case for enum classes is the implementation of type-safe enums:

enum	class	Direction	{
				NORTH,	SOUTH,	WEST,	EAST
}

On the JVM, if the object is an instance of a functional Java interface (that means a Java interface with a single abstract method), you can create it using
a lambda expression prefixed with the type of the interface:

val	listener	=	ActionListener	{	println("clicked")	}

414

Each enum constant is an object. Enum constants are separated by commas.

Since each enum is an instance of the enum class, it can be initialized as:

enum	class	Color(val	rgb:	Int)	{
				RED(0xFF0000),
				GREEN(0x00FF00),
				BLUE(0x0000FF)
}

Anonymous
classes
Enum constants can declare their own anonymous classes with their corresponding methods, as well as with overriding base methods.

enum	class	ProtocolState	{
				WAITING	{
								override	fun	signal()	=	TALKING
				},

				TALKING	{
								override	fun	signal()	=	WAITING
				};

				abstract	fun	signal():	ProtocolState
}

If the enum class defines any members, separate the constant definitions from the member definitions with a semicolon.

Implementing
interfaces
in
enum
classes
An enum class can implement an interface (but it cannot derive from a class), providing either a common implementation of interface members for all the entries, or
separate implementations for each entry within its anonymous class. This is done by adding the interfaces you want to implement to the enum class declaration as
follows:

import	java.util.function.BinaryOperator
import	java.util.function.IntBinaryOperator

//sampleStart
enum	class	IntArithmetics	:	BinaryOperator<Int>,	IntBinaryOperator	{
				PLUS	{
								override	fun	apply(t:	Int,	u:	Int):	Int	=	t	+	u
				},
				TIMES	{
								override	fun	apply(t:	Int,	u:	Int):	Int	=	t	*	u
				};
				
				override	fun	applyAsInt(t:	Int,	u:	Int)	=	apply(t,	u)
}
//sampleEnd

fun	main()	{
				val	a	=	13
				val	b	=	31
				for	(f	in	IntArithmetics.values())	{
								println("$f($a,	$b)	=	${f.apply(a,	b)}")
				}
}

All enum classes implement the Comparable interface by default. Constants in the enum class are defined in the natural order. For more information, see Ordering.

Working
with
enum
constants
Enum classes in Kotlin have synthetic methods for listing the defined enum constants and getting an enum constant by its name. The signatures of these methods
are as follows (assuming the name of the enum class is EnumClass):

EnumClass.valueOf(value:	String):	EnumClass

415

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-comparable/index.html

EnumClass.values():	Array<EnumClass>

Below is an example of these methods in action:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

fun	main()	{
				for	(color	in	RGB.values())	println(color.toString())	//	prints	RED,	GREEN,	BLUE
				println("The	first	color	is:	${RGB.valueOf("RED")}")	//	prints	"The	first	color	is:	RED"
}

The valueOf() method throws an IllegalArgumentException if the specified name does not match any of the enum constants defined in the class.

In Kotlin 1.9.0, the entries property is introduced as a replacement for the values() function. The entries property returns a pre-allocated immutable list of your enum
constants. This is particularly useful when you are working with collections and can help you avoid performance issues.

For example:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

fun	main()	{
				for	(color	in	RGB.entries)	println(color.toString())
				//	prints	RED,	GREEN,	BLUE
}

Every enum constant also has properties: name and ordinal, for obtaining its name and position (starting from 0) in the enum class declaration:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

fun	main()	{
				//sampleStart
				println(RGB.RED.name)	//	prints	RED
				println(RGB.RED.ordinal)	//	prints	0
				//sampleEnd
}

You can access the constants in an enum class in a generic way using the enumValues<T>() and enumValueOf<T>() functions:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

inline	fun	<reified	T	:	Enum<T>>	printAllValues()	{
				println(enumValues<T>().joinToString	{	it.name	})
}

printAllValues<RGB>()	//	prints	RED,	GREEN,	BLUE

In Kotlin 1.9.20, the enumEntries<T>() function is introduced as a future replacement for the enumValues<T>() function.

The enumValues<T>() function is still supported, but we recommend that you use the enumEntries<T>() function instead because it has less performance impact.
Every time you call enumValues<T>() a new array is created, whereas whenever you call enumEntries<T>() the same list is returned each time, which is far more
efficient.

For example:

enum	class	RGB	{	RED,	GREEN,	BLUE	}

@OptIn(ExperimentalStdlibApi::class)
inline	fun	<reified	T	:	Enum<T>>	printAllValues()	{
				println(enumEntries<T>().joinToString	{	it.name	})
}

printAllValues<RGB>()	
//	RED,	GREEN,	BLUE

For more information about inline functions and reified type parameters, see Inline functions.

416

https://github.com/Kotlin/KEEP/blob/master/proposals/enum-entries.md#examples-of-performance-issues
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-enum/name.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-enum/ordinal.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/enum-values.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/enum-value-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/enum-values.html

Inline
value
classes
Sometimes it is necessary for business logic to create a wrapper around some type. However, it introduces runtime overhead due to additional heap allocations.
Moreover, if the wrapped type is primitive, the performance hit is terrible, because primitive types are usually heavily optimized by the runtime, while their wrappers
don't get any special treatment.

To solve such issues, Kotlin introduces a special kind of class called an inline class. Inline classes are a subset of value-based classes. They don't have an identity
and can only hold values.

To declare an inline class, use the value modifier before the name of the class:

value	class	Password(private	val	s:	String)

To declare an inline class for the JVM backend, use the value modifier along with the @JvmInline annotation before the class declaration:

//	For	JVM	backends
@JvmInline
value	class	Password(private	val	s:	String)

An inline class must have a single property initialized in the primary constructor. At runtime, instances of the inline class will be represented using this single
property (see details about runtime representation below):

//	No	actual	instantiation	of	class	'Password'	happens
//	At	runtime	'securePassword'	contains	just	'String'
val	securePassword	=	Password("Don't	try	this	in	production")	

This is the main feature of inline classes, which inspired the name inline: data of the class is inlined into its usages (similar to how content of inline functions is
inlined to call sites).

Members
Inline classes support some functionality of regular classes. In particular, they are allowed to declare properties and functions, have an init block and secondary
constructors:

@JvmInline
value	class	Person(private	val	fullName:	String)	{
				init	{
								require(fullName.isNotEmpty())	{
												"Full	name	shouldn't	be	empty"
								}
				}

				constructor(firstName:	String,	lastName:	String)	:	this("$firstName	$lastName")	{
								require(lastName.isNotBlank())	{
												"Last	name	shouldn't	be	empty"
								}
				}

				val	length:	Int
								get()	=	fullName.length

				fun	greet()	{
								println("Hello,	$fullName")
				}
}

fun	main()	{
				val	name1	=	Person("Kotlin",	"Mascot")
				val	name2	=	Person("Kodee")
				name1.greet()	//	the	`greet()`	function	is	called	as	a	static	method
				println(name2.length)	//	property	getter	is	called	as	a	static	method
}

The enumEntries<T>() function is Experimental. To use it, opt in with @OptIn(ExperimentalStdlibApi), and set the language version to at least 1.9.

417

https://github.com/Kotlin/KEEP/blob/master/notes/value-classes.md

Inline class properties cannot have backing fields. They can only have simple computable properties (no lateinit/delegated properties).

Inheritance
Inline classes are allowed to inherit from interfaces:

interface	Printable	{
				fun	prettyPrint():	String
}

@JvmInline
value	class	Name(val	s:	String)	:	Printable	{
				override	fun	prettyPrint():	String	=	"Let's	$s!"
}

fun	main()	{
				val	name	=	Name("Kotlin")
				println(name.prettyPrint())	//	Still	called	as	a	static	method
}

It is forbidden for inline classes to participate in a class hierarchy. This means that inline classes cannot extend other classes and are always final.

Representation
In generated code, the Kotlin compiler keeps a wrapper for each inline class. Inline class instances can be represented at runtime either as wrappers or as the
underlying type. This is similar to how Int can be represented either as a primitive int or as the wrapper Integer.

The Kotlin compiler will prefer using underlying types instead of wrappers to produce the most performant and optimized code. However, sometimes it is necessary
to keep wrappers around. As a rule of thumb, inline classes are boxed whenever they are used as another type.

interface	I

@JvmInline
value	class	Foo(val	i:	Int)	:	I

fun	asInline(f:	Foo)	{}
fun	<T>	asGeneric(x:	T)	{}
fun	asInterface(i:	I)	{}
fun	asNullable(i:	Foo?)	{}

fun	<T>	id(x:	T):	T	=	x

fun	main()	{
				val	f	=	Foo(42)	
				
				asInline(f)				//	unboxed:	used	as	Foo	itself
				asGeneric(f)			//	boxed:	used	as	generic	type	T
				asInterface(f)	//	boxed:	used	as	type	I
				asNullable(f)		//	boxed:	used	as	Foo?,	which	is	different	from	Foo
				
				//	below,	'f'	first	is	boxed	(while	being	passed	to	'id')	and	then	unboxed	(when	returned	from	'id')	
				//	In	the	end,	'c'	contains	unboxed	representation	(just	'42'),	as	'f'	
				val	c	=	id(f)		
}

Because inline classes may be represented both as the underlying value and as a wrapper, referential equality is pointless for them and is therefore prohibited.

Inline classes can also have a generic type parameter as the underlying type. In this case, the compiler maps it to Any? or, generally, to the upper bound of the type
parameter.

@JvmInline
value	class	UserId<T>(val	value:	T)

fun	compute(s:	UserId<String>)	{}	//	compiler	generates	fun	compute-<hashcode>(s:	Any?)

Mangling
Since inline classes are compiled to their underlying type, it may lead to various obscure errors, for example unexpected platform signature clashes:

418

@JvmInline
value	class	UInt(val	x:	Int)

//	Represented	as	'public	final	void	compute(int	x)'	on	the	JVM
fun	compute(x:	Int)	{	}

//	Also	represented	as	'public	final	void	compute(int	x)'	on	the	JVM!
fun	compute(x:	UInt)	{	}

To mitigate such issues, functions using inline classes are mangled by adding some stable hashcode to the function name. Therefore, fun compute(x: UInt) will be
represented as public final void compute-<hashcode>(int x), which solves the clash problem.

Calling
from
Java
code
You can call functions that accept inline classes from Java code. To do so, you should manually disable mangling: add the @JvmName annotation before the
function declaration:

@JvmInline
value	class	UInt(val	x:	Int)

fun	compute(x:	Int)	{	}

@JvmName("computeUInt")
fun	compute(x:	UInt)	{	}

Inline
classes
vs
type
aliases
At first sight, inline classes seem very similar to type aliases. Indeed, both seem to introduce a new type and both will be represented as the underlying type at
runtime.

However, the crucial difference is that type aliases are assignment-compatible with their underlying type (and with other type aliases with the same underlying type),
while inline classes are not.

In other words, inline classes introduce a truly new type, contrary to type aliases which only introduce an alternative name (alias) for an existing type:

typealias	NameTypeAlias	=	String

@JvmInline
value	class	NameInlineClass(val	s:	String)

fun	acceptString(s:	String)	{}
fun	acceptNameTypeAlias(n:	NameTypeAlias)	{}
fun	acceptNameInlineClass(p:	NameInlineClass)	{}

fun	main()	{
				val	nameAlias:	NameTypeAlias	=	""
				val	nameInlineClass:	NameInlineClass	=	NameInlineClass("")
				val	string:	String	=	""

				acceptString(nameAlias)	//	OK:	pass	alias	instead	of	underlying	type
				acceptString(nameInlineClass)	//	Not	OK:	can't	pass	inline	class	instead	of	underlying	type

				//	And	vice	versa:
				acceptNameTypeAlias(string)	//	OK:	pass	underlying	type	instead	of	alias
				acceptNameInlineClass(string)	//	Not	OK:	can't	pass	underlying	type	instead	of	inline	class
}

Inline
classes
and
delegation
Implementation by delegation to inlined value of inlined class is allowed with interfaces:

interface	MyInterface	{
				fun	bar()
				fun	foo()	=	"foo"
}

@JvmInline
value	class	MyInterfaceWrapper(val	myInterface:	MyInterface)	:	MyInterface	by	myInterface

419

fun	main()	{
				val	my	=	MyInterfaceWrapper(object	:	MyInterface	{
								override	fun	bar()	{
												//	body
								}
				})
				println(my.foo())	//	prints	"foo"
}

Object
expressions
and
declarations
Sometimes you need to create an object that is a slight modification of some class, without explicitly declaring a new subclass for it. Kotlin can handle this with
object expressions and object declarations.

Object
expressions
Object expressions create objects of anonymous classes, that is, classes that aren't explicitly declared with the class declaration. Such classes are useful for one-
time use. You can define them from scratch, inherit from existing classes, or implement interfaces. Instances of anonymous classes are also called anonymous
objects because they are defined by an expression, not a name.

Creating
anonymous
objects
from
scratch
Object expressions start with the object keyword.

If you just need an object that doesn't have any nontrivial supertypes, write its members in curly braces after object:

fun	main()	{
//sampleStart
				val	helloWorld	=	object	{
								val	hello	=	"Hello"
								val	world	=	"World"
								//	object	expressions	extend	Any,	so	`override`	is	required	on	`toString()`
								override	fun	toString()	=	"$hello	$world"
				}
//sampleEnd
				print(helloWorld)
}

Inheriting
anonymous
objects
from
supertypes
To create an object of an anonymous class that inherits from some type (or types), specify this type after object and a colon (:). Then implement or override the
members of this class as if you were inheriting from it:

window.addMouseListener(object	:	MouseAdapter()	{
				override	fun	mouseClicked(e:	MouseEvent)	{	/*...*/	}

				override	fun	mouseEntered(e:	MouseEvent)	{	/*...*/	}
})

If a supertype has a constructor, pass appropriate constructor parameters to it. Multiple supertypes can be specified as a comma-delimited list after the colon:

open	class	A(x:	Int)	{
				public	open	val	y:	Int	=	x
}

interface	B	{	/*...*/	}

val	ab:	A	=	object	:	A(1),	B	{
				override	val	y	=	15
}

Using
anonymous
objects
as
return
and
value
types

420

When an anonymous object is used as a type of a local or private but not inline declaration (function or property), all its members are accessible via this function or
property:

class	C	{
				private	fun	getObject()	=	object	{
								val	x:	String	=	"x"
				}

				fun	printX()	{
								println(getObject().x)
				}
}

If this function or property is public or private inline, its actual type is:

Any if the anonymous object doesn't have a declared supertype

The declared supertype of the anonymous object, if there is exactly one such type

The explicitly declared type if there is more than one declared supertype

In all these cases, members added in the anonymous object are not accessible. Overridden members are accessible if they are declared in the actual type of the
function or property:

interface	A	{
				fun	funFromA()	{}
}
interface	B

class	C	{
				//	The	return	type	is	Any;	x	is	not	accessible
				fun	getObject()	=	object	{
								val	x:	String	=	"x"
				}

				//	The	return	type	is	A;	x	is	not	accessible
				fun	getObjectA()	=	object:	A	{
								override	fun	funFromA()	{}
								val	x:	String	=	"x"
				}

				//	The	return	type	is	B;	funFromA()	and	x	are	not	accessible
				fun	getObjectB():	B	=	object:	A,	B	{	//	explicit	return	type	is	required
								override	fun	funFromA()	{}
								val	x:	String	=	"x"
				}
}

Accessing
variables
from
anonymous
objects
The code in object expressions can access variables from the enclosing scope:

fun	countClicks(window:	JComponent)	{
				var	clickCount	=	0
				var	enterCount	=	0

				window.addMouseListener(object	:	MouseAdapter()	{
								override	fun	mouseClicked(e:	MouseEvent)	{
												clickCount++
								}

								override	fun	mouseEntered(e:	MouseEvent)	{
												enterCount++
								}
				})
				//	...
}

Object
declarations
The Singleton pattern can be useful in several cases, and Kotlin makes it easy to declare singletons:

421

https://en.wikipedia.org/wiki/Singleton_pattern

object	DataProviderManager	{
				fun	registerDataProvider(provider:	DataProvider)	{
								//	...
				}

				val	allDataProviders:	Collection<DataProvider>
								get()	=	//	...
}

This is called an object declaration, and it always has a name following the object keyword. Just like a variable declaration, an object declaration is not an
expression, and it cannot be used on the right-hand side of an assignment statement.

The initialization of an object declaration is thread-safe and done on first access.

To refer to the object, use its name directly:

DataProviderManager.registerDataProvider(...)

Such objects can have supertypes:

object	DefaultListener	:	MouseAdapter()	{
				override	fun	mouseClicked(e:	MouseEvent)	{	...	}

				override	fun	mouseEntered(e:	MouseEvent)	{	...	}
}

Data
objects
When printing a plain object declaration in Kotlin, the string representation contains both its name and the hash of the object:

object	MyObject

fun	main()	{
				println(MyObject)	//	MyObject@1f32e575
}

Just like data classes, you can mark an object declaration with the data modifier. This instructs the compiler to generate a number of functions for your object:

toString() returns the name of the data object

equals()/hashCode() pair

The toString() function of a data object returns the name of the object:

data	object	MyDataObject	{
				val	x:	Int	=	3
}

fun	main()	{
				println(MyDataObject)	//	MyDataObject
}

The equals() function for a data object ensures that all objects that have the type of your data object are considered equal. In most cases, you will only have a single
instance of your data object at runtime (after all, a data object declares a singleton). However, in the edge case where another object of the same type is generated
at runtime (for example, by using platform reflection with java.lang.reflect or a JVM serialization library that uses this API under the hood), this ensures that the
objects are treated as being equal.

Object declarations can't be local (that is, they can't be nested directly inside a function), but they can be nested into other object declarations or non-
inner classes.

You can't provide a custom equals or hashCode implementation for a data object.

422

import	java.lang.reflect.Constructor

data	object	MySingleton

fun	main()	{
				val	evilTwin	=	createInstanceViaReflection()

				println(MySingleton)	//	MySingleton
				println(evilTwin)	//	MySingleton

				//	Even	when	a	library	forcefully	creates	a	second	instance	of	MySingleton,	its	`equals`	method	returns	true:
				println(MySingleton	==	evilTwin)	//	true

				//	Do	not	compare	data	objects	via	===.
				println(MySingleton	===	evilTwin)	//	false
}

fun	createInstanceViaReflection():	MySingleton	{
				//	Kotlin	reflection	does	not	permit	the	instantiation	of	data	objects.
				//	This	creates	a	new	MySingleton	instance	"by	force"	(i.e.	Java	platform	reflection)
				//	Don't	do	this	yourself!
				return	(MySingleton.javaClass.declaredConstructors[0].apply	{	isAccessible	=	true	}	as	Constructor<MySingleton>).newInstance()
}

The generated hashCode() function has behavior that is consistent with the equals() function, so that all runtime instances of a data object have the same hash
code.

Differences between data objects and data classes
While data object and data class declarations are often used together and have some similarities, there are some functions that are not generated for a data object:

No copy() function. Because a data object declaration is intended to be used as singleton objects, no copy() function is generated. The singleton pattern restricts
the instantiation of a class to a single instance, which would be violated by allowing copies of the instance to be created.

No componentN() function. Unlike a data class, a data object does not have any data properties. Since attempting to destructure such an object without data
properties would not make sense, no componentN() functions are generated.

Using data objects with sealed hierarchies
data object declarations are a particularly useful for sealed hierarchies, like sealed classes or sealed interfaces, since they allow you to maintain symmetry with any
data classes you may have defined alongside the object:

sealed	interface	ReadResult
data	class	Number(val	number:	Int)	:	ReadResult
data	class	Text(val	text:	String)	:	ReadResult
data	object	EndOfFile	:	ReadResult

fun	printReadResult(r:	ReadResult)	{
				when(r)	{
								is	Number	->	println("Num(${r.number}")
								is	Text	->	println("Txt(${r.text}")
								is	EndOfFile	->	println("EOF")
				}
}

fun	main()	{
				printReadResult(EndOfFile)	//	EOF
}

Companion
objects
An object declaration inside a class can be marked with the companion keyword:

class	MyClass	{
				companion	object	Factory	{
								fun	create():	MyClass	=	MyClass()
				}

Make sure that you only compare data objects structurally (using the == operator) and never by reference (using the === operator). This helps you to
avoid pitfalls when more than one instance of a data object exists at runtime.

423

}

Members of the companion object can be called simply by using the class name as the qualifier:

val	instance	=	MyClass.create()

The name of the companion object can be omitted, in which case the name Companion will be used:

class	MyClass	{
				companion	object	{	}
}

val	x	=	MyClass.Companion

Class members can access the private members of the corresponding companion object.

The name of a class used by itself (not as a qualifier to another name) acts as a reference to the companion object of the class (whether named or not):

class	MyClass1	{
				companion	object	Named	{	}
}

val	x	=	MyClass1

class	MyClass2	{
				companion	object	{	}
}

val	y	=	MyClass2

Note that even though the members of companion objects look like static members in other languages, at runtime those are still instance members of real objects,
and can, for example, implement interfaces:

interface	Factory<T>	{
				fun	create():	T
}

class	MyClass	{
				companion	object	:	Factory<MyClass>	{
								override	fun	create():	MyClass	=	MyClass()
				}
}

val	f:	Factory<MyClass>	=	MyClass

However, on the JVM you can have members of companion objects generated as real static methods and fields if you use the @JvmStatic annotation. See the Java
interoperability section for more detail.

Semantic
difference
between
object
expressions
and
declarations
There is one important semantic difference between object expressions and object declarations:

Object expressions are executed (and initialized) immediately, where they are used.

Object declarations are initialized lazily, when accessed for the first time.

A companion object is initialized when the corresponding class is loaded (resolved) that matches the semantics of a Java static initializer.

Delegation
The Delegation pattern has proven to be a good alternative to implementation inheritance, and Kotlin supports it natively requiring zero boilerplate code.

A class Derived can implement an interface Base by delegating all of its public members to a specified object:

interface	Base	{
				fun	print()

424

https://en.wikipedia.org/wiki/Delegation_pattern

}

class	BaseImpl(val	x:	Int)	:	Base	{
				override	fun	print()	{	print(x)	}
}

class	Derived(b:	Base)	:	Base	by	b

fun	main()	{
				val	b	=	BaseImpl(10)
				Derived(b).print()
}

The by-clause in the supertype list for Derived indicates that b will be stored internally in objects of Derived and the compiler will generate all the methods of Base
that forward to b.

Overriding
a
member
of
an
interface
implemented
by
delegation
Overrides work as you expect: the compiler will use your override implementations instead of those in the delegate object. If you want to add override fun
printMessage() { print("abc") } to Derived, the program would print abc instead of 10 when printMessage is called:

interface	Base	{
				fun	printMessage()
				fun	printMessageLine()
}

class	BaseImpl(val	x:	Int)	:	Base	{
				override	fun	printMessage()	{	print(x)	}
				override	fun	printMessageLine()	{	println(x)	}
}

class	Derived(b:	Base)	:	Base	by	b	{
				override	fun	printMessage()	{	print("abc")	}
}

fun	main()	{
				val	b	=	BaseImpl(10)
				Derived(b).printMessage()
				Derived(b).printMessageLine()
}

Note, however, that members overridden in this way do not get called from the members of the delegate object, which can only access its own implementations of
the interface members:

interface	Base	{
				val	message:	String
				fun	print()
}

class	BaseImpl(val	x:	Int)	:	Base	{
				override	val	message	=	"BaseImpl:	x	=	$x"
				override	fun	print()	{	println(message)	}
}

class	Derived(b:	Base)	:	Base	by	b	{
				//	This	property	is	not	accessed	from	b's	implementation	of	`print`
				override	val	message	=	"Message	of	Derived"
}

fun	main()	{
				val	b	=	BaseImpl(10)
				val	derived	=	Derived(b)
				derived.print()
				println(derived.message)
}

Learn more about delegated properties.

Delegated
properties

425

With some common kinds of properties, even though you can implement them manually every time you need them, it is more helpful to implement them once, add
them to a library, and reuse them later. For example:

Lazy properties: the value is computed only on first access.

Observable properties: listeners are notified about changes to this property.

Storing properties in a map instead of a separate field for each property.

To cover these (and other) cases, Kotlin supports delegated properties:

class	Example	{
				var	p:	String	by	Delegate()
}

The syntax is: val/var <property name>: <Type> by <expression>. The expression after by is a delegate, because the get() (and set()) that correspond to the property
will be delegated to its getValue() and setValue() methods. Property delegates don't have to implement an interface, but they have to provide a getValue() function
(and setValue() for vars).

For example:

import	kotlin.reflect.KProperty

class	Delegate	{
				operator	fun	getValue(thisRef:	Any?,	property:	KProperty<*>):	String	{
								return	"$thisRef,	thank	you	for	delegating	'${property.name}'	to	me!"
				}
	
				operator	fun	setValue(thisRef:	Any?,	property:	KProperty<*>,	value:	String)	{
								println("$value	has	been	assigned	to	'${property.name}'	in	$thisRef.")
				}
}

When you read from p, which delegates to an instance of Delegate, the getValue() function from Delegate is called. Its first parameter is the object you read p from,
and the second parameter holds a description of p itself (for example, you can take its name).

val	e	=	Example()
println(e.p)

This prints:

Example@33a17727, thank you for delegating 'p' to me!

Similarly, when you assign to p, the setValue() function is called. The first two parameters are the same, and the third holds the value being assigned:

e.p	=	"NEW"

This prints:

NEW has been assigned to 'p' in Example@33a17727.

The specification of the requirements to the delegated object can be found below.

You can declare a delegated property inside a function or code block; it doesn't have to be a member of a class. Below you can find an example.

Standard
delegates
The Kotlin standard library provides factory methods for several useful kinds of delegates.

Lazy
properties
lazy() is a function that takes a lambda and returns an instance of Lazy<T>, which can serve as a delegate for implementing a lazy property. The first call to get()
executes the lambda passed to lazy() and remembers the result. Subsequent calls to get() simply return the remembered result.

val	lazyValue:	String	by	lazy	{
				println("computed!")

426

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/lazy.html

				"Hello"
}

fun	main()	{
				println(lazyValue)
				println(lazyValue)
}

By default, the evaluation of lazy properties is synchronized: the value is computed only in one thread, but all threads will see the same value. If the synchronization
of the initialization delegate is not required to allow multiple threads to execute it simultaneously, pass LazyThreadSafetyMode.PUBLICATION as a parameter to
lazy().

If you're sure that the initialization will always happen in the same thread as the one where you use the property, you can use LazyThreadSafetyMode.NONE. It
doesn't incur any thread-safety guarantees and related overhead.

Observable
properties
Delegates.observable() takes two arguments: the initial value and a handler for modifications.

The handler is called every time you assign to the property (after the assignment has been performed). It has three parameters: the property being assigned to, the
old value, and the new value:

import	kotlin.properties.Delegates

class	User	{
				var	name:	String	by	Delegates.observable("<no	name>")	{
								prop,	old,	new	->
								println("$old	->	$new")
				}
}

fun	main()	{
				val	user	=	User()
				user.name	=	"first"
				user.name	=	"second"
}

If you want to intercept assignments and veto them, use vetoable() instead of observable(). The handler passed to vetoable will be called before the assignment of a
new property value.

Delegating
to
another
property
A property can delegate its getter and setter to another property. Such delegation is available for both top-level and class properties (member and extension). The
delegate property can be:

A top-level property

A member or an extension property of the same class

A member or an extension property of another class

To delegate a property to another property, use the :: qualifier in the delegate name, for example, this::delegate or MyClass::delegate.

var	topLevelInt:	Int	=	0
class	ClassWithDelegate(val	anotherClassInt:	Int)

class	MyClass(var	memberInt:	Int,	val	anotherClassInstance:	ClassWithDelegate)	{
				var	delegatedToMember:	Int	by	this::memberInt
				var	delegatedToTopLevel:	Int	by	::topLevelInt
				
				val	delegatedToAnotherClass:	Int	by	anotherClassInstance::anotherClassInt
}
var	MyClass.extDelegated:	Int	by	::topLevelInt

This may be useful, for example, when you want to rename a property in a backward-compatible way: introduce a new property, annotate the old one with the
@Deprecated annotation, and delegate its implementation.

class	MyClass	{
			var	newName:	Int	=	0

427

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/observable.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.properties/-delegates/vetoable.html

			@Deprecated("Use	'newName'	instead",	ReplaceWith("newName"))
			var	oldName:	Int	by	this::newName
}
fun	main()	{
			val	myClass	=	MyClass()
			//	Notification:	'oldName:	Int'	is	deprecated.
			//	Use	'newName'	instead
			myClass.oldName	=	42
			println(myClass.newName)	//	42
}

Storing
properties
in
a
map
One common use case is storing the values of properties in a map. This comes up often in applications for things like parsing JSON or performing other dynamic
tasks. In this case, you can use the map instance itself as the delegate for a delegated property.

class	User(val	map:	Map<String,	Any?>)	{
				val	name:	String	by	map
				val	age:	Int					by	map
}

In this example, the constructor takes a map:

val	user	=	User(mapOf(
				"name"	to	"John	Doe",
				"age"		to	25
))

Delegated properties take values from this map through string keys, which are associated with the names of properties:

class	User(val	map:	Map<String,	Any?>)	{
				val	name:	String	by	map
				val	age:	Int					by	map
}

fun	main()	{
				val	user	=	User(mapOf(
								"name"	to	"John	Doe",
								"age"		to	25
))
//sampleStart
				println(user.name)	//	Prints	"John	Doe"
				println(user.age)		//	Prints	25
//sampleEnd
}

This also works for var's properties if you use a MutableMap instead of a read-only Map:

class	MutableUser(val	map:	MutableMap<String,	Any?>)	{
				var	name:	String	by	map
				var	age:	Int					by	map
}

Local
delegated
properties
You can declare local variables as delegated properties. For example, you can make a local variable lazy:

fun	example(computeFoo:	()	->	Foo)	{
				val	memoizedFoo	by	lazy(computeFoo)

				if	(someCondition	&&	memoizedFoo.isValid())	{
								memoizedFoo.doSomething()
				}
}

The memoizedFoo variable will be computed on first access only. If someCondition fails, the variable won't be computed at all.

428

Property
delegate
requirements
For a read-only property (val), a delegate should provide an operator function getValue() with the following parameters:

thisRef must be the same type as, or a supertype of, the property owner (for extension properties, it should be the type being extended).

property must be of type KProperty<*> or its supertype.

getValue() must return the same type as the property (or its subtype).

class	Resource

class	Owner	{
				val	valResource:	Resource	by	ResourceDelegate()
}

class	ResourceDelegate	{
				operator	fun	getValue(thisRef:	Owner,	property:	KProperty<*>):	Resource	{
								return	Resource()
				}
}

For a mutable property (var), a delegate has to additionally provide an operator function setValue() with the following parameters:

thisRef must be the same type as, or a supertype of, the property owner (for extension properties, it should be the type being extended).

property must be of type KProperty<*> or its supertype.

value must be of the same type as the property (or its supertype).

class	Resource

class	Owner	{
				var	varResource:	Resource	by	ResourceDelegate()
}

class	ResourceDelegate(private	var	resource:	Resource	=	Resource())	{
				operator	fun	getValue(thisRef:	Owner,	property:	KProperty<*>):	Resource	{
								return	resource
				}
				operator	fun	setValue(thisRef:	Owner,	property:	KProperty<*>,	value:	Any?)	{
								if	(value	is	Resource)	{
												resource	=	value
								}
				}
}

getValue() and/or setValue() functions can be provided either as member functions of the delegate class or as extension functions. The latter is handy when you
need to delegate a property to an object that doesn't originally provide these functions. Both of the functions need to be marked with the operator keyword.

You can create delegates as anonymous objects without creating new classes, by using the interfaces ReadOnlyProperty and ReadWriteProperty from the Kotlin
standard library. They provide the required methods: getValue() is declared in ReadOnlyProperty; ReadWriteProperty extends it and adds setValue(). This means you
can pass a ReadWriteProperty whenever a ReadOnlyProperty is expected.

fun	resourceDelegate(resource:	Resource	=	Resource()):	ReadWriteProperty<Any?,	Resource>	=
				object	:	ReadWriteProperty<Any?,	Resource>	{
								var	curValue	=	resource	
								override	fun	getValue(thisRef:	Any?,	property:	KProperty<*>):	Resource	=	curValue
								override	fun	setValue(thisRef:	Any?,	property:	KProperty<*>,	value:	Resource)	{
												curValue	=	value
								}
				}

val	readOnlyResource:	Resource	by	resourceDelegate()		//	ReadWriteProperty	as	val
var	readWriteResource:	Resource	by	resourceDelegate()

Translation
rules
for
delegated
properties
Under the hood, the Kotlin compiler generates auxiliary properties for some kinds of delegated properties and then delegates to them.

429

For example, for the property prop it generates the hidden property prop$delegate, and the code of the accessors simply delegates to this additional property:

class	C	{
				var	prop:	Type	by	MyDelegate()
}

//	this	code	is	generated	by	the	compiler	instead:
class	C	{
				private	val	prop$delegate	=	MyDelegate()
				var	prop:	Type
								get()	=	prop$delegate.getValue(this,	this::prop)
								set(value:	Type)	=	prop$delegate.setValue(this,	this::prop,	value)
}

The Kotlin compiler provides all the necessary information about prop in the arguments: the first argument this refers to an instance of the outer class C, and
this::prop is a reflection object of the KProperty type describing prop itself.

Optimized
cases
for
delegated
properties
The $delegate field will be omitted if a delegate is:

A referenced property:

class	C<Type>	{
				private	var	impl:	Type	=	...
				var	prop:	Type	by	::impl
}

A named object:

object	NamedObject	{
				operator	fun	getValue(thisRef:	Any?,	property:	KProperty<*>):	String	=	...
}

val	s:	String	by	NamedObject

A final val property with a backing field and a default getter in the same module:

val	impl:	ReadOnlyProperty<Any?,	String>	=	...

class	A	{
				val	s:	String	by	impl
}

A constant expression, enum entry, this, null. The example of this:

class	A	{
				operator	fun	getValue(thisRef:	Any?,	property:	KProperty<*>)	...

				val	s	by	this
}

Translation
rules
when
delegating
to
another
property
When delegating to another property, the Kotlin compiler generates immediate access to the referenced property. This means that the compiler doesn't generate
the field prop$delegate. This optimization helps save memory.

Take the following code, for example:

class	C<Type>	{
				private	var	impl:	Type	=	...
				var	prop:	Type	by	::impl

For the optimization purposes, the compiler does not generate auxiliary properties in several cases. Learn about the optimization on the example of
delegating to another property.

430

}

Property accessors of the prop variable invoke the impl variable directly, skipping the delegated property's getValueand setValue operators, and thus the KProperty
reference object is not needed.

For the code above, the compiler generates the following code:

class	C<Type>	{
				private	var	impl:	Type	=	...

				var	prop:	Type
								get()	=	impl
								set(value)	{
												impl	=	value
								}
				
				fun	getProp$delegate():	Type	=	impl	//	This	method	is	needed	only	for	reflection
}

Providing
a
delegate
By defining the provideDelegate operator, you can extend the logic for creating the object to which the property implementation is delegated. If the object used on
the right-hand side of by defines provideDelegate as a member or extension function, that function will be called to create the property delegate instance.

One of the possible use cases of provideDelegate is to check the consistency of the property upon its initialization.

For example, to check the property name before binding, you can write something like this:

class	ResourceDelegate<T>	:	ReadOnlyProperty<MyUI,	T>	{
				override	fun	getValue(thisRef:	MyUI,	property:	KProperty<*>):	T	{	...	}
}
				
class	ResourceLoader<T>(id:	ResourceID<T>)	{
				operator	fun	provideDelegate(
												thisRef:	MyUI,
												prop:	KProperty<*>
):	ReadOnlyProperty<MyUI,	T>	{
								checkProperty(thisRef,	prop.name)
								//	create	delegate
								return	ResourceDelegate()
				}

				private	fun	checkProperty(thisRef:	MyUI,	name:	String)	{	...	}
}

class	MyUI	{
				fun	<T>	bindResource(id:	ResourceID<T>):	ResourceLoader<T>	{	...	}

				val	image	by	bindResource(ResourceID.image_id)
				val	text	by	bindResource(ResourceID.text_id)
}

The parameters of provideDelegate are the same as those of getValue:

thisRef must be the same type as, or a supertype of, the property owner (for extension properties, it should be the type being extended);

property must be of type KProperty<*> or its supertype.

The provideDelegate method is called for each property during the creation of the MyUI instance, and it performs the necessary validation right away.

Without this ability to intercept the binding between the property and its delegate, to achieve the same functionality you'd have to pass the property name explicitly,
which isn't very convenient:

//	Checking	the	property	name	without	"provideDelegate"	functionality
class	MyUI	{
				val	image	by	bindResource(ResourceID.image_id,	"image")
				val	text	by	bindResource(ResourceID.text_id,	"text")
}

fun	<T>	MyUI.bindResource(
								id:	ResourceID<T>,
								propertyName:	String

431

):	ReadOnlyProperty<MyUI,	T>	{
				checkProperty(this,	propertyName)
				//	create	delegate
}

In the generated code, the provideDelegate method is called to initialize the auxiliary prop$delegate property. Compare the generated code for the property
declaration val prop: Type by MyDelegate() with the generated code above (when the provideDelegate method is not present):

class	C	{
				var	prop:	Type	by	MyDelegate()
}

//	this	code	is	generated	by	the	compiler	
//	when	the	'provideDelegate'	function	is	available:
class	C	{
				//	calling	"provideDelegate"	to	create	the	additional	"delegate"	property
				private	val	prop$delegate	=	MyDelegate().provideDelegate(this,	this::prop)
				var	prop:	Type
								get()	=	prop$delegate.getValue(this,	this::prop)
								set(value:	Type)	=	prop$delegate.setValue(this,	this::prop,	value)
}

Note that the provideDelegate method affects only the creation of the auxiliary property and doesn't affect the code generated for the getter or the setter.

With the PropertyDelegateProvider interface from the standard library, you can create delegate providers without creating new classes.

val	provider	=	PropertyDelegateProvider	{	thisRef:	Any?,	property	->
				ReadOnlyProperty<Any?,	Int>	{_,	property	->	42	}
}
val	delegate:	Int	by	provider

Type
aliases
Type aliases provide alternative names for existing types. If the type name is too long you can introduce a different shorter name and use the new one instead.

It's useful to shorten long generic types. For instance, it's often tempting to shrink collection types:

typealias	NodeSet	=	Set<Network.Node>

typealias	FileTable<K>	=	MutableMap<K,	MutableList<File>>

You can provide different aliases for function types:

typealias	MyHandler	=	(Int,	String,	Any)	->	Unit

typealias	Predicate<T>	=	(T)	->	Boolean

You can have new names for inner and nested classes:

class	A	{
				inner	class	Inner
}
class	B	{
				inner	class	Inner
}

typealias	AInner	=	A.Inner
typealias	BInner	=	B.Inner

Type aliases do not introduce new types. They are equivalent to the corresponding underlying types. When you add typealias Predicate<T> and use Predicate<Int>
in your code, the Kotlin compiler always expands it to (Int) -> Boolean. Thus you can pass a variable of your type whenever a general function type is required and
vice versa:

typealias	Predicate<T>	=	(T)	->	Boolean

fun	foo(p:	Predicate<Int>)	=	p(42)

432

fun	main()	{
				val	f:	(Int)	->	Boolean	=	{	it	>	0	}
				println(foo(f))	//	prints	"true"

				val	p:	Predicate<Int>	=	{	it	>	0	}
				println(listOf(1,	-2).filter(p))	//	prints	"[1]"
}

Functions
Kotlin functions are declared using the fun keyword:

fun	double(x:	Int):	Int	{
				return	2	*	x
}

Function
usage
Functions are called using the standard approach:

val	result	=	double(2)

Calling member functions uses dot notation:

Stream().read()	//	create	instance	of	class	Stream	and	call	read()

Parameters
Function parameters are defined using Pascal notation - name: type. Parameters are separated using commas, and each parameter must be explicitly typed:

fun	powerOf(number:	Int,	exponent:	Int):	Int	{	/*...*/	}

You can use a trailing comma when you declare function parameters:

fun	powerOf(
				number:	Int,
				exponent:	Int,	//	trailing	comma
)	{	/*...*/	}

Default
arguments
Function parameters can have default values, which are used when you skip the corresponding argument. This reduces the number of overloads:

fun	read(
				b:	ByteArray,
				off:	Int	=	0,
				len:	Int	=	b.size,
)	{	/*...*/	}

A default value is set by appending = to the type.

Overriding methods always use the base method's default parameter values. When overriding a method that has default parameter values, the default parameter
values must be omitted from the signature:

open	class	A	{
				open	fun	foo(i:	Int	=	10)	{	/*...*/	}
}

class	B	:	A()	{
				override	fun	foo(i:	Int)	{	/*...*/	}		//	No	default	value	is	allowed.
}

433

If a default parameter precedes a parameter with no default value, the default value can only be used by calling the function with named arguments:

fun	foo(
				bar:	Int	=	0,
				baz:	Int,
)	{	/*...*/	}

foo(baz	=	1)	//	The	default	value	bar	=	0	is	used

If the last argument after default parameters is a lambda, you can pass it either as a named argument or outside the parentheses:

fun	foo(
				bar:	Int	=	0,
				baz:	Int	=	1,
				qux:	()	->	Unit,
)	{	/*...*/	}

foo(1)	{	println("hello")	}					//	Uses	the	default	value	baz	=	1
foo(qux	=	{	println("hello")	})	//	Uses	both	default	values	bar	=	0	and	baz	=	1
foo	{	println("hello")	}								//	Uses	both	default	values	bar	=	0	and	baz	=	1

Named
arguments
You can name one or more of a function's arguments when calling it. This can be helpful when a function has many arguments and it's difficult to associate a value
with an argument, especially if it's a boolean or null value.

When you use named arguments in a function call, you can freely change the order that they are listed in. If you want to use their default values, you can just leave
these arguments out altogether.

Consider the reformat() function, which has 4 arguments with default values.

fun	reformat(
				str:	String,
				normalizeCase:	Boolean	=	true,
				upperCaseFirstLetter:	Boolean	=	true,
				divideByCamelHumps:	Boolean	=	false,
				wordSeparator:	Char	=	'	',
)	{	/*...*/	}

When calling this function, you don't have to name all its arguments:

reformat(
				"String!",
				false,
				upperCaseFirstLetter	=	false,
				divideByCamelHumps	=	true,
				'_'
)

You can skip all the ones with default values:

reformat("This	is	a	long	String!")

You are also able to skip specific arguments with default values, rather than omitting them all. However, after the first skipped argument, you must name all
subsequent arguments:

reformat("This	is	a	short	String!",	upperCaseFirstLetter	=	false,	wordSeparator	=	'_')

You can pass a variable number of arguments (vararg) with names using the spread operator:

fun	foo(vararg	strings:	String)	{	/*...*/	}

foo(strings	=	*arrayOf("a",	"b",	"c"))

434

Unit-returning
functions
If a function does not return a useful value, its return type is Unit. Unit is a type with only one value - Unit. This value does not have to be returned explicitly:

fun	printHello(name:	String?):	Unit	{
				if	(name	!=	null)
								println("Hello	$name")
				else
								println("Hi	there!")
				//	`return	Unit`	or	`return`	is	optional
}

The Unit return type declaration is also optional. The above code is equivalent to:

fun	printHello(name:	String?)	{	...	}

Single-expression
functions
When the function body consists of a single expression, the curly braces can be omitted and the body specified after an = symbol:

fun	double(x:	Int):	Int	=	x	*	2

Explicitly declaring the return type is optional when this can be inferred by the compiler:

fun	double(x:	Int)	=	x	*	2

Explicit
return
types
Functions with block body must always specify return types explicitly, unless it's intended for them to return Unit, in which case specifying the return type is
optional.

Kotlin does not infer return types for functions with block bodies because such functions may have complex control flow in the body, and the return type will be
non-obvious to the reader (and sometimes even for the compiler).

Variable
number
of
arguments
(varargs)
You can mark a parameter of a function (usually the last one) with the vararg modifier:

fun	<T>	asList(vararg	ts:	T):	List<T>	{
				val	result	=	ArrayList<T>()
				for	(t	in	ts)	//	ts	is	an	Array
								result.add(t)
				return	result
}

In this case, you can pass a variable number of arguments to the function:

val	list	=	asList(1,	2,	3)

Inside a function, a vararg-parameter of type T is visible as an array of T, as in the example above, where the ts variable has type Array<out T>.

Only one parameter can be marked as vararg. If a vararg parameter is not the last one in the list, values for the subsequent parameters can be passed using named
argument syntax, or, if the parameter has a function type, by passing a lambda outside the parentheses.

When you call a vararg-function, you can pass arguments individually, for example asList(1, 2, 3). If you already have an array and want to pass its contents to the
function, use the spread operator (prefix the array with *):

val	a	=	arrayOf(1,	2,	3)

When calling Java functions on the JVM, you can't use the named argument syntax because Java bytecode does not always preserve the names of
function parameters.

435

val	list	=	asList(-1,	0,	*a,	4)

If you want to pass a primitive type array into vararg, you need to convert it to a regular (typed) array using the toTypedArray() function:

val	a	=	intArrayOf(1,	2,	3)	//	IntArray	is	a	primitive	type	array
val	list	=	asList(-1,	0,	*a.toTypedArray(),	4)

Infix
notation
Functions marked with the infix keyword can also be called using the infix notation (omitting the dot and the parentheses for the call). Infix functions must meet the
following requirements:

They must be member functions or extension functions.

They must have a single parameter.

The parameter must not accept variable number of arguments and must have no default value.

infix	fun	Int.shl(x:	Int):	Int	{	...	}

//	calling	the	function	using	the	infix	notation
1	shl	2

//	is	the	same	as
1.shl(2)

Note that infix functions always require both the receiver and the parameter to be specified. When you're calling a method on the current receiver using the infix
notation, use this explicitly. This is required to ensure unambiguous parsing.

class	MyStringCollection	{
				infix	fun	add(s:	String)	{	/*...*/	}
				
				fun	build()	{
								this	add	"abc"			//	Correct
								add("abc")							//	Correct
								//add	"abc"								//	Incorrect:	the	receiver	must	be	specified
				}
}

Function
scope
Kotlin functions can be declared at the top level in a file, meaning you do not need to create a class to hold a function, which you are required to do in languages
such as Java, C#, and Scala (top level definition is available since Scala 3). In addition to top level functions, Kotlin functions can also be declared locally as
member functions and extension functions.

Local
functions
Kotlin supports local functions, which are functions inside other functions:

Infix function calls have lower precedence than arithmetic operators, type casts, and the rangeTo operator. The following expressions are equivalent:

1 shl 2 + 3 is equivalent to 1 shl (2 + 3)

0 until n * 2 is equivalent to 0 until (n * 2)

xs union ys as Set<*> is equivalent to xs union (ys as Set<*>)

On the other hand, an infix function call's precedence is higher than that of the boolean operators && and ||, is- and in-checks, and some other operators.
These expressions are equivalent as well:

a && b xor c is equivalent to a && (b xor c)

a xor b in c is equivalent to (a xor b) in c

436

https://docs.scala-lang.org/scala3/book/taste-toplevel-definitions.html#inner-main

fun	dfs(graph:	Graph)	{
				fun	dfs(current:	Vertex,	visited:	MutableSet<Vertex>)	{
								if	(!visited.add(current))	return
								for	(v	in	current.neighbors)
												dfs(v,	visited)
				}

				dfs(graph.vertices[0],	HashSet())
}

A local function can access local variables of outer functions (the closure). In the case above, visited can be a local variable:

fun	dfs(graph:	Graph)	{
				val	visited	=	HashSet<Vertex>()
				fun	dfs(current:	Vertex)	{
								if	(!visited.add(current))	return
								for	(v	in	current.neighbors)
												dfs(v)
				}

				dfs(graph.vertices[0])
}

Member
functions
A member function is a function that is defined inside a class or object:

class	Sample	{
				fun	foo()	{	print("Foo")	}
}

Member functions are called with dot notation:

Sample().foo()	//	creates	instance	of	class	Sample	and	calls	foo

For more information on classes and overriding members see Classes and Inheritance.

Generic
functions
Functions can have generic parameters, which are specified using angle brackets before the function name:

fun	<T>	singletonList(item:	T):	List<T>	{	/*...*/	}

For more information on generic functions, see Generics.

Tail
recursive
functions
Kotlin supports a style of functional programming known as tail recursion. For some algorithms that would normally use loops, you can use a recursive function
instead without the risk of stack overflow. When a function is marked with the tailrec modifier and meets the required formal conditions, the compiler optimizes out
the recursion, leaving behind a fast and efficient loop based version instead:

val	eps	=	1E-10	//	"good	enough",	could	be	10^-15

tailrec	fun	findFixPoint(x:	Double	=	1.0):	Double	=
				if	(Math.abs(x	-	Math.cos(x))	<	eps)	x	else	findFixPoint(Math.cos(x))

This code calculates the fixpoint of cosine, which is a mathematical constant. It simply calls Math.cos repeatedly starting at 1.0 until the result no longer changes,
yielding a result of 0.7390851332151611 for the specified eps precision. The resulting code is equivalent to this more traditional style:

val	eps	=	1E-10	//	"good	enough",	could	be	10^-15

private	fun	findFixPoint():	Double	{
				var	x	=	1.0

437

https://en.wikipedia.org/wiki/Tail_call

				while	(true)	{
								val	y	=	Math.cos(x)
								if	(Math.abs(x	-	y)	<	eps)	return	x
								x	=	Math.cos(x)
				}
}

To be eligible for the tailrec modifier, a function must call itself as the last operation it performs. You cannot use tail recursion when there is more code after the
recursive call, within try/catch/finally blocks, or on open functions. Currently, tail recursion is supported by Kotlin for the JVM and Kotlin/Native.

See also:

Inline functions

Extension functions

Higher-order functions and lambdas

Higher-order
functions
and
lambdas
Kotlin functions are first-class, which means they can be stored in variables and data structures, and can be passed as arguments to and returned from other
higher-order functions. You can perform any operations on functions that are possible for other non-function values.

To facilitate this, Kotlin, as a statically typed programming language, uses a family of function types to represent functions, and provides a set of specialized
language constructs, such as lambda expressions.

Higher-order
functions
A higher-order function is a function that takes functions as parameters, or returns a function.

A good example of a higher-order function is the functional programming idiom fold for collections. It takes an initial accumulator value and a combining function
and builds its return value by consecutively combining the current accumulator value with each collection element, replacing the accumulator value each time:

fun	<T,	R>	Collection<T>.fold(
				initial:	R,	
				combine:	(acc:	R,	nextElement:	T)	->	R
):	R	{
				var	accumulator:	R	=	initial
				for	(element:	T	in	this)	{
								accumulator	=	combine(accumulator,	element)
				}
				return	accumulator
}

In the code above, the combine parameter has the function type (R, T) -> R, so it accepts a function that takes two arguments of types R and T and returns a value
of type R. It is invoked inside the for loop, and the return value is then assigned to accumulator.

To call fold, you need to pass an instance of the function type to it as an argument, and lambda expressions (described in more detail below) are widely used for
this purpose at higher-order function call sites:

fun	main()	{
				//sampleStart
				val	items	=	listOf(1,	2,	3,	4,	5)
				
				//	Lambdas	are	code	blocks	enclosed	in	curly	braces.
				items.fold(0,	{	
								//	When	a	lambda	has	parameters,	they	go	first,	followed	by	'->'
								acc:	Int,	i:	Int	->	
								print("acc	=	$acc,	i	=	$i,	")	
								val	result	=	acc	+	i
								println("result	=	$result")
								//	The	last	expression	in	a	lambda	is	considered	the	return	value:
								result
				})
				
				//	Parameter	types	in	a	lambda	are	optional	if	they	can	be	inferred:
				val	joinedToString	=	items.fold("Elements:",	{	acc,	i	->	acc	+	"	"	+	i	})
				
				//	Function	references	can	also	be	used	for	higher-order	function	calls:

438

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

				val	product	=	items.fold(1,	Int::times)
				//sampleEnd
				println("joinedToString	=	$joinedToString")
				println("product	=	$product")
}

Function
types
Kotlin uses function types, such as (Int) -> String, for declarations that deal with functions: val onClick: () -> Unit =

These types have a special notation that corresponds to the signatures of the functions - their parameters and return values:

All function types have a parenthesized list of parameter types and a return type: (A, B) -> C denotes a type that represents functions that take two arguments of
types A and B and return a value of type C. The list of parameter types may be empty, as in () -> A. The Unit return type cannot be omitted.

Function types can optionally have an additional receiver type, which is specified before the dot in the notation: the type A.(B) -> C represents functions that can
be called on a receiver object A with a parameter B and return a value C. Function literals with receiver are often used along with these types.

Suspending functions belong to a special kind of function type that have a suspend modifier in their notation, such as suspend () -> Unit or suspend A.(B) -> C.

The function type notation can optionally include names for the function parameters: (x: Int, y: Int) -> Point. These names can be used for documenting the meaning
of the parameters.

To specify that a function type is nullable, use parentheses as follows: ((Int, Int) -> Int)?.

Function types can also be combined using parentheses: (Int) -> ((Int) -> Unit).

You can also give a function type an alternative name by using a type alias:

typealias	ClickHandler	=	(Button,	ClickEvent)	->	Unit

Instantiating
a
function
type
There are several ways to obtain an instance of a function type:

Use a code block within a function literal, in one of the following forms:

a lambda expression: { a, b -> a + b } ,

an anonymous function: fun(s: String): Int { return s.toIntOrNull() ?: 0 }

Function literals with receiver can be used as values of function types with receiver.

Use a callable reference to an existing declaration:

a top-level, local, member, or extension function: ::isOdd, String::toInt,

a top-level, member, or extension property: List<Int>::size,

a constructor: ::Regex

These include bound callable references that point to a member of a particular instance: foo::toString.

Use instances of a custom class that implements a function type as an interface:

class	IntTransformer:	(Int)	->	Int	{
				override	operator	fun	invoke(x:	Int):	Int	=	TODO()
}

val	intFunction:	(Int)	->	Int	=	IntTransformer()

The compiler can infer the function types for variables if there is enough information:

The arrow notation is right-associative, (Int) -> (Int) -> Unit is equivalent to the previous example, but not to ((Int) -> (Int)) -> Unit.

439

val	a	=	{	i:	Int	->	i	+	1	}	//	The	inferred	type	is	(Int)	->	Int

Non-literal values of function types with and without a receiver are interchangeable, so the receiver can stand in for the first parameter, and vice versa. For instance,
a value of type (A, B) -> C can be passed or assigned where a value of type A.(B) -> C is expected, and the other way around:

fun	main()	{
				//sampleStart
				val	repeatFun:	String.(Int)	->	String	=	{	times	->	this.repeat(times)	}
				val	twoParameters:	(String,	Int)	->	String	=	repeatFun	//	OK
				
				fun	runTransformation(f:	(String,	Int)	->	String):	String	{
								return	f("hello",	3)
				}
				val	result	=	runTransformation(repeatFun)	//	OK
				//sampleEnd
				println("result	=	$result")
}

Invoking
a
function
type
instance
A value of a function type can be invoked by using its invoke(...) operator: f.invoke(x) or just f(x).

If the value has a receiver type, the receiver object should be passed as the first argument. Another way to invoke a value of a function type with receiver is to
prepend it with the receiver object, as if the value were an extension function: 1.foo(2).

Example:

fun	main()	{
				//sampleStart
				val	stringPlus:	(String,	String)	->	String	=	String::plus
				val	intPlus:	Int.(Int)	->	Int	=	Int::plus
				
				println(stringPlus.invoke("<-",	"->"))
				println(stringPlus("Hello,	",	"world!"))
				
				println(intPlus.invoke(1,	1))
				println(intPlus(1,	2))
				println(2.intPlus(3))	//	extension-like	call
				//sampleEnd
}

Inline
functions
Sometimes it is beneficial to use inline functions, which provide flexible control flow, for higher-order functions.

Lambda
expressions
and
anonymous
functions
Lambda expressions and anonymous functions are function literals. Function literals are functions that are not declared but are passed immediately as an
expression. Consider the following example:

max(strings,	{	a,	b	->	a.length	<	b.length	})

The function max is a higher-order function, as it takes a function value as its second argument. This second argument is an expression that is itself a function,
called a function literal, which is equivalent to the following named function:

fun	compare(a:	String,	b:	String):	Boolean	=	a.length	<	b.length

Lambda
expression
syntax

A function type with no receiver is inferred by default, even if a variable is initialized with a reference to an extension function. To alter that, specify the
variable type explicitly.

440

The full syntactic form of lambda expressions is as follows:

val	sum:	(Int,	Int)	->	Int	=	{	x:	Int,	y:	Int	->	x	+	y	}

A lambda expression is always surrounded by curly braces.

Parameter declarations in the full syntactic form go inside curly braces and have optional type annotations.

The body goes after the ->.

If the inferred return type of the lambda is not Unit, the last (or possibly single) expression inside the lambda body is treated as the return value.

If you leave all the optional annotations out, what's left looks like this:

val	sum	=	{	x:	Int,	y:	Int	->	x	+	y	}

Passing
trailing
lambdas
According to Kotlin convention, if the last parameter of a function is a function, then a lambda expression passed as the corresponding argument can be placed
outside the parentheses:

val	product	=	items.fold(1)	{	acc,	e	->	acc	*	e	}

Such syntax is also known as trailing lambda.

If the lambda is the only argument in that call, the parentheses can be omitted entirely:

run	{	println("...")	}

it:
implicit
name
of
a
single
parameter
It's very common for a lambda expression to have only one parameter.

If the compiler can parse the signature without any parameters, the parameter does not need to be declared and -> can be omitted. The parameter will be implicitly
declared under the name it:

ints.filter	{	it	>	0	}	//	this	literal	is	of	type	'(it:	Int)	->	Boolean'

Returning
a
value
from
a
lambda
expression
You can explicitly return a value from the lambda using the qualified return syntax. Otherwise, the value of the last expression is implicitly returned.

Therefore, the two following snippets are equivalent:

ints.filter	{
				val	shouldFilter	=	it	>	0
				shouldFilter
}

ints.filter	{
				val	shouldFilter	=	it	>	0
				return@filter	shouldFilter
}

This convention, along with passing a lambda expression outside of parentheses, allows for LINQ-style code:

strings.filter	{	it.length	==	5	}.sortedBy	{	it	}.map	{	it.uppercase()	}

Underscore
for
unused
variables
If the lambda parameter is unused, you can place an underscore instead of its name:

441

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

map.forEach	{	(_,	value)	->	println("$value!")	}

Destructuring
in
lambdas
Destructuring in lambdas is described as a part of destructuring declarations.

Anonymous
functions
The lambda expression syntax above is missing one thing – the ability to specify the function's return type. In most cases, this is unnecessary because the return
type can be inferred automatically. However, if you do need to specify it explicitly, you can use an alternative syntax: an anonymous function.

fun(x:	Int,	y:	Int):	Int	=	x	+	y

An anonymous function looks very much like a regular function declaration, except its name is omitted. Its body can be either an expression (as shown above) or a
block:

fun(x:	Int,	y:	Int):	Int	{
				return	x	+	y
}

The parameters and the return type are specified in the same way as for regular functions, except the parameter types can be omitted if they can be inferred from
the context:

ints.filter(fun(item)	=	item	>	0)

The return type inference for anonymous functions works just like for normal functions: the return type is inferred automatically for anonymous functions with an
expression body, but it has to be specified explicitly (or is assumed to be Unit) for anonymous functions with a block body.

Another difference between lambda expressions and anonymous functions is the behavior of non-local returns. A return statement without a label always returns
from the function declared with the fun keyword. This means that a return inside a lambda expression will return from the enclosing function, whereas a return inside
an anonymous function will return from the anonymous function itself.

Closures
A lambda expression or anonymous function (as well as a local function and an object expression) can access its closure, which includes the variables declared in
the outer scope. The variables captured in the closure can be modified in the lambda:

var	sum	=	0
ints.filter	{	it	>	0	}.forEach	{
				sum	+=	it
}
print(sum)

Function
literals
with
receiver
Function types with receiver, such as A.(B) -> C, can be instantiated with a special form of function literals – function literals with receiver.

As mentioned above, Kotlin provides the ability to call an instance of a function type with receiver while providing the receiver object.

Inside the body of the function literal, the receiver object passed to a call becomes an implicit this, so that you can access the members of that receiver object
without any additional qualifiers, or access the receiver object using a this expression.

This behavior is similar to that of extension functions, which also allow you to access the members of the receiver object inside the function body.

Here is an example of a function literal with receiver along with its type, where plus is called on the receiver object:

val	sum:	Int.(Int)	->	Int	=	{	other	->	plus(other)	}

When passing anonymous functions as parameters, place them inside the parentheses. The shorthand syntax that allows you to leave the function
outside the parentheses works only for lambda expressions.

442

The anonymous function syntax allows you to specify the receiver type of a function literal directly. This can be useful if you need to declare a variable of a function
type with receiver, and then to use it later.

val	sum	=	fun	Int.(other:	Int):	Int	=	this	+	other

Lambda expressions can be used as function literals with receiver when the receiver type can be inferred from the context. One of the most important examples of
their usage is type-safe builders:

class	HTML	{
				fun	body()	{	...	}
}

fun	html(init:	HTML.()	->	Unit):	HTML	{
				val	html	=	HTML()		//	create	the	receiver	object
				html.init()								//	pass	the	receiver	object	to	the	lambda
				return	html
}

html	{							//	lambda	with	receiver	begins	here
				body()			//	calling	a	method	on	the	receiver	object
}

Inline
functions
Using higher-order functions imposes certain runtime penalties: each function is an object, and it captures a closure. A closure is a scope of variables that can be
accessed in the body of the function. Memory allocations (both for function objects and classes) and virtual calls introduce runtime overhead.

But it appears that in many cases this kind of overhead can be eliminated by inlining the lambda expressions. The functions shown below are good examples of this
situation. The lock() function could be easily inlined at call-sites. Consider the following case:

lock(l)	{	foo()	}

Instead of creating a function object for the parameter and generating a call, the compiler could emit the following code:

l.lock()
try	{
				foo()
}	finally	{
				l.unlock()
}

To make the compiler do this, mark the lock() function with the inline modifier:

inline	fun	<T>	lock(lock:	Lock,	body:	()	->	T):	T	{	...	}

The inline modifier affects both the function itself and the lambdas passed to it: all of those will be inlined into the call site.

Inlining may cause the generated code to grow. However, if you do it in a reasonable way (avoiding inlining large functions), it will pay off in performance, especially
at "megamorphic" call-sites inside loops.

noinline
If you don't want all of the lambdas passed to an inline function to be inlined, mark some of your function parameters with the noinline modifier:

inline	fun	foo(inlined:	()	->	Unit,	noinline	notInlined:	()	->	Unit)	{	...	}

Inlinable lambdas can only be called inside inline functions or passed as inlinable arguments. noinline lambdas, however, can be manipulated in any way you like,
including being stored in fields or passed around.

443

Non-local
returns
In Kotlin, you can only use a normal, unqualified return to exit a named function or an anonymous function. To exit a lambda, use a label. A bare return is forbidden
inside a lambda because a lambda cannot make the enclosing function return:

fun	ordinaryFunction(block:	()	->	Unit)	{
				println("hi!")
}
//sampleStart
fun	foo()	{
				ordinaryFunction	{
								return	//	ERROR:	cannot	make	`foo`	return	here
				}
}
//sampleEnd
fun	main()	{
				foo()
}

But if the function the lambda is passed to is inlined, the return can be inlined, as well. So it is allowed:

inline	fun	inlined(block:	()	->	Unit)	{
				println("hi!")
}
//sampleStart
fun	foo()	{
				inlined	{
								return	//	OK:	the	lambda	is	inlined
				}
}
//sampleEnd
fun	main()	{
				foo()
}

Such returns (located in a lambda, but exiting the enclosing function) are called non-local returns. This sort of construct usually occurs in loops, which inline
functions often enclose:

fun	hasZeros(ints:	List<Int>):	Boolean	{
				ints.forEach	{
								if	(it	==	0)	return	true	//	returns	from	hasZeros
				}
				return	false
}

Note that some inline functions may call the lambdas passed to them as parameters not directly from the function body, but from another execution context, such
as a local object or a nested function. In such cases, non-local control flow is also not allowed in the lambdas. To indicate that the lambda parameter of the inline
function cannot use non-local returns, mark the lambda parameter with the crossinline modifier:

inline	fun	f(crossinline	body:	()	->	Unit)	{
				val	f	=	object:	Runnable	{
								override	fun	run()	=	body()
				}
				//	...
}

Reified
type
parameters

If an inline function has no inlinable function parameters and no reified type parameters, the compiler will issue a warning, since inlining such functions is
very unlikely to be beneficial (you can use the @Suppress("NOTHING_TO_INLINE") annotation to suppress the warning if you are sure the inlining is
needed).

break and continue are not yet available in inlined lambdas, but we are planning to support them, too.

444

Sometimes you need to access a type passed as a parameter:

fun	<T>	TreeNode.findParentOfType(clazz:	Class<T>):	T?	{
				var	p	=	parent
				while	(p	!=	null	&&	!clazz.isInstance(p))	{
								p	=	p.parent
				}
				@Suppress("UNCHECKED_CAST")
				return	p	as	T?
}

Here, you walk up a tree and use reflection to check whether a node has a certain type. It's all fine, but the call site is not very pretty:

treeNode.findParentOfType(MyTreeNode::class.java)

A better solution would be to simply pass a type to this function. You can call it as follows:

treeNode.findParentOfType<MyTreeNode>()

To enable this, inline functions support reified type parameters, so you can write something like this:

inline	fun	<reified	T>	TreeNode.findParentOfType():	T?	{
				var	p	=	parent
				while	(p	!=	null	&&	p	!is	T)	{
								p	=	p.parent
				}
				return	p	as	T?
}

The code above qualifies the type parameter with the reified modifier to make it accessible inside the function, almost as if it were a normal class. Since the function
is inlined, no reflection is needed and normal operators like !is and as are now available for you to use. Also, you can call the function as shown above:
myTree.findParentOfType<MyTreeNodeType>().

Though reflection may not be needed in many cases, you can still use it with a reified type parameter:

inline	fun	<reified	T>	membersOf()	=	T::class.members

fun	main(s:	Array<String>)	{
				println(membersOf<StringBuilder>().joinToString("\n"))
}

Normal functions (not marked as inline) cannot have reified parameters. A type that does not have a run-time representation (for example, a non-reified type
parameter or a fictitious type like Nothing) cannot be used as an argument for a reified type parameter.

Inline
properties
The inline modifier can be used on accessors of properties that don't have backing fields. You can annotate individual property accessors:

val	foo:	Foo
				inline	get()	=	Foo()

var	bar:	Bar
				get()	=	...
				inline	set(v)	{	...	}

You can also annotate an entire property, which marks both of its accessors as inline:

inline	var	bar:	Bar
				get()	=	...
				set(v)	{	...	}

At the call site, inline accessors are inlined as regular inline functions.

445

Restrictions
for
public
API
inline
functions
When an inline function is public or protected but is not a part of a private or internal declaration, it is considered a module's public API. It can be called in other
modules and is inlined at such call sites as well.

This imposes certain risks of binary incompatibility caused by changes in the module that declares an inline function in case the calling module is not re-compiled
after the change.

To eliminate the risk of such incompatibility being introduced by a change in a non-public API of a module, public API inline functions are not allowed to use non-
public-API declarations, i.e. private and internal declarations and their parts, in their bodies.

An internal declaration can be annotated with @PublishedApi, which allows its use in public API inline functions. When an internal inline function is marked as
@PublishedApi, its body is checked too, as if it were public.

Operator
overloading
Kotlin allows you to provide custom implementations for the predefined set of operators on types. These operators have predefined symbolic representation (like +
or *) and precedence. To implement an operator, provide a member function or an extension function with a specific name for the corresponding type. This type
becomes the left-hand side type for binary operations and the argument type for the unary ones.

To overload an operator, mark the corresponding function with the operator modifier:

interface	IndexedContainer	{
				operator	fun	get(index:	Int)
}

When overriding your operator overloads, you can omit operator:

class	OrdersList:	IndexedContainer	{
				override	fun	get(index:	Int)	{	/*...*/	}			
}

Unary
operations

Unary
prefix
operators

Expression Translated to

+a a.unaryPlus()

-a a.unaryMinus()

!a a.not()

This table says that when the compiler processes, for example, an expression +a, it performs the following steps:

Determines the type of a, let it be T.

Looks up a function unaryPlus() with the operator modifier and no parameters for the receiver T, that means a member function or an extension function.

If the function is absent or ambiguous, it is a compilation error.

If the function is present and its return type is R, the expression +a has type R.

These operations, as well as all the others, are optimized for basic types and do not introduce overhead of function calls for them.

446

As an example, here's how you can overload the unary minus operator:

data	class	Point(val	x:	Int,	val	y:	Int)

operator	fun	Point.unaryMinus()	=	Point(-x,	-y)

val	point	=	Point(10,	20)

fun	main()	{
			println(-point)		//	prints	"Point(x=-10,	y=-20)"
}

Increments
and
decrements

Expression Translated to

a++ a.inc() + see below

a-- a.dec() + see below

The inc() and dec() functions must return a value, which will be assigned to the variable on which the ++ or -- operation was used. They shouldn't mutate the object
on which the inc or dec was invoked.

The compiler performs the following steps for resolution of an operator in the postfix form, for example a++:

Determines the type of a, let it be T.

Looks up a function inc() with the operator modifier and no parameters, applicable to the receiver of type T.

Checks that the return type of the function is a subtype of T.

The effect of computing the expression is:

Store the initial value of a to a temporary storage a0.

Assign the result of a0.inc() to a.

Return a0 as the result of the expression.

For a-- the steps are completely analogous.

For the prefix forms ++a and --a resolution works the same way, and the effect is:

Assign the result of a.inc() to a.

Return the new value of a as a result of the expression.

Binary
operations

Arithmetic
operators

Expression Translated to

a + b a.plus(b)

a - b a.minus(b)

447

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b)

a..b a.rangeTo(b)

a..<b a.rangeUntil(b)

Expression Translated to

For the operations in this table, the compiler just resolves the expression in the Translated to column.

Below is an example Counter class that starts at a given value and can be incremented using the overloaded + operator:

data	class	Counter(val	dayIndex:	Int)	{
				operator	fun	plus(increment:	Int):	Counter	{
								return	Counter(dayIndex	+	increment)
				}
}

in
operator

Expression Translated to

a in b b.contains(a)

a !in b !b.contains(a)

For in and !in the procedure is the same, but the order of arguments is reversed.

Indexed
access
operator

Expression Translated to

a[i] a.get(i)

a[i, j] a.get(i, j)

a[i_1, ..., i_n] a.get(i_1, ..., i_n)

a[i] = b a.set(i, b)

a[i, j] = b a.set(i, j, b)

448

a[i_1, ..., i_n] = b a.set(i_1, ..., i_n, b)

Expression Translated to

Square brackets are translated to calls to get and set with appropriate numbers of arguments.

invoke
operator

Expression Translated to

a() a.invoke()

a(i) a.invoke(i)

a(i, j) a.invoke(i, j)

a(i_1, ..., i_n) a.invoke(i_1, ..., i_n)

Parentheses are translated to calls to invoke with appropriate number of arguments.

Augmented
assignments

Expression Translated to

a += b a.plusAssign(b)

a -= b a.minusAssign(b)

a *= b a.timesAssign(b)

a /= b a.divAssign(b)

a %= b a.remAssign(b)

For the assignment operations, for example a += b, the compiler performs the following steps:

If the function from the right column is available:

If the corresponding binary function (that means plus() for plusAssign()) is available too, a is a mutable variable, and the return type of plus is a subtype of the
type of a, report an error (ambiguity).

Make sure its return type is Unit, and report an error otherwise.

Generate code for a.plusAssign(b).

Otherwise, try to generate code for a = a + b (this includes a type check: the type of a + b must be a subtype of a).

449

Equality
and
inequality
operators

Expression Translated to

a == b a?.equals(b) ?: (b === null)

a != b !(a?.equals(b) ?: (b === null))

These operators only work with the function equals(other: Any?): Boolean, which can be overridden to provide custom equality check implementation. Any other
function with the same name (like equals(other: Foo)) will not be called.

The == operation is special: it is translated to a complex expression that screens for null's. null == null is always true, and x == null for a non-null x is always false
and won't invoke x.equals().

Comparison
operators

Expression Translated to

a > b a.compareTo(b) > 0

a < b a.compareTo(b) < 0

a >= b a.compareTo(b) >= 0

a <= b a.compareTo(b) <= 0

All comparisons are translated into calls to compareTo, that is required to return Int.

Property
delegation
operators
provideDelegate, getValue and setValue operator functions are described in Delegated properties.

Infix
calls
for
named
functions
You can simulate custom infix operations by using infix function calls.

Type-safe
builders
By using well-named functions as builders in combination with function literals with receiver it is possible to create type-safe, statically-typed builders in Kotlin.

Type-safe builders allow creating Kotlin-based domain-specific languages (DSLs) suitable for building complex hierarchical data structures in a semi-declarative
way. Sample use cases for the builders are:

Generating markup with Kotlin code, such as HTML or XML

Assignments are NOT expressions in Kotlin.

=== and !== (identity checks) are not overloadable, so no conventions exist for them.

450

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-any/equals.html
https://github.com/Kotlin/kotlinx.html

Configuring routes for a web server: Ktor

Consider the following code:

import	com.example.html.*	//	see	declarations	below

fun	result()	=
				html	{
								head	{
												title	{+"XML	encoding	with	Kotlin"}
								}
								body	{
												h1	{+"XML	encoding	with	Kotlin"}
												p		{+"this	format	can	be	used	as	an	alternative	markup	to	XML"}

												//	an	element	with	attributes	and	text	content
												a(href	=	"https://kotlinlang.org")	{+"Kotlin"}

												//	mixed	content
												p	{
																+"This	is	some"
																b	{+"mixed"}
																+"text.	For	more	see	the"
																a(href	=	"https://kotlinlang.org")	{+"Kotlin"}
																+"project"
												}
												p	{+"some	text"}

												//	content	generated	by
												p	{
																for	(arg	in	args)
																				+arg
												}
								}
				}

This is completely legitimate Kotlin code. You can play with this code online (modify it and run in the browser) here.

How
it
works
Assume that you need to implement a type-safe builder in Kotlin. First of all, define the model you want to build. In this case you need to model HTML tags. It is
easily done with a bunch of classes. For example, HTML is a class that describes the <html> tag defining children like <head> and <body>. (See its declaration
below.)

Now, let's recall why you can say something like this in the code:

html	{
	//	...
}

html is actually a function call that takes a lambda expression as an argument. This function is defined as follows:

fun	html(init:	HTML.()	->	Unit):	HTML	{
				val	html	=	HTML()
				html.init()
				return	html
}

This function takes one parameter named init, which is itself a function. The type of the function is HTML.() -> Unit, which is a function type with receiver. This
means that you need to pass an instance of type HTML (a receiver) to the function, and you can call members of that instance inside the function.

The receiver can be accessed through the this keyword:

html	{
				this.head	{	...	}
				this.body	{	...	}
}

(head and body are member functions of HTML.)

451

https://ktor.io/docs/routing.html
https://play.kotlinlang.org/byExample/09_Kotlin_JS/06_HtmlBuilder

Now, this can be omitted, as usual, and you get something that looks very much like a builder already:

html	{
				head	{	...	}
				body	{	...	}
}

So, what does this call do? Let's look at the body of html function as defined above. It creates a new instance of HTML, then it initializes it by calling the function
that is passed as an argument (in this example this boils down to calling head and body on the HTML instance), and then it returns this instance. This is exactly
what a builder should do.

The head and body functions in the HTML class are defined similarly to html. The only difference is that they add the built instances to the children collection of the
enclosing HTML instance:

fun	head(init:	Head.()	->	Unit):	Head	{
				val	head	=	Head()
				head.init()
				children.add(head)
				return	head
}

fun	body(init:	Body.()	->	Unit):	Body	{
				val	body	=	Body()
				body.init()
				children.add(body)
				return	body
}

Actually these two functions do just the same thing, so you can have a generic version, initTag:

protected	fun	<T	:	Element>	initTag(tag:	T,	init:	T.()	->	Unit):	T	{
				tag.init()
				children.add(tag)
				return	tag
}

So, now your functions are very simple:

fun	head(init:	Head.()	->	Unit)	=	initTag(Head(),	init)

fun	body(init:	Body.()	->	Unit)	=	initTag(Body(),	init)

And you can use them to build <head> and <body> tags.

One other thing to be discussed here is how you add text to tag bodies. In the example above you say something like:

html	{
				head	{
								title	{+"XML	encoding	with	Kotlin"}
				}
				//	...
}

So basically, you just put a string inside a tag body, but there is this little + in front of it, so it is a function call that invokes a prefix unaryPlus() operation. That
operation is actually defined by an extension function unaryPlus() that is a member of the TagWithText abstract class (a parent of Title):

operator	fun	String.unaryPlus()	{
				children.add(TextElement(this))
}

So, what the prefix + does here is wrapping a string into an instance of TextElement and adding it to the children collection, so that it becomes a proper part of the
tag tree.

All this is defined in a package com.example.html that is imported at the top of the builder example above. In the last section you can read through the full definition
of this package.

452

Scope
control:
@DslMarker
When using DSLs, one might have come across the problem that too many functions can be called in the context. You can call methods of every available implicit
receiver inside a lambda and therefore get an inconsistent result, like the tag head inside another head:

html	{
				head	{
								head	{}	//	should	be	forbidden
				}
				//	...
}

In this example only members of the nearest implicit receiver this@head must be available; head() is a member of the outer receiver this@html, so it must be illegal
to call it.

To address this problem, there is a special mechanism to control receiver scope.

To make the compiler start controlling scopes you only have to annotate the types of all receivers used in the DSL with the same marker annotation. For instance,
for HTML Builders you declare an annotation @HTMLTagMarker:

@DslMarker
annotation	class	HtmlTagMarker

An annotation class is called a DSL marker if it is annotated with the @DslMarker annotation.

In our DSL all the tag classes extend the same superclass Tag. It's enough to annotate only the superclass with @HtmlTagMarker and after that the Kotlin compiler
will treat all the inherited classes as annotated:

@HtmlTagMarker
abstract	class	Tag(val	name:	String)	{	...	}

You don't have to annotate the HTML or Head classes with @HtmlTagMarker because their superclass is already annotated:

class HTML() : Tag("html") { ... } class Head() : Tag("head") { ... }

After you've added this annotation, the Kotlin compiler knows which implicit receivers are part of the same DSL and allows to call members of the nearest receivers
only:

html	{
				head	{
								head	{	}	//	error:	a	member	of	outer	receiver
				}
				//	...
}

Note that it's still possible to call the members of the outer receiver, but to do that you have to specify this receiver explicitly:

html	{
				head	{
								this@html.head	{	}	//	possible
				}
				//	...
}

Full
definition
of
the
com.example.html
package
This is how the package com.example.html is defined (only the elements used in the example above). It builds an HTML tree. It makes heavy use of extension
functions and lambdas with receiver.

package	com.example.html

interface	Element	{
				fun	render(builder:	StringBuilder,	indent:	String)
}

class	TextElement(val	text:	String)	:	Element	{

453

				override	fun	render(builder:	StringBuilder,	indent:	String)	{
								builder.append("$indent$text\n")
				}
}

@DslMarker
annotation	class	HtmlTagMarker

@HtmlTagMarker
abstract	class	Tag(val	name:	String)	:	Element	{
				val	children	=	arrayListOf<Element>()
				val	attributes	=	hashMapOf<String,	String>()

				protected	fun	<T	:	Element>	initTag(tag:	T,	init:	T.()	->	Unit):	T	{
								tag.init()
								children.add(tag)
								return	tag
				}

				override	fun	render(builder:	StringBuilder,	indent:	String)	{
								builder.append("$indent<$name${renderAttributes()}>\n")
								for	(c	in	children)	{
												c.render(builder,	indent	+	"		")
								}
								builder.append("$indent</$name>\n")
				}

				private	fun	renderAttributes():	String	{
								val	builder	=	StringBuilder()
								for	((attr,	value)	in	attributes)	{
												builder.append("	$attr=\"$value\"")
								}
								return	builder.toString()
				}

				override	fun	toString():	String	{
								val	builder	=	StringBuilder()
								render(builder,	"")
								return	builder.toString()
				}
}

abstract	class	TagWithText(name:	String)	:	Tag(name)	{
				operator	fun	String.unaryPlus()	{
								children.add(TextElement(this))
				}
}

class	HTML	:	TagWithText("html")	{
				fun	head(init:	Head.()	->	Unit)	=	initTag(Head(),	init)

				fun	body(init:	Body.()	->	Unit)	=	initTag(Body(),	init)
}

class	Head	:	TagWithText("head")	{
				fun	title(init:	Title.()	->	Unit)	=	initTag(Title(),	init)
}

class	Title	:	TagWithText("title")

abstract	class	BodyTag(name:	String)	:	TagWithText(name)	{
				fun	b(init:	B.()	->	Unit)	=	initTag(B(),	init)
				fun	p(init:	P.()	->	Unit)	=	initTag(P(),	init)
				fun	h1(init:	H1.()	->	Unit)	=	initTag(H1(),	init)
				fun	a(href:	String,	init:	A.()	->	Unit)	{
								val	a	=	initTag(A(),	init)
								a.href	=	href
				}
}

class	Body	:	BodyTag("body")
class	B	:	BodyTag("b")
class	P	:	BodyTag("p")
class	H1	:	BodyTag("h1")

class	A	:	BodyTag("a")	{
				var	href:	String
								get()	=	attributes["href"]!!
								set(value)	{
												attributes["href"]	=	value
								}
}

454

fun	html(init:	HTML.()	->	Unit):	HTML	{
				val	html	=	HTML()
				html.init()
				return	html
}

Using
builders
with
builder
type
inference
Kotlin supports builder type inference (or builder inference), which can come in useful when you are working with generic builders. It helps the compiler infer the
type arguments of a builder call based on the type information about other calls inside its lambda argument.

Consider this example of buildMap() usage:

fun	addEntryToMap(baseMap:	Map<String,	Number>,	additionalEntry:	Pair<String,	Int>?)	{
			val	myMap	=	buildMap	{
							putAll(baseMap)
							if	(additionalEntry	!=	null)	{
											put(additionalEntry.first,	additionalEntry.second)
							}
			}
}

There is not enough type information here to infer type arguments in a regular way, but builder inference can analyze the calls inside the lambda argument. Based
on the type information about putAll() and put() calls, the compiler can automatically infer type arguments of the buildMap() call into String and Number. Builder
inference allows to omit type arguments while using generic builders.

Writing
your
own
builders

Requirements
for
enabling
builder
inference

To let builder inference work for your own builder, make sure its declaration has a builder lambda parameter of a function type with a receiver. There are also two
requirements for the receiver type:

1. It should use the type arguments that builder inference is supposed to infer. For example:

fun	<V>	buildList(builder:	MutableList<V>.()	->	Unit)	{	...	}

2. It should provide public members or extensions that contain the corresponding type parameters in their signature. For example:

class	ItemHolder<T>	{
				private	val	items	=	mutableListOf<T>()

				fun	addItem(x:	T)	{
								items.add(x)
				}

				fun	getLastItem():	T?	=	items.lastOrNull()
}

fun	<T>	ItemHolder<T>.addAllItems(xs:	List<T>)	{
				xs.forEach	{	addItem(it)	}
}

fun	<T>	itemHolderBuilder(builder:	ItemHolder<T>.()	->	Unit):	ItemHolder<T>	=	

Before Kotlin 1.7.0, enabling builder inference for a builder function required -Xenable-builder-inference compiler option. In 1.7.0 the option is enabled by
default.

Note that passing the type parameter's type directly like fun <T> myBuilder(builder: T.() -> Unit) is not yet supported.

455

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-map.html

				ItemHolder<T>().apply(builder)

fun	test(s:	String)	{
				val	itemHolder1	=	itemHolderBuilder	{	//	Type	of	itemHolder1	is	ItemHolder<String>
								addItem(s)
				}
				val	itemHolder2	=	itemHolderBuilder	{	//	Type	of	itemHolder2	is	ItemHolder<String>
								addAllItems(listOf(s))	
				}
				val	itemHolder3	=	itemHolderBuilder	{	//	Type	of	itemHolder3	is	ItemHolder<String?>
								val	lastItem:	String?	=	getLastItem()
								//	...
				}
}

Supported
features
Builder inference supports:

Inferring several type arguments

fun	<K,	V>	myBuilder(builder:	MutableMap<K,	V>.()	->	Unit):	Map<K,	V>	{	...	}

Inferring type arguments of several builder lambdas within one call including interdependent ones

fun	<K,	V>	myBuilder(
				listBuilder:	MutableList<V>.()	->	Unit,
				mapBuilder:	MutableMap<K,	V>.()	->	Unit
):	Pair<List<V>,	Map<K,	V>>	=
				mutableListOf<V>().apply(listBuilder)	to	mutableMapOf<K,	V>().apply(mapBuilder)

fun	main()	{
				val	result	=	myBuilder(
								{	add(1)	},
								{	put("key",	2)	}
)
				//	result	has	Pair<List<Int>,	Map<String,	Int>>	type
}

Inferring type arguments whose type parameters are lambda's parameter or return types

fun	<K,	V>	myBuilder1(
				mapBuilder:	MutableMap<K,	V>.()	->	K
):	Map<K,	V>	=	mutableMapOf<K,	V>().apply	{	mapBuilder()	}

fun	<K,	V>	myBuilder2(
				mapBuilder:	MutableMap<K,	V>.(K)	->	Unit
):	Map<K,	V>	=	mutableMapOf<K,	V>().apply	{	mapBuilder(2	as	K)	}

fun	main()	{
				//	result1	has	the	Map<Long,	String>	type	inferred
				val	result1	=	myBuilder1	{
								put(1L,	"value")
								2
				}
				val	result2	=	myBuilder2	{
								put(1,	"value	1")
								//	You	can	use	`it`	as	"postponed	type	variable"	type
								//	See	the	details	in	the	section	below
								put(it,	"value	2")
				}
}

How
builder
inference
works

Postponed
type
variables
Builder inference works in terms of postponed type variables, which appear inside the builder lambda during builder inference analysis. A postponed type variable is
a type argument's type, which is in the process of inferring. The compiler uses it to collect type information about the type argument.

456

Consider the example with buildList():

val	result	=	buildList	{
				val	x	=	get(0)
}

Here x has a type of postponed type variable: the get() call returns a value of type E, but E itself is not yet fixed. At this moment, a concrete type for E is unknown.

When a value of a postponed type variable gets associated with a concrete type, builder inference collects this information to infer the resulting type of the
corresponding type argument at the end of the builder inference analysis. For example:

val	result	=	buildList	{
				val	x	=	get(0)
				val	y:	String	=	x
}	//	result	has	the	List<String>	type	inferred

After the postponed type variable gets assigned to a variable of the String type, builder inference gets the information that x is a subtype of String. This assignment
is the last statement in the builder lambda, so the builder inference analysis ends with the result of inferring the type argument E into String.

Note that you can always call equals(), hashCode(), and toString() functions with a postponed type variable as a receiver.

Contributing
to
builder
inference
results
Builder inference can collect different varieties of type information that contribute to the analysis result. It considers:

Calling methods on a lambda's receiver that use the type parameter's type

val	result	=	buildList	{
				//	Type	argument	is	inferred	into	String	based	on	the	passed	"value"	argument
				add("value")
}	//	result	has	the	List<String>	type	inferred

Specifying the expected type for calls that return the type parameter's type

val	result	=	buildList	{
				//	Type	argument	is	inferred	into	Float	based	on	the	expected	type
				val	x:	Float	=	get(0)
}	//	result	has	the	List<Float>	type

class	Foo<T>	{
				val	items	=	mutableListOf<T>()
}

fun	<K>	myBuilder(builder:	Foo<K>.()	->	Unit):	Foo<K>	=	Foo<K>().apply(builder)

fun	main()	{
				val	result	=	myBuilder	{
								val	x:	List<CharSequence>	=	items
								//	...
				}	//	result	has	the	Foo<CharSequence>	type
}

Passing postponed type variables' types into methods that expect concrete types

fun	takeMyLong(x:	Long)	{	...	}

fun	String.isMoreThat3()	=	length	>	3

fun	takeListOfStrings(x:	List<String>)	{	...	}

fun	main()	{
				val	result1	=	buildList	{
								val	x	=	get(0)
								takeMyLong(x)
				}	//	result1	has	the	List<Long>	type

				val	result2	=	buildList	{
								val	x	=	get(0)
								val	isLong	=	x.isMoreThat3()

457

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-list.html

				//	...
				}	//	result2	has	the	List<String>	type

				val	result3	=	buildList	{
								takeListOfStrings(this)
				}	//	result3	has	the	List<String>	type
}

Taking a callable reference to the lambda receiver's member

fun	main()	{
				val	result	=	buildList	{
								val	x:	KFunction1<Int,	Float>	=	::get
				}	//	result	has	the	List<Float>	type
}

fun	takeFunction(x:	KFunction1<Int,	Float>)	{	...	}

fun	main()	{
				val	result	=	buildList	{
								takeFunction(::get)
				}	//	result	has	the	List<Float>	type
}

At the end of the analysis, builder inference considers all collected type information and tries to merge it into the resulting type. See the example.

val	result	=	buildList	{	//	Inferring	postponed	type	variable	E
				//	Considering	E	is	Number	or	a	subtype	of	Number
				val	n:	Number?	=	getOrNull(0)
				//	Considering	E	is	Int	or	a	supertype	of	Int
				add(1)
				//	E	gets	inferred	into	Int
}	//	result	has	the	List<Int>	type

The resulting type is the most specific type that corresponds to the type information collected during the analysis. If the given type information is contradictory and
cannot be merged, the compiler reports an error.

Note that the Kotlin compiler uses builder inference only if regular type inference cannot infer a type argument. This means you can contribute type information
outside a builder lambda, and then builder inference analysis is not required. Consider the example:

fun	someMap()	=	mutableMapOf<CharSequence,	String>()

fun	<E>	MutableMap<E,	String>.f(x:	MutableMap<E,	String>)	{	...	}

fun	main()	{
				val	x:	Map<in	String,	String>	=	buildMap	{
								put("",	"")
								f(someMap())	//	Type	mismatch	(required	String,	found	CharSequence)
				}
}

Here a type mismatch appears because the expected type of the map is specified outside the builder lambda. The compiler analyzes all the statements inside with
the fixed receiver type Map<in String, String>.

Null
safety

Nullable
types
and
non-nullable
types
Kotlin's type system is aimed at eliminating the danger of null references, also known as The Billion Dollar Mistake.

One of the most common pitfalls in many programming languages, including Java, is that accessing a member of a null reference will result in a null reference
exception. In Java this would be the equivalent of a NullPointerException, or an NPE for short.

The only possible causes of an NPE in Kotlin are:

An explicit call to throw NullPointerException().

458

https://en.wikipedia.org/wiki/Null_pointer#History

Usage of the !! operator that is described below.

Data inconsistency with regard to initialization, such as when:

An uninitialized this available in a constructor is passed and used somewhere (a "leaking this").

A superclass constructor calls an open member whose implementation in the derived class uses an uninitialized state.

Java interoperation:

Attempts to access a member of a null reference of a platform type;

Nullability issues with generic types being used for Java interoperation. For example, a piece of Java code might add null into a Kotlin MutableList<String>,
therefore requiring a MutableList<String?> for working with it.

Other issues caused by external Java code.

In Kotlin, the type system distinguishes between references that can hold null (nullable references) and those that cannot (non-nullable references). For example, a
regular variable of type String cannot hold null:

fun	main()	{
//sampleStart
				var	a:	String	=	"abc"	//	Regular	initialization	means	non-nullable	by	default
				a	=	null	//	compilation	error
//sampleEnd
}

To allow nulls, you can declare a variable as a nullable string by writing String?:

fun	main()	{
//sampleStart
				var	b:	String?	=	"abc"	//	can	be	set	to	null
				b	=	null	//	ok
				print(b)
//sampleEnd
}

Now, if you call a method or access a property on a, it's guaranteed not to cause an NPE, so you can safely say:

val	l	=	a.length

But if you want to access the same property on b, that would not be safe, and the compiler reports an error:

val	l	=	b.length	//	error:	variable	'b'	can	be	null

But you still need to access that property, right? There are a few ways to do so.

Checking
for
null
in
conditions
First, you can explicitly check whether b is null, and handle the two options separately:

val	l	=	if	(b	!=	null)	b.length	else	-1

The compiler tracks the information about the check you performed, and allows the call to length inside the if. More complex conditions are supported as well:

fun	main()	{
//sampleStart
				val	b:	String?	=	"Kotlin"
				if	(b	!=	null	&&	b.length	>	0)	{
								print("String	of	length	${b.length}")
				}	else	{
								print("Empty	string")
				}
//sampleEnd
}

459

Note that this only works where b is immutable (meaning it is a local variable that is not modified between the check and its usage or it is a member val that has a
backing field and is not overridable), because otherwise it could be the case that b changes to null after the check.

Safe
calls
Your second option for accessing a property on a nullable variable is using the safe call operator ?.:

fun	main()	{
//sampleStart
				val	a	=	"Kotlin"
				val	b:	String?	=	null
				println(b?.length)
				println(a?.length)	//	Unnecessary	safe	call
//sampleEnd
}

This returns b.length if b is not null, and null otherwise. The type of this expression is Int?.

Safe calls are useful in chains. For example, Bob is an employee who may be assigned to a department (or not). That department may in turn have another
employee as a department head. To obtain the name of Bob's department head (if there is one), you write the following:

bob?.department?.head?.name

Such a chain returns null if any of the properties in it is null.

To perform a certain operation only for non-null values, you can use the safe call operator together with let:

fun	main()	{
//sampleStart
				val	listWithNulls:	List<String?>	=	listOf("Kotlin",	null)
				for	(item	in	listWithNulls)	{
									item?.let	{	println(it)	}	//	prints	Kotlin	and	ignores	null
				}
//sampleEnd
}

A safe call can also be placed on the left side of an assignment. Then, if one of the receivers in the safe calls chain is null, the assignment is skipped and the
expression on the right is not evaluated at all:

//	If	either	`person`	or	`person.department`	is	null,	the	function	is	not	called:
person?.department?.head	=	managersPool.getManager()

Nullable
receiver
Extension functions can be defined on a nullable receiver. This way you can specify behaviour for null values without the need to use null-checking logic at each
call-site.

For example, the toString() function is defined on a nullable receiver. It returns the String "null" (as opposed to a null value). This can be helpful in certain situations,
for example, logging:

val	person:	Person?	=	null
logger.debug(person.toString())	//	Logs	"null",	does	not	throw	an	exception

If you want your toString() invocation to return a nullable string, use the safe-call operator ?.:

var	timestamp:	Instant?	=	null
val	isoTimestamp	=	timestamp?.toString()	//	Returns	a	String?	object	which	is	`null`
if	(isoTimestamp	==	null)	{
			//	Handle	the	case	where	timestamp	was	`null`
}

460

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/let.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/to-string.html

Elvis
operator
When you have a nullable reference, b, you can say "if b is not null, use it, otherwise use some non-null value":

val	l:	Int	=	if	(b	!=	null)	b.length	else	-1

Instead of writing the complete if expression, you can also express this with the Elvis operator ?::

val	l	=	b?.length	?:	-1

If the expression to the left of ?: is not null, the Elvis operator returns it, otherwise it returns the expression to the right. Note that the expression on the right-hand
side is evaluated only if the left-hand side is null.

Since throw and return are expressions in Kotlin, they can also be used on the right-hand side of the Elvis operator. This can be handy, for example, when checking
function arguments:

fun	foo(node:	Node):	String?	{
				val	parent	=	node.getParent()	?:	return	null
				val	name	=	node.getName()	?:	throw	IllegalArgumentException("name	expected")
				//	...
}

The
!!
operator
The third option is for NPE-lovers: the not-null assertion operator (!!) converts any value to a non-nullable type and throws an exception if the value is null. You can
write b!!, and this will return a non-null value of b (for example, a String in our example) or throw an NPE if b is null:

val	l	=	b!!.length

Thus, if you want an NPE, you can have it, but you have to ask for it explicitly and it won't appear out of the blue.

Safe
casts
Regular casts may result in a ClassCastException if the object is not of the target type. Another option is to use safe casts that return null if the attempt was not
successful:

val	aInt:	Int?	=	a	as?	Int

Collections
of
a
nullable
type
If you have a collection of elements of a nullable type and want to filter non-nullable elements, you can do so by using filterNotNull:

val	nullableList:	List<Int?>	=	listOf(1,	2,	null,	4)
val	intList:	List<Int>	=	nullableList.filterNotNull()

What's
next?
Learn how to handle nullability in Java and Kotlin.

Learn about generic types that are definitely non-nullable.

Equality
In Kotlin there are two types of equality:

461

Structural equality (== - a check for equals())

Referential equality (=== - two references point to the same object)

Structural
equality
Structural equality is checked by the == operation and its negated counterpart !=. By convention, an expression like a == b is translated to:

a?.equals(b)	?:	(b	===	null)

If a is not null, it calls the equals(Any?) function, otherwise (a is null) it checks that b is referentially equal to null.

Note that there's no point in optimizing your code when comparing to null explicitly: a == null will be automatically translated to a === null.

To provide a custom equals check implementation, override the equals(other: Any?): Boolean function. Functions with the same name and other signatures, like
equals(other: Foo), don't affect equality checks with the operators == and !=.

Structural equality has nothing to do with comparison defined by the Comparable<...> interface, so only a custom equals(Any?) implementation may affect the
behavior of the operator.

Referential
equality
Referential equality is checked by the === operation and its negated counterpart !==. a === b evaluates to true if and only if a and b point to the same object. For
values represented by primitive types at runtime (for example, Int), the === equality check is equivalent to the == check.

Floating-point
numbers
equality
When an equality check operands are statically known to be Float or Double (nullable or not), the check follows the IEEE 754 Standard for Floating-Point Arithmetic.

Otherwise, structural equality is used, which disagrees with the standard so that NaN is equal to itself, NaN is considered greater than any other element, including
POSITIVE_INFINITY, and -0.0 is not equal to 0.0.

For more information, see Floating-point numbers comparison.

Array
equality
To compare whether two arrays have the same elements in the same order, use contentEquals().

For more information, see Compare arrays.

This
expressions
To denote the current receiver, you use this expressions:

In a member of a class, this refers to the current object of that class.

In an extension function or a function literal with receiver this denotes the receiver parameter that is passed on the left-hand side of a dot.

If this has no qualifiers, it refers to the innermost enclosing scope. To refer to this in other scopes, label qualifiers are used:

Qualified
this
To access this from an outer scope (a class, extension function, or labeled function literal with receiver) you write this@label, where @label is a label on the scope
this is meant to be from:

class	A	{	//	implicit	label	@A
				inner	class	B	{	//	implicit	label	@B
								fun	Int.foo()	{	//	implicit	label	@foo

462

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-any/equals.html
https://en.wikipedia.org/wiki/IEEE_754
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/content-equals.html

												val	a	=	this@A	//	A's	this
												val	b	=	this@B	//	B's	this

												val	c	=	this	//	foo()'s	receiver,	an	Int
												val	c1	=	this@foo	//	foo()'s	receiver,	an	Int

												val	funLit	=	lambda@	fun	String.()	{
																val	d	=	this	//	funLit's	receiver,	a	String
												}

												val	funLit2	=	{	s:	String	->
																//	foo()'s	receiver,	since	enclosing	lambda	expression
																//	doesn't	have	any	receiver
																val	d1	=	this
												}
								}
				}
}

Implicit
this
When you call a member function on this, you can skip the this. part. If you have a non-member function with the same name, use this with caution because in
some cases it can be called instead:

fun	main()	{
//sampleStart
				fun	printLine()	{	println("Top-level	function")	}
				
				class	A	{
								fun	printLine()	{	println("Member	function")	}

								fun	invokePrintLine(omitThis:	Boolean	=	false)		{	
												if	(omitThis)	printLine()
												else	this.printLine()
								}
				}
				
				A().invokePrintLine()	//	Member	function
				A().invokePrintLine(omitThis	=	true)	//	Top-level	function
//sampleEnd()
}

Asynchronous
programming
techniques
For decades, as developers we are confronted with a problem to solve - how to prevent our applications from blocking. Whether we're developing desktop, mobile,
or even server-side applications, we want to avoid having the user wait or what's worse cause bottlenecks that would prevent an application from scaling.

There have been many approaches to solving this problem, including:

Threading

Callbacks

Futures, promises, and others

Reactive Extensions

Coroutines

Before explaining what coroutines are, let's briefly review some of the other solutions.

Threading
Threads are by far probably the most well-known approach to avoid applications from blocking.

fun	postItem(item:	Item)	{
				val	token	=	preparePost()
				val	post	=	submitPost(token,	item)

463

				processPost(post)
}

fun	preparePost():	Token	{
				//	makes	a	request	and	consequently	blocks	the	main	thread
				return	token
}

Let's assume in the code above that preparePost is a long-running process and consequently would block the user interface. What we can do is launch it in a
separate thread. This would then allow us to avoid the UI from blocking. This is a very common technique, but has a series of drawbacks:

Threads aren't cheap. Threads require context switches which are costly.

Threads aren't infinite. The number of threads that can be launched is limited by the underlying operating system. In server-side applications, this could cause a
major bottleneck.

Threads aren't always available. Some platforms, such as JavaScript do not even support threads.

Threads aren't easy. Debugging threads and avoiding race conditions are common problems we suffer in multi-threaded programming.

Callbacks
With callbacks, the idea is to pass one function as a parameter to another function, and have this one invoked once the process has completed.

fun	postItem(item:	Item)	{
				preparePostAsync	{	token	->	
								submitPostAsync(token,	item)	{	post	->	
												processPost(post)
								}
				}
}

fun	preparePostAsync(callback:	(Token)	->	Unit)	{
				//	make	request	and	return	immediately	
				//	arrange	callback	to	be	invoked	later
}

This in principle feels like a much more elegant solution, but once again has several issues:

Difficulty of nested callbacks. Usually a function that is used as a callback, often ends up needing its own callback. This leads to a series of nested callbacks
which lead to incomprehensible code. The pattern is often referred to as the titled christmas tree (braces represent branches of the tree).

Error handling is complicated. The nesting model makes error handling and propagation of these somewhat more complicated.

Callbacks are quite common in event-loop architectures such as JavaScript, but even there, generally people have moved away to using other approaches such as
promises or reactive extensions.

Futures,
promises,
and
others
The idea behind futures or promises (there are also other terms these can be referred to depending on language/platform), is that when we make a call, we're
promised that at some point it will return with an object called a Promise, which can then be operated on.

fun	postItem(item:	Item)	{
				preparePostAsync()	
								.thenCompose	{	token	->	
												submitPostAsync(token,	item)
								}
								.thenAccept	{	post	->	
												processPost(post)
								}
									
}

fun	preparePostAsync():	Promise<Token>	{
				//	makes	request	and	returns	a	promise	that	is	completed	later
				return	promise	
}

This approach requires a series of changes in how we program, in particular:

464

Different programming model. Similar to callbacks, the programming model moves away from a top-down imperative approach to a compositional model with
chained calls. Traditional program structures such as loops, exception handling, etc. usually are no longer valid in this model.

Different APIs. Usually there's a need to learn a completely new API such as thenCompose or thenAccept, which can also vary across platforms.

Specific return type. The return type moves away from the actual data that we need and instead returns a new type Promise which has to be introspected.

Error handling can be complicated. The propagation and chaining of errors aren't always straightforward.

Reactive
extensions
Reactive Extensions (Rx) were introduced to C# by Erik Meijer. While it was definitely used on the .NET platform it really didn't reach mainstream adoption until
Netflix ported it over to Java, naming it RxJava. From then on, numerous ports have been provided for a variety of platforms including JavaScript (RxJS).

The idea behind Rx is to move towards what's called observable streams whereby we now think of data as streams (infinite amounts of data) and these streams can
be observed. In practical terms, Rx is simply the Observer Pattern with a series of extensions which allow us to operate on the data.

In approach it's quite similar to Futures, but one can think of a Future as returning a discrete element, whereas Rx returns a stream. However, similar to the
previous, it also introduces a complete new way of thinking about our programming model, famously phrased as

"everything is a stream, and it's observable"

This implies a different way to approach problems and quite a significant shift from what we're used to when writing synchronous code. One benefit as opposed to
Futures is that given it's ported to so many platforms, generally we can find a consistent API experience no matter what we use, be it C#, Java, JavaScript, or any
other language where Rx is available.

In addition, Rx does introduce a somewhat nicer approach to error handling.

Coroutines
Kotlin's approach to working with asynchronous code is using coroutines, which is the idea of suspendable computations, i.e. the idea that a function can suspend
its execution at some point and resume later on.

One of the benefits however of coroutines is that when it comes to the developer, writing non-blocking code is essentially the same as writing blocking code. The
programming model in itself doesn't really change.

Take for instance the following code:

fun	postItem(item:	Item)	{
				launch	{
								val	token	=	preparePost()
								val	post	=	submitPost(token,	item)
								processPost(post)
				}
}

suspend	fun	preparePost():	Token	{
				//	makes	a	request	and	suspends	the	coroutine
				return	suspendCoroutine	{	/*	...	*/	}	
}

This code will launch a long-running operation without blocking the main thread. The preparePost is what's called a suspendable function, thus the keyword
suspend prefixing it. What this means as stated above, is that the function will execute, pause execution and resume at some point in time.

The function signature remains exactly the same. The only difference is suspend being added to it. The return type however is the type we want to be returned.

The code is still written as if we were writing synchronous code, top-down, without the need of any special syntax, beyond the use of a function called launch
which essentially kicks off the coroutine (covered in other tutorials).

The programming model and APIs remain the same. We can continue to use loops, exception handling, etc. and there's no need to learn a complete set of new
APIs.

It is platform independent. Whether we're targeting JVM, JavaScript or any other platform, the code we write is the same. Under the covers the compiler takes
care of adapting it to each platform.

Coroutines are not a new concept, let alone invented by Kotlin. They've been around for decades and are popular in some other programming languages such as
Go. What is important to note though is that the way they're implemented in Kotlin, most of the functionality is delegated to libraries. In fact, beyond the suspend

465

https://en.wikipedia.org/wiki/Erik_Meijer_(computer_scientist)
https://en.wikipedia.org/wiki/Observer_pattern

keyword, no other keywords are added to the language. This is somewhat different from languages such as C# that have async and await as part of the syntax.
With Kotlin, these are just library functions.

For more information, see the Coroutines reference.

Coroutines
Asynchronous or non-blocking programming is an important part of the development landscape. When creating server-side, desktop, or mobile applications, it's
important to provide an experience that is not only fluid from the user's perspective, but also scalable when needed.

Kotlin solves this problem in a flexible way by providing coroutine support at the language level and delegating most of the functionality to libraries.

In addition to opening the doors to asynchronous programming, coroutines also provide a wealth of other possibilities, such as concurrency and actors.

How
to
start
New to Kotlin? Take a look at the Getting started page.

Documentation
Coroutines guide

Basics

Channels

Coroutine context and dispatchers

Shared mutable state and concurrency

Asynchronous flow

Tutorials
Asynchronous programming techniques

Introduction to coroutines and channels

Debug coroutines using IntelliJ IDEA

Debug Kotlin Flow using IntelliJ IDEA – tutorial

Testing Kotlin coroutines on Android

Sample
projects
kotlinx.coroutines examples and sources

KotlinConf app

Annotations
Annotations are means of attaching metadata to code. To declare an annotation, put the annotation modifier in front of a class:

annotation	class	Fancy

Additional attributes of the annotation can be specified by annotating the annotation class with meta-annotations:

@Target specifies the possible kinds of elements which can be annotated with the annotation (such as classes, functions, properties, and expressions);

@Retention specifies whether the annotation is stored in the compiled class files and whether it's visible through reflection at runtime (by default, both are true);

466

https://en.wikipedia.org/wiki/Coroutine
https://developer.android.com/kotlin/coroutines/test
https://github.com/Kotlin/kotlin-coroutines/tree/master/examples
https://github.com/JetBrains/kotlinconf-app
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-target/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-retention/index.html

@Repeatable allows using the same annotation on a single element multiple times;

@MustBeDocumented specifies that the annotation is part of the public API and should be included in the class or method signature shown in the generated API
documentation.

@Target(AnnotationTarget.CLASS,	AnnotationTarget.FUNCTION,
								AnnotationTarget.TYPE_PARAMETER,	AnnotationTarget.VALUE_PARAMETER,	
								AnnotationTarget.EXPRESSION)
@Retention(AnnotationRetention.SOURCE)
@MustBeDocumented
annotation	class	Fancy

Usage

@Fancy	class	Foo	{
				@Fancy	fun	baz(@Fancy	foo:	Int):	Int	{
								return	(@Fancy	1)
				}
}

If you need to annotate the primary constructor of a class, you need to add the constructor keyword to the constructor declaration, and add the annotations before
it:

class	Foo	@Inject	constructor(dependency:	MyDependency)	{	...	}

You can also annotate property accessors:

class	Foo	{
				var	x:	MyDependency?	=	null
								@Inject	set
}

Constructors
Annotations can have constructors that take parameters.

annotation	class	Special(val	why:	String)

@Special("example")	class	Foo	{}

Allowed parameter types are:

Types that correspond to Java primitive types (Int, Long etc.)

Strings

Classes (Foo::class)

Enums

Other annotations

Arrays of the types listed above

Annotation parameters cannot have nullable types, because the JVM does not support storing null as a value of an annotation attribute.

If an annotation is used as a parameter of another annotation, its name is not prefixed with the @ character:

annotation	class	ReplaceWith(val	expression:	String)

annotation	class	Deprecated(
								val	message:	String,
								val	replaceWith:	ReplaceWith	=	ReplaceWith(""))

@Deprecated("This	function	is	deprecated,	use	===	instead",	ReplaceWith("this	===	other"))

467

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-repeatable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-must-be-documented/index.html

If you need to specify a class as an argument of an annotation, use a Kotlin class (KClass). The Kotlin compiler will automatically convert it to a Java class, so that
the Java code can access the annotations and arguments normally.

import	kotlin.reflect.KClass

annotation	class	Ann(val	arg1:	KClass<*>,	val	arg2:	KClass<out	Any>)

@Ann(String::class,	Int::class)	class	MyClass

Instantiation
In Java, an annotation type is a form of an interface, so you can implement it and use an instance. As an alternative to this mechanism, Kotlin lets you call a
constructor of an annotation class in arbitrary code and similarly use the resulting instance.

annotation	class	InfoMarker(val	info:	String)

fun	processInfo(marker:	InfoMarker):	Unit	=	TODO()

fun	main(args:	Array<String>)	{
				if	(args.isNotEmpty())
								processInfo(getAnnotationReflective(args))
				else
								processInfo(InfoMarker("default"))
}

Learn more about instantiation of annotation classes in this KEEP.

Lambdas
Annotations can also be used on lambdas. They will be applied to the invoke() method into which the body of the lambda is generated. This is useful for frameworks
like Quasar, which uses annotations for concurrency control.

annotation	class	Suspendable

val	f	=	@Suspendable	{	Fiber.sleep(10)	}

Annotation
use-site
targets
When you're annotating a property or a primary constructor parameter, there are multiple Java elements which are generated from the corresponding Kotlin
element, and therefore multiple possible locations for the annotation in the generated Java bytecode. To specify how exactly the annotation should be generated,
use the following syntax:

class	Example(@field:Ann	val	foo,				//	annotate	Java	field
														@get:Ann	val	bar,						//	annotate	Java	getter
														@param:Ann	val	quux)			//	annotate	Java	constructor	parameter

The same syntax can be used to annotate the entire file. To do this, put an annotation with the target file at the top level of a file, before the package directive or
before all imports if the file is in the default package:

@file:JvmName("Foo")

package	org.jetbrains.demo

If you have multiple annotations with the same target, you can avoid repeating the target by adding brackets after the target and putting all the annotations inside
the brackets:

class	Example	{
					@set:[Inject	VisibleForTesting]
					var	collaborator:	Collaborator
}

468

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/index.html
https://github.com/Kotlin/KEEP/blob/master/proposals/annotation-instantiation.md
https://docs.paralleluniverse.co/quasar/

The full list of supported use-site targets is:

file

property (annotations with this target are not visible to Java)

field

get (property getter)

set (property setter)

receiver (receiver parameter of an extension function or property)

param (constructor parameter)

setparam (property setter parameter)

delegate (the field storing the delegate instance for a delegated property)

To annotate the receiver parameter of an extension function, use the following syntax:

fun	@receiver:Fancy	String.myExtension()	{	...	}

If you don't specify a use-site target, the target is chosen according to the @Target annotation of the annotation being used. If there are multiple applicable targets,
the first applicable target from the following list is used:

param

property

field

Java
annotations
Java annotations are 100% compatible with Kotlin:

import	org.junit.Test
import	org.junit.Assert.*
import	org.junit.Rule
import	org.junit.rules.*

class	Tests	{
				//	apply	@Rule	annotation	to	property	getter
				@get:Rule	val	tempFolder	=	TemporaryFolder()

				@Test	fun	simple()	{
								val	f	=	tempFolder.newFile()
								assertEquals(42,	getTheAnswer())
				}
}

Since the order of parameters for an annotation written in Java is not defined, you can't use a regular function call syntax for passing the arguments. Instead, you
need to use the named argument syntax:

//	Java
public	@interface	Ann	{
				int	intValue();
				String	stringValue();
}

//	Kotlin
@Ann(intValue	=	1,	stringValue	=	"abc")	class	C

Just like in Java, a special case is the value parameter; its value can be specified without an explicit name:

//	Java

469

public	@interface	AnnWithValue	{
				String	value();
}

//	Kotlin
@AnnWithValue("abc")	class	C

Arrays
as
annotation
parameters
If the value argument in Java has an array type, it becomes a vararg parameter in Kotlin:

//	Java
public	@interface	AnnWithArrayValue	{
				String[]	value();
}

//	Kotlin
@AnnWithArrayValue("abc",	"foo",	"bar")	class	C

For other arguments that have an array type, you need to use the array literal syntax or arrayOf(...):

//	Java
public	@interface	AnnWithArrayMethod	{
				String[]	names();
}

@AnnWithArrayMethod(names	=	["abc",	"foo",	"bar"])	
class	C

Accessing
properties
of
an
annotation
instance
Values of an annotation instance are exposed as properties to Kotlin code:

//	Java
public	@interface	Ann	{
				int	value();
}

//	Kotlin
fun	foo(ann:	Ann)	{
				val	i	=	ann.value
}

Ability
to
not
generate
JVM
1.8+
annotation
targets
If a Kotlin annotation has TYPE among its Kotlin targets, the annotation maps to java.lang.annotation.ElementType.TYPE_USE in its list of Java annotation targets.
This is just like how the TYPE_PARAMETER Kotlin target maps to the java.lang.annotation.ElementType.TYPE_PARAMETER Java target. This is an issue for
Android clients with API levels less than 26, which don't have these targets in the API.

To avoid generating the TYPE_USE and TYPE_PARAMETER annotation targets, use the new compiler argument -Xno-new-java-annotation-targets.

Repeatable
annotations
Just like in Java, Kotlin has repeatable annotations, which can be applied to a single code element multiple times. To make your annotation repeatable, mark its
declaration with the @kotlin.annotation.Repeatable meta-annotation. This will make it repeatable both in Kotlin and Java. Java repeatable annotations are also
supported from the Kotlin side.

The main difference with the scheme used in Java is the absence of a containing annotation, which the Kotlin compiler generates automatically with a predefined
name. For an annotation in the example below, it will generate the containing annotation @Tag.Container:

470

https://docs.oracle.com/javase/tutorial/java/annotations/repeating.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-repeatable/

@Repeatable
annotation	class	Tag(val	name:	String)

//	The	compiler	generates	the	@Tag.Container	containing	annotation

You can set a custom name for a containing annotation by applying the @kotlin.jvm.JvmRepeatable meta-annotation and passing an explicitly declared containing
annotation class as an argument:

@JvmRepeatable(Tags::class)
annotation	class	Tag(val	name:	String)

annotation	class	Tags(val	value:	Array<Tag>)

To extract Kotlin or Java repeatable annotations via reflection, use the KAnnotatedElement.findAnnotations() function.

Learn more about Kotlin repeatable annotations in this KEEP.

Destructuring
declarations
Sometimes it is convenient to destructure an object into a number of variables, for example:

val	(name,	age)	=	person	

This syntax is called a destructuring declaration. A destructuring declaration creates multiple variables at once. You have declared two new variables: name and
age, and can use them independently:

println(name)
println(age)

A destructuring declaration is compiled down to the following code:

val	name	=	person.component1()
val	age	=	person.component2()

The component1() and component2() functions are another example of the principle of conventions widely used in Kotlin (see operators like + and *, for-loops as an
example). Anything can be on the right-hand side of a destructuring declaration, as long as the required number of component functions can be called on it. And, of
course, there can be component3() and component4() and so on.

Destructuring declarations also work in for-loops:

for	((a,	b)	in	collection)	{	...	}

Variables a and b get the values returned by component1() and component2() called on elements of the collection.

Example:
returning
two
values
from
a
function
Assume that you need to return two things from a function - for example, a result object and a status of some sort. A compact way of doing this in Kotlin is to
declare a data class and return its instance:

data	class	Result(val	result:	Int,	val	status:	Status)
fun	function(...):	Result	{
				//	computations
				
				return	Result(result,	status)
}

The componentN() functions need to be marked with the operator keyword to allow using them in a destructuring declaration.

471

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvmrepeatable/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.full/find-annotations.html
https://github.com/Kotlin/KEEP/blob/master/proposals/repeatable-annotations.md

//	Now,	to	use	this	function:
val	(result,	status)	=	function(...)

Since data classes automatically declare componentN() functions, destructuring declarations work here.

Example:
destructuring
declarations
and
maps
Probably the nicest way to traverse a map is this:

for	((key,	value)	in	map)	{
			//	do	something	with	the	key	and	the	value
}

To make this work, you should

Present the map as a sequence of values by providing an iterator() function.

Present each of the elements as a pair by providing functions component1() and component2().

And indeed, the standard library provides such extensions:

operator	fun	<K,	V>	Map<K,	V>.iterator():	Iterator<Map.Entry<K,	V>>	=	entrySet().iterator()
operator	fun	<K,	V>	Map.Entry<K,	V>.component1()	=	getKey()
operator	fun	<K,	V>	Map.Entry<K,	V>.component2()	=	getValue()

So you can freely use destructuring declarations in for-loops with maps (as well as collections of data class instances or similar).

Underscore
for
unused
variables
If you don't need a variable in the destructuring declaration, you can place an underscore instead of its name:

val	(_,	status)	=	getResult()

The componentN() operator functions are not called for the components that are skipped in this way.

Destructuring
in
lambdas
You can use the destructuring declarations syntax for lambda parameters. If a lambda has a parameter of the Pair type (or Map.Entry, or any other type that has the
appropriate componentN functions), you can introduce several new parameters instead of one by putting them in parentheses:

map.mapValues	{	entry	->	"${entry.value}!"	}
map.mapValues	{	(key,	value)	->	"$value!"	}

Note the difference between declaring two parameters and declaring a destructuring pair instead of a parameter:

{	a	->	...	}	//	one	parameter
{	a,	b	->	...	}	//	two	parameters
{	(a,	b)	->	...	}	//	a	destructured	pair
{	(a,	b),	c	->	...	}	//	a	destructured	pair	and	another	parameter

If a component of the destructured parameter is unused, you can replace it with the underscore to avoid inventing its name:

map.mapValues	{	(_,	value)	->	"$value!"	}

You can specify the type for the whole destructured parameter or for a specific component separately:

You could also use the standard class Pair and have function() return Pair<Int, Status>, but it's often better to have your data named properly.

472

map.mapValues	{	(_,	value):	Map.Entry<Int,	String>	->	"$value!"	}

map.mapValues	{	(_,	value:	String)	->	"$value!"	}

Reflection
Reflection is a set of language and library features that allows you to introspect the structure of your program at runtime. Functions and properties are first-class
citizens in Kotlin, and the ability to introspect them (for example, learning the name or the type of a property or function at runtime) is essential when using a
functional or reactive style.

JVM
dependency
On the JVM platform, the Kotlin compiler distribution includes the runtime component required for using the reflection features as a separate artifact, kotlin-
reflect.jar. This is done to reduce the required size of the runtime library for applications that do not use reflection features.

To use reflection in a Gradle or Maven project, add the dependency on kotlin-reflect:

In Gradle:

Kotlin

dependencies	{
				implementation(kotlin("reflect"))
}

Groovy

dependencies	{
				implementation	"org.jetbrains.kotlin:kotlin-reflect:1.9.20"
}

In Maven:

<dependencies>
		<dependency>
						<groupId>org.jetbrains.kotlin</groupId>
						<artifactId>kotlin-reflect</artifactId>
		</dependency>
</dependencies>

If you don't use Gradle or Maven, make sure you have kotlin-reflect.jar in the classpath of your project. In other supported cases (IntelliJ IDEA projects that use the
command-line compiler or Ant), it is added by default. In the command-line compiler and Ant, you can use the -no-reflect compiler option to exclude kotlin-
reflect.jar from the classpath.

Class
references
The most basic reflection feature is getting the runtime reference to a Kotlin class. To obtain the reference to a statically known Kotlin class, you can use the class
literal syntax:

val	c	=	MyClass::class

The reference is a KClass type value.

Kotlin/JS provides limited support for reflection features. Learn more about reflection in Kotlin/JS.

473

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/index.html

Bound
class
references
You can get the reference to the class of a specific object with the same ::class syntax by using the object as a receiver:

val	widget:	Widget	=	...
assert(widget	is	GoodWidget)	{	"Bad	widget:	${widget::class.qualifiedName}"	}

You will obtain the reference to the exact class of an object, for example, GoodWidget or BadWidget, regardless of the type of the receiver expression (Widget).

Callable
references
References to functions, properties, and constructors can also be called or used as instances of function types.

The common supertype for all callable references is KCallable<out R>, where R is the return value type. It is the property type for properties, and the constructed
type for constructors.

Function
references
When you have a named function declared as below, you can call it directly (isOdd(5)):

fun	isOdd(x:	Int)	=	x	%	2	!=	0

Alternatively, you can use the function as a function type value, that is, pass it to another function. To do so, use the :: operator:

fun	isOdd(x:	Int)	=	x	%	2	!=	0

fun	main()	{
//sampleStart
				val	numbers	=	listOf(1,	2,	3)
				println(numbers.filter(::isOdd))
//sampleEnd
}

Here ::isOdd is a value of function type (Int) -> Boolean.

Function references belong to one of the KFunction<out R> subtypes, depending on the parameter count. For instance, KFunction3<T1, T2, T3, R>.

:: can be used with overloaded functions when the expected type is known from the context. For example:

fun	main()	{
//sampleStart
				fun	isOdd(x:	Int)	=	x	%	2	!=	0
				fun	isOdd(s:	String)	=	s	==	"brillig"	||	s	==	"slithy"	||	s	==	"tove"
				
				val	numbers	=	listOf(1,	2,	3)
				println(numbers.filter(::isOdd))	//	refers	to	isOdd(x:	Int)
//sampleEnd
}

Alternatively, you can provide the necessary context by storing the method reference in a variable with an explicitly specified type:

val	predicate:	(String)	->	Boolean	=	::isOdd			//	refers	to	isOdd(x:	String)

If you need to use a member of a class or an extension function, it needs to be qualified: String::toCharArray.

Even if you initialize a variable with a reference to an extension function, the inferred function type will have no receiver, but it will have an additional parameter
accepting a receiver object. To have a function type with a receiver instead, specify the type explicitly:

val	isEmptyStringList:	List<String>.()	->	Boolean	=	List<String>::isEmpty

On JVM: a Kotlin class reference is not the same as a Java class reference. To obtain a Java class reference, use the .java property on a KClass instance.

474

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-callable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

Example: function composition
Consider the following function:

fun	<A,	B,	C>	compose(f:	(B)	->	C,	g:	(A)	->	B):	(A)	->	C	{
				return	{	x	->	f(g(x))	}
}

It returns a composition of two functions passed to it: compose(f, g) = f(g(*)). You can apply this function to callable references:

fun	<A,	B,	C>	compose(f:	(B)	->	C,	g:	(A)	->	B):	(A)	->	C	{
				return	{	x	->	f(g(x))	}
}

fun	isOdd(x:	Int)	=	x	%	2	!=	0

fun	main()	{
//sampleStart
				fun	length(s:	String)	=	s.length
				
				val	oddLength	=	compose(::isOdd,	::length)
				val	strings	=	listOf("a",	"ab",	"abc")
				
				println(strings.filter(oddLength))
//sampleEnd
}

Property
references
To access properties as first-class objects in Kotlin, use the :: operator:

val	x	=	1

fun	main()	{
				println(::x.get())
				println(::x.name)	
}

The expression ::x evaluates to a KProperty0<Int> type property object. You can read its value using get() or retrieve the property name using the name property.
For more information, see the docs on the KProperty class.

For a mutable property such as var y = 1, ::y returns a value with the KMutableProperty0<Int> type which has a set() method:

var	y	=	1

fun	main()	{
				::y.set(2)
				println(y)
}

A property reference can be used where a function with a single generic parameter is expected:

fun	main()	{
//sampleStart
				val	strs	=	listOf("a",	"bc",	"def")
				println(strs.map(String::length))
//sampleEnd
}

To access a property that is a member of a class, qualify it as follows:

fun	main()	{
//sampleStart
				class	A(val	p:	Int)
				val	prop	=	A::p
				println(prop.get(A(1)))
//sampleEnd
}

For an extension property:

475

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-property/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-mutable-property/index.html

val	String.lastChar:	Char
				get()	=	this[length	-	1]

fun	main()	{
				println(String::lastChar.get("abc"))
}

Interoperability
with
Java
reflection
On the JVM platform, the standard library contains extensions for reflection classes that provide a mapping to and from Java reflection objects (see package
kotlin.reflect.jvm). For example, to find a backing field or a Java method that serves as a getter for a Kotlin property, you can write something like this:

import	kotlin.reflect.jvm.*
	
class	A(val	p:	Int)
	
fun	main()	{
				println(A::p.javaGetter)	//	prints	"public	final	int	A.getP()"
				println(A::p.javaField)		//	prints	"private	final	int	A.p"
}

To get the Kotlin class that corresponds to a Java class, use the .kotlin extension property:

fun	getKClass(o:	Any):	KClass<Any>	=	o.javaClass.kotlin

Constructor
references
Constructors can be referenced just like methods and properties. You can use them wherever the program expects a function type object that takes the same
parameters as the constructor and returns an object of the appropriate type. Constructors are referenced by using the :: operator and adding the class name.
Consider the following function that expects a function parameter with no parameters and return type Foo:

class	Foo

fun	function(factory:	()	->	Foo)	{
				val	x:	Foo	=	factory()
}

Using ::Foo, the zero-argument constructor of the class Foo, you can call it like this:

function(::Foo)

Callable references to constructors are typed as one of the KFunction<out R> subtypes depending on the parameter count.

Bound
function
and
property
references
You can refer to an instance method of a particular object:

fun	main()	{
//sampleStart
				val	numberRegex	=	"\\d+".toRegex()
				println(numberRegex.matches("29"))
					
				val	isNumber	=	numberRegex::matches
				println(isNumber("29"))
//sampleEnd
}

Instead of calling the method matches directly, the example uses a reference to it. Such a reference is bound to its receiver. It can be called directly (like in the
example above) or used whenever a function type expression is expected:

fun	main()	{
//sampleStart
				val	numberRegex	=	"\\d+".toRegex()
				val	strings	=	listOf("abc",	"124",	"a70")
				println(strings.filter(numberRegex::matches))

476

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-function/index.html

//sampleEnd
}

Compare the types of the bound and the unbound references. The bound callable reference has its receiver "attached" to it, so the type of the receiver is no longer
a parameter:

val	isNumber:	(CharSequence)	->	Boolean	=	numberRegex::matches

val	matches:	(Regex,	CharSequence)	->	Boolean	=	Regex::matches

A property reference can be bound as well:

fun	main()	{
//sampleStart
				val	prop	=	"abc"::length
				println(prop.get())
//sampleEnd
}

You don't need to specify this as the receiver: this::foo and ::foo are equivalent.

Bound
constructor
references
A bound callable reference to a constructor of an inner class can be obtained by providing an instance of the outer class:

class	Outer	{
				inner	class	Inner
}

val	o	=	Outer()
val	boundInnerCtor	=	o::Inner

Get
started
with
Kotlin
Multiplatform
Support for multiplatform programming is one of Kotlin's key benefits. It reduces time spent writing and maintaining the same code for different platforms while
retaining the flexibility and benefits of native programming.

Learn more about Kotlin Multiplatform benefits.

Start
from
scratch
Get started with Kotlin Multiplatform. Create your first cross-platform application that works on Android and iOS with the help of the Kotlin Multiplatform Mobile
plugin for Android Studio. Learn how to create, run, and add dependencies to multiplatform mobile applications.

Share UIs between iOS and Android. Create a Kotlin Multiplatform application that uses the Compose Multiplatform UI framework for sharing UIs between iOS
and Android.

Dive
deep
into
Kotlin
Multiplatform
Once you have gained some experience with Kotlin Multiplatform and want to know how to solve particular cross-platform development tasks:

Share code on platforms in your Kotlin Multiplatform project.

Connect to platform-specific APIs when developing multiplatform applications and libraries.

Set up targets manually for your Kotlin Multiplatform project.

Add dependencies on the standard, test, or another kotlinx library.

Configure compilations for production and test purposes in your project.

Publish a multiplatform library to the Maven repository.

477

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://www.jetbrains.com/help/kotlin-multiplatform-dev/compose-multiplatform-getting-started.html
https://www.jetbrains.com/lp/compose-multiplatform/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-connect-to-apis.html

Build native binaries as executables or shared libraries, like universal frameworks or XCFrameworks.

Get
help
Kotlin Slack: Get an invite and join the #multiplatform channel

StackOverflow: Subscribe to the "kotlin-multiplatform" tag

Kotlin issue tracker: Report a new issue

The
basics
of
Kotlin
Multiplatform
project
structure
With Kotlin Multiplatform, you can share code among different platforms. This article explains the constraints of the shared code, how to distinguish between shared
and platform-specific parts of your code, and how to specify the platforms on which this shared code works.

You'll also learn the core concepts of Kotlin Multiplatform project setup, such as common code, targets, platform-specific and intermediate source sets, and test
integration. That will help you set up your multiplatform projects in the future.

The model presented here is simplified compared to the one used by Kotlin. However, this basic model should be adequate for the majority of cases.

Common
code
Common code is the Kotlin code shared among different platforms.

Consider the simple "Hello, World" example:

fun	greeting()	{
				println("Hello,	Kotlin	Multiplatform!")
}

Kotlin code shared among platforms is typically located in the commonMain directory. The location of code files is important, as it affects the list of platforms to
which this code is compiled.

The Kotlin compiler gets the source code as input and produces a set of platform-specific binaries as a result. When compiling multiplatform projects, it can
produce multiple binaries from the same code. For example, the compiler can produce JVM .classfiles and native executable files from the same Kotlin file:

Common code

Not every piece of Kotlin code can be compiled to all platforms. The Kotlin compiler prevents you from using platform-specific functions or classes in your common
code since this code can't be compiled to a different platform.

For instance, you can't use the java.io.File dependency from the common code. It's a part of the JDK, while common code is also compiled to native code, where
the JDK classes are not available:

Unresolved Java reference

478

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C3PQML5NU
https://stackoverflow.com/questions/tagged/kotlin-multiplatform
https://youtrack.jetbrains.com/newIssue?project=KT

In common code, you can use Kotlin Multiplatform libraries. These libraries provide a common API that can be implemented differently on different platforms. In this
case, platform-specific APIs serve as extra parts, and trying to use such an API in common code results in an error.

For example, kotlinx.coroutines is a Kotlin Multiplatform library that supports all targets, but it also has a platform-specific part that converts kotlinx.coroutines
concurrent primitives to JDK concurrent primitives, like fun CoroutinesDispatcher.asExecutor(): Executor. This additional part of the API isn't available in
commonMain.

Targets
Targets define the platforms to which Kotlin compiles the common code. These could be, for example, the JVM, JS, Android, iOS, or Linux. The previous example
compiled the common code to the JVM and native targets.

A Kotlin target is an identifier that describes a compilation target. It defines the format of the produced binaries, available language constructions, and allowed
dependencies.

You should first declare a target to instruct Kotlin to compile code for that specific target. In Gradle, you declare targets using predefined DSL calls inside the kotlin
{} block:

kotlin	{
				jvm()	//	Declares	a	JVM	target
				iosArm64()	//	Declares	a	target	that	corresponds	to	64-bit	iPhones
}

This way, each multiplatform project defines a set of supported targets. See the Hierarchical project structure section to learn more about declaring targets in your
build scripts.

With the jvm and iosArm64 targets declared, the common code in commonMain will be compiled to these targets:

Targets

To understand which code is going to be compiled to a specific target, you can think of a target as a label attached to Kotlin source files. Kotlin uses these labels to
determine how to compile your code, which binaries to produce, and which language constructions and dependencies are allowed in that code.

If you want to compile the greeting.kt file to .js as well, you only need to declare the JS target. The code in commonMain then receives an additional js label,
corresponding to the JS target, which instructs Kotlin to produce .js files:

Target labels

That's how the Kotlin compiler works with the common code compiled to all the declared targets. See Source sets to learn how to write platform-specific code.

Source
sets
A Kotlin source set is a set of source files with its own targets, dependencies, and compiler options. It's the main way to share code in multiplatform projects.

Each source set in a multiplatform project:

Has a name that is unique for a given project.

Contains a set of source files and resources, usually stored in the directory with the name of the source set.

Specifies a set of targets to which the code in this source set compiles. These targets impact which language constructions and dependencies are available in
this source set.

Defines its own dependencies and the compiler options.

Kotlin provides a bunch of predefined source sets. One of them is commonMain, which is present in all multiplatform projects and compiles to all declared targets.

Targets can also be referred to as platforms. See the full list of supported targets.

479

You interact with source sets as directories inside src in Kotlin Multiplatform projects. For example, a project with the commonMain, iosMain, and jvmMain source
sets has the following structure:

Shared sources

In Gradle scripts, you access source sets by name inside the kotlin.sourceSets {} block:

kotlin	{
				//	Targets	declaration:
				//	…

				//	Source	set	declaration:
				sourceSets	{
								commonMain	{
												//	configure	the	commonMain	source	set
								}
				}
}

Aside from commonMain, other source sets can be either platform-specific or intermediate.

Platform-specific
source
sets
While having only common code is convenient, it's not always possible. Code in commonMain compiles to all declared targets, and Kotlin doesn't allow you to use
any platform-specific APIs there.

In a multiplatform project with native and JS targets, the following code in commonMain doesn't compile:

//	commonMain/kotlin/common.kt
//	Doesn't	compile	in	common	code
fun	common()	{
				java.io.File("greeting.txt").writeText("Hello,	Multiplatform!")
}

As a solution, Kotlin creates platform-specific source sets, also referred to as platform source sets. Each target has a corresponding platform source set that
compiles for only that target. For example, a jvm target has the corresponding jvmMain source set that compiles to only the JVM. Kotlin allows using platform-
specific dependencies in these source sets, for instance, JDK in jvmMain:

//	jvmMain/kotlin/jvm.kt
//	You	can	use	Java	dependencies	in	the	`jvmMain`	source	set
fun	jvmGreeting()	{
				java.io.File("greeting.txt").writeText("Hello,	Multiplatform!")
}

Compilation
to
a
specific
target
Compilation to a specific target works with multiple source sets. When Kotlin compiles a multiplatform project to a specific target, it collects all source sets labeled

480

with this target and produces binaries from them.

Consider an example with jvm, iosArm64, and js targets. Kotlin creates the commonMain source set for common code and the corresponding jvmMain,
iosArm64Main, and jsMain source sets for specific targets:

Compilation to a specific target

During compilation to the JVM, Kotlin selects all source sets labeled with "JVM", namely, jvmMain and commonMain. It then compiles them together to the JVM
class files:

Compilation to JVM

Because Kotlin compiles commonMain and jvmMain together, the resulting binaries contain declarations from both commonMain and jvmMain.

When working with multiplatform projects, remember:

If you want Kotlin to compile your code to a specific platform, declare a corresponding target.

To choose a directory or source file to store the code, first decide among which targets you want to share your code:

If the code is shared among all targets, it should be declared in commonMain.

If the code is used for only one target, it should be defined in a platform-specific source set for that target (for example, jvmMain for the JVM).

Code written in platform-specific source sets can access declarations from the common source set. For example, the code in jvmMain can use code from
commonMain. However, the opposite isn't true: commonMain can't use code from jvmMain.

Code written in platform-specific source sets can use the corresponding platform dependencies. For example, the code in jvmMain can use Java-only libraries,
like Guava or Spring.

Intermediate
source
sets
Simple multiplatform projects usually have only common and platform-specific code. The commonMain source set represents the common code shared among all
declared targets. Platform-specific source sets, like jvmMain, represent platform-specific code compiled only to the respective target.

In practice, you often need more granular code sharing.

Consider an example where you need to target all modern Apple devices and Android devices:

kotlin	{
				android()
				iosArm64()			//	64-bit	iPhone	devices
				macosArm64()	//	Modern	Apple	Silicon-based	Macs
				watchosX64()	//	Modern	64-bit	Apple	Watch	devices
				tvosArm64()		//	Modern	Apple	TV	devices		
}

And you need a source set to add a function that generates a UUID for all Apple devices:

import	platform.Foundation.NSUUID

fun	randomUuidString():	String	{
				//	You	want	to	access	Apple-specific	APIs
				return	NSUUID().UUIDString()
}

You can't add this function to commonMain. commonMain is compiled to all declared targets, including Android, but platform.Foundation.NSUUID is an Apple-
specific API that's not available on Android. Kotlin shows an error if you try to reference NSUUID in commonMain.

You could copy and paste this code to each Apple-specific source set: iosArm64Main, macosArm64Main, watchosX64Main, and tvosArm64Main. But this
approach is not recommended because duplicating code like this is prone to errors.

To solve this issue, you can use intermediate source sets. An intermediate source set is a Kotlin source set that compiles to some, but not all of the targets in the
project. You can also see intermediate source sets referred to as hierarchical source sets or simply hierarchies.

481

https://github.com/google/guava
https://spring.io/

Kotlin creates some intermediate source sets by default. In this specific case, the resulting project structure will look like this:

Intermediate source sets

Here, the gray blocks at the bottom are platform-specific source sets. Target labels are omitted for clarity.

The appleMain block is an intermediate source set created by Kotlin for sharing code compiled to Apple-specific targets. The appleMain source set compiles to
only Apple targets. Therefore, Kotlin allows using Apple-specific APIs in appleMain, and you can add the randomUUID() function here.

During compilation to a specific target, Kotlin gets all of the source sets, including intermediate source sets, labeled with this target. Therefore, all the code written
in the commonMain, appleMain, and iosArm64Main source sets is combined during compilation to the iosArm64 platform target:

Native executables

Apple device and simulator targets
When you use Kotlin Multiplatform to develop iOS mobile applications, you usually work with the iosMain source set. While you might think it's a platform-specific
source set for the ios target, there is no single ios target. Most mobile projects need at least two targets:

Device target is used to generate binaries that can be executed on iOS devices. There's currently only one device target for iOS: iosArm64.

Simulator target is used to generate binaries for the iOS simulator launched on your machine. If you have an Apple silicon Mac computer, choose
iosSimulatorArm64 as a simulator target. Use iosX64 if you have an Intel-based Mac computer.

If you declare only the iosArm64 device target, you won't be able to run and debug your application and tests on your local machine.

Platform-specific source sets like iosArm64Main, iosSimulatorArm64Main, and iosX64Main are usually empty, as Kotlin code for iOS devices and simulators is
normally the same. You can use only the iosMain intermediate source set to share code among all of them.

The same applies to other non-Mac Apple targets. For example, if you have the tvosArm64 device target for Apple TV and the tvosSimulatorArm64 and tvosX64
simulator targets for Apple TV simulators on Apple silicon and Intel-based devices, respectively, you can use the tvosMain intermediate source set for all of them.

Integration
with
tests
Real-life projects also require tests alongside the main production code. This is why all source sets created by default have the Main and Test prefixes. Main
contains production code, while Test contains tests for this code. The connection between them is established automatically, and tests can use the API provided by
the Main code without additional configuration.

The Test counterparts are also source sets similar to Main. For example, commonTest is a counterpart for commonMain and compiles to all of the declared targets,
allowing you to write common tests. Platform-specific test source sets, such as jvmTest, are used to write platform-specific tests, for example, JVM-specific tests
or tests that need JVM APIs.

Besides having a source set to write your common test, you also need a multiplatform testing framework. Kotlin provides a default kotlin.test library that comes with
the @kotlin.Test annotation and various assertion methods like assertEquals and assertTrue.

You can write platform-specific tests like regular tests for each platform in their respective source sets. Like with the main code, you can have platform-specific
dependencies for each source set, such as JUnit for JVM and XCTest for iOS. To run tests for a particular target, use the <targetName>Test task.

Learn how to create and run multiplatform tests in the Test your multiplatform app tutorial.

What's
next?

See Hierarchical project structure to find all intermediate source sets that Kotlin creates and sets up by default and learn what you should do if Kotlin
doesn't provide the intermediate source set you need by default.

It's okay if some source sets don't have sources. For example, in iOS development, there's usually no need to provide code that is specific for iOS
devices but not for iOS simulators. iosArm64Main is therefore rarely used.

482

https://kotlinlang.org/api/latest/kotlin.test
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-run-tests.html

Learn more about declaring and using predefined source sets in Gradle scripts

Learn how to configure compilations

Set
up
targets
for
Kotlin
Multiplatform
You can add targets when creating a project with the project wizard. If you need to add a target later, you can do this manually using target presets for supported
platforms.

Learn more about additional settings for targets.

kotlin	{
				jvm()	//	Create	a	JVM	target	with	the	default	name	'jvm'
								
				linuxX64()	{
								/*	Specify	additional	settings	for	the	'linux'	target	here	*/
				}
}

Each target can have one or more compilations. In addition to default compilations for test and production purposes, you can create custom compilations.

Distinguish
several
targets
for
one
platform
You can have several targets for one platform in a multiplatform library. For example, these targets can provide the same API but use different libraries during
runtime, such as testing frameworks and logging solutions. Dependencies on such a multiplatform library may fail to resolve because it isn't clear which target to
choose.

To solve this, mark the targets on both the library author and consumer sides with a custom attribute, which Gradle uses during dependency resolution.

For example, consider a testing library that supports both JUnit and TestNG in the two targets. The library author needs to add an attribute to both targets as
follows:

Kotlin

val	testFrameworkAttribute	=	Attribute.of("com.example.testFramework",	String::class.java)

kotlin	{
				jvm("junit")	{
								attributes.attribute(testFrameworkAttribute,	"junit")
				}
				jvm("testng")	{
								attributes.attribute(testFrameworkAttribute,	"testng")
				}
}

Groovy

def	testFrameworkAttribute	=	Attribute.of('com.example.testFramework',	String)

kotlin	{
				jvm('junit')	{
								attributes.attribute(testFrameworkAttribute,	'junit')
				}
				jvm('testng')	{
								attributes.attribute(testFrameworkAttribute,	'testng')
				}
}

The consumer has to add the attribute to a single target where the ambiguity arises.

Share
code
on
platforms

483

https://kmp.jetbrains.com/

With Kotlin Multiplatform, you can share the code using the mechanisms Kotlin provides:

Share code among all platforms used in your project. Use it for sharing the common business logic that applies to all platforms.

Share code among some platforms included in your project but not all. You can reuse code in similar platforms with a help of the hierarchical structure.

If you need to access platform-specific APIs from the shared code, use the Kotlin mechanism of expected and actual declarations.

Share
code
on
all
platforms
If you have business logic that is common for all platforms, you don't need to write the same code for each platform – just share it in the common source set.

Code shared for all platforms

Some dependencies for source sets are set by default. You don't need to specify any dependsOn relations manually:

For all platform-specific source sets that depend on the common source set, such as jvmMain, macosX64Main, and others.

Between the main and test source sets of a particular target, such as androidMain and androidUnitTest.

If you need to access platform-specific APIs from the shared code, use the Kotlin mechanism of expected and actual declarations.

Share
code
on
similar
platforms
You often need to create several native targets that could potentially reuse a lot of the common logic and third-party APIs.

For example, in a typical multiplatform project targeting iOS, there are two iOS-related targets: one is for iOS ARM64 devices, the other is for the x64 simulator.
They have separate platform-specific source sets, but in practice there is rarely a need for different code for the device and simulator, and their dependencies are
much the same. So iOS-specific code could be shared between them.

Evidently, in this setup it would be desirable to have a shared source set for two iOS targets, with Kotlin/Native code that could still directly call any of the APIs that
are common to both the iOS device and the simulator.

In this case, you can share code across native targets in your project using the hierarchical structure using one of the following ways:

Using default hierarchy template

Configuring the hierarchical structure manually

Learn more about sharing code in libraries and connecting platform-specific libraries.

Share
code
in
libraries

484

Thanks to the hierarchical project structure, libraries can also provide common APIs for a subset of targets. When a library is published, the API of its intermediate
source sets is embedded into the library artifacts along with information about the project structure. When you use this library, the intermediate source sets of your
project access only those APIs of the library which are available to the targets of each source set.

For example, check out the following source set hierarchy from the kotlinx.coroutines repository:

Library hierarchical structure

The concurrent source set declares the function runBlocking and is compiled for the JVM and the native targets. Once the kotlinx.coroutines library is updated and
published with the hierarchical project structure, you can depend on it and call runBlocking from a source set that is shared between the JVM and native targets
since it matches the "targets signature" of the library's concurrent source set.

Connect
platform-specific
libraries
To share more native code without being limited by platform-specific dependencies, connect platform-specific libraries. Libraries shipped with Kotlin/Native (like
Foundation, UIKit, and POSIX) are available in shared source sets by default.

In addition, if you use the Kotlin CocoaPods Gradle plugin in your projects, you can work with third-party native libraries consumed with the cinterop mechanism.

What's
next?
Check out examples of code sharing using the Kotlin mechanism of expect and actual declarations

Learn more about hierarchical project structure

See our recommendations on naming source files in multiplatform projects

Expected
and
actual
declarations
Expected and actual declarations allow you to access platform-specific APIs from Kotlin Multiplatform modules. You can provide platform-agnostic APIs in the
common code.

485

Rules
for
expected
and
actual
declarations
To define expected and actual declarations, follow these rules:

1. In the common source set, declare a standard Kotlin construct. This can be a function, property, class, interface, enumeration, or annotation.

2. Mark this construct with the expect keyword. This is your expected declaration. These declarations can be used in the common code, but shouldn't include any
implementation. Instead, the platform-specific code provides this implementation.

3. In each platform-specific source set, declare the same construct in the same package and mark it with the actual keyword. This is your actual declaration, which
typically contains an implementation using platform-specific libraries.

During compilation for a specific target, the compiler tries to match each actual declaration it finds with the corresponding expected declaration in the common
code. The compiler ensures that:

Every expected declaration in the common source set has a matching actual declaration in every platform-specific source set.

Expected declarations don't contain any implementation.

Every actual declaration shares the same package as the corresponding expected declaration, such as org.mygroup.myapp.MyType.

While generating the resulting code for different platforms, the Kotlin compiler merges the expected and actual declarations that correspond to each other. It
generates one declaration with its actual implementation for each platform. Every use of the expected declaration in the common code calls the correct actual
declaration in the resulting platform code.

You can declare actual declarations when you use intermediate source sets shared between different target platforms. Consider, for example, iosMain as an
intermediate source set shared between the iosX64Main, iosArm64Main, and iosSimulatorArm64Mainplatform source sets. Only iosMain typically contains the
actual declarations and not the platform source sets. The Kotlin compiler will then use these actual declarations to produce the resulting code for the corresponding
platforms.

The IDE assists with common issues, including:

Missing declarations

Expected declarations that contain implementations

Mismatched declaration signatures

Declarations in different packages

You can also use the IDE to navigate from expected to actual declarations. Select the gutter icon to view actual declarations or use shortcuts.

IDE navigation from expected to actual declarations

Different
approaches
for
using
expected
and
actual
declarations
Let's explore the different options of using the expect/actual mechanism to solve the problem of accessing platform APIs while still providing a way to work with
them in the common code.

Consider a Kotlin Multiplatform project where you need to implement the Identity type, which should contain the user's login name and the current process ID. The
project has the commonMain, jvmMain, and nativeMain source sets to make the application work on the JVM and in native environments like iOS.

This article describes the language mechanism of expected and actual declarations. For general recommendations on different ways to use platform-
specific APIs, see Use platform-specific APIs.

486

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-connect-to-apis.html
https://www.jetbrains.com/help/idea/navigating-through-the-source-code.html#go_to_implementation

Expected
and
actual
functions
You can define an Identity type and a factory function buildIdentity(), which is declared in the common source set and implemented differently in platform source
sets:

1. In commonMain, declare a simple type and expect a factory function:

package	identity

class	Identity(val	userName:	String,	val	processID:	Long)

expect	fun	buildIdentity():	Identity

2. In the jvmMain source set, implement a solution using standard Java libraries:

package	identity

import	java.lang.System
import	java.lang.ProcessHandle

actual	fun	buildIdentity()	=	Identity(
				System.getProperty("user.name")	?:	"None",
				ProcessHandle.current().pid()
)

3. In the nativeMain source set, implement a solution with POSIX using native dependencies:

package	identity

import	kotlinx.cinterop.toKString
import	platform.posix.getlogin
import	platform.posix.getpid

actual	fun	buildIdentity()	=	Identity(
				getlogin()?.toKString()	?:	"None",
				getpid().toLong()
)

Here, platform functions return platform-specific Identity instances.

Interfaces
with
expected
and
actual
functions
If the factory function becomes too large, consider using a common Identity interface and implementing it differently on different platforms.

A buildIdentity() factory function should return Identity, but this time, it's an object implementing the common interface:

1. In commonMain, define the Identity interface and the buildIdentity() factory function:

//	In	the	commonMain	source	set:
expect	fun	buildIdentity():	Identity

interface	Identity	{
				val	userName:	String
				val	processID:	Long
}

2. Create platform-specific implementations of the interface without additional use of expected and actual declarations:

//	In	the	jvmMain	source	set:
actual	fun	buildIdentity():	Identity	=	JVMIdentity()

class	JVMIdentity(
				override	val	userName:	String	=	System.getProperty("user.name")	?:	"none",
				override	val	processID:	Long	=	ProcessHandle.current().pid()
)	:	Identity

Starting with Kotlin 1.9.0, using getlogin() and getpid() functions requires the @OptIn annotation.

487

https://en.wikipedia.org/wiki/POSIX

//	In	the	nativeMain	source	set:
actual	fun	buildIdentity():	Identity	=	NativeIdentity()

class	NativeIdentity(
				override	val	userName:	String	=	getlogin()?.toKString()	?:	"None",
				override	val	processID:	Long	=	getpid().toLong()
)	:	Identity

These platform functions return platform-specific Identity instances, which are implemented as JVMIdentity and NativeIdentity platform types.

Expected and actual properties
You can modify the previous example and expect a val property to store an Identity.

Mark this property as expect val and then actualize it in the platform source sets:

//In	commonMain	source	set:
expect	val	identity:	Identity

interface	Identity	{
				val	userName:	String
				val	processID:	Long
}

//In	jvmMain	source	set:
actual	val	identity:	Identity	=	JVMIdentity()

class	JVMIdentity(
				override	val	userName:	String	=	System.getProperty("user.name")	?:	"none",
				override	val	processID:	Long	=	ProcessHandle.current().pid()
)	:	Identity

//In	nativeMain	source	set:
actual	val	identity:	Identity	=	NativeIdentity()

class	NativeIdentity(
				override	val	userName:	String	=	getlogin()?.toKString()	?:	"None",
				override	val	processID:	Long	=	getpid().toLong()
)	:	Identity

Expected and actual objects
When IdentityBuilder is expected to be a singleton on each platform, you can define it as an expected object and let the platforms actualize it:

//	In	the	commonMain	source	set:
expect	object	IdentityBuilder	{
				fun	build():	Identity
}

class	Identity(
				val	userName:	String,
				val	processID:	Long
)

//	In	the	jvmMain	source	set:
actual	object	IdentityBuilder	{
				actual	fun	build()	=	Identity(
								System.getProperty("user.name")	?:	"none",
								ProcessHandle.current().pid()
)
}

//	In	the	nativeMain	source	set:
actual	object	IdentityBuilder	{
				actual	fun	build()	=	Identity(
								getlogin()?.toKString()	?:	"None",
								getpid().toLong()
)
}

488

Recommendations on dependency injection
To create a loosely coupled architecture, many Kotlin projects adopt the dependency injection (DI) framework. The DI framework allows injecting dependencies into
components based on the current environment.

For example, you might inject different dependencies in testing and in production or when deploying to the cloud compared to hosting locally. As long as a
dependency is expressed through an interface, any number of different implementations can be injected, either at compile time or at runtime.

The same principle applies when the dependencies are platform-specific. In the common code, a component can express its dependencies using regular Kotlin
interfaces. The DI framework can then be configured to inject a platform-specific implementation, for example, from the JVM or an iOS module.

This means that expected and actual declarations are only needed in the configuration of the DI framework. See Use platform-specific APIs for examples.

With this approach, you can adopt Kotlin Multiplatform simply by using interfaces and factory functions. If you already use the DI framework to manage
dependencies in your project, we recommend using the same approach for managing platform dependencies.

Expected
and
actual
classes

You can use expected and actual classes to implement the same solution:

//	In	the	commonMain	source	set:
expect	class	Identity()	{
				val	userName:	String
				val	processID:	Int
}

//	In	the	jvmMain	source	set:
actual	class	Identity	{
				actual	val	userName:	String	=	System.getProperty("user.name")	?:	"None"
				actual	val	processID:	Long	=	ProcessHandle.current().pid()
}

//	In	the	nativeMain	source	set:
actual	class	Identity	{
				actual	val	userName:	String	=	getlogin()?.toKString()	?:	"None"
				actual	val	processID:	Long	=	getpid().toLong()
}

You might have already seen this approach in demonstration materials. However, using classes in simple cases where interfaces would be sufficient is not
recommended.

With interfaces, you don't limit your design to one implementation per target platform. Also, it's much easier to substitute a fake implementation in tests or provide
multiple implementations on a single platform.

As a general rule, rely on standard language constructs wherever possible instead of using expected and actual declarations.

Inheritance from platform classes
There are special cases when using the expect keyword with classes may be the best approach. Let's say that the Identity type already exists on the JVM:

open	class	Identity	{
				val	login:	String	=	System.getProperty("user.name")	?:	"none"
				val	pid:	Long	=	ProcessHandle.current().pid()
}

To fit it in the existing codebase and frameworks, your implementation of the Identity type can inherit from this type and reuse its functionality:

1. To solve this problem, declare a class in commonMain using the expect keyword:

Expected and actual classes are in Beta. They are almost stable, but migration steps may be required in the future. We'll do our best to minimize any
further changes for you to make.

489

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-connect-to-apis.html#dependency-injection-framework

expect	class	CommonIdentity()	{
				val	userName:	String
				val	processID:	Long
}

2. In nativeMain, provide an actual declaration that implements the functionality:

actual	class	CommonIdentity	{
				actual	val	userName	=	getlogin()?.toKString()	?:	"None"
				actual	val	processID	=	getpid().toLong()
}

3. In jvmMain, provide an actual declaration that inherits from the platform-specific base class:

actual	class	CommonIdentity	:	Identity()	{
				actual	val	userName	=	login
				actual	val	processID	=	pid
}

Here, the CommonIdentity type is compatible with your own design while taking advantage of the existing type on the JVM.

Application in frameworks
As a framework author, you can also find expected and actual declarations useful for your framework.

If the example above is part of a framework, the user has to derive a type from CommonIdentity to provide a display name.

In this case, the expected declaration is abstract and declares an abstract method:

//	In	commonMain	of	the	framework	codebase:
expect	abstract	class	CommonIdentity()	{
				val	userName:	String
				val	processID:	Long
				abstract	val	displayName:	String
}

Similarly, actual implementations are abstract and declare the displayName method:

//	In	nativeMain	of	the	framework	codebase:
actual	abstract	class	CommonIdentity	{
				actual	val	userName	=	getlogin()?.toKString()	?:	"None"
				actual	val	processID	=	getpid().toLong()
				actual	abstract	val	displayName:	String
}

//	In	jvmMain	of	the	framework	codebase:
actual	abstract	class	CommonIdentity	:	Identity()	{
				actual	val	userName	=	login
				actual	val	processID	=	pid
				actual	abstract	val	displayName:	String
}

The framework users need to write common code that inherits from the expected declaration and implement the missing method themselves:

//	In	commonMain	of	the	users'	codebase:
class	MyCommonIdentity	:	CommonIdentity()	{
				override	val	displayName	=	"Admin"
}

Advanced
use
cases
There are a number of special cases regarding expected and actual declarations.

Using
type
aliases
to
satisfy
actual
declarations

490

The implementation of an actual declaration does not have to be written from scratch. It can be an existing type, such as a class provided by a third-party library.

You can use this type as long as it meets all the requirements associated with the expected declaration. For example, consider these two expected declarations:

expect	enum	class	Month	{
				JANUARY,	FEBRUARY,	MARCH,	APRIL,	MAY,	JUNE,	JULY,
				AUGUST,	SEPTEMBER,	OCTOBER,	NOVEMBER,	DECEMBER
}

expect	class	MyDate	{
				fun	getYear():	Int
				fun	getMonth():	Month
				fun	getDayOfMonth():	Int
}

Within a JVM module, the java.time.Month enum can be used to implement the first expected declaration and the java.time.LocalDate class to implement the
second. However, there's no way to add the actual keyword directly to these types.

Instead, you can use type aliases to connect the expected declarations and the platform-specific types:

actual	typealias	Month	=	java.time.Month
actual	typealias	MyDate	=	java.time.LocalDate

In this case, define the typealias declaration in the same package as the expected declaration and create the referred class elsewhere.

Expanded
visibility
in
actual
declarations
You can make actual implementations more visible than the corresponding expected declaration. This is useful if you don't want to expose your API as public for
common clients.

Currently, the Kotlin compiler issues an error in the case of visibility changes. You can suppress this error by applying @Suppress("ACTUAL_WITHOUT_EXPECT")
to the actual type alias declaration. Starting with Kotlin 2.0, this limitation will not apply.

For example, if you declare the following expected declaration in the common source set:

internal	expect	class	Messenger	{
				fun	sendMessage(message:	String)
}

You can use the following actual implementation in a platform-specific source set as well:

@Suppress("ACTUAL_WITHOUT_EXPECT")
public	actual	typealias	Messenger	=	MyMessenger

Here, an internal expected class has an actual implementation with an existing public MyMessenger using type aliases.

Additional
enumeration
entries
on
actualization
When an enumeration is declared with expect in the common source set, each platform module should have a corresponding actual declaration. These declarations
must contain the same enum constants, but they can also have additional constants.

This is useful when you actualize an expected enum with an existing platform enum. For example, consider the following enumeration in the common source set:

//	In	the	commonMain	source	set:
expect	enum	class	Department	{	IT,	HR,	Sales	}

When you provide an actual declaration for Department in platform source sets, you can add extra constants:

//	In	the	jvmMain	source	set:
actual	enum	class	Department	{	IT,	HR,	Sales,	Legal	}

Since the LocalDate type uses the Month enum, you need to declare both of them as expected classes in the common code.

491

//	In	the	nativeMain	source	set:
actual	enum	class	Department	{	IT,	HR,	Sales,	Marketing	}

However, in this case, these extra constants in the platform source sets won't match with those in the common code. Therefore, the compiler requires you to handle
all additional cases.

The function that implements the when construction on Department requires an else clause:

//	An	else	clause	is	required:
fun	matchOnDepartment(dept:	Department)	{
				when	(dept)	{
								Department.IT	->	println("The	IT	Department")
								Department.HR	->	println("The	IT	Department")
								Department.Sales	->	println("The	IT	Department")
								else	->	println("Some	other	department")
				}
}

Expected
annotation
classes
Expected and actual declarations can be used with annotations. For example, you can declare an @XmlSerializable annotation, which must have a corresponding
actual declaration in each platform source set:

@Target(AnnotationTarget.CLASS)
@Retention(AnnotationRetention.SOURCE)
expect	annotation	class	XmlSerializable()

@XmlSerializable
class	Person(val	name:	String,	val	age:	Int)

It might be helpful to reuse existing types on a particular platform. For example, on the JVM, you can define your annotation using the existing type from the JAXB
specification:

import	javax.xml.bind.annotation.XmlRootElement

actual	typealias	XmlSerializable	=	XmlRootElement

There is an additional consideration when using expect with annotation classes. Annotations are used to attach metadata to code and do not appear as types in
signatures. It's not essential for an expected annotation to have an actual class on a platform where it's never required.

You only need to provide an actual declaration on platforms where the annotation is used. This behavior isn't enabled by default, and it requires the type to be
marked with OptionalExpectation.

Take the @XmlSerializable annotation declared above and add OptionalExpectation:

@OptIn(ExperimentalMultiplatform::class)
@Target(AnnotationTarget.CLASS)
@Retention(AnnotationRetention.SOURCE)
@OptionalExpectation
expect	annotation	class	XmlSerializable()

If an actual declaration is missing on a platform where it's not required, the compiler won't generate an error.

What's
next?
For general recommendations on different ways to use platform-specific APIs, see Use platform-specific APIs.

Hierarchical
project
structure
Multiplatform projects support hierarchical source set structures. This means you can arrange a hierarchy of intermediate source sets for sharing the common code
among some, but not all, supported targets. Using intermediate source sets helps you to:

Provide a specific API for some targets. For example, a library can add native-specific APIs in an intermediate source set for Kotlin/Native targets but not for

492

https://javaee.github.io/jaxb-v2/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-optional-expectation/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-connect-to-apis.html

Kotlin/JVM ones.

Consume a specific API for some targets. For example, to benefit from a rich API that the Kotlin Multiplatform library provides for some targets that form an
intermediate source set.

Use platform-dependent libraries in your project. For example, you can access to iOS-specific dependencies from the intermediate iOS source set.

The Kotlin toolchain ensures that each source set has access only to the API that is available for all targets to which that source set compiles. This prevents cases
like using a Windows-specific API and then compiling it to macOS, resulting in linkage errors or undefined behavior at runtime.

The recommended way to set up the source set hierarchy is to use the default hierarchy template. The template covers most popular cases. If you have a more
advanced project, you can configure it manually. It's a more low-level approach: it's more flexible but requires more effort and knowledge.

Default
hierarchy
template
Starting with Kotlin 1.9.20, the Kotlin Gradle plugin has a built-in default hierarchy template. It contains pre-defined intermediate source sets for some popular use
cases. The plugin sets up those source sets automatically based on the targets specified in your project.

Let's look at the example:

Kotlin

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()
}

Groovy

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()
}

When you declare targets androidTarget, iosArm64, and iosSimulatorArm64 in your code, the Kotlin Gradle plugin finds suitable shared source sets from the
template and creates them for you. The resulting hierarchy looks like this:

An example of using the default hierarchy template

493

Green source sets are actually created and present in the project, while gray ones from the default template are ignored. The Kotlin Gradle plugin hasn't created the
watchos source set, for example, because there are no watchOS targets in the project.

If you add a watchOS target, like watchosArm64, the watchos source set is created, and the code from the apple, native, and common source sets is compiled to
watchosArm64 as well.

Kotlin Gradle Plugin creates type-safe accessors for all the source sets from the default hierarchy template, so you can reference them without by getting or by
creating constructions compared to the manual configuration

Kotlin

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								iosMain.dependencies	{
												implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
								}
				}
}

Groovy

kotlin	{
				androidTarget()
				iosArm64()
				iosSimulatorArm64()

				sourceSets	{
								iosMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3"'
												}
								}
				}
}

Additional
configuration
You might need to make adjustments to the default hierarchy template. If you had previously introduced intermediate sources manually with dependsOn calls, it
cancels the application of the default hierarchy template, and you get the following warning:

The	Default	Kotlin	Hierarchy	Template	was	not	applied	to	'<project-name>':
Explicit	.dependsOn()	edges	were	configured	for	the	following	source	sets:
[<...	names	of	the	source	sets	with	manually	configured	dependsOn-edges...>]

Consider	removing	dependsOn-calls	or	disabling	the	default	template	by	adding
				'kotlin.mpp.applyDefaultHierarchyTemplate=false'
to	your	gradle.properties

Learn	more	about	hierarchy	templates:	https://kotl.in/hierarchy-template

To solve this issue, configure your project by doing one of the following:

Replace your manual configuration with the default hierarchy template

Create additional source sets in the default hierarchy template

Modify the source sets created by the default hierarchy template

In this example, the apple and native source sets compile only to the iosArm64 and iosSimulatorArm64 targets. Despite their names, they have access to
the full iOS API. This can be counter-intuitive for source sets like native, as you might expect that only APIs available on all native targets are accessible in
this source set. This behavior may change in the future.

494

Replacing manual configuration
Case. All your intermediate source sets are currently covered by the default hierarchy template.

Solution. Remove all manual dependsOn() calls and source sets with by creating constructions. To check the list of all default source sets, see the full hierarchy
template.

Creating additional source sets
Case. You want to add source sets that the default hierarchy template doesn't provide yet, for example, between a macOS and a JVM target.

Solution:

1. Reapply the template by explicitly calling applyDefaultHierarchyTemplate().

2. Configure additional source sets manually using dependsOn():

Kotlin

kotlin	{
				jvm()
				macosArm64()
				iosArm64()
				iosSimulatorArm64()

				//	Apply	the	default	hierarchy	again.	It'll	create,	for	example,	the	iosMain	source	set:
				applyDefaultHierarchyTemplate()

				sourceSets	{
								//	Create	an	additional	jvmAndMacos	source	set:
								val	jvmAndMacos	by	creating	{
												dependsOn(commonMain.get())
								}

								macosArm64Main.get().dependsOn(jvmAndMacos)
								jvmMain.get().dependsOn(jvmAndMacos)
				}
}

Groovy

kotlin	{
				jvm()
				macosArm64()
				iosArm64()
				iosSimulatorArm64()

				//	Apply	the	default	hierarchy	again.	It'll	create,	for	example,	the	iosMain	source	set:
				applyDefaultHierarchyTemplate()

				sourceSets	{
								//	Create	an	additional	jvmAndMacos	source	set:
								jvmAndMacos	{
												dependsOn(commonMain.get())
								}
								jvmAndMacos		{
												dependsOn(macosArm64Main.get())
								}
								jvmAndMacos		{
												dependsOn(jvmMain.get())
								}
				}	
}

Modifying source sets
Case. You already have the source sets with the exact same names as those generated by the template but shared among different sets of targets in your project.
For example, a nativeMain source set shared among not all the native targets but only the desktop ones: linuxX64, mingwX64, and macosX64.

Solution. There's currently no way to modify the default dependsOn relations among the template's source sets. It's also important that the implementation and the
meaning of source sets, for example, nativeMain, are the same in all projects.

However, you still can do one of the following:

495

Find different source sets for your purposes, either in the default hierarchy template or ones that have been manually created.

Opt out of the template completely by adding kotlin.mpp.applyDefaultHierarchyTemplate=false to your gradle.properties file and configure all source sets
manually.

See the full hierarchy template
When you declare the targets to which your project compiles, the plugin picks the shared source sets based on the specified targets from the template and creates
them in your project.

Default hierarchy template

We're currently working on an API to create your own hierarchy templates. It will be useful for projects whose hierarchy configurations are significantly
different from the default template.

This API is not ready yet, but if you're eager to try it, look into the applyHierarchyTemplate {} block and the declaration of KotlinHierarchyTemplate.default
as an example. Keep in mind that this API is still in development. It might not be tested, and can change in further releases.

This example only shows the production part of the project, omitting the Main suffix (for example, using common instead of commonMain). However,
everything is the same for *Test sources as well.

496

Manual
configuration
You can manually introduce an intermediate source in the source set structure. It will hold the shared code for several targets.

For example, here’s what to do if you want to share code among native Linux, Windows, and macOS targets (linuxX64, mingwX64, and macosX64):

Manually configured hierarchical structure

1. Add the intermediate source set desktopMain, which holds the shared logic for these targets.

2. Specify the source set hierarchy using the dependsOn relation.

The resulting hierarchical structure will look like this:

Kotlin

kotlin	{
				linuxX64()
				mingwX64()
				macosX64()
		
				sourceSets	{
								val	desktopMain	by	creating	{
												dependsOn(commonMain.get())
								}
								val	linuxX64Main	by	getting	{
												dependsOn(desktopMain)
								}
								val	mingwX64Main	by	getting	{
												dependsOn(desktopMain)
								}
								val	macosX64Main	by	getting	{
												dependsOn(desktopMain)
								}
				}
}

Groovy

kotlin	{
				linuxX64()
				mingwX64()
				macosX64()
		
				sourceSets	{
								desktopMain	{
												dependsOn(commonMain.get())
								}
								linuxX64Main	{
												dependsOn(desktopMain)
								}
								mingwX64Main	{
												dependsOn(desktopMain)
								}
								macosX64Main	{
												dependsOn(desktopMain)
								}

497

				}
}

You can have a shared source set for the following combinations of targets:

JVM or Android + JS + Native

JVM or Android + Native

JS + Native

JVM or Android + JS

Native

Kotlin doesn't currently support sharing a source set for these combinations:

Several JVM targets

JVM + Android targets

Several JS targets

If you need to access platform-specific APIs from a shared native source set, IntelliJ IDEA will help you detect common declarations that you can use in the shared
native code. For other cases, use the Kotlin mechanism of expected and actual declarations.

Adding
dependencies
on
multiplatform
libraries
Every program requires a set of libraries to operate successfully. A Kotlin Multiplatform project can depend on multiplatform libraries that work for all target
platforms, platform-specific libraries, and other multiplatform projects.

To add a dependency on a library, update your build.gradle(.kts) file in the shared directory of your project. Set a dependency of the required type (for example,
implementation) in the dependencies block:

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation("com.example:my-library:1.0")	//	library	shared	for	all	source	sets
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'com.example:my-library:1.0'
												}
								}
				}
}

Alternatively, you can set dependencies at the top level.

Dependency
on
a
Kotlin
library

Standard
library

498

A dependency on a standard library (stdlib) in each source set is added automatically. The version of the standard library is the same as the version of the kotlin-
multiplatform plugin.

For platform-specific source sets, the corresponding platform-specific variant of the library is used, while a common standard library is added to the rest. The Kotlin
Gradle plugin will select the appropriate JVM standard library depending on the compilerOptions.jvmTarget compiler option of your Gradle build script.

Learn how to change the default behavior.

Test
libraries
The kotlin.test API is available for multiplatform tests. When you create a multiplatform project, the project wizard automatically adds test dependencies to common
and platform-specific source sets.

If you didn't use the project wizard to create your project, you can add the dependencies manually.

kotlinx
libraries
If you use a multiplatform library and need to depend on the shared code, set the dependency only once in the shared source set. Use the library base artifact
name, such as kotlinx-coroutines-core.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
												}
								}
				}
}

If you use a kotlinx library and need a platform-specific dependency, you can use platform-specific variants of libraries with suffixes such as -jvm or -js, for
example, kotlinx-coroutines-core-jvm.

Kotlin

kotlin	{
				sourceSets	{
								val	jvmMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core-jvm:1.7.3")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								jvmMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core-jvm:1.7.3'
												}

499

https://kotlinlang.org/api/latest/kotlin.test/
https://kmp.jetbrains.com/

								}
				}
}

Dependency
on
Kotlin
Multiplatform
libraries
You can add dependencies on libraries that have adopted Kotlin Multiplatform technology, such as SQLDelight. The authors of these libraries usually provide
guides for adding their dependencies to your project.

Check out this community-maintained list of Kotlin Multiplatform libraries.

Library
shared
for
all
source
sets
If you want to use a library from all source sets, you can add it only to the common source set. The Kotlin Multiplatform Mobile plugin will automatically add the
corresponding parts to any other source sets.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation("io.ktor:ktor-client-core:2.3.5")
												}
								}
								val	androidMain	by	getting	{
												dependencies	{
																//	dependency	to	a	platform	part	of	ktor-client	will	be	added	automatically
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'io.ktor:ktor-client-core:2.3.5'
												}
								}
								androidMain	{
												dependencies	{
																//	dependency	to	platform	part	of	ktor-client	will	be	added	automatically
												}
								}
				}
}

Library
used
in
specific
source
sets
If you want to use a multiplatform library just for specific source sets, you can add it exclusively to them. The specified library declarations will then be available only
in those source sets.

Kotlin

kotlin	{
				sourceSets	{

You cannot set dependencies on platform-specific libraries in the common source set.

Don't use a platform-specific name in such cases, like SQLDelight native-driver in the example below. Find the exact name in the library's documentation.

500

https://github.com/cashapp/sqldelight
https://libs.kmp.icerock.dev/

								val	commonMain	by	getting	{
												dependencies	{
																//	kotlinx.coroutines	will	be	available	in	all	source	sets
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
												}
								}
								val	androidMain	by	getting	{
												dependencies	{}
								}
								val	iosMain	by	getting	{
												dependencies	{
																//	SQLDelight	will	be	available	only	in	the	iOS	source	set,	but	not	in	Android	or	common
																implementation("com.squareup.sqldelight:native-driver:2.0.0")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																//	kotlinx.coroutines	will	be	available	in	all	source	sets
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
												}
								}
								androidMain	{
												dependencies	{}
								}
								iosMain	{
												dependencies	{
																//	SQLDelight	will	be	available	only	in	the	iOS	source	set,	but	not	in	Android	or	common
																implementation	'com.squareup.sqldelight:native-driver:2.0.0'
												}
								}
				}
}

Dependency
on
another
multiplatform
project
You can connect one multiplatform project to another as a dependency. To do this, simply add a project dependency to the source set that needs it. If you want to
use a dependency in all source sets, add it to the common one. In this case, other source sets will get their versions automatically.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation(project(":some-other-multiplatform-module"))
												}
								}
								val	androidMain	by	getting	{
												dependencies	{
																//	platform	part	of	:some-other-multiplatform-module	will	be	added	automatically
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	project(':some-other-multiplatform-module')
												}
								}
								androidMain	{

501

												dependencies	{
																//	platform	part	of	:some-other-multiplatform-module	will	be	added	automatically
												}
								}
				}
}

What's
next?
Check out other resources on adding dependencies in multiplatform projects and learn more about:

Adding Android dependencies

Adding iOS dependencies

Adding
Android
dependencies
The workflow for adding Android-specific dependencies to a Kotlin Multiplatform module is the same as it is for pure Android projects: declare the dependency in
your Gradle file and import the project. After that, you can use this dependency in your Kotlin code.

We recommend declaring Android dependencies in Kotlin Multiplatform projects by adding them to a specific Android source set. For that, update your
build.gradle(.kts) file in the shared directory of your project:

Kotlin

sourceSets["androidMain"].dependencies	{
				implementation("com.example.android:app-magic:12.3")
}

Groovy

sourceSets	{
				androidMain	{
								dependencies	{
												implementation	'com.example.android:app-magic:12.3'
								}
				}
}

Moving what was a top-level dependency in an Android project to a specific source set in a multiplatform project might be difficult if the top-level dependency had
a non-trivial configuration name. For example, to move a debugImplementation dependency from the top level of an Android project, you'll need to add an
implementation dependency to the source set named androidDebug. To minimize the effort you have to put in to deal with migration problems like this, you can add
a dependencies block inside the android block:

Kotlin

android	{
				//...
				dependencies	{
								implementation("com.example.android:app-magic:12.3")
				}
}

Groovy

android	{
				//...
				dependencies	{
								implementation	'com.example.android:app-magic:12.3'
				}
}

502

Dependencies declared here will be treated exactly the same as dependencies from the top-level block, but declaring them this way will also separate Android
dependencies visually in your build script and make it less confusing.

Putting dependencies into a standalone dependencies block at the end of the script, in a way that is idiomatic to Android projects, is also supported. However, we
strongly recommend against doing this because configuring a build script with Android dependencies in the top-level block and other target dependencies in each
source set is likely to cause confusion.

What's
next?
Check out other resources on adding dependencies in multiplatform projects and learn more about:

Adding dependencies in the official Android documentation

Adding dependencies on multiplatform libraries or other multiplatform projects

Adding iOS dependencies

Adding
iOS
dependencies
Apple SDK dependencies (such as Foundation or Core Bluetooth) are available as a set of prebuilt libraries in Kotlin Multiplatform projects. They do not require any
additional configuration.

You can also reuse other libraries and frameworks from the iOS ecosystem in your iOS source sets. Kotlin supports interoperability with Objective-C dependencies
and Swift dependencies if their APIs are exported to Objective-C with the @objc attribute. Pure Swift dependencies are not yet supported.

Integration with the CocoaPods dependency manager is also supported with the same limitation – you cannot use pure Swift pods.

We recommend using CocoaPods to handle iOS dependencies in Kotlin Multiplatform projects. Manage dependencies manually only if you want to tune the interop
process specifically or if you have some other strong reason to do so.

With
CocoaPods
1. Perform initial CocoaPods integration setup.

2. Add a dependency on a Pod library from the CocoaPods repository that you want to use by including the pod() function call in build.gradle(.kts) of your project.

Kotlin

kotlin	{
				cocoapods	{
								//..
								pod("FirebaseAuth")	{
												version	=	"10.16.0"
								}
				}
}

Groovy

kotlin	{
				cocoapods	{
								//..
								pod('FirebaseAuth')	{
												version	=	'10.16.0'
								}
				}
}

You can add the following dependencies on a Pod library:

From the CocoaPods repository

503

https://developer.android.com/studio/build/dependencies

On a locally stored library

From a custom Git repository

From a custom Podspec repository

With custom cinterop options

3. Re-import the project.

To use the dependency in your Kotlin code, import the package cocoapods.<library-name>. For the example above, it's:

import	cocoapods.FirebaseAuth.*

Without
CocoaPods
If you don't want to use CocoaPods, you can use the cinterop tool to create Kotlin bindings for Objective-C or Swift declarations. This will allow you to call them
from the Kotlin code.

The steps differ a bit for libraries and frameworks, but the idea remains the same.

1. Download your dependency.

2. Build it to get its binaries.

3. Create a special .def file that describes this dependency to cinterop.

4. Adjust your build script to generate bindings during the build.

Add
a
library
without
CocoaPods
1. Download the library source code and place it somewhere where you can reference it from your project.

2. Build a library (library authors usually provide a guide on how to do this) and get a path to the binaries.

3. In your project, create a .def file, for example DateTools.def.

4. Add a first string to this file: language = Objective-C. If you want to use a pure C dependency, omit the language property.

5. Provide values for two mandatory properties:

headers describes which headers will be processed by cinterop.

package sets the name of the package these declarations should be put into.

For example:

headers	=	DateTools.h
package	=	DateTools

6. Add information about interoperability with this library to the build script:

Pass the path to the .def file. This path can be omitted if your .def file has the same name as cinterop and is placed in the src/nativeInterop/cinterop/
directory.

Tell cinterop where to look for header files using the includeDirs option.

Configure linking to library binaries.

Kotlin

kotlin	{
				iosX64()	{
								compilations.getByName("main")	{
												val	DateTools	by	cinterops.creating	{
																//	Path	to	.def	file
																defFile("src/nativeInterop/cinterop/DateTools.def")

504

																//	Directories	for	header	search	(an	analogue	of	the	-I<path>	compiler	option)
																includeDirs("include/this/directory",	"path/to/another/directory")
												}
												val	anotherInterop	by	cinterops.creating	{	/*	...	*/	}
								}

								binaries.all	{
												//	Linker	options	required	to	link	to	the	library.
												linkerOpts("-L/path/to/library/binaries",	"-lbinaryname")
								}
				}
}

Groovy

kotlin	{
				iosX64	{
								compilations.main	{
												cinterops	{
																DateTools	{
																				//	Path	to	.def	file
																				defFile("src/nativeInterop/cinterop/DateTools.def")

																				//	Directories	for	header	search	(an	analogue	of	the	-I<path>	compiler	option)
																				includeDirs("include/this/directory",	"path/to/another/directory")
																}
																anotherInterop	{	/*	...	*/	}
												}
								}

								binaries.all	{
												//	Linker	options	required	to	link	to	the	library.
												linkerOpts	"-L/path/to/library/binaries",	"-lbinaryname"
								}
				}
}

7. Build the project.

Now you can use this dependency in your Kotlin code. To do that, import the package you've set up in the package property in the .def file. For the example above,
this will be:

import	DateTools.*

Add
a
framework
without
CocoaPods
1. Download the framework source code and place it somewhere that you can reference it from your project.

2. Build the framework (framework authors usually provide a guide on how to do this) and get a path to the binaries.

3. In your project, create a .def file, for example MyFramework.def.

4. Add the first string to this file: language = Objective-C. If you want to use a pure C dependency, omit the language property.

5. Provide values for these two mandatory properties:

modules – the name of the framework that should be processed by the cinterop.

package – the name of the package these declarations should be put into.

For example:

modules	=	MyFramework
package	=	MyFramework

6. Add information about interoperability with the framework to the build script:

Pass the path to the .def file. This path can be omitted if your .def file has the same name as the cinterop and is placed in the src/nativeInterop/cinterop/
directory.

505

Pass the framework name to the compiler and linker using the -framework option. Pass the path to the framework sources and binaries to the compiler and
linker using the -F option.

Kotlin

kotlin	{
				iosX64()	{
								compilations.getByName("main")	{
												val	DateTools	by	cinterops.creating	{
																//	Path	to	.def	file
																defFile("src/nativeInterop/cinterop/DateTools.def")

																compilerOpts("-framework",	"MyFramework",	"-F/path/to/framework/")
												}
												val	anotherInterop	by	cinterops.creating	{	/*	...	*/	}
								}

								binaries.all	{
												//	Tell	the	linker	where	the	framework	is	located.
												linkerOpts("-framework",	"MyFramework",	"-F/path/to/framework/")
								}
			}
}

Groovy

kotlin	{
				iosX64	{
								compilations.main	{
												cinterops	{
																DateTools	{
																				//	Path	to	.def	file
																				defFile("src/nativeInterop/cinterop/MyFramework.def")

																				compilerOpts("-framework",	"MyFramework",	"-F/path/to/framework/")
																}
																anotherInterop	{	/*	...	*/	}
												}
								}

								binaries.all	{
												//	Tell	the	linker	where	the	framework	is	located.
												linkerOpts("-framework",	"MyFramework",	"-F/path/to/framework/")
								}
				}
}

7. Build the project.

Now you can use this dependency in your Kotlin code. To do this, import the package you've set up in the package property in the .def file. For the example above,
this will be:

import	MyFramework.*

Learn more about Objective-C and Swift interop and configuring cinterop from Gradle.

What's
next?
Check out other resources on adding dependencies in multiplatform projects and learn more about:

Connecting platform-specific libraries

Adding dependencies on multiplatform libraries or other multiplatform projects

Adding Android dependencies

Configure
compilations

506

Kotlin multiplatform projects use compilations for producing artifacts. Each target can have one or more compilations, for example, for production and test
purposes.

For each target, default compilations include:

main and test compilations for JVM, JS, and Native targets.

A compilation per Android build variant, for Android targets.

Compilations

If you need to compile something other than production code and unit tests, for example, integration or performance tests, you can create a custom compilation.

You can configure how artifacts are produced in:

All compilations in your project at once.

Compilations for one target since one target can have multiple compilations.

A specific compilation.

See the list of compilation parameters and compiler options available for all or specific targets.

Configure
all
compilations

kotlin	{
				targets.all	{
								compilations.all	{
												compilerOptions.configure	{
																allWarningsAsErrors.set(true)
												}
								}
				}
}

507

https://developer.android.com/studio/build/build-variants

Configure
compilations
for
one
target

Kotlin

kotlin	{
				jvm().compilations.all	{
								compilerOptions.configure	{
												jvmTarget.set(JvmTarget.JVM_1_8)
								}
				}
}

Groovy

kotlin	{
				jvm().compilations.all	{
								compilerOptions.configure	{
												jvmTarget.set(JvmTarget.JVM_1_8)
								}
				}
}

Configure
one
compilation

Kotlin

kotlin	{
				jvm	{
								val	main	by	compilations.getting	{
												compilerOptions.configure	{
																jvmTarget.set(JvmTarget.JVM_1_8)
												}
								}
				}
}

Groovy

kotlin	{
				jvm	{
								compilations.main	{
												compilerOptions.configure	{
																jvmTarget.set(JvmTarget.JVM_1_8)
												}
								}
				}
}

Create
a
custom
compilation
If you need to compile something other than production code and unit tests, for example, integration or performance tests, create a custom compilation.

For example, to create a custom compilation for integration tests of the jvm() target, add a new item to the compilations collection.

Kotlin

kotlin	{
				jvm()	{
								compilations	{

For custom compilations, you need to set up all dependencies manually. The default source set of a custom compilation does not depend on the
commonMain and the commonTest source sets.

508

												val	main	by	getting
												
												val	integrationTest	by	compilations.creating	{
																defaultSourceSet	{
																				dependencies	{
																								//	Compile	against	the	main	compilation's	compile	classpath	and	outputs:
																								implementation(main.compileDependencyFiles	+	main.output.classesDirs)
																								implementation(kotlin("test-junit"))
																								/*	...	*/
																				}
																}
																
																//	Create	a	test	task	to	run	the	tests	produced	by	this	compilation:
																tasks.register<Test>("integrationTest")	{
																				//	Run	the	tests	with	the	classpath	containing	the	compile	dependencies	(including	'main'),
																				//	runtime	dependencies,	and	the	outputs	of	this	compilation:
																				classpath	=	compileDependencyFiles	+	runtimeDependencyFiles	+	output.allOutputs
																				
																				//	Run	only	the	tests	from	this	compilation's	outputs:
																				testClassesDirs	=	output.classesDirs
																}
												}
								}
				}
}

Groovy

kotlin	{
				jvm()	{
								compilations.create('integrationTest')	{
												defaultSourceSet	{
																dependencies	{
																				def	main	=	compilations.main
																				//	Compile	against	the	main	compilation's	compile	classpath	and	outputs:
																				implementation(main.compileDependencyFiles	+	main.output.classesDirs)
																				implementation	kotlin('test-junit')
																				/*	...	*/
																}
												}
											
												//	Create	a	test	task	to	run	the	tests	produced	by	this	compilation:
												tasks.register('jvmIntegrationTest',	Test)	{
																//	Run	the	tests	with	the	classpath	containing	the	compile	dependencies	(including	'main'),
																//	runtime	dependencies,	and	the	outputs	of	this	compilation:
																classpath	=	compileDependencyFiles	+	runtimeDependencyFiles	+	output.allOutputs
																
																//	Run	only	the	tests	from	this	compilation's	outputs:
																testClassesDirs	=	output.classesDirs
												}
								}
				}
}

You also need to create a custom compilation in other cases, for example, if you want to combine compilations for different JVM versions in your final artifact, or
you have already set up source sets in Gradle and want to migrate to a multiplatform project.

Use
Java
sources
in
JVM
compilations
When creating a project with the project wizard, Java sources are included in the compilations of the JVM target.

In the build script, the following section applies the Gradle java plugin and configures the target to cooperate with it:

kotlin	{
				jvm	{
								withJava()
				}
}

The Java source files are placed in the child directories of the Kotlin source roots. For example, the paths are:

509

https://kmp.jetbrains.com/

Java source files

The common source sets cannot include Java sources.

Due to current limitations, the Kotlin plugin replaces some tasks configured by the Java plugin:

The target's JAR task instead of jar (for example, jvmJar).

The target's test task instead of test (for example, jvmTest).

The resources are processed by the equivalent tasks of the compilations instead of *ProcessResources tasks.

The publication of this target is handled by the Kotlin plugin and doesn't require steps that are specific for the Java plugin.

Configure
interop
with
native
languages
Kotlin provides interoperability with native languages and DSL to configure this for a specific compilation.

Native language Supported platforms Comments

C All platforms, except for WebAssembly

Objective-C Apple platforms (macOS, iOS, watchOS, tvOS)

Swift via Objective-C Apple platforms (macOS, iOS, watchOS, tvOS) Kotlin can use only Swift declarations marked with the @objc attribute.

A compilation can interact with several native libraries. Configure interoperability in the cinterops block of the compilation with available parameters.

Kotlin

kotlin	{
				linuxX64	{	//	Replace	with	a	target	you	need.
								compilations.getByName("main")	{
												val	myInterop	by	cinterops.creating	{
																//	Def-file	describing	the	native	API.
																//	The	default	path	is	src/nativeInterop/cinterop/<interop-name>.def
																defFile(project.file("def-file.def"))
																
																//	Package	to	place	the	Kotlin	API	generated.

510

																packageName("org.sample")
																
																//	Options	to	be	passed	to	compiler	by	cinterop	tool.
																compilerOpts("-Ipath/to/headers")
														
																//	Directories	to	look	for	headers.
																includeDirs.apply	{
																				//	Directories	for	header	search	(an	equivalent	of	the	-I<path>	compiler	option).
																				allHeaders("path1",	"path2")
																				
																				//	Additional	directories	to	search	headers	listed	in	the	'headerFilter'	def-file	option.
																				//	-headerFilterAdditionalSearchPrefix	command	line	option	equivalent.
																				headerFilterOnly("path1",	"path2")
																}
																//	A	shortcut	for	includeDirs.allHeaders.
																includeDirs("include/directory",	"another/directory")
												}
												
												val	anotherInterop	by	cinterops.creating	{	/*	...	*/	}
								}
				}
}

Groovy

kotlin	{
				linuxX64	{	//	Replace	with	a	target	you	need.
								compilations.main	{
												cinterops	{
																myInterop	{
																				//	Def-file	describing	the	native	API.
																				//	The	default	path	is	src/nativeInterop/cinterop/<interop-name>.def
																				defFile	project.file("def-file.def")
																				
																				//	Package	to	place	the	Kotlin	API	generated.
																				packageName	'org.sample'
																				
																				//	Options	to	be	passed	to	compiler	by	cinterop	tool.
																				compilerOpts	'-Ipath/to/headers'
																				
																				//	Directories	for	header	search	(an	eqivalent	of	the	-I<path>	compiler	option).
																				includeDirs.allHeaders("path1",	"path2")
																				
																				//	Additional	directories	to	search	headers	listed	in	the	'headerFilter'	def-file	option.
																				//	-headerFilterAdditionalSearchPrefix	command	line	option	equivalent.
																				includeDirs.headerFilterOnly("path1",	"path2")
																				
																				//	A	shortcut	for	includeDirs.allHeaders.
																				includeDirs("include/directory",	"another/directory")
																}
																
																anotherInterop	{	/*	...	*/	}
												}
								}
				}
}

Compilation
for
Android
The compilations created for an Android target by default are tied to Android build variants: for each build variant, a Kotlin compilation is created under the same
name.

Then, for each Android source set compiled for each of the variants, a Kotlin source set is created under that source set name prepended by the target name, like
the Kotlin source set androidDebug for an Android source set debug and the Kotlin target named android. These Kotlin source sets are added to the variants'
compilations accordingly.

The default source set commonMain is added to each production (application or library) variant's compilation. The commonTest source set is similarly added to the
compilations of unit test and instrumented test variants.

Annotation processing with kapt is also supported, but due to current limitations it requires that the Android target is created before the kapt dependencies are
configured, which needs to be done in a top-level dependencies block rather than within Kotlin source set dependencies.

kotlin	{
				android	{	/*	...	*/	}

511

https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/build-variants#sourcesets

}

dependencies	{
				kapt("com.my.annotation:processor:1.0.0")
}

Compilation
of
the
source
set
hierarchy
Kotlin can build a source set hierarchy with the dependsOn relation.

Source set hierarchy

If the source set jvmMain depends on a source set commonMain then:

Whenever jvmMain is compiled for a certain target, commonMain takes part in that compilation as well and is also compiled into the same target binary form,
such as JVM class files.

Sources of jvmMain 'see' the declarations of commonMain, including internal declarations, and also see the dependencies of commonMain, even those specified
as implementation dependencies.

jvmMain can contain platform-specific implementations for the expected declarations of commonMain.

The resources of commonMain are always processed and copied along with the resources of jvmMain.

The language settings of jvmMain and commonMain should be consistent.

Language settings are checked for consistency in the following ways:

jvmMain should set a languageVersion that is greater than or equal to that of commonMain.

jvmMain should enable all unstable language features that commonMain enables (there's no such requirement for bugfix features).

jvmMain should use all experimental annotations that commonMain uses.

apiVersion, bugfix language features, and progressiveMode can be set arbitrarily.

Build
final
native
binaries
(Experimental
DSL)

512

Kotlin/Native targets are compiled to the *.klib library artifacts, which can be consumed by Kotlin/Native itself as a dependency but cannot be used as a native
library.

To declare final native binaries, use the new binaries format with the kotlinArtifacts DSL. It represents a collection of native binaries built for this target in addition to
the default *.klib artifact and provides a set of methods for declaring and configuring them.

Kotlin artifact DSL can help you to solve a common issue: when you need to access multiple Kotlin modules from your app. Since the usage of several Kotlin/Native
artifacts is limited, you can export multiple Kotlin modules into a single artifact with new DSL.

Declare
binaries
The kotlinArtifacts element is the top-level block for artifact configuration in the Gradle build script. Use the following kinds of binaries to declare elements of the
kotlinArtifacts DSL:

Factory method Binary kind Available for

sharedLib Shared native library All native targets, except for WebAssembly

staticLib Static native library All native targets, except for WebAssembly

framework Objective-C framework macOS, iOS, watchOS, and tvOS targets only

fatFramework Universal fat framework macOS, iOS, watchOS, and tvOS targets only

XCFramework XCFramework framework macOS, iOS, watchOS, and tvOS targets only

Inside the kotlinArtifacts element, you can write the following blocks:

Native.Library

Native.Framework

Native.FatFramework

Native.XCFramework

The simplest version requires the target (or targets) parameter for the selected build type. Currently, two build types are available:

DEBUG – produces a non-optimized binary with debug information

RELEASE – produces an optimized binary without debug information

In the modes parameter, you can specify build types for which you want to create binaries. The default value includes both DEBUG and RELEASE executable
binaries:

Kotlin

The new DSL described below is Experimental. It may be changed at any time. We encourage you to use it for evaluation purposes.

If the new DSL doesn't work for you, see the previous approach to building native binaries.

The kotlin-multiplatform plugin doesn't create any production binaries by default. The only binary available by default is a debug test executable that lets
you run unit tests from the test compilation.

513

kotlinArtifacts	{
				Native.Library	{
								target	=	iosX64	//	Define	your	target	instead
								modes(DEBUG,	RELEASE)
								//	Binary	configuration
				}
}

Groovy

kotlinArtifacts	{
				it.native.Library	{
								target	=	iosX64	//	Define	your	target	instead
								modes(DEBUG,	RELEASE)
								//	Binary	configuration
				}
}

You can also declare binaries with custom names:

Kotlin

kotlinArtifacts	{
				Native.Library("mylib")	{
								//	Binary	configuration
				}
}

Groovy

kotlinArtifacts	{
				it.native.Library("mylib")	{
								//	Binary	configuration
				}
}

The argument sets a name prefix, which is the default name for the binary file. For example, for Windows the code produces the mylib.dll file.

Configure
binaries
For the binary configuration, the following common parameters are available:

Name Description

isStatic Optional linking type that defines the library type. By default, it's false and the library is dynamic.

modes Optional build types, DEBUG and RELEASE.

kotlinOptions Optional compiler options applied to the compilation. See the list of available compiler options.

addModule In addition to the current module, you can add other modules to the resulting artifact.

setModules You can override the list of all modules that will be added to the resulting artifact.

514

Libraries
and
frameworks
When building an Objective-C framework or a native library (shared or static), you may need to pack not just the classes of the current project but also the classes
of any other multiplatform module into a single entity and export all these modules to it.

Library
For the library configuration, the additional target parameter is available:

Name Description

target Declares a particular target of a project. The names of available targets are listed in the Targets section.

Kotlin

kotlinArtifacts	{
				Native.Library("myslib")	{
								target	=	linuxX64
								isStatic	=	false
								modes(DEBUG)
								addModule(project(":lib"))
								kotlinOptions	{
												verbose	=	false
												freeCompilerArgs	+=	"-Xmen=pool"
								}
				}
}

Groovy

kotlinArtifacts	{
				it.native.Library("myslib")	{
								target	=	linuxX64
								it.static	=	false
								modes(DEBUG)
								addModule(project(":lib"))
								kotlinOptions	{
												verbose	=	false
												freeCompilerArgs	+=	"-Xmen=pool"
								}
				}
}

The registered Gradle task is assembleMyslibSharedLibrary that assembles all types of registered "myslib" into a dynamic library.

Framework
For the framework configuration, the following additional parameters are available:

Name Description

target Declares a particular target of a project. The names of available targets are listed in the Targets section.

embedBitcode Declares the mode of bitcode embedding. Use MARKER to embed the bitcode marker (for debug builds) or DISABLE to turn off embedding.
Bitcode embedding is not required for Xcode 14 and later.

Kotlin

kotlinArtifacts	{
				Native.Framework("myframe")	{

515

								modes(DEBUG,	RELEASE)
								target	=	iosArm64
								isStatic	=	false
								embedBitcode	=	EmbedBitcodeMode.MARKER
								kotlinOptions	{
												verbose	=	false
								}
				}
}

Groovy

kotlinArtifacts	{
				it.native.Framework("myframe")	{
								modes(DEBUG,	RELEASE)
								target	=	iosArm64
								it.static	=	false
								embedBitcode	=	EmbedBitcodeMode.MARKER
								kotlinOptions	{
												verbose	=	false
								}
				}
}

The registered Gradle task is assembleMyframeFramework that assembles all types of registered "myframe" framework.

Fat
frameworks
By default, an Objective-C framework produced by Kotlin/Native supports only one platform. However, you can merge such frameworks into a single universal (fat)
binary. This especially makes sense for 32-bit and 64-bit iOS frameworks. In this case, you can use the resulting universal framework on both 32-bit and 64-bit
devices.

For the fat framework configuration, the following additional parameters are available:

Name Description

targets Declares all targets of the project.

embedBitcode Declares the mode of bitcode embedding. Use MARKER to embed the bitcode marker (for debug builds) or DISABLE to turn off embedding.
Bitcode embedding is not required for Xcode 14 and later.

Kotlin

kotlinArtifacts	{
				Native.FatFramework("myfatframe")	{
								targets(iosX32,	iosX64)
								embedBitcode	=	EmbedBitcodeMode.DISABLE
								kotlinOptions	{
												suppressWarnings	=	false
								}
				}
}

Groovy

kotlinArtifacts	{
				it.native.FatFramework("myfatframe")	{
								targets(iosX32,	iosX64)
								embedBitcode	=	EmbedBitcodeMode.DISABLE
								kotlinOptions	{

If for some reason the new DSL doesn't work for you, try the previous approach to export dependencies to binaries.

516

												suppressWarnings	=	false
								}
				}
}

The registered Gradle task is assembleMyfatframeFatFramework that assembles all types of registered "myfatframe" fat framework.

XCFrameworks
All Kotlin Multiplatform projects can use XCFrameworks as an output to gather logic for all the target platforms and architectures in a single bundle. Unlike universal
(fat) frameworks, you don't need to remove all unnecessary architectures before publishing the application to the App Store.

For the XCFrameworks configuration, the following additional parameters are available:

Name Description

targets Declares all targets of the project.

embedBitcode Declares the mode of bitcode embedding. Use MARKER to embed the bitcode marker (for debug builds) or DISABLE to turn off embedding.
Bitcode embedding is not required for Xcode 14 and later.

Kotlin

kotlinArtifacts	{
				Native.XCFramework("sdk")	{
								targets(iosX64,	iosArm64,	iosSimulatorArm64)
								setModules(
												project(":shared"),
												project(":lib")
)
				}
}

Groovy

kotlinArtifacts	{
				it.native.XCFramework("sdk")	{
								targets(iosX64,	iosArm64,	iosSimulatorArm64)
								setModules(
												project(":shared"),	
												project(":lib")
)
				}
}

The registered Gradle task is assembleSdkXCFramework that assembles all types of registered "sdk" XCFrameworks.

Build
final
native
binaries
By default, a Kotlin/Native target is compiled down to a *.klib library artifact, which can be consumed by Kotlin/Native itself as a dependency but cannot be
executed or used as a native library.

If for some reason the new DSL doesn't work for you, try the previous approach to build fat frameworks.

If for some reason the new DSL doesn't work for you, try the previous approach to build XCFrameworks.

517

To declare final native binaries such as executables or shared libraries, use the binaries property of a native target. This property represents a collection of native
binaries built for this target in addition to the default *.klib artifact and provides a set of methods for declaring and configuring them.

Binaries produced by the Kotlin/Native compiler can include third-party code, data, or derived work. This means if you distribute a Kotlin/Native-compiled final
binary, you should always include necessary license files into your binary distribution.

Declare
binaries
Use the following factory methods to declare elements of the binaries collection.

Factory method Binary kind Available for

executable Product executable All native targets

test Test executable All native targets

sharedLib Shared native library All native targets, except for WebAssembly

staticLib Static native library All native targets, except for WebAssembly

framework Objective-C framework macOS, iOS, watchOS, and tvOS targets only

The simplest version doesn't require any additional parameters and creates one binary for each build type. Currently, two build types are available:

DEBUG – produces a non-optimized binary with debug information

RELEASE – produces an optimized binary without debug information

The following snippet creates two executable binaries, debug and release:

kotlin	{
				linuxX64	{	//	Define	your	target	instead.
								binaries	{
												executable	{
																//	Binary	configuration.
												}
								}
				}
}

You can drop the lambda if there is no need for additional configuration:

binaries	{
				executable()
}

You can specify for which build types to create binaries. In the following example, only the debug executable is created:

Kotlin

binaries	{
				executable(listOf(DEBUG))	{

The kotlin-multiplatform plugin doesn't create any production binaries by default. The only binary available by default is a debug test executable that lets
you run unit tests from the test compilation.

518

								//	Binary	configuration.
				}
}

Groovy

binaries	{
				executable([DEBUG])	{
								//	Binary	configuration.
				}
}

You can also declare binaries with custom names:

Kotlin

binaries	{
				executable("foo",	listOf(DEBUG))	{
								//	Binary	configuration.
				}

				//	It's	possible	to	drop	the	list	of	build	types
				//	(in	this	case,	all	the	available	build	types	will	be	used).
				executable("bar")	{
								//	Binary	configuration.
				}
}

Groovy

binaries	{
				executable('foo',	[DEBUG])	{
								//	Binary	configuration.
				}

				//	It's	possible	to	drop	the	list	of	build	types
				//	(in	this	case,	all	the	available	build	types	will	be	used).
				executable('bar')	{
								//	Binary	configuration.
				}
}

The first argument sets a name prefix, which is the default name for the binary file. For example, for Windows the code produces the files foo.exe and bar.exe. You
can also use the name prefix to access the binary in the build script.

Access
binaries
You can access binaries to configure them or get their properties (for example, the path to an output file).

You can get a binary by its unique name. This name is based on the name prefix (if it is specified), build type, and binary kind following the pattern: <optional-name-
prefix><build-type><binary-kind>, for example, releaseFramework or testDebugExecutable.

Kotlin

//	Fails	if	there	is	no	such	binary.
binaries["fooDebugExecutable"]
binaries.getByName("fooDebugExecutable")

//	Returns	null	if	there	is	no	such	binary.
binaries.findByName("fooDebugExecutable")

Static and shared libraries have the suffixes static and shared respectively, for example, fooDebugStatic or barReleaseShared.

519

Groovy

//	Fails	if	there	is	no	such	binary.
binaries['fooDebugExecutable']
binaries.fooDebugExecutable
binaries.getByName('fooDebugExecutable')

//	Returns	null	if	there	is	no	such	binary.
binaries.findByName('fooDebugExecutable')

Alternatively, you can access a binary by its name prefix and build type using typed getters.

Kotlin

//	Fails	if	there	is	no	such	binary.
binaries.getExecutable("foo",	DEBUG)
binaries.getExecutable(DEBUG)										//	Skip	the	first	argument	if	the	name	prefix	isn't	set.
binaries.getExecutable("bar",	"DEBUG")	//	You	also	can	use	a	string	for	build	type.

//	Similar	getters	are	available	for	other	binary	kinds:
//	getFramework,	getStaticLib	and	getSharedLib.

//	Returns	null	if	there	is	no	such	binary.
binaries.findExecutable("foo",	DEBUG)

//	Similar	getters	are	available	for	other	binary	kinds:
//	findFramework,	findStaticLib	and	findSharedLib.

Groovy

//	Fails	if	there	is	no	such	binary.
binaries.getExecutable('foo',	DEBUG)
binaries.getExecutable(DEBUG)										//	Skip	the	first	argument	if	the	name	prefix	isn't	set.
binaries.getExecutable('bar',	'DEBUG')	//	You	also	can	use	a	string	for	build	type.

//	Similar	getters	are	available	for	other	binary	kinds:
//	getFramework,	getStaticLib	and	getSharedLib.

//	Returns	null	if	there	is	no	such	binary.
binaries.findExecutable('foo',	DEBUG)

//	Similar	getters	are	available	for	other	binary	kinds:
//	findFramework,	findStaticLib	and	findSharedLib.

Export
dependencies
to
binaries
When building an Objective-C framework or a native library (shared or static), you may need to pack not just the classes of the current project, but also the classes
of its dependencies. Specify which dependencies to export to a binary using the export method.

Kotlin

kotlin	{
				sourceSets	{
								macosMain.dependencies	{
												//	Will	be	exported.
												api(project(":dependency"))
												api("org.example:exported-library:1.0")
												//	Will	not	be	exported.
												api("org.example:not-exported-library:1.0")
								}
				}
				macosX64("macos").binaries	{
								framework	{
												export(project(":dependency"))
												export("org.example:exported-library:1.0")
								}
								sharedLib	{
												//	It's	possible	to	export	different	sets	of	dependencies	to	different	binaries.
												export(project(':dependency'))

520

								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								macosMain.dependencies	{
												//	Will	be	exported.
												api	project(':dependency')
												api	'org.example:exported-library:1.0'
												//	Will	not	be	exported.
												api	'org.example:not-exported-library:1.0'
								}
				}
				macosX64("macos").binaries	{
								framework	{
												export	project(':dependency')
												export	'org.example:exported-library:1.0'
								}
								sharedLib	{
												//	It's	possible	to	export	different	sets	of	dependencies	to	different	binaries.
												export	project(':dependency')
								}
				}
}

For example, you implement several modules in Kotlin and want to access them from Swift. Usage of several Kotlin/Native frameworks in a Swift application is
limited, but you can create an umbrella framework and export all these modules to it.

When you export a dependency, it includes all of its API to the framework API. The compiler adds the code from this dependency to the framework, even if you use
a small fraction of it. This disables dead code elimination for the exported dependency (and for its dependencies, to some extent).

By default, export works non-transitively. This means that if you export the library foo depending on the library bar, only methods of foo are added to the output
framework.

You can change this behavior using the transitiveExport option. If set to true, the declarations of the library bar are exported as well.

Kotlin

binaries	{
				framework	{
								export(project(":dependency"))
								//	Export	transitively.
								transitiveExport	=	true
				}
}

Groovy

binaries	{
				framework	{
								export	project(':dependency')
								//	Export	transitively.
								transitiveExport	=	true
				}
}

You can export only api dependencies of the corresponding source set.

It is not recommended to use transitiveExport: it adds all transitive dependencies of the exported dependencies to the framework. This could increase
both compilation time and binary size.

In most cases, you don't need to add all these dependencies to the framework API. Use export explicitly for the dependencies you need to directly
access from your Swift or Objective-C code.

521

Build
universal
frameworks
By default, an Objective-C framework produced by Kotlin/Native supports only one platform. However, you can merge such frameworks into a single universal (fat)
binary using the lipo tool. This operation especially makes sense for 32-bit and 64-bit iOS frameworks. In this case, you can use the resulting universal framework on
both 32-bit and 64-bit devices.

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.FatFrameworkTask

kotlin	{
				//	Create	and	configure	the	targets.
				val	ios32	=	watchosArm32("watchos32")
				val	ios64	=	watchosArm64("watchos64")
				configure(listOf(watchos32,	watchos64))	{
								binaries.framework	{
												baseName	=	"my_framework"
								}
				}
				//	Create	a	task	to	build	a	fat	framework.
				tasks.register<FatFrameworkTask>("debugFatFramework")	{
								//	The	fat	framework	must	have	the	same	base	name	as	the	initial	frameworks.
								baseName	=	"my_framework"
								//	The	default	destination	directory	is	"<build	directory>/fat-framework".
								destinationDir	=	buildDir.resolve("fat-framework/debug")
								//	Specify	the	frameworks	to	be	merged.
								from(
												ios32.binaries.getFramework("DEBUG"),
												ios64.binaries.getFramework("DEBUG")
)
				}
}

Groovy

import	org.jetbrains.kotlin.gradle.tasks.FatFrameworkTask

kotlin	{
				//	Create	and	configure	the	targets.
				targets	{
								watchosArm32("watchos32")
								watchosArm64("watchos64")
								configure([watchos32,	watchos64])	{
												binaries.framework	{
																baseName	=	"my_framework"
												}
								}
				}
				//	Create	a	task	building	a	fat	framework.
				tasks.register("debugFatFramework",	FatFrameworkTask)	{
								//	The	fat	framework	must	have	the	same	base	name	as	the	initial	frameworks.
								baseName	=	"my_framework"
								//	The	default	destination	directory	is	"<build	directory>/fat-framework".
								destinationDir	=	file("$buildDir/fat-framework/debug")
								//	Specify	the	frameworks	to	be	merged.
								from(
												targets.ios32.binaries.getFramework("DEBUG"),
												targets.ios64.binaries.getFramework("DEBUG")
)
				}
}

Build
XCFrameworks
All Kotlin Multiplatform projects can use XCFrameworks as an output to gather logic for all the target platforms and architectures in a single bundle. Unlike universal

The fat framework must have the same base name as the initial frameworks. Otherwise, you'll get an error.

522

https://llvm.org/docs/CommandGuide/llvm-lipo.html

(fat) frameworks, you don't need to remove all unnecessary architectures before publishing the application to the App Store.

Kotlin

import	org.jetbrains.kotlin.gradle.plugin.mpp.apple.XCFramework

plugins	{
				kotlin("multiplatform")
}

kotlin	{
				val	xcf	=	XCFramework()
				val	iosTargets	=	listOf(iosX64(),	iosArm64(),	iosSimulatorArm64())
				
				iosTargets.forEach	{
								it.binaries.framework	{
												baseName	=	"shared"
												xcf.add(this)
								}
				}
}

Groovy

import	org.jetbrains.kotlin.gradle.plugin.mpp.apple.XCFrameworkConfig

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'
}

kotlin	{
				def	xcf	=	new	XCFrameworkConfig(project)
				def	iosTargets	=	[iosX64(),	iosArm64(),	iosSimulatorArm64()]
				
				iosTargets.forEach	{
								it.binaries.framework	{
												baseName	=	'shared'
												xcf.add(it)
								}
				}
}

When you declare XCFrameworks, Kotlin Gradle plugin will register three Gradle tasks:

assembleXCFramework

assembleDebugXCFramework (additionally debug artifact that contains dSYMs)

assembleReleaseXCFramework

If you're using CocoaPods integration in your projects, you can build XCFrameworks with the Kotlin CocoaPods Gradle plugin. It includes the following tasks that
build XCFrameworks with all the registered targets and generate podspec files:

podPublishReleaseXCFramework, which generates a release XCFramework along with a podspec file.

podPublishDebugXCFramework, which generates a debug XCFramework along with a podspec file.

podPublishXCFramework, which generates both debug and release XCFrameworks along with a podspec file.

This can help you distribute shared parts of your project separately from mobile apps through CocoaPods. You can also use XCFrameworks for publishing to
private or public podspec repositories.

Customize
the
Info.plist
file
When producing a framework, the Kotlin/Native compiler generates the information property list file, Info.plist. You can customize its properties with the

Publishing Kotlin frameworks to public repositories is not recommended if those frameworks are built for different versions of Kotlin. Doing so might lead
to conflicts in the end-users' projects.

523

corresponding binary option:

Property Binary option

CFBundleIdentifier bundleId

CFBundleShortVersionString bundleShortVersionString

CFBundleVersion bundleVersion

To enable the feature, pass the -Xbinary=$option=$value compiler flag or set the binaryOption("option", "value") Gradle DSL for the specific framework:

binaries	{
				framework	{
								binaryOption("bundleId",	"com.example.app")
								binaryOption("bundleVersion",	"2")
				}
}

Publishing
multiplatform
libraries
You can publish a multiplatform library to a local Maven repository with the maven-publish Gradle plugin. Specify the group, version, and the repositories where the
library should be published. The plugin creates publications automatically.

plugins	{
				//...
				id("maven-publish")
}

group	=	"com.example"
version	=	"1.0"

publishing	{
				repositories	{
								maven	{
												//...
								}
				}
}

Structure
of
publications
When used with maven-publish, the Kotlin plugin automatically creates publications for each target that can be built on the current host, except for the Android
target, which needs an additional step to configure publishing.

Publications of a multiplatform library include an additional root publication kotlinMultiplatform that stands for the whole library and is automatically resolved to the
appropriate platform-specific artifacts when added as a dependency to the common source set. Learn more about adding dependencies.

This kotlinMultiplatform publication includes metadata artifacts and references the other publications as its variants.

You can also publish a multiplatform library to a GitHub repository. For more information, see GitHub's documentation on GitHub packages.

Some repositories, such as Maven Central, require that the root module contains a JAR artifact without a classifier, for example kotlinMultiplatform-
1.0.jar.
The Kotlin Multiplatform plugin automatically produces the required artifact with the embedded metadata artifacts.
This means you don't have to customize your build by adding an empty artifact to the root module of your library to meet the repository's requirements.

524

https://docs.gradle.org/current/userguide/publishing_maven.html
https://docs.gradle.org/current/userguide/publishing_maven.html#publishing_maven:repositories
https://docs.github.com/en/packages

The kotlinMultiplatform publication may also need the sources and documentation artifacts if that is required by the repository. In that case, add those artifacts by
using artifact(...) in the publication's scope.

Avoid
duplicate
publications
To avoid duplicate publications of modules that can be built on several platforms (like JVM and JS), configure the publishing tasks for these modules to run
conditionally.

You can detect the platform in the script, introduce a flag such as isMainHost and set it to true for the main target platform. Alternatively, you can pass the flag from
an external source, for example, from CI configuration.

This simplified example ensures that publications are only uploaded when isMainHost=true is passed. This means that a publication that can be published from
multiple platforms will be published only once – from the main host.

Kotlin

kotlin	{
				jvm()
				js()
				mingwX64()
				linuxX64()
				val	publicationsFromMainHost	=	
								listOf(jvm(),	js()).map	{	it.name	}	+	"kotlinMultiplatform"
				publishing	{
								publications	{
												matching	{	it.name	in	publicationsFromMainHost	}.all	{
																val	targetPublication	=	this@all
																tasks.withType<AbstractPublishToMaven>()
																								.matching	{	it.publication	==	targetPublication	}
																								.configureEach	{	onlyIf	{	findProperty("isMainHost")	==	"true"	}	}
												}
								}
				}
}

Groovy

kotlin	{
				jvm()
				js()
				mingwX64()
				linuxX64()
				def	publicationsFromMainHost	=	
								[jvm(),	js()].collect	{	it.name	}	+	"kotlinMultiplatform"
				publishing	{
								publications	{
												matching	{	it.name	in	publicationsFromMainHost	}.all	{	targetPublication	->
																tasks.withType(AbstractPublishToMaven)
																								.matching	{	it.publication	==	targetPublication	}
																								.configureEach	{	onlyIf	{	findProperty("isMainHost")	==	"true"	}	}
												}
								}
				}
}

By default, each publication includes a sources JAR that contains the sources used by the main compilation of the target.

Publish
an
Android
library
To publish an Android library, you need to provide additional configuration.

By default, no artifacts of an Android library are published. To publish artifacts produced by a set of Android variants, specify the variant names in the Android
target block:

kotlin	{
				android	{
								publishLibraryVariants("release",	"debug")

525

https://docs.gradle.org/current/javadoc/org/gradle/api/publish/maven/MavenPublication.html#artifact-java.lang.Object-
https://developer.android.com/studio/build/build-variants

				}
}

The example works for Android libraries without product flavors. For a library with product flavors, the variant names also contain the flavors, like fooBarDebug or
fooBazRelease.

The default publishing setup is as follows:

If the published variants have the same build type (for example, all of them are release ordebug), they will be compatible with any consumer build type.

If the published variants have different build types, then only the release variants will be compatible with consumer build types that are not among the published
variants. All other variants (such as debug) will only match the same build type on the consumer side, unless the consumer project specifies the matching
fallbacks.

If you want to make every published Android variant compatible with only the same build type used by the library consumer, set this Gradle property:
kotlin.android.buildTypeAttribute.keep=true.

You can also publish variants grouped by the product flavor, so that the outputs of the different build types are placed in a single module, with the build type
becoming a classifier for the artifacts (the release build type is still published with no classifier). This mode is disabled by default and can be enabled as follows:

kotlin	{
				android	{
								publishLibraryVariantsGroupedByFlavor	=	true
				}
}

Disable
sources
publication
By default, the Kotlin Multiplatform Gradle plugin publishes sources for all the specified targets. However, you can configure and disable sources publication with
the withSourcesJar() API:

To disable sources publication for all the targets:

kotlin	{
				withSourcesJar(publish	=	false)

				jvm()
				linuxX64()
}

To disable sources publication only for the specified target:

kotlin	{
					//	Disable	sources	publication	only	for	JVM:
				jvm	{
								withSourcesJar(publish	=	false)
				}
				linuxX64()
}

To disable sources publication for all targets except for the specified target:

kotlin	{
				//	Disable	sources	publication	for	all	targets	except	for	JVM:
				withSourcesJar(publish	=	false)

				jvm	{
								withSourcesJar(publish	=	true)
				}
				linuxX64()
}

It is not recommended that you publish variants grouped by the product flavor in case they have different dependencies, as those will be merged into one
dependency list.

526

https://developer.android.com/studio/build/build-variants#product-flavors
https://developer.android.com/reference/tools/gradle-api/4.2/com/android/build/api/dsl/BuildType

Introduce
cross-platform
development
to
your
team
These recommendations will help you introduce your team to Kotlin Multiplatform:

Start with empathy

Explain how Kotlin Multiplatform works

Show the value using case studies

Offer a proof by creating a sample project yourself

Prepare for questions from your team

Support your team during the adaptation

Start
with
empathy
Software development is a team game, with each critical decision needing the approval of all team members. Integrating any cross-platform technology will
significantly affect the development process for your mobile application. So before you start integrating Kotlin Multiplatform in your project, you'll need to introduce
your team to the technology and guide them gently to see it's worth adopting.

Understanding the people who work on your project is the first step to successful integration. Your boss is responsible for delivering features with the best quality in
the shortest time possible. To them, any new technology is a risk. Your colleagues have a different perspective, as well. They have experience building apps with
the "native" technology stack. They know how to write the UI and business logic, work with dependencies, test, and debug code in the IDE, and they are already
familiar with the language. Switching to a different ecosystem is very uncomfortable, as it always means leaving your comfort zone.

Given all that, be ready to face lots of biases and answer a lot of questions when advocating for the move to Kotlin Multiplatform. As you do, never lose sight of
what your team needs. Some of the advice below might be useful for preparing your pitch.

Explain
how
it
works
At this stage, you need to get rid of any preexisting bad feelings about cross-platform mobile applications and show that using Kotlin Multiplatform in your project is
not only possible but also won't bring regular cross-platform problems. You should explain why there won't be any problems, such as:

Limitations of using all iOS and Android features – Whenever a task cannot be solved in the shared code or whenever you want to use specific native features,
you can use the expect/actual pattern to seamlessly write platform-specific code.

Performance issues – Shared code written in Kotlin is compiled to different output formats for different targets: to Java bytecode for Android and to native
binaries for iOS. Thus, there is no additional runtime overhead when it comes to executing this code on platforms, and the performance is comparable to native
apps.

Legacy code problems – No matter how large your project is, your existing code will not prevent you from integrating Kotlin Multiplatform. You can start writing
cross-platform code at any moment and connect it to your iOS and Android Apps as a regular dependency, or you can use the code you've already written and
simply modify it to be compatible with iOS.

Being able to explain how technology works is important, as nobody likes when a discussion seems to rely on magic. People might think the worst if anything is
unclear to them, so be careful not to make the mistake of thinking something is too obvious to warrant explanation. Instead, try to explain all the basic concepts
before moving on to the next stage. This document on multiplatform programming could help you systemize your knowledge to prepare for this experience.

Show
the
value
Understanding how the technology works is necessary, but not enough. Your team needs to see the gains of using it, and the way you present these gains should
be related to your product. Kotlin Multiplatform allows you to use a single codebase for the business logic of iOS and Android apps. So if you develop a very thin
client and the majority of the code is UI logic, then the main power of Kotlin Multiplatform will be unused in your project. However, if your application has complex
business logic, for example if you have features like networking, data storage, payments, complex computations, or data synchronization, then this logic could
easily be written and shared between iOS and Android so you can experience the real power of the technology.

At this stage, you need to explain the main gains of using Kotlin Multiplatform in your product. One of the ways is to share stories of other companies who already
benefit from the technology. The successful experience of these teams, especially ones with similar product objectives, could become a key factor in the final
decision.

527

Citing case studies of different companies who already use Kotlin Multiplatform in production could significantly help you make a compelling argument:

Chalk.com – The UI for each of the Chalk.com apps is native to the platform, but otherwise almost everything for their apps can be shared with Kotlin
Multiplatform.

Cash App – A lot of the app's business logic, including the ability to search through all transactions, is implemented with Kotlin Multiplatform.

Yandex.Disk – They started out by experimenting with the integration of a small feature, and as the experiment was considered successful, they implemented
their whole data synchronization logic in Kotlin Multiplatform.

Explore the case studies page for inspirational references.

Offer
proof
The theory is good, but putting it into practice is ultimately most important. As one option to make your case more convincing, you can take the risky choice of
devoting some of your personal free time to creating something with Kotlin Multiplatform and then bringing in the results for your team to discuss. Your prototype
could be some sort of test project, which you would write from scratch and which would demonstrate features that are needed in your application. Create a
multiplatform app using Ktor and SQLDelight – tutorial can guide you well on this process.

The more relevant examples could be produced by experimenting with your current project. You could take one existing feature implemented in Kotlin and make it
cross-platform, or you could even create a new Multiplatform Module in your existing project, take one non-priority feature from the bottom of the backlog, and
implement it in the shared module. Make your Android application work on iOS – tutorial provides a step-by-step guide based on a sample project.

The new Kotlin Multiplatform Mobile plugin for Android Studio will allow you to accomplish either of these tasks in the shortest amount of time by using the Kotlin
Multiplatform App or Kotlin Multiplatform Library wizards.

Prepare
for
questions
No matter how detailed your pitch is, your team will have a lot of questions. Listen carefully, and try to answer them all patiently. You might expect the majority of
the questions to come from the iOS part of the team, as they are the developers who aren't used to seeing Kotlin in their everyday developer routine. This list of
some of the most common questions could help you here:

Q: I heard applications based on cross-platform technologies can be rejected from the AppStore. Is taking this risk worth it?

A: The Apple Store has strict guidelines for application publishing. One of the limitations is that apps may not download, install, or execute code which introduces or
changes features or functionality of the app (App Store Review Guideline 2.5.2). This is relevant for some cross-platform technologies, but not for Kotlin
Multiplatform. Shared Kotlin code compiles to native binaries with Kotlin/Native, bundles a regular iOS framework into your app, and doesn't provide the ability for
dynamic code execution.

Q: Multiplatform projects are built with Gradle, and Gradle has an extremely steep learning curve. Do I need to spend a lot of time now trying to configure my
project?

A: There's actually no need. There are various ways to organize the work process around building Kotlin mobile applications. First, only Android developers could
be responsible for the builds, in which case the iOS team would only write code or even only consume the resulting artifact. You also can organize some workshops
or practice pair programming while facing tasks that require working with Gradle, and this would increase your team's Gradle skills. You can explore different ways
of organizing teamwork for multiplatform projects and choose the one that's most appropriate for your team.

Also, in basic scenarios, you simply need to configure your project at the start, and then you just add dependencies to it. The new AS plugin makes configuring your
project much easier, so it can now be done in a few clicks.

When only the Android part of the team works with shared code, the iOS developers don't even need to learn Kotlin. But when you are ready for your team to move
to the next stage, where everyone contributes to the shared code, making the transition won't take much time. The similarities between the syntax and functionality
of Swift and Kotlin greatly reduce the work required to learn how to read and write shared Kotlin code. Try it yourself!

Q: I heard that Kotlin Multiplatform is experimental technology. Does that mean that we shouldn't use it for production?

A: Experimental status means we and the whole Kotlin community are just trying out an idea, but if it doesn't work, it may be dropped anytime. However, after the
release of Kotlin 1.4, Kotlin Multiplatform is in Alpha status. This means the Kotlin team is fully committed to working to improve and evolve this technology and will
not suddenly drop it. However, before going Beta, there could be some migration issues yet. But even experimental status doesn't prevent a feature from being
used successfully in production, as long as you understand all the risks. Check the Kotlin evolution page for information about the stability statuses of Kotlin
Multiplatform components.

Q: There are not enough multiplatform libraries to implement the business logic, it's much easier to find native alternatives.

A: Of course, we can't compare the number of multiplatform libraries with React Native, for example. But it took five years for React Native to expand their

528

https://kotlinlang.org/lp/multiplatform/case-studies/chalk
https://kotlinconf.com/2019/talks/video/2019/116027/
https://kotlinlang.org/lp/multiplatform/case-studies/yandex
https://kotlinlang.org/lp/multiplatform/case-studies
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-integrate-in-existing-app.html
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile
https://developer.apple.com/app-store/review/guidelines/#software-requirements
https://play.kotlinlang.org/koans/overview

ecosystem to its current size. Kotlin Multiplatform is still young, but the ecosystem has tremendous potential as there are already a lot of modern libraries written in
Kotlin that can be easily ported to multiplatform.

It's also a great time to be an iOS developer in the Kotlin Multiplatform open-source community because the iOS experience is in demand and there are plenty of
opportunities to gain recognition from iOS-specific contributions.

And the more your team digs into the technology, the more interesting and complex their questions will be. Don't worry if you don't have the answers – Kotlin
Multiplatform has a large and supportive community in the Kotlin Slack, where a lot of developers who already use it can help you. We would be very thankful if you
could share with us the most popular questions asked by your team. This information will help us understand what topics need to be covered in the documentation.

Be
supportive
After you decide to use Kotlin Multiplatform, there will be an adaptation period as your team experiments with the technology. And your mission will not be over yet!
By providing continuous support for your teammates, you will reduce the time it takes for your team to dive into the technology and achieve their first results.

Here are some tips on how you can support your team at this stage:

Collect the questions you were asked during the previous stage on the "Kotlin Multiplatform: Frequently asked questions" wiki page and share it with your team.

Create a #kotlin-multiplatform-support Slack channel and become the most active user there.

Organize an informal team building event with popcorn and pizza where you watch educational or inspirational videos about Kotlin Multiplatform. "Shipping a
Mobile Multiplatform Project on iOS & Android" by Ben Asher & Alec Strong could be a good choice.

The reality is that you probably will not change people's hearts and minds in a day or even a week. But patience and attentiveness to the needs of your colleagues
will undoubtedly bring results.

The Kotlin Multiplatform team looks forward to hearing your story.

We'd like to thank the Touchlab team for helping us write this article.

Multiplatform
Gradle
DSL
reference

The Kotlin Multiplatform Gradle plugin is a tool for creating Kotlin Multiplatform projects. Here we provide a reference of its contents; use it as a reminder when
writing Gradle build scripts for Kotlin Multiplatform projects. Learn the concepts of Kotlin Multiplatform projects, how to create and configure them.

Id
and
version
The fully qualified name of the Kotlin Multiplatform Gradle plugin is org.jetbrains.kotlin.multiplatform. If you use the Kotlin Gradle DSL, you can apply the plugin with
kotlin("multiplatform"). The plugin versions match the Kotlin release versions. The most recent version is 1.9.20.

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

Top-level
blocks
kotlin is the top-level block for multiplatform project configuration in the Gradle build script. Inside kotlin, you can write the following blocks:

Multiplatform projects are in Alpha. Language features and tooling may change in future Kotlin versions.

529

https://kotlinlang.slack.com/archives/C3PQML5NU
mailto:kotlin.multiplatform.feedback@kotlinlang.org
https://www.youtube.com/watch?v=je8aqW48JiA
mailto:kotlin.multiplatform.feedback@kotlinlang.org
https://touchlab.co

Block Description

<targetName> Declares a particular target of a project. The names of available targets are listed in the Targets section.

targets All targets of the project.

presets All predefined targets. Use this for configuring multiple predefined targets at once.

sourceSets Configures predefined and declares custom source sets of the project.

Targets
Target is a part of the build responsible for compiling, testing, and packaging a piece of software aimed at one of the supported platforms. Kotlin provides target
presets for each platform. See how to use a target preset.

Each target can have one or more compilations. In addition to default compilations for test and production purposes, you can create custom compilations.

The targets of a multiplatform project are described in the corresponding blocks inside kotlin, for example, jvm, android, iosArm64. The complete list of available
targets is the following:

Target platform Target preset Comments

Kotlin/JVM jvm

Kotlin/JS js Select the execution environment:

browser {} for applications running in the browser.

nodejs {} for applications running on Node.js.

Learn more in Setting up a Kotlin/JS project.

Kotlin/Native Learn about currently supported targets for the macOS, Linux, and Windows hosts in Kotlin/Native target

support.

Android applications and libraries android Manually apply an Android Gradle plugin: com.android.application or com.android.library.

You can only create one Android target per Gradle subproject.

kotlin	{
				jvm()
				iosX64()
				macosX64()
				js().browser()
}

The configuration of a target can include two parts:

A target that is not supported by the current host is ignored during building and, therefore, not published.

530

Common configuration available for all targets.

Target-specific configuration.

Each target can have one or more compilations.

Common
target
configuration
In any target block, you can use the following declarations:

Name Description

attributes Attributes used for disambiguating targets for a single platform.

preset The preset that the target has been created from, if any.

platformType Designates the Kotlin platform of this target. Available values: jvm, androidJvm, js, native, common.

artifactsTaskName The name of the task that builds the resulting artifacts of this target.

components The components used to setup Gradle publications.

JVM
targets
In addition to common target configuration, jvm targets have a specific function:

Name Description

withJava() Includes Java sources into the JVM target's compilations.

Use this function for projects that contain both Java and Kotlin source files. Note that the default source directories for Java sources don't follow the Java plugin's
defaults. Instead, they are derived from the Kotlin source sets. For example, if the JVM target has the default name jvm, the paths are src/jvmMain/java (for
production Java sources) and src/jvmTest/java for test Java sources. Learn more about Java sources in JVM compilations.

kotlin	{
				jvm	{
								withJava()
				}	
}

JavaScript
targets
The js block describes the configuration of JavaScript targets. It can contain one of two blocks depending on the target execution environment:

Name Description

browser Configuration of the browser target.

nodejs Configuration of the Node.js target.

531

Learn more about configuring Kotlin/JS projects.

Browser
browser can contain the following configuration blocks:

Name Description

testRuns Configuration of test execution.

runTask Configuration of project running.

webpackTask Configuration of project bundling with Webpack.

dceTask Configuration of Dead Code Elimination.

distribution Path to output files.

kotlin	{
				js().browser	{
								webpackTask	{	/*	...	*/	}
								testRuns	{	/*	...	*/	}
								dceTask	{
												keep("myKotlinJsApplication.org.example.keepFromDce")
								}
								distribution	{
												directory	=	File("$projectDir/customdir/")
								}
				}
}

Node.js
nodejs can contain configurations of test and run tasks:

Name Description

testRuns Configuration of test execution.

runTask Configuration of project running.

kotlin	{
				js().nodejs	{
								runTask	{	/*	...	*/	}
								testRuns	{	/*	...	*/	}
				}
}

Native
targets
For native targets, the following specific blocks are available:

Name Description

532

https://webpack.js.org/

binaries Configuration of binaries to produce.

cinterops Configuration of interop with C libraries.

Name Description

Binaries
There are the following kinds of binaries:

Name Description

executable Product executable.

test Test executable.

sharedLib Shared library.

staticLib Static library.

framework Objective-C framework.

kotlin	{
				linuxX64	{	//	Use	your	target	instead.
								binaries	{
												executable	{
																//	Binary	configuration.
												}
								}
				}
}

For binary configuration, the following parameters are available:

Name Description

compilation The compilation from which the binary is built. By default, test binaries are based on the test compilation while other binaries - on the main
compilation.

linkerOpts Options passed to a system linker during binary building.

baseName Custom base name for the output file. The final file name will be formed by adding system-dependent prefix and postfix to this base name.

entryPoint The entry point function for executable binaries. By default, it's main() in the root package.

outputFile Access to the output file.

533

linkTask Access to the link task.

runTask Access to the run task for executable binaries. For targets other than linuxX64, macosX64, or mingwX64 the value is null.

isStatic For Objective-C frameworks. Includes a static library instead of a dynamic one.

Name Description

Kotlin

binaries	{
				executable("my_executable",	listOf(RELEASE))	{
								//	Build	a	binary	on	the	basis	of	the	test	compilation.
								compilation	=	compilations["test"]

								//	Custom	command	line	options	for	the	linker.
								linkerOpts	=	mutableListOf("-L/lib/search/path",	"-L/another/search/path",	"-lmylib")

								//	Base	name	for	the	output	file.
								baseName	=	"foo"

								//	Custom	entry	point	function.
								entryPoint	=	"org.example.main"

								//	Accessing	the	output	file.
								println("Executable	path:	${outputFile.absolutePath}")

								//	Accessing	the	link	task.
								linkTask.dependsOn(additionalPreprocessingTask)

								//	Accessing	the	run	task.
								//	Note	that	the	runTask	is	null	for	non-host	platforms.
								runTask?.dependsOn(prepareForRun)
				}

				framework("my_framework"	listOf(RELEASE))	{
								//	Include	a	static	library	instead	of	a	dynamic	one	into	the	framework.
								isStatic	=	true
				}
}

Groovy

binaries	{
				executable('my_executable',	[RELEASE])	{
								//	Build	a	binary	on	the	basis	of	the	test	compilation.
								compilation	=	compilations.test

								//	Custom	command	line	options	for	the	linker.
								linkerOpts	=	['-L/lib/search/path',	'-L/another/search/path',	'-lmylib']

								//	Base	name	for	the	output	file.
								baseName	=	'foo'

								//	Custom	entry	point	function.
								entryPoint	=	'org.example.main'

								//	Accessing	the	output	file.
								println("Executable	path:	${outputFile.absolutePath}")

								//	Accessing	the	link	task.
								linkTask.dependsOn(additionalPreprocessingTask)

								//	Accessing	the	run	task.
								//	Note	that	the	runTask	is	null	for	non-host	platforms.
								runTask?.dependsOn(prepareForRun)
				}

				framework('my_framework'	[RELEASE])	{

534

								//	Include	a	static	library	instead	of	a	dynamic	one	into	the	framework.
								isStatic	=	true
				}
}

Learn more about building native binaries.

CInterops
cinterops is a collection of descriptions for interop with native libraries. To provide an interop with a library, add an entry to cinterops and define its parameters:

Name Description

defFile def file describing the native API.

packageName Package prefix for the generated Kotlin API.

compilerOpts Options to pass to the compiler by the cinterop tool.

includeDirs Directories to look for headers.

Learn more how to configure interop with native languages.

Kotlin

kotlin	{
				linuxX64	{	//	Replace	with	a	target	you	need.
								compilations.getByName("main")	{
												val	myInterop	by	cinterops.creating	{
																//	Def-file	describing	the	native	API.
																//	The	default	path	is	src/nativeInterop/cinterop/<interop-name>.def
																defFile(project.file("def-file.def"))

																//	Package	to	place	the	Kotlin	API	generated.
																packageName("org.sample")

																//	Options	to	be	passed	to	compiler	by	cinterop	tool.
																compilerOpts("-Ipath/to/headers")

																//	Directories	for	header	search	(an	analogue	of	the	-I<path>	compiler	option).
																includeDirs.allHeaders("path1",	"path2")

																//	A	shortcut	for	includeDirs.allHeaders.
																includeDirs("include/directory",	"another/directory")
												}

												val	anotherInterop	by	cinterops.creating	{	/*	...	*/	}
								}
				}
}

Groovy

kotlin	{
				linuxX64	{	//	Replace	with	a	target	you	need.
								compilations.main	{
												cinterops	{
																myInterop	{
																				//	Def-file	describing	the	native	API.
																				//	The	default	path	is	src/nativeInterop/cinterop/<interop-name>.def
																				defFile	project.file("def-file.def")

																				//	Package	to	place	the	Kotlin	API	generated.
																				packageName	'org.sample'

535

																				//	Options	to	be	passed	to	compiler	by	cinterop	tool.
																				compilerOpts	'-Ipath/to/headers'

																				//	Directories	for	header	search	(an	analogue	of	the	-I<path>	compiler	option).
																				includeDirs.allHeaders("path1",	"path2")

																				//	A	shortcut	for	includeDirs.allHeaders.
																				includeDirs("include/directory",	"another/directory")
																}

																anotherInterop	{	/*	...	*/	}
												}
								}
				}
}

Android
targets
The Kotlin Multiplatform plugin contains two specific functions for android targets. Two functions help you configure build variants:

Name Description

publishLibraryVariants() Specifies build variants to publish. Learn more about publishing Android

libraries.

publishAllLibraryVariants() Publishes all build variants.

kotlin	{
				android	{
								publishLibraryVariants("release",	"debug")
				}
}

Learn more about compilation for Android.

Source
sets
The sourceSets block describes source sets of the project. A source set contains Kotlin source files that participate in compilations together, along with their
resources, dependencies, and language settings.

A multiplatform project contains predefined source sets for its targets; developers can also create custom source sets for their needs.

Predefined
source
sets
Predefined source sets are set up automatically upon creation of a multiplatform project. Available predefined source sets are the following:

Name Description

commonMain Code and resources shared between all platforms. Available in all multiplatform projects. Used in all main compilations of a project.

commonTest Test code and resources shared between all platforms. Available in all multiplatform projects. Used in all test compilations of a project.

The android configuration inside kotlin doesn't replace the build configuration of any Android project. Learn more about writing build scripts for Android
projects in Android developer documentation.

536

https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build

<targetName>
<compilationName>

Target-specific sources for a compilation. <targetName> is the name of a predefined target and <compilationName> is the name of a
compilation for this target. Examples: jsTest, jvmMain.

Name Description

With Kotlin Gradle DSL, the sections of predefined source sets should be marked by getting.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{	/*	...	*/	}
				}
}

Groovy

kotlin	{	
				sourceSets	{	
								commonMain	{	/*	...	*/	}	
				}
}

Learn more about source sets.

Custom
source
sets
Custom source sets are created by the project developers manually. To create a custom source set, add a section with its name inside the sourceSets section. If
using Kotlin Gradle DSL, mark custom source sets by creating.

Kotlin

kotlin	{	
				sourceSets	{	
								val	myMain	by	creating	{	/*	...	*/	}	//	create	a	new	source	set	by	the	name	'MyMain'
				}
}

Groovy

kotlin	{	
				sourceSets	{	
								myMain	{	/*	...	*/	}	//	create	or	configure	a	source	set	by	the	name	'myMain'	
				}
}

Note that a newly created source set isn't connected to other ones. To use it in the project's compilations, connect it with other source sets.

Source
set
parameters
Configurations of source sets are stored inside the corresponding blocks of sourceSets. A source set has the following parameters:

Name Description

kotlin.srcDir Location of Kotlin source files inside the source set directory.

537

resources.srcDir Location of resources inside the source set directory.

dependsOn Connection with another source set.

dependencies Dependencies of the source set.

languageSettings Language settings applied to the source set.

Name Description

Kotlin

kotlin	{	
				sourceSets	{	
								val	commonMain	by	getting	{
												kotlin.srcDir("src")
												resources.srcDir("res")

												dependencies	{
																/*	...	*/
												}
								}
				}
}

Groovy

kotlin	{	
				sourceSets	{	
								commonMain	{
												kotlin.srcDir('src')
												resources.srcDir('res')

												dependencies	{
																/*	...	*/
												}
								}
				}
}

Compilations
A target can have one or more compilations, for example, for production or testing. There are predefined compilations that are added automatically upon target
creation. You can additionally create custom compilations.

To refer to all or some particular compilations of a target, use the compilations object collection. From compilations, you can refer to a compilation by its name.

Learn more about configuring compilations.

Predefined
compilations
Predefined compilations are created automatically for each target of a project except for Android targets. Available predefined compilations are the following:

Name Description

main Compilation for production sources.

538

test Compilation for tests.

Name Description

Kotlin

kotlin	{
				jvm	{
								val	main	by	compilations.getting	{
												output	//	get	the	main	compilation	output
								}

								compilations["test"].runtimeDependencyFiles	//	get	the	test	runtime	classpath
				}
}

Groovy

kotlin	{
				jvm	{
								compilations.main.output	//	get	the	main	compilation	output
								compilations.test.runtimeDependencyFiles	//	get	the	test	runtime	classpath
				}
}

Custom
compilations
In addition to predefined compilations, you can create your own custom compilations. To create a custom compilation, add a new item into the compilations
collection. If using Kotlin Gradle DSL, mark custom compilations by creating.

Learn more about creating a custom compilation.

Kotlin

kotlin	{
				jvm()	{
								compilations	{
												val	integrationTest	by	compilations.creating	{
																defaultSourceSet	{
																				dependencies	{
																								/*	...	*/
																				}
																}

																//	Create	a	test	task	to	run	the	tests	produced	by	this	compilation:
																tasks.register<Test>("integrationTest")	{
																				/*	...	*/
																}
												}
								}
				}
}

Groovy

kotlin	{
				jvm()	{
								compilations.create('integrationTest')	{
												defaultSourceSet	{
																dependencies	{
																				/*	...	*/
																}
												}

												//	Create	a	test	task	to	run	the	tests	produced	by	this	compilation:
												tasks.register('jvmIntegrationTest',	Test)	{
																/*	...	*/

539

												}
								}
				}
}

Compilation
parameters
A compilation has the following parameters:

Name Description

defaultSourceSet The compilation's default source set.

kotlinSourceSets Source sets participating in the compilation.

allKotlinSourceSets Source sets participating in the compilation and their connections via dependsOn().

compilerOptions Compiler options applied to the compilation. For the list of available options, see Compiler

options.

compileKotlinTask Gradle task for compiling Kotlin sources.

compileKotlinTaskName Name of compileKotlinTask.

compileAllTaskName Name of the Gradle task for compiling all sources of a compilation.

output The compilation output.

compileDependencyFiles Compile-time dependency files (classpath) of the compilation.

runtimeDependencyFiles Runtime dependency files (classpath) of the compilation.

Kotlin

kotlin	{
				jvm	{
								val	main	by	compilations.getting	{
												compilerOptions.configure	{	
																//	Set	up	the	Kotlin	compiler	options	for	the	'main'	compilation:
																jvmTarget.set(JvmTarget.JVM_1_8)
												}
								
												compileKotlinTask	//	get	the	Kotlin	task	'compileKotlinJvm'	
												output	//	get	the	main	compilation	output
								}
								
								compilations["test"].runtimeDependencyFiles	//	get	the	test	runtime	classpath
				}

				//	Configure	all	compilations	of	all	targets:
				targets.all	{
								compilations.all	{
												compilerOptions.configure	{
																allWarningsAsErrors.set(true)
												}

540

								}
				}
}

Groovy

kotlin	{
				jvm	{
								compilations.main.compilerOptions.configure	{	
												//	Setup	the	Kotlin	compiler	options	for	the	'main'	compilation:
												jvmTarget.set(JvmTarget.JVM_1_8)
								}

								compilations.main.compileKotlinTask	//	get	the	Kotlin	task	'compileKotlinJvm'	
								compilations.main.output	//	get	the	main	compilation	output
								compilations.test.runtimeDependencyFiles	//	get	the	test	runtime	classpath
				}

				//	Configure	all	compilations	of	all	targets:
				targets.all	{
								compilations.all	{
												compilerOptions.configure	{
																allWarningsAsError.set(true)
												}
								}
				}
}

Dependencies
The dependencies block of the source set declaration contains the dependencies of this source set.

Learn more about configuring dependencies.

There are four types of dependencies:

Name Description

api Dependencies used in the API of the current module.

implementation Dependencies used in the module but not exposed outside it.

compileOnly Dependencies used only for compilation of the current module.

runtimeOnly Dependencies available at runtime but not visible during compilation of any module.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																api("com.example:foo-metadata:1.0")
												}
								}
								val	jvmMain	by	getting	{
												dependencies	{
																implementation("com.example:foo-jvm:1.0")
												}
								}
				}
}

541

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																api	'com.example:foo-metadata:1.0'
												}
								}
								jvmMain	{
												dependencies	{
																implementation	'com.example:foo-jvm:1.0'
												}
								}
				}
}

Additionally, source sets can depend on each other and form a hierarchy. In this case, the dependsOn() relation is used.

Source set dependencies can also be declared in the top-level dependencies block of the build script. In this case, their declarations follow the pattern
<sourceSetName><DependencyKind>, for example, commonMainApi.

Kotlin

dependencies	{
				"commonMainApi"("com.example:foo-common:1.0")
				"jvm6MainApi"("com.example:foo-jvm6:1.0")
}

Groovy

dependencies	{
				commonMainApi	'com.example:foo-common:1.0'
				jvm6MainApi	'com.example:foo-jvm6:1.0'
}

Language
settings
The languageSettings block of a source set defines certain aspects of project analysis and build. The following language settings are available:

Name Description

languageVersion Provides source compatibility with the specified version of Kotlin.

apiVersion Allows using declarations only from the specified version of Kotlin bundled libraries.

enableLanguageFeature Enables the specified language feature. The available values correspond to the language features that are currently experimental or have
been introduced as such at some point.

optIn Allows using the specified opt-in annotation.

progressiveMode Enables the progressive mode.

Kotlin

kotlin	{

542

				sourceSets.all	{
								languageSettings.apply	{
												languageVersion	=	"1.8"	//	possible	values:	"1.4",	"1.5",	"1.6",	"1.7",	"1.8",	"1.9"
												apiVersion	=	"1.8"	//	possible	values:	"1.3",	"1.4",	"1.5",	"1.6",	"1.7",	"1.8",	"1.9"
												enableLanguageFeature("InlineClasses")	//	language	feature	name
												optIn("kotlin.ExperimentalUnsignedTypes")	//	annotation	FQ-name
												progressiveMode	=	true	//	false	by	default
								}
				}
}

Groovy

kotlin	{
				sourceSets.all	{
								languageSettings	{
												languageVersion	=	'1.8'	//	possible	values:	'1.4',	'1.5',	'1.6',	'1.7',	'1.8',	'1.9'
												apiVersion	=	'1.8'	//	possible	values:	'1.3',	'1.4',	'1.5',	'1.6',	'1.7',	'1.8',	'1.9'
												enableLanguageFeature('InlineClasses')	//	language	feature	name
												optIn('kotlin.ExperimentalUnsignedTypes')	//	annotation	FQ-name
												progressiveMode	=	true	//	false	by	default
								}
				}
}

Android
source
set
layout
The new Android source set layout was introduced in Kotlin 1.8.0 and became the default in 1.9.0. Follow this guide to understand the key differences between the
deprecated and the new layouts, as well as how to migrate your projects.

Check
the
compatibility
The new layout requires Android Gradle plugin 7.0 or later and is supported in Android Studio 2022.3 and later. Check your version of the Android Gradle plugin and
upgrade if necessary.

Rename
Kotlin
source
sets
If applicable, rename the source sets in your project, following this pattern:

Previous source set layout New source set layout

targetName + AndroidSourceSet.name targetName + AndroidVariantType

{AndroidSourceSet.name} maps to {KotlinSourceSet.name} as follows:

Previous source set layout New source set layout

main androidMain androidMain

test androidTest androidUnitTest

You don't need to implement all the suggestions, only those that are applicable to your particular projects.

543

androidTest androidAndroidTest androidInstrumentedTest

Previous source set layout New source set layout

Move
source
files
If applicable, move your source files to the new directories, following this pattern:

Previous source set layout New source set layout

The layout had additional /kotlin SourceDirectories src/{KotlinSourceSet.name}/kotlin

{AndroidSourceSet.name} maps to {SourceDirectories included} as follows:

Previous source set layout New source set layout

main src/androidMain/kotlin
src/main/kotlin
src/main/java

src/androidMain/kotlin
src/main/kotlin
src/main/java

test src/androidTest/kotlin
src/test/kotlin
src/test/java

src/androidUnitTest/kotlin
src/test/kotlin
src/test/java

androidTest src/androidAndroidTest/kotlin
src/androidTest/java

src/androidInstrumentedTest/kotlin
src/androidTest/java, src/androidTest/kotlin

Move
the
AndroidManifest.xml
file
If you have the AndroidManifest.xml file in your project, move it to the new directory, following this pattern:

Previous source set layout New source set layout

src/{AndroidSourceSet.name}/AndroidManifest.xml src/{KotlinSourceSet.name}/AndroidManifest.xml

{AndroidSourceSet.name} maps to {AndroidManifest.xml location} as follows:

Previous source set layout New source set layout

main src/main/AndroidManifest.xml src/androidMain/AndroidManifest.xml

debug src/debug/AndroidManifest.xml src/androidDebug/AndroidManifest.xml

544

Check
the
relationship
between
Android
and
common
tests
The new Android source set layout changes the relationship between Android-instrumented tests (renamed to androidInstrumentedTest in the new layout) and
common tests.

Previously, the dependsOn relationship between androidAndroidTest and commonTest was the default. It meant the following:

The code in commonTest was available in androidAndroidTest.

expect declarations in commonTest had to have corresponding actual implementations in androidAndroidTest.

Tests declared in commonTest were also running as Android instrumented tests.

In the new Android source set layout, the dependsOn relationship is not added by default. If you prefer the previous behavior, manually declare the following
relationship in your build.gradle.kts file:

kotlin	{
//	...
				sourceSets	{
								val	commonTest	by	getting
								val	androidInstrumentedTest	by	getting	{
												dependsOn(commonTest)
								}
				}
}

Adjust
the
implementation
of
Android
flavors
Previously, the Kotlin Gradle plugin eagerly created source sets that corresponded to Android source sets containing debug and release build types or custom
flavors like demo and full. It made the source sets accessible by using expressions like val androidDebug by getting { ... }.

The new Android source set layout makes use of Android's onVariants to create source sets. It makes such expressions invalid, leading to errors like
org.gradle.api.UnknownDomainObjectException: KotlinSourceSet with name 'androidDebug' not found.

To work around that, use the new invokeWhenCreated() API in your build.gradle.kts file:

kotlin	{
//	...
				@OptIn(ExperimentalKotlinGradlePluginApi::class)
				sourceSets.invokeWhenCreated("androidFreeDebug")	{
//	...
				}
}

Compatibility
guide
for
Kotlin
Multiplatform
This guide summarizes incompatible changes you might encounter while developing projects with Kotlin Multiplatform.

Version
compatibility
When configuring your project, check the compatibility of a particular Kotlin version (the version of Kotlin Multiplatform Gradle plugin) with available Gradle, Xcode,
and Android Gradle plugin versions:

Kotlin version Gradle Android Gradle plugin Xcode

1.9.20 7.5 and later 7.4.2–8.2 15.0

Mind the deprecation cycle of a specific change in relation to the Kotlin version you have in your projects. The current Stable version of Kotlin is 1.9.20.

545

https://developer.android.com/reference/tools/gradle-api/8.0/com/android/build/api/variant/AndroidComponentsExtension#onVariants(com.android.build.api.variant.VariantSelector,kotlin.Function1)

New
approach
to
auto-generated
targets
What's changed?

Target accessors auto-generated by Gradle are no longer available inside the kotlin.targets block. Use the findByName("targetName") method instead.

Note that such accessors are still available in the kotlin.targets case, for example, kotlin.targets.linuxX64.

What's the best practice now?

Before Now

kotlin	{
				targets	{
								
configure(['windows',
												'linux'])	{
								}
				}
}

kotlin	{
				targets	{
								
configure([findByName('windows'),
												findByName('linux')])	{
								}
				}
}

When do the changes take effect?

In Kotlin 1.7.20, an error is introduced when using target accessors in the kotlin.targets block.

For more information, see the corresponding issue in YouTrack.

Changes
in
Gradle
input
and
output
compile
tasks
What's changed?

Kotlin compile tasks no longer inherit the Gradle AbstractCompile task that has the sourceCompatibility and targetCompatibility inputs, making them unavailable in
Kotlin users' scripts.

Other breaking changes in compile tasks:

What's the best practice now?

Before Now

The SourceTask.stableSources input is no longer available. Use the sources input instead. Also, the setSource() methods are still available.

The sourceFilesExtensions input was removed. Compile tasks still implement the PatternFilterable interface. Use its methods for filtering Kotlin
sources.

The Gradle destinationDir: File output was deprecated. Use the destinationDirectory: DirectoryProperty output instead.

The classpath property of the KotlinCompile task is
deprecated.

All compile tasks now use the libraries input for a list of libraries required for compilation.

When do the changes take effect?

In Kotlin 1.7.20, inputs are not available, the output is replaced, and the classpath property is deprecated.

For more information, see the corresponding issue in YouTrack.

546

https://youtrack.jetbrains.com/issue/KT-47047
https://youtrack.jetbrains.com/issue/KT-32805

New
configuration
names
for
dependencies
on
the
compilation
What's changed?

Compilation configurations created by the Kotlin Multiplatform Gradle Plugin received new names.

A target in the Kotlin Multiplatform project has two default compilations, main and test. Each of these compilations has its own default source set, for example,
jvmMain and jvmTest. Previously the configuration names for the test compilation and its default source set were the same, which might lead to a name clash
resulting in issues when a configuration marked with platform-specific attributes is included in another configuration.

Now compilation configurations have an extra Compilation postfix, while projects and plugins that use old hard-coded configuration names no longer compile.

Configuration names for dependencies on the corresponding source set stay the same.

What's the best practice now?

Before Now

Dependencies of the jvmMain compilation jvm<Scope> jvmCompilation<Scope>

dependencies	{
				
add("jvmImplementation",
								
"foo.bar.baz:1.2.3")
}

dependencies	{
				
add("jvmCompilationImplementation",
								"foo.bar.baz:1.2.3")
}

Dependencies of the jvmMain source set jvmMain<Scope>

Dependencies of the jvmTest compilation jvmTest<Scope> jvmTestCompilation<Scope>

Dependencies of the jvmTest source set jvmTest<Scope>

The available scopes are Api, Implementation, CompileOnly, and RuntimeOnly.

When do the changes take effect?

In Kotlin 1.8.0, an error is introduced when using old configuration names in hard-coded strings.

For more information, see the corresponding issue in YouTrack.

Deprecated
Gradle
properties
for
hierarchical
structure
support
What's changed?

Throughout its evolution, Kotlin was gradually introducing the support for hierarchical structure, in multiplatform projects, an ability to have intermediate source sets
between the common source set commonMain and any platform-specific one, for example, jvmMain.

For the transition period, while the toolchain wasn't stable enough, a couple of Gradle properties were introduced, allowing granular opt-ins and opt-outs.

Since Kotlin 1.6.20, the hierarchical project structure support has been enabled by default. However, these properties were kept for opting out in case of blocking
issues. After processing all the feedback, we're now starting to phase out those properties completely.

The following properties are now deprecated:

547

https://youtrack.jetbrains.com/issue/KT-35916/

kotlin.internal.mpp.hierarchicalStructureByDefault

kotlin.mpp.enableCompatibilityMetadataVariant

kotlin.mpp.hierarchicalStructureSupport

kotlin.mpp.enableGranularSourceSetsMetadata

kotlin.native.enableDependencyPropagation

What's the best practice now?

Remove these properties from your gradle.properties and local.properties files.

Avoid setting them programmatically in the Gradle build scripts or your Gradle plugins.

In case deprecated properties are set by some third-party Gradle plugin used in your build, ask the plugin maintainers not to set these properties.

As the default behavior of the Kotlin toolchain doesn't include such properties since 1.6.20, we don't expect any serious impact from removing them. Most possible
consequences will be visible immediately after the project rebuild.

If you're a library author and want to be extra safe, check that consumers can work with your library.

When do the changes take effect?

Here's the planned deprecation cycle:

1.8.20: report a warning when these properties are used

1.9.20: raise this warning to an error

2.0: remove these properties; the Kotlin Gradle plugin ignores their usages

In the unlikely case you face some problems after removing these properties, create an issue in YouTrack.

Deprecated
support
of
multiplatform
libraries
published
in
the
legacy
mode
What's changed?

Previously, we have deprecated the legacy mode in Kotlin Multiplatform projects preventing the publication of "legacy" binaries and encouraged you to migrate your
projects to the hierarchical structure.

To continue phasing out "legacy" binaries from the ecosystem, starting with Kotlin 1.9.0, the use of legacy libraries is also discouraged. If your project uses
dependencies on legacy libraries, you'll see the following warning:

The	dependency	group:artifact:1.0	was	published	in	the	legacy	mode.	Support	for	such	dependencies	will	be	removed	in	the	future

What's the best practice now?

If you use multiplatform libraries, most of them have already migrated to the "hierarchical structure" mode, so you only need to update the library version. See the
documentation of the respective libraries for details.

If the library doesn't support non-legacy binaries yet, you can contact the maintainers and tell them about this compatibility issue.

If you're a library author, update the Kotlin Gradle plugin to the latest version and ensure you've fixed the deprecated Gradle properties.

The Kotlin team is eager to help the ecosystem migrate, so if you face any issues, don't hesitate to create an issue in YouTrack.

When do the changes take effect?

Here's the planned deprecation cycle:

1.9: introduce a deprecation warning for dependencies on legacy libraries

2.0: raise the warning for dependencies on legacy libraries to an error

>2.0: remove support for dependencies on legacy libraries; using such dependencies can cause build failures

548

https://kotl.in/issue
https://kotl.in/issue

Deprecated
API
for
adding
Kotlin
source
sets
directly
to
the
Kotlin
compilation
What's changed?

The access to KotlinCompilation.source has been deprecated. A code like this produces a deprecation warning:

kotlin	{
				jvm()
				js()
				ios()
				
				sourceSets	{
								val	commonMain	by	getting
								val	myCustomIntermediateSourceSet	by	creating	{
												dependsOn(commonMain)
								}
								
								targets["jvm"].compilations["main"].source(myCustomIntermediateSourceSet)
				}
}

What's the best practice now?

To replace KotlinCompilation.source(someSourceSet), add the dependsOn relation from the default source set of the KotlinCompilation to someSourceSet. We
recommend referring to the source directly using by getting, which is shorter and more readable. However, you can also use
KotlinCompilation.defaultSourceSet.dependsOn(someSourceSet), which is applicable in all cases.

You can change the code above in one of the following ways:

kotlin	{
				jvm()
				js()
				ios()

				sourceSets	{
								val	commonMain	by	getting
								val	myCustomIntermediateSourceSet	by	creating	{
												dependsOn(commonMain)
								}
								
								//	Option	#1.	Shorter	and	more	readable,	use	it	when	possible.	
								//	Usually,	the	name	of	the	default	source	set	
								//	is	a	simple	concatenation	of	the	target	name	and	the	compilation	name:
								val	jvmMain	by	getting	{
												dependsOn(myCustomIntermediateSourceSet)
								}
								
								//	Option	#2.	Generic	solution,	use	it	if	your	build	script	requires	a	more	advanced	approach:
								targets["jvm"].compilations["main"].defaultSourceSet.dependsOn(myCustomIntermediateSourceSet)
				}
}

When do the changes take effect?

Here's the planned deprecation cycle:

1.9.0: introduce a deprecation warning when KotlinComplation.source is used

1.9.20: raise this warning to an error

>1.9.20: remove KotlinComplation.source from the Kotlin Gradle plugin, attempts to use it lead to "unresolved reference" errors during the buildscript
compilation

Migration
from
kotlin-js
Gradle
plugin
to
kotlin-multiplatform
Gradle
plugin
What's changed?

Starting with Kotlin 1.9.0, the kotlin-js Gradle plugin is deprecated. Basically, it duplicated the functionality of the kotlin-multiplatform plugin with the js() target and
shared the same implementation under the hood. Such overlap created confusion and increased maintenance load on the Kotlin team. We encourage you to
migrate to the kotlin-multiplatform Gradle plugin with the js() target instead.

549

What's the best practice now?

1. Remove the kotlin-js Gradle plugin from your project and apply kotlin-multiplatform in the settings.gradle.kts file if you're using the pluginManagement block:

kotlin-js

//	settings.gradle.kts:
pluginManagement	{
				plugins	{
								//	Remove	the	following	line:
								kotlin("js")	version	"1.9.0"
				}

				repositories	{
								//	...
				}
}

kotlin-multiplatform

//	settings.gradle.kts:
pluginManagement	{
				plugins	{
								//	Add	the	following	line	instead:
								kotlin("multiplatform")	version	"1.9.0"
				}

				repositories	{
								//	...
				}
}

In case you're using a different way of applying plugins, see the Gradle documentation for migration instructions.

2. Move your source files from the main and test folders to the jsMain and jsTest folders in the same directory.

3. Adjust dependency declarations:

We recommend using the sourceSets block and configuring dependencies of respective source sets, jsMain for production dependencies and jsTest for test
dependencies. See Adding dependencies for more details.

However, if you want to declare your dependencies in a top-level block, change declarations from api("group:artifact:1.0") to add("jsMainApi",
"group:artifact:1.0") and so on.

You can change the code in your build.gradle.kts file in one of the following ways:

kotlin-js

//	build.gradle.kts:
plugins	{
				kotlin("js")	version	"1.9.0"
}

dependencies	{
				testImplementation(kotlin("test"))
				implementation("org.jetbrains.kotlinx:kotlinx-html:0.8.0")
}

kotlin	{
				js	{
								//	...
				}
}

kotlin-multiplatform

In this case, make sure that the top-level dependencies block comes after the kotlin block. Otherwise, you'll get an error "Configuration not found".

550

https://docs.gradle.org/current/userguide/plugins.html

//	build.gradle.kts:
plugins	{
				kotlin("multiplatform")	version	"1.9.0"
}

kotlin	{
				js	{
								//	...
				}

				//	Option	#1.	Declare	dependencies	in	the	sourceSets	block:
				sourceSets	{
								val	jsMain	by	getting	{
												dependencies	{
																//	No	need	for	the	js	prefix	here,	you	can	just	copy	and	paste	it	from	the	top-level	block
																implementation("org.jetbrains.kotlinx:kotlinx-html:0.8.0")
												}
								}
				}
}

dependencies	{
				//	Option	#2.	Add	the	js	prefix	to	the	dependency	declaration:
				add("jsTestImplementation",	kotlin("test"))
}

4. The DSL provided by the Kotlin Gradle plugin inside the kotlin block remains unchanged in most cases. However, if you were referring to low-level Gradle
entities, like tasks and configurations, by names, you now need to adjust them, usually by adding the js prefix. For example, you can find the browserTest task
under the name jsBrowserTest.

When do the changes take effect?

In 1.9.0, the use of the kotlin-js Gradle plugin produces a deprecation warning.

Rename
of
android
target
to
androidTarget
What's changed?

We continue our efforts to stabilize Kotlin Multiplatform. An essential step in this way is to provide first-class support for the Android target. In the future, this
support will be provided via a separate plugin, developed by the Android team from Google.

To open the way for the new solution from Google, we're renaming the android block to androidTarget in the current Kotlin DSL in 1.9.0. This is a temporary change
that is necessary to free the short android name for the upcoming DSL from Google.

What's the best practice now?

Rename all the occurrences of the android block to androidTarget. When the new plugin for the Android target support is available, migrate to the DSL from Google.
It will be the preferred option to work with Android in Kotlin Multiplatform projects.

When do the changes take effect?

In Kotlin 1.9.0, a deprecation warning is introduced when the android name is used in Kotlin Multiplatform projects.

Declaring
several
similar
targets
What's changed?

We discourage declaring several similar targets in a single Gradle project. For example:

kotlin	{
				jvm("jvmKtor")
				jvm("jvmOkHttp")	//	Not	recommended	and	produces	a	deprecation	warning
}

One popular case is having two related pieces of code together. For example, you might want to use jvm("jvmKtor") and jvm("jvmOkHttp") in your :shared Gradle
project to implement networking using the Ktor or OkHttp libraries:

551

//	shared/build.gradle.kts:
kotlin	{
				jvm("jvmKtor")	{
								attributes.attribute(/*	...	*/)
				}
				jvm("jvmOkHttp")	{
								attributes.attribute(/*	...	*/)
				}

				sourceSets	{
								val	commonMain	by	getting
								val	commonJvmMain	by	sourceSets.creating	{
												dependsOn(commonMain)
												dependencies	{
																//	Shared	dependencies
												}
								}
								val	jvmKtorMain	by	getting	{
												dependsOn(commonJvmMain)
												dependencies	{
																//	Ktor	dependencies
												}
								}
								val	jvmOkHttpMain	by	getting	{
												dependsOn(commonJvmMain)
												dependencies	{
																//	OkHttp	dependencies
												}
								}
				}
}

The implementation comes with a non-trivial configuration complexity:

You have to set up Gradle attributes on the :shared side and each consumer's side. Otherwise, Gradle can't resolve dependencies in such projects because it's
not clear whether the consumer should receive the Ktor-based or the OkHttp-based implementation without additional information.

You have to set up the commonJvmMain source set manually.

The configuration involves a handful of low-level Gradle and the Kotlin Gradle plugin abstractions and APIs.

What's the best practice now?

The configuration gets complicated because Ktor-based and OkHttp-based implementations are in the same Gradle project. In many cases, it's possible to extract
those parts into separate Gradle projects. Here's a general outline of this refactoring:

1. Replace two duplicating targets from the original project with a single target. If you had a shared source set between these targets, move its sources and
configuration to the default source set of the newly created target:

//	shared/build.gradle.kts:
kotlin	{
				jvm()

				sourceSets	{
								jvmMain	{
												//	Copy	the	configuration	of	jvmCommonMain	here
								}
				}
}

2. Add two new Gradle projects, usually by calling include in your settings.gradle.kts file. For example:

include(":okhttp-impl")
include(":ktor-impl")

3. Configure each new Gradle project:

Most likely, you don't need to apply the kotlin("multiplatform") plugin, as these projects compile only to one target. In this example, you can apply
kotlin("jvm").

Move the content of original target-specific source sets to their respective projects, for example, from jvmKtorMain to ktor-impl/src.

Copy the configuration of source sets: dependencies, compiler options, and so on.

552

Add a dependency from a new Gradle project to the original one.

//	ktor-impl/build.gradle.kts:
plugins	{
				kotlin("jvm")
}

dependencies	{
				project(":shared")	//	Add	dependency	on	the	original	project
				//	Copy	dependencies	of	jvmKtorMain	here
}

kotlin	{
				compilerOptions	{
								//	Copy	compiler	options	of	jvmKtorMain	here
				}
}

While this approach requires more work on the initial setup, it doesn't use any low-level entities of Gradle and the Kotlin Gradle plugin, making it easier to use and
maintain the resulting build.

When do the changes take effect?

Here's the planned deprecation cycle:

1.9.20: introduce a deprecation warning when similar multiple targets are used in Kotlin Multiplatform projects

2.0: report an error in such cases, causing the build to fail

Deprecated
jvmWithJava
preset
What's changed?

targetPresets.jvmWithJava is deprecated, and its usage is discouraged.

What's the best practice now?

Use jvm { withJava() } target instead. Note that after switching to jvm { withJava() }, you'll need to adjust the paths to source directories with .java sources.

For example, if you use a jvm target with the default name "jvm":

Before Now

src/main/java src/jvmMain/java

src/test/java src/jvmTest/java

When do the changes take effect?

Here's the planned deprecation cycle:

1.3.40: introduce a warning when targetPresets.jvmWithJava is used

1.9.20: raise this warning to an error

>1.9.20: remove targetPresets.jvmWithJava API; attempts to use it lead to the buildscript compilation failure

Unfortunately, we can't provide detailed migration steps for each case. If the instructions above don't work for you, describe your case in this YouTrack
issue.

Even though the whole targetPresets API is deprecated, the jvmWithJava preset has a different deprecation timeline.

553

https://youtrack.jetbrains.com/issue/KT-59316

Deprecated
legacy
Android
source
set
layout
What's changed?

The new Android source set layout is used by default since Kotlin 1.9.0. Support for the legacy layout is deprecated, and the use of the
kotlin.mpp.androidSourceSetLayoutVersion Gradle property now triggers a deprecation diagnostic.

When do the changes take effect?

Here's the planned deprecation cycle:

<=1.9.0: report a warning when kotlin.mpp.androidSourceSetLayoutVersion=1 is used; the warning can be suppressed with
kotlin.mpp.androidSourceSetLayoutVersion1.nowarn=true Gradle property

1.9.20: raise this warning to an error; the error cannot be suppressed

>1.9.20: remove support for kotlin.mpp.androidSourceSetLayoutVersion=1; the Kotlin Gradle plugin ignores the property

Deprecated
commonMain
and
commonTest
with
custom
dependsOn
What's changed?

The commonMain and commonTest source sets usually represent the roots of the main and test source set hierarchies, respectively. However, it was possible to
override that by manually configuring dependsOn relations of these source sets.

Maintaining such configuration requires extra effort and knowledge about multiplatform build internals. Additionally, it decreases code readability and reusability of
the code because you need to read the particular buildscript to be sure whether the commonMain is the root of the main source set hierarchy.

Therefore, accessing dependsOn on commonMain and commonTest is now deprecated.

What's the best practice now?

Suppose you need to migrate to 1.9.20 the customCommonMain source set that uses commonMain.dependsOn(customCommonMain). In most cases,
customCommonMain participates in the same compilations as commonMain, so you can merge the customCommonMain into commonMain:

1. Copy sources of customCommonMain into commonMain.

2. Add all dependencies of customCommonMain to commonMain.

3. Add all compiler option settings of customCommonMain to commonMain.

In rare cases, customCommonMain might be participating in more compilations than commonMain. Such configuration requires additional low-level configuration of
the buildscript. If you're not sure if that's your case, it most likely isn't.

If it's actually your case, "swap" these two source sets. To do that, move the sources and settings of customCommonMain to commonMain and vice versa.

When do the changes take effect?

Here's the planned deprecation cycle:

1.9.0: report a warning when dependsOn is used in commonMain

>=1.9.20: report an error when dependsOn is used in commonMain or commonTest

Deprecated
target
presets
API
What's changed?

In the very early development stages, Kotlin Multiplatform introduced an API for working with so-called target presets. Each target preset essentially represented a
factory for Kotlin Multiplatform targets. This API turned out to be largely redundant, as DSL functions like jvm() or iosSimulatorArm64() cover the same cases while
being much more straightforward and concise.

To reduce the confusion and provide a clearer guidelines, all presets-related APIs are now deprecated and will be removed from the public API of the Kotlin Gradle
plugin in future releases. This includes:

The presets property in org.jetbrains.kotlin.gradle.dsl.KotlinMultiplatformExtension

The org.jetbrains.kotlin.gradle.plugin.KotlinTargetPreset interface and all its inheritors

554

The fromPreset overloads

What's the best practice now?

Use respective Kotlin targets instead, for example:

Before Now

kotlin	{
				targets	{
								fromPreset(presets.iosArm64,	
'ios')
				}
}

kotlin	{
				
iosArm64()
}

When do the changes take effect?

Here's the planned deprecation cycle:

1.9.20: report a warning on any usages of the presets-related API

2.0: raise this warning to an error

>2.0: remove the presets-related API from the public API of the Kotlin Gradle plugin; sources that still use it fail with "unresolved reference" errors, and binaries
(for example, Gradle plugins) might fail with linkage errors unless recompiled against the modern versions of the Kotlin Gradle plugin

Kotlin
Multiplatform
Mobile
plugin
releases
We are working on stabilizing the Kotlin Multiplatform Mobile plugin for Android Studio and will be regularly releasing new versions that include new features,
improvements, and bug fixes.

Ensure that you have the latest version of the Kotlin Multiplatform Mobile plugin!

Update
to
the
new
release
Android Studio will suggest updating to a new Kotlin Multiplatform Mobile plugin release as soon as it is available. If you accept the suggestion, it will automatically
update the plugin to the latest version. You'll need to restart Android Studio to complete the plugin installation.

You can check the plugin version and update it manually in Settings/Preferences | Plugins.

You need a compatible version of Kotlin for the plugin to work correctly. You can find compatible versions in the release details. You can check your Kotlin version
and update it in Settings/Preferences | Plugins or in Tools | Kotlin | Configure Kotlin Plugin Updates.

Release
details
The following table lists the details of the latest Kotlin Multiplatform Mobile plugin releases:

Release info Release highlights Compatible Kotlin
version

If you do not have a compatible version of Kotlin installed, the Kotlin Multiplatform Mobile plugin will be disabled. You will need to update your Kotlin
version, and then enable the plugin in Settings/Preferences | Plugins.

555

https://kotlinlang.org/docs/multiplatform-dsl-reference.html#targets
https://plugins.jetbrains.com/plugin/14936-kotlin-multiplatform-mobile

0.8.0

Released: 5 October, 2023

KT-60169 Migrated on the Gradle version catalog.

KT-59269 Renamed android to androidTarget.

KT-59269 Updated Kotlin and dependency versions.

KTIJ-26773 Refactored to use -destination argument instead of -sdk and -arch.

KTIJ-25839 Refactored generated file names.

KTIJ-27058 Added the JVM target config.

KTIJ-27160 Supported Xcode 15.0.

KTIJ-27158 Moved the new module wizard to the experimental state.

Any of Kotlin plugin

versions

0.6.0

Released: 24 May, 2023

Support of the new Canary Android Studio Hedgehog.

Updated versions of Kotlin, Gradle, and libraries in the Multiplatform project.

Applied new targetHierarchy.default() in the Multiplatform project.

Applied source set name suffixes to platform-specific files in the Multiplatform project.

Any of Kotlin plugin

versions

0.5.3

Released: 12 April, 2023

Updated Kotlin and Compose versions.

Fixed an Xcode project scheme parsing.

Added a scheme product type check.

iosApp scheme is now selected by default if presented.

Any of Kotlin plugin

versions

0.5.2

Released: 30 January, 2023

Fixed a problem with Kotlin/Native debugger (slow Spotlight indexing).

Fixed Kotlin/Native debugger in multimodule projects.

New build for Android Studio Giraffe 2022.3.1 Canary.

Added provisioning flags for an iOS app build.

Added inherited paths to the Framework Search Paths option in a generated iOS project.

Any of Kotlin plugin

versions

0.5.1

Released: 30 November,
2022

Fixed new project generation: delete an excess "app" directory. Kotlin 1.7.0—*

0.5.0

Released: 22 November,
2022

Changed the default option for iOS framework distribution: now it is Regular framework.

Moved MyApplicationTheme to a separate file in a generated Android project.

Updated generated Android project.

Fixed an issue with unexpected erasing of new project directory.

Kotlin 1.7.0—*

Release info Release highlights Compatible Kotlin
version

556

https://youtrack.jetbrains.com/issue/KT-60169
https://youtrack.jetbrains.com/issue/KT-59269
https://youtrack.jetbrains.com/issue/KT-59269
https://youtrack.jetbrains.com/issue/KTIJ-26773
https://youtrack.jetbrains.com/issue/KTIJ-25839
https://youtrack.jetbrains.com/issue/KTIJ-27058
https://youtrack.jetbrains.com/issue/KTIJ-27160
https://youtrack.jetbrains.com/issue/KTIJ-27158
https://youtrack.jetbrains.com/issue/KT-55988
https://youtrack.jetbrains.com/issue/KT-24450
https://youtrack.jetbrains.com/issue/KT-55274
https://youtrack.jetbrains.com/issue/KT-55204
https://youtrack.jetbrains.com/issue/KT-55402
https://youtrack.jetbrains.com/issue/KTIJ-23790
https://youtrack.jetbrains.com/issue/KT-54086
https://youtrack.jetbrains.com/issue/KT-53991
https://youtrack.jetbrains.com/issue/KT-54658
https://youtrack.jetbrains.com/issue/KTIJ-23707

0.3.4

Released: 12 September,
2022

Migrated Android app to Jetpack Compose.

Removed outdated HMPP flags.

Removed package name from Android manifest.

Updated .gitignore for Xcode projects.

Updated wizard project for better illustration expect/actual.

Updated compatibility with Canary build of Android Studio.

Updated minimum Android SDK to 21 for Android app.

Fixed an issue with the first launch after installation Xcode.

Fixed an issues with Apple run configuration on M1.

Fixed an issue with local.properties on Windows OS.

Fixed an issue with Kotlin/Native debugger on Canary build of Android Studio.

Kotlin 1.7.0—1.7.*

0.3.3

Released: 9 June, 2022

Updated dependency on Kotlin IDE plugin 1.7.0. Kotlin 1.7.0—1.7.*

0.3.2

Released: 4 April, 2022

Fixed the performance problem with the iOS application debug on Android Studio 2021.2 and 2021.3. Kotlin 1.5.0—1.6.*

0.3.1

Released: 15 February,
2022

Enabled M1 iOS simulator in Kotlin Multiplatform Mobile wizards.

Improved performance for indexing XcProjects: KT-49777, KT-50779.

Build scripts clean up: use kotlin("test") instead of kotlin("test-common") and kotlin("test-annotations-
common").

Increase compatibility range with Kotlin plugin version.

Fixed the problem with JVM debug on Windows host.

Fixed the problem with the invalid version after disabling the plugin.

Kotlin 1.5.0—1.6.*

Release info Release highlights Compatible Kotlin
version

557

https://youtrack.jetbrains.com/issue/KT-53162
https://youtrack.jetbrains.com/issue/KT-52248
https://youtrack.jetbrains.com/issue/KTIJ-22633
https://youtrack.jetbrains.com/issue/KT-53703
https://youtrack.jetbrains.com/issue/KT-53928
https://youtrack.jetbrains.com/issue/KTIJ-22063
https://youtrack.jetbrains.com/issue/KTIJ-22505
https://youtrack.jetbrains.com/issue/KTIJ-22645
https://youtrack.jetbrains.com/issue/KTIJ-21781
https://youtrack.jetbrains.com/issue/KTIJ-22037
https://youtrack.jetbrains.com/issue/KT-53976
https://youtrack.jetbrains.com/issue/KT-51105
https://youtrack.jetbrains.com/issue/KT-49777
https://youtrack.jetbrains.com/issue/KT-50779
https://youtrack.jetbrains.com/issue/KTIJ-20167
https://youtrack.jetbrains.com/issue/KT-50699
https://youtrack.jetbrains.com/issue/KT-50966

0.3.0

Released: 16 November,
2021

New Kotlin Multiplatform Library wizard.

Support for the new type of Kotlin Multiplatform library distribution: XCFramework.

Enabled hierarchical project structure for new cross-platform mobile projects.

Support for explicit iOS targets declaration.

Enabled Kotlin Multiplatform Mobile plugin wizards on non-Mac machines.

Support for subfolders in the Kotlin Multiplatform module wizard.

Support for Xcode Assets.xcassets file.

Fixed the plugin classloader exception.

Updated the CocoaPods Gradle Plugin template.

Kotlin/Native debugger type evaluation improvements.

Fixed iOS device launching with Xcode 13.

Kotlin 1.6.0

0.2.7

Released: August 2, 2021

Added Xcode configuration option for AppleRunConfiguration.

Added support Apple M1 simulators.

Added information about Xcode integration options in Project Wizard.

Added error notification after a project with CocoaPods was generated, but the CocoaPods gem has not been

installed.

Added support Apple M1 simulator target in generated shared module with Kotlin 1.5.30.

Cleared generated Xcode project with Kotlin 1.5.20.

Fixed launching Xcode Release configuration on a real iOS device.

Fixed simulator launching with Xcode 12.5.

Kotlin 1.5.10

0.2.6

Released: June 10, 2021

Compatibility with Android Studio Bumblebee Canary 1.

Support for Kotlin 1.5.20: using the new framework-packing task for Kotlin/Native in the Project
Wizard.

Kotlin 1.5.10

0.2.5

Released: May 25, 2021

Fixed compatibility with Android Studio Arctic Fox 2020.3.1 Beta 1 and higher. Kotlin 1.5.10

0.2.4

Released: May 5, 2021

Use this version of the plugin with Android Studio 4.2 or Android Studio 2020.3.1 Canary 8 or higher.

Compatibility with Kotlin 1.5.0.

Ability to use the CocoaPods dependency manager in the Kotlin Multiplatform module for iOS integration.

Kotlin 1.5.0

Release info Release highlights Compatible Kotlin
version

558

https://youtrack.jetbrains.com/issue/KTIJ-19367
https://youtrack.jetbrains.com/issue/KT-46861
https://youtrack.jetbrains.com/issue/KT-48614
https://youtrack.jetbrains.com/issue/KT-47923
https://youtrack.jetbrains.com/issue/KT-49571
https://youtrack.jetbrains.com/issue/KT-48103
https://youtrack.jetbrains.com/issue/KTIJ-19054
https://youtrack.jetbrains.com/issue/KT-47618
https://youtrack.jetbrains.com/issue/KT-47466
https://youtrack.jetbrains.com/issue/KT-47329
https://youtrack.jetbrains.com/issue/KT-47631
https://youtrack.jetbrains.com/issue/KT-47465
https://youtrack.jetbrains.com/issue/KT-46834
https://youtrack.jetbrains.com/issue/KT-45946

0.2.3

Released: April 5, 2021

The Project Wizard: improvements in naming modules.

Ability to use the CocoaPods dependency manager in the Project Wizard for iOS integration.

Better readability of gradle.properties in new projects.

Sample tests are no longer generated if "Add sample tests for Shared Module" is unchecked.

Fixes and other improvements.

Kotlin 1.4.30

0.2.2

Released: March 3, 2021

Ability to open Xcode-related files in Xcode.

Ability to set up a location for the Xcode project file in the iOS run configuration.

Support for Android Studio 2020.3.1 Canary 8.

Fixes and other improvements.

Kotlin 1.4.30

0.2.1

Released: February 15,
2021

Use this version of the plugin with Android Studio 4.2.

Infrastructure improvements.

Fixes and other improvements.

Kotlin 1.4.30

0.2.0

Released: November 23,
2020

Support for iPad devices.

Support for custom scheme names that are configured in Xcode.

Ability to add custom build steps for the iOS run configuration.

Ability to debug a custom Kotlin/Native binary.

Simplified the code generated by Kotlin Multiplatform Mobile Wizards.

Removed support for the Kotlin Android Extensions plugin, which is deprecated in Kotlin 1.4.20.

Fixed saving physical device configuration after disconnecting from the host.

Other fixes and improvements.

Kotlin 1.4.20

0.1.3

Released: October 2, 2020

Added compatibility with iOS 14 and Xcode 12.

Fixed naming in platform tests created by the Kotlin Multiplatform Mobile Wizard.

Kotlin 1.4.10

Kotlin 1.4.20

0.1.2

Released: September 29,
2020

Fixed compatibility with Kotlin 1.4.20-M1.

Enabled error reporting to JetBrains by default.

Kotlin 1.4.10

Kotlin 1.4.20

Release info Release highlights Compatible Kotlin
version

559

https://youtrack.jetbrains.com/issues?q=issue%20id:%20KT-43449,%20KT-44060,%20KT-41520,%20KT-45282
https://youtrack.jetbrains.com/issue/KT-45478
https://youtrack.jetbrains.com/issue/KT-42908
https://youtrack.jetbrains.com/issue/KT-43441
https://youtrack.jetbrains.com/issues?q=Subsystems:%20%257BKMM%20Plugin%257D%20Type:%20Feature,%20Bug%20State:%20-Obsolete,%20-%257BAs%20designed%257D,%20-Answered,%20-Incomplete%20resolved%20date:%202021-03-10%20..%202021-03-25
https://youtrack.jetbrains.com/issue/KT-44970
https://youtrack.jetbrains.com/issue/KT-44968
https://youtrack.jetbrains.com/issue/KT-45162
https://youtrack.jetbrains.com/issues?q=tag:%20KMM-0.2.2%20
https://youtrack.jetbrains.com/issues?q=tag:%20KMM-0.2.1%20
https://youtrack.jetbrains.com/issue/KT-41932
https://youtrack.jetbrains.com/issue/KT-41677
https://youtrack.jetbrains.com/issue/KT-41678
https://youtrack.jetbrains.com/issue/KT-40954
https://youtrack.jetbrains.com/issue/KT-41712
https://youtrack.jetbrains.com/issue/KT-42121
https://youtrack.jetbrains.com/issue/KT-42390

0.1.1

Released: September 10,
2020

Fixed compatibility with Android Studio Canary 8 and higher. Kotlin 1.4.10

Kotlin 1.4.20

0.1.0

Released: August 31, 2020

The first version of the Kotlin Multiplatform Mobile plugin. Learn more in the blog post. Kotlin 1.4.0

Kotlin 1.4.10

Release info Release highlights Compatible Kotlin
version

Get
started
with
Kotlin/JVM
This tutorial demonstrates how to use IntelliJ IDEA for creating a console application.

To get started, first download and install the latest version of IntelliJ IDEA.

Create
a
project
1. In IntelliJ IDEA, select File | New | Project.

2. In the panel on the left, select New Project.

3. Name the new project and change its location if necessary.

4. From the Language list, select Kotlin.

Select the Create Git repository checkbox to place the new project under version control. You will be able to do it later at any time.

560

https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha/
https://www.jetbrains.com/idea/download/index.html

Create a console application

5. Select the IntelliJ build system. It's a native builder that doesn't require downloading additional artifacts.

If you want to create a more complex project that needs further configuration, select Maven or Gradle. For Gradle, choose a language for the build script: Kotlin
or Groovy.

6. From the JDK list, select the JDK that you want to use in your project.

If the JDK is installed on your computer, but not defined in the IDE, select Add JDK and specify the path to the JDK home directory.

If you don't have the necessary JDK on your computer, select Download JDK.

7. Enable the Add sample code option to create a file with a sample "Hello World!" application.

8. Click Create.

If you chose the Gradle build system, you have in your project a build script file: build.gradle(.kts). It includes the kotlin("jvm") plugin and dependencies
required for your console application. Make sure that you use the latest version of the plugin:

plugins	{
				kotlin("jvm")	version	"1.9.20"
				application
}

561

https://www.oracle.com/java/technologies/downloads/

Create
an
application
1. Open the Main.kt file in src/main/kotlin.

The src directory contains Kotlin source files and resources. The Main.kt file contains sample code that will print Hello World!.

Main.kt with main fun

2. Modify the code so that it requests your name and says Hello to you alone, and not to the whole world:

Introduce a local variable name with the keyword val. It will get its value from an input where you will enter your name – readln().

Use a string template by adding a dollar sign $ before this variable name directly in the text output like this – $name.

fun	main()	{
				println("What's	your	name?")
				val	name	=	readln()
				println("Hello,	$name!")
}

Updated main fun

Run
the
application
Now the application is ready to run. The easiest way to do this is to click the green Run icon in the gutter and select Run 'MainKt'.

The readln() function is available since Kotlin 1.6.0.
Ensure that you have installed the latest version of the Kotlin plugin.

562

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/readln.html

Running a console app

You can see the result in the Run tool window.

Kotlin run output

Enter your name and accept the greetings from your application!

Kotlin run output

563

Congratulations! You have just run your first Kotlin application.

What's
next?
Once you've created this application, you can start to dive deeper into Kotlin syntax:

Add sample code from Kotlin examples

Install the JetBrains Academy plugin for IDEA and complete exercises from the Kotlin Koans course

Comparison
to
Java

Some
Java
issues
addressed
in
Kotlin
Kotlin fixes a series of issues that Java suffers from:

Null references are controlled by the type system.

No raw types

Arrays in Kotlin are invariant

Kotlin has proper function types, as opposed to Java's SAM-conversions

Use-site variance without wildcards

Kotlin does not have checked exceptions

What
Java
has
that
Kotlin
does
not
Checked exceptions

Primitive types that are not classes. The byte-code uses primitives where possible, but they are not explicitly available.

Static members are replaced with companion objects, top-level functions, extension functions, or @JvmStatic.

Wildcard-types are replaced with declaration-site variance and type projections.

Ternary-operator a ? b : c is replaced with if expression.

What
Kotlin
has
that
Java
does
not
Lambda expressions + Inline functions = performant custom control structures

Extension functions

Null-safety

Smart casts

String templates

Properties

Primary constructors

First-class delegation

Type inference for variable and property types

Singletons

Declaration-site variance & Type projections

564

https://play.kotlinlang.org/byExample/overview
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy/docs/learner-start-guide.html?section=Kotlin%20Koans

Range expressions

Operator overloading

Companion objects

Data classes

Separate interfaces for read-only and mutable collections

Coroutines

What's
next?
Learn how to:

Perform typical tasks with strings in Java and Kotlin.

Perform typical tasks with collections in Java and Kotlin.

Handle nullability in Java and Kotlin.

Calling
Java
from
Kotlin
Kotlin is designed with Java interoperability in mind. Existing Java code can be called from Kotlin in a natural way, and Kotlin code can be used from Java rather
smoothly as well. In this section, we describe some details about calling Java code from Kotlin.

Pretty much all Java code can be used without any issues:

import	java.util.*

fun	demo(source:	List<Int>)	{
				val	list	=	ArrayList<Int>()
				//	'for'-loops	work	for	Java	collections:
				for	(item	in	source)	{
								list.add(item)
				}
				//	Operator	conventions	work	as	well:
				for	(i	in	0..source.size	-	1)	{
								list[i]	=	source[i]	//	get	and	set	are	called
				}
}

Getters
and
setters
Methods that follow the Java conventions for getters and setters (no-argument methods with names starting with get and single-argument methods with names
starting with set) are represented as properties in Kotlin. Such properties are also called synthetic properties. Boolean accessor methods (where the name of the
getter starts with is and the name of the setter starts with set) are represented as properties which have the same name as the getter method.

import	java.util.Calendar

fun	calendarDemo()	{
				val	calendar	=	Calendar.getInstance()
				if	(calendar.firstDayOfWeek	==	Calendar.SUNDAY)	{	//	call	getFirstDayOfWeek()
								calendar.firstDayOfWeek	=	Calendar.MONDAY	//	call	setFirstDayOfWeek()
				}
				if	(!calendar.isLenient)	{	//	call	isLenient()
								calendar.isLenient	=	true	//	call	setLenient()
				}
}

calendar.firstDayOfWeek above is an example of a synthetic property.

Note that, if the Java class only has a setter, it isn't visible as a property in Kotlin because Kotlin doesn't support set-only properties.

565

Java
synthetic
property
references

Starting from Kotlin 1.8.20, you can create references to Java synthetic properties. Consider the following Java code:

public	class	Person	{
				private	String	name;
				private	int	age;

				public	Person(String	name,	int	age)	{
								this.name	=	name;
								this.age	=	age;
				}

				public	String	getName()	{
								return	name;
				}

				public	int	getAge()	{
								return	age;
				}
}

Kotlin has always allowed you to write person.age, where age is a synthetic property. Now, you can also create references to Person::age and person::age. The
same applies for name, as well.

val	persons	=	listOf(Person("Jack",	11),	Person("Sofie",	12),	Person("Peter",	11))
				Persons
									//	Call	a	reference	to	Java	synthetic	property:
								.sortedBy(Person::age)
									//	Call	Java	getter	via	the	Kotlin	property	syntax:
								.forEach	{	person	->	println(person.name)	}
}

How
to
enable
Java
synthetic
property
references
To enable this feature, set the -language-version 2.1 compiler option. In a Gradle project, you can do so by adding the following to your build.gradle(.kts):

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask<*>>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_1
)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion
												=	org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_1
}

Methods
returning
void

This feature is Experimental. It may be dropped or changed at any time. We recommend that you use it only for evaluation purposes.

Prior to Kotlin 1.9.0, to enable this feature you had to set the -language-version 1.9 compiler option.

566

If a Java method returns void, it will return Unit when called from Kotlin. If by any chance someone uses that return value, it will be assigned at the call site by the
Kotlin compiler since the value itself is known in advance (being Unit).

Escaping
for
Java
identifiers
that
are
keywords
in
Kotlin
Some of the Kotlin keywords are valid identifiers in Java: in, object, is, and other. If a Java library uses a Kotlin keyword for a method, you can still call the method
escaping it with the backtick (`) character:

foo.`is`(bar)

Null-safety
and
platform
types
Any reference in Java may be null, which makes Kotlin's requirements of strict null-safety impractical for objects coming from Java. Types of Java declarations are
treated in Kotlin in a specific manner and called platform types. Null-checks are relaxed for such types, so that safety guarantees for them are the same as in Java
(see more below).

Consider the following examples:

val	list	=	ArrayList<String>()	//	non-null	(constructor	result)
list.add("Item")
val	size	=	list.size	//	non-null	(primitive	int)
val	item	=	list[0]	//	platform	type	inferred	(ordinary	Java	object)

When you call methods on variables of platform types, Kotlin does not issue nullability errors at compile time, but the call may fail at runtime, because of a null-
pointer exception or an assertion that Kotlin generates to prevent nulls from propagating:

item.substring(1)	//	allowed,	throws	an	exception	if	item	==	null

Platform types are non-denotable, meaning that you can't write them down explicitly in the language. When a platform value is assigned to a Kotlin variable, you
can rely on the type inference (the variable will have an inferred platform type then, as item has in the example above), or you can choose the type you expect (both
nullable and non-nullable types are allowed):

val	nullable:	String?	=	item	//	allowed,	always	works
val	notNull:	String	=	item	//	allowed,	may	fail	at	runtime

If you choose a non-nullable type, the compiler will emit an assertion upon assignment. This prevents Kotlin's non-nullable variables from holding nulls. Assertions
are also emitted when you pass platform values to Kotlin functions expecting non-null values and in other cases. Overall, the compiler does its best to prevent nulls
from propagating far through the program although sometimes this is impossible to eliminate entirely, because of generics.

Notation
for
platform
types
As mentioned above, platform types can't be mentioned explicitly in the program, so there's no syntax for them in the language. Nevertheless, the compiler and IDE
need to display them sometimes (for example, in error messages or parameter info), so there is a mnemonic notation for them:

T! means "T or T?",

(Mutable)Collection<T>! means "Java collection of T may be mutable or not, may be nullable or not",

Array<(out) T>! means "Java array of T (or a subtype of T), nullable or not"

Nullability
annotations
Java types that have nullability annotations are represented not as platform types, but as actual nullable or non-nullable Kotlin types. The compiler supports several
flavors of nullability annotations, including:

JetBrains (@Nullable and @NotNull from the org.jetbrains.annotations package)

JSpecify (org.jspecify.nullness)

Android (com.android.annotations and android.support.annotations)

567

https://www.jetbrains.com/idea/help/nullable-and-notnull-annotations.html
https://jspecify.dev/

JSR-305 (javax.annotation, more details below)

FindBugs (edu.umd.cs.findbugs.annotations)

Eclipse (org.eclipse.jdt.annotation)

Lombok (lombok.NonNull)

RxJava 3 (io.reactivex.rxjava3.annotations)

You can specify whether the compiler reports a nullability mismatch based on the information from specific types of nullability annotations. Use the compiler option
-Xnullability-annotations=@<package-name>:<report-level>. In the argument, specify the fully qualified nullability annotations package and one of these report
levels:

ignore to ignore nullability mismatches

warn to report warnings

strict to report errors.

See the full list of supported nullability annotations in the Kotlin compiler source code.

Annotating
type
arguments
and
type
parameters
You can annotate the type arguments and type parameters of generic types to provide nullability information for them as well.

Type arguments
Consider these annotations on a Java declaration:

@NotNull
Set<@NotNull	String>	toSet(@NotNull	Collection<@NotNull	String>	elements)	{	...	}

They result in the following signature in Kotlin:

fun	toSet(elements:	(Mutable)Collection<String>)	:	(Mutable)Set<String>	{	...	}

When the @NotNull annotation is missing from a type argument, you get a platform type instead:

fun	toSet(elements:	(Mutable)Collection<String!>)	:	(Mutable)Set<String!>	{	...	}

Kotlin also takes into account nullability annotations on type arguments of base classes and interfaces. For example, there are two Java classes with the signatures
provided below:

public	class	Base<T>	{}

public	class	Derived	extends	Base<@Nullable	String>	{}

In the Kotlin code, passing the instance of Derived where the Base<String> is assumed produces the warning.

fun	takeBaseOfNotNullStrings(x:	Base<String>)	{}

fun	main()	{
				takeBaseOfNotNullStrings(Derived())	//	warning:	nullability	mismatch
}

The upper bound of Derived is set to Base<String?>, which is different from Base<String>.

Learn more about Java generics in Kotlin.

All examples in the section use JetBrains nullability annotations from the org.jetbrains.annotations package.

568

https://github.com/JetBrains/kotlin/blob/master/core/compiler.common.jvm/src/org/jetbrains/kotlin/load/java/JvmAnnotationNames.kt

Type parameters
By default, the nullability of plain type parameters in both Kotlin and Java is undefined. In Java, you can specify it using nullability annotations. Let's annotate the
type parameter of the Base class:

public	class	Base<@NotNull	T>	{}

When inheriting from Base, Kotlin expects a non-nullable type argument or type parameter. Thus, the following Kotlin code produces a warning:

class	Derived<K>	:	Base<K>	{}	//	warning:	K	has	undefined	nullability

You can fix it by specifying the upper bound K : Any.

Kotlin also supports nullability annotations on the bounds of Java type parameters. Let's add bounds to Base:

public	class	BaseWithBound<T	extends	@NotNull	Number>	{}

Kotlin translates this just as follows:

class	BaseWithBound<T	:	Number>	{}

So passing nullable type as a type argument or type parameter produces a warning.

Annotating type arguments and type parameters works with the Java 8 target or higher. The feature requires that the nullability annotations support the TYPE_USE
target (org.jetbrains.annotations supports this in version 15 and above). Pass the -Xtype-enhancement-improvements-strict-mode compiler option to report errors
in Kotlin code that uses nullability which deviates from the nullability annotations from Java.

JSR-305
support
The @Nonnull annotation defined in JSR-305 is supported for denoting nullability of Java types.

If the @Nonnull(when = ...) value is When.ALWAYS, the annotated type is treated as non-nullable; When.MAYBE and When.NEVER denote a nullable type; and
When.UNKNOWN forces the type to be platform one.

A library can be compiled against the JSR-305 annotations, but there's no need to make the annotations artifact (e.g. jsr305.jar) a compile dependency for the
library consumers. The Kotlin compiler can read the JSR-305 annotations from a library without the annotations present on the classpath.

Custom nullability qualifiers (KEEP-79) are also supported (see below).

Type qualifier nicknames
If an annotation type is annotated with both @TypeQualifierNickname and JSR-305 @Nonnull (or its another nickname, such as @CheckForNull), then the annotation
type is itself used for retrieving precise nullability and has the same meaning as that nullability annotation:

@TypeQualifierNickname
@Nonnull(when	=	When.ALWAYS)
@Retention(RetentionPolicy.RUNTIME)
public	@interface	MyNonnull	{
}

@TypeQualifierNickname
@CheckForNull	//	a	nickname	to	another	type	qualifier	nickname
@Retention(RetentionPolicy.RUNTIME)
public	@interface	MyNullable	{
}

interface	A	{
				@MyNullable	String	foo(@MyNonnull	String	x);
				//	in	Kotlin	(strict	mode):	`fun	foo(x:	String):	String?`

				String	bar(List<@MyNonnull	String>	x);
				//	in	Kotlin	(strict	mode):	`fun	bar(x:	List<String>!):	String!`

Note: If a nullability annotation supports other targets that are applicable to a type in addition to the TYPE_USE target, then TYPE_USE takes priority. For
example, if @Nullable has both TYPE_USE and METHOD targets, the Java method signature @Nullable String[] f() becomes fun f(): Array<String?>! in
Kotlin.

569

https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/latest/javax/annotation/Nonnull.html
https://jcp.org/en/jsr/detail?id=305
https://github.com/Kotlin/KEEP/blob/master/proposals/jsr-305-custom-nullability-qualifiers.md
https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/latest/javax/annotation/meta/TypeQualifierNickname.html

}

Type qualifier defaults
@TypeQualifierDefault allows introducing annotations that, when being applied, define the default nullability within the scope of the annotated element.

Such annotation type should itself be annotated with both @Nonnull (or its nickname) and @TypeQualifierDefault(...) with one or more ElementType values:

ElementType.METHOD for return types of methods

ElementType.PARAMETER for value parameters

ElementType.FIELD for fields

ElementType.TYPE_USE for any type including type arguments, upper bounds of type parameters and wildcard types

The default nullability is used when a type itself is not annotated by a nullability annotation, and the default is determined by the innermost enclosing element
annotated with a type qualifier default annotation with the ElementType matching the type usage.

@Nonnull
@TypeQualifierDefault({ElementType.METHOD,	ElementType.PARAMETER})
public	@interface	NonNullApi	{
}

@Nonnull(when	=	When.MAYBE)
@TypeQualifierDefault({ElementType.METHOD,	ElementType.PARAMETER,	ElementType.TYPE_USE})
public	@interface	NullableApi	{
}

@NullableApi
interface	A	{
				String	foo(String	x);	//	fun	foo(x:	String?):	String?

				@NotNullApi	//	overriding	default	from	the	interface
				String	bar(String	x,	@Nullable	String	y);	//	fun	bar(x:	String,	y:	String?):	String

				//	The	List<String>	type	argument	is	seen	as	nullable	because	of	`@NullableApi`
				//	having	the	`TYPE_USE`	element	type:
				String	baz(List<String>	x);	//	fun	baz(List<String?>?):	String?

				//	The	type	of	`x`	parameter	remains	platform	because	there's	an	explicit
				//	UNKNOWN-marked	nullability	annotation:
				String	qux(@Nonnull(when	=	When.UNKNOWN)	String	x);	//	fun	baz(x:	String!):	String?
}

Package-level default nullability is also supported:

//	FILE:	test/package-info.java
@NonNullApi	//	declaring	all	types	in	package	'test'	as	non-nullable	by	default
package	 ;

@UnderMigration annotation
The @UnderMigration annotation (provided in a separate artifact kotlin-annotations-jvm) can be used by library maintainers to define the migration status for the
nullability type qualifiers.

The status value in @UnderMigration(status = ...) specifies how the compiler treats inappropriate usages of the annotated types in Kotlin (e.g. using a @MyNullable-
annotated type value as non-null):

MigrationStatus.STRICT makes annotation work as any plain nullability annotation, i.e. report errors for the inappropriate usages and affect the types in the
annotated declarations as they are seen in Kotlin

MigrationStatus.WARN: the inappropriate usages are reported as compilation warnings instead of errors, but the types in the annotated declarations remain
platform

MigrationStatus.IGNORE makes the compiler ignore the nullability annotation completely

The types in this example only take place with the strict mode enabled; otherwise, the platform types remain. See the @UnderMigration annotation and
Compiler configuration sections.

570

https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/latest/javax/annotation/meta/TypeQualifierDefault.html

A library maintainer can add @UnderMigration status to both type qualifier nicknames and type qualifier defaults:

@Nonnull(when	=	When.ALWAYS)
@TypeQualifierDefault({ElementType.METHOD,	ElementType.PARAMETER})
@UnderMigration(status	=	MigrationStatus.WARN)
public	@interface	NonNullApi	{
}

//	The	types	in	the	class	are	non-nullable,	but	only	warnings	are	reported
//	because	`@NonNullApi`	is	annotated	`@UnderMigration(status	=	MigrationStatus.WARN)`
@NonNullApi
public	class	Test	{}

If a default type qualifier uses a type qualifier nickname and they are both @UnderMigration, the status from the default type qualifier is used.

Compiler configuration
The JSR-305 checks can be configured by adding the -Xjsr305 compiler flag with the following options (and their combination):

-Xjsr305={strict|warn|ignore} to set up the behavior for non-@UnderMigration annotations. Custom nullability qualifiers, especially @TypeQualifierDefault, are
already spread among many well-known libraries, and users may need to migrate smoothly when updating to the Kotlin version containing JSR-305 support.
Since Kotlin 1.1.60, this flag only affects non-@UnderMigration annotations.

-Xjsr305=under-migration:{strict|warn|ignore} to override the behavior for the @UnderMigration annotations. Users may have different view on the migration
status for the libraries: they may want to have errors while the official migration status is WARN, or vice versa, they may wish to postpone errors reporting for
some until they complete their migration.

-Xjsr305=@<fq.name>:{strict|warn|ignore} to override the behavior for a single annotation, where <fq.name> is the fully qualified class name of the annotation.
May appear several times for different annotations. This is useful for managing the migration state for a particular library.

The strict, warn and ignore values have the same meaning as those of MigrationStatus, and only the strict mode affects the types in the annotated declarations as
they are seen in Kotlin.

For example, adding -Xjsr305=ignore -Xjsr305=under-migration:ignore -Xjsr305=@org.library.MyNullable:warn to the compiler arguments makes the compiler
generate warnings for inappropriate usages of types annotated by @org.library.MyNullable and ignore all other JSR-305 annotations.

The default behavior is the same to -Xjsr305=warn. The strict value should be considered experimental (more checks may be added to it in the future).

Mapped
types
Kotlin treats some Java types specifically. Such types are not loaded from Java "as is", but are mapped to corresponding Kotlin types. The mapping only matters at
compile time, the runtime representation remains unchanged. Java's primitive types are mapped to corresponding Kotlin types (keeping platform types in mind):

Java type Kotlin type

byte kotlin.Byte

short kotlin.Short

int kotlin.Int

The migration status of a nullability annotation is not inherited by its type qualifier nicknames but is applied to its usages in default type qualifiers.

Note: the built-in JSR-305 annotations @Nonnull, @Nullable and @CheckForNull are always enabled and affect the types of the annotated declarations in
Kotlin, regardless of compiler configuration with the -Xjsr305 flag.

571

https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/latest/javax/annotation/Nonnull.html
https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/3.0.1/javax/annotation/Nullable.html
https://www.javadoc.io/doc/com.google.code.findbugs/jsr305/latest/javax/annotation/CheckForNull.html

long kotlin.Long

char kotlin.Char

float kotlin.Float

double kotlin.Double

boolean kotlin.Boolean

Java type Kotlin type

Some non-primitive built-in classes are also mapped:

Java type Kotlin type

java.lang.Object kotlin.Any!

java.lang.Cloneable kotlin.Cloneable!

java.lang.Comparable kotlin.Comparable!

java.lang.Enum kotlin.Enum!

java.lang.annotation.Annotation kotlin.Annotation!

java.lang.CharSequence kotlin.CharSequence!

java.lang.String kotlin.String!

java.lang.Number kotlin.Number!

java.lang.Throwable kotlin.Throwable!

Java's boxed primitive types are mapped to nullable Kotlin types:

Java type Kotlin type

java.lang.Byte kotlin.Byte?

java.lang.Short kotlin.Short?

572

java.lang.Integer kotlin.Int?

java.lang.Long kotlin.Long?

java.lang.Character kotlin.Char?

java.lang.Float kotlin.Float?

java.lang.Double kotlin.Double?

java.lang.Boolean kotlin.Boolean?

Java type Kotlin type

Note that a boxed primitive type used as a type parameter is mapped to a platform type: for example, List<java.lang.Integer> becomes a List<Int!> in Kotlin.

Collection types may be read-only or mutable in Kotlin, so Java's collections are mapped as follows (all Kotlin types in this table reside in the package
kotlin.collections):

Java type Kotlin read-only type Kotlin mutable type Loaded platform type

Iterator<T> Iterator<T> MutableIterator<T> (Mutable)Iterator<T>!

Iterable<T> Iterable<T> MutableIterable<T> (Mutable)Iterable<T>!

Collection<T> Collection<T> MutableCollection<T> (Mutable)Collection<T>!

Set<T> Set<T> MutableSet<T> (Mutable)Set<T>!

List<T> List<T> MutableList<T> (Mutable)List<T>!

ListIterator<T> ListIterator<T> MutableListIterator<T> (Mutable)ListIterator<T>!

Map<K, V> Map<K, V> MutableMap<K, V> (Mutable)Map<K, V>!

Map.Entry<K, V> Map.Entry<K, V> MutableMap.MutableEntry<K,V> (Mutable)Map.(Mutable)Entry<K, V>!

Java's arrays are mapped as mentioned below:

Java type Kotlin type

int[] kotlin.IntArray!

573

String[] kotlin.Array<(out) String>!

Java type Kotlin type

Java
generics
in
Kotlin
Kotlin's generics are a little different from Java's (see Generics). When importing Java types to Kotlin, the following conversions are done:

Java's wildcards are converted into type projections:

Foo<? extends Bar> becomes Foo<out Bar!>!

Foo<? super Bar> becomes Foo<in Bar!>!

Java's raw types are converted into star projections:

List becomes List<*>! that is List<out Any?>!

Like Java's, Kotlin's generics are not retained at runtime: objects do not carry information about actual type arguments passed to their constructors. For example,
ArrayList<Integer>() is indistinguishable from ArrayList<Character>(). This makes it impossible to perform is-checks that take generics into account. Kotlin only
allows is-checks for star-projected generic types:

if	(a	is	List<Int>)	//	Error:	cannot	check	if	it	is	really	a	List	of	Ints
//	but
if	(a	is	List<*>)	//	OK:	no	guarantees	about	the	contents	of	the	list

Java
arrays
Arrays in Kotlin are invariant, unlike Java. This means that Kotlin won't let you assign an Array<String> to an Array<Any>, which prevents a possible runtime failure.
Passing an array of a subclass as an array of superclass to a Kotlin method is also prohibited, but for Java methods this is allowed through platform types of the
form Array<(out) String>!.

Arrays are used with primitive datatypes on the Java platform to avoid the cost of boxing/unboxing operations. As Kotlin hides those implementation details, a
workaround is required to interface with Java code. There are specialized classes for every type of primitive array (IntArray, DoubleArray, CharArray, and so on) to
handle this case. They are not related to the Array class and are compiled down to Java's primitive arrays for maximum performance.

Suppose there is a Java method that accepts an int array of indices:

public	class	JavaArrayExample	{
				public	void	removeIndices(int[]	indices)	{
								//	code	here...
				}
}

To pass an array of primitive values, you can do the following in Kotlin:

val	javaObj	=	JavaArrayExample()
val	array	=	intArrayOf(0,	1,	2,	3)
javaObj.removeIndices(array)		//	passes	int[]	to	method

When compiling to the JVM bytecode, the compiler optimizes access to arrays so that there's no overhead introduced:

val	array	=	arrayOf(1,	2,	3,	4)
array[1]	=	array[1]	*	2	//	no	actual	calls	to	get()	and	set()	generated
for	(x	in	array)	{	//	no	iterator	created
				print(x)

The static members of these Java types are not directly accessible on the companion objects of the Kotlin types. To call them, use the full qualified
names of the Java types, e.g. java.lang.Integer.toHexString(foo).

574

}

Even when you navigate with an index, it does not introduce any overhead:

for	(i	in	array.indices)	{	//	no	iterator	created
				array[i]	+=	2
}

Finally, in-checks have no overhead either:

if	(i	in	array.indices)	{	//	same	as	(i	>=	0	&&	i	<	array.size)
				print(array[i])
}

Java
varargs
Java classes sometimes use a method declaration for the indices with a variable number of arguments (varargs):

public	class	JavaArrayExample	{

				public	void	removeIndicesVarArg(int...	indices)	{
								//	code	here...
				}
}

In that case you need to use the spread operator * to pass the IntArray:

val	javaObj	=	JavaArrayExample()
val	array	=	intArrayOf(0,	1,	2,	3)
javaObj.removeIndicesVarArg(*array)

Operators
Since Java has no way of marking methods for which it makes sense to use the operator syntax, Kotlin allows using any Java methods with the right name and
signature as operator overloads and other conventions (invoke() etc.) Calling Java methods using the infix call syntax is not allowed.

Checked
exceptions
In Kotlin, all exceptions are unchecked, meaning that the compiler does not force you to catch any of them. So, when you call a Java method that declares a
checked exception, Kotlin does not force you to do anything:

fun	render(list:	List<*>,	to:	Appendable)	{
				for	(item	in	list)	{
								to.append(item.toString())	//	Java	would	require	us	to	catch	IOException	here
				}
}

Object
methods
When Java types are imported into Kotlin, all the references of the type java.lang.Object are turned into Any. Since Any is not platform-specific, it only declares
toString(), hashCode() and equals() as its members, so to make other members of java.lang.Object available, Kotlin uses extension functions.

wait()/notify()
Methods wait() and notify() are not available on references of type Any. Their usage is generally discouraged in favor of java.util.concurrent. If you really need to call
these methods, you can cast to java.lang.Object:

(foo	as	java.lang.Object).wait()

575

getClass()
To retrieve the Java class of an object, use the java extension property on a class reference:

val	fooClass	=	foo::class.java

The code above uses a bound class reference. You can also use the javaClass extension property:

val	fooClass	=	foo.javaClass

clone()
To override clone(), your class needs to extend kotlin.Cloneable:

class	Example	:	Cloneable	{
				override	fun	clone():	Any	{	...	}
}

Don't forget about Effective Java, 3rd Edition, Item 13: Override clone judiciously.

finalize()
To override finalize(), all you need to do is simply declare it, without using the override keyword:

class	C	{
				protected	fun	finalize()	{
								//	finalization	logic
				}
}

According to Java's rules, finalize() must not be private.

Inheritance
from
Java
classes
At most one Java class (and as many Java interfaces as you like) can be a supertype for a class in Kotlin.

Accessing
static
members
Static members of Java classes form "companion objects" for these classes. You can't pass such a "companion object" around as a value but can access the
members explicitly, for example:

if	(Character.isLetter(a))	{	...	}

To access static members of a Java type that is mapped to a Kotlin type, use the full qualified name of the Java type: java.lang.Integer.bitCount(foo).

Java
reflection
Java reflection works on Kotlin classes and vice versa. As mentioned above, you can use instance::class.java, ClassName::class.java or instance.javaClass to enter
Java reflection through java.lang.Class. Do not use ClassName.javaClass for this purpose because it refers to ClassName's companion object class, which is the
same as ClassName.Companion::class.java and not ClassName::class.java.

For each primitive type, there are two different Java classes, and Kotlin provides ways to get both. For example, Int::class.java will return the class instance
representing the primitive type itself, corresponding to Integer.TYPE in Java. To get the class of the corresponding wrapper type, use Int::class.javaObjectType,
which is equivalent of Java's Integer.class.

Other supported cases include acquiring a Java getter/setter method or a backing field for a Kotlin property, a KProperty for a Java field, a Java method or
constructor for a KFunction and vice versa.

576

https://www.oracle.com/technetwork/java/effectivejava-136174.html

SAM
conversions
Kotlin supports SAM conversions for both Java and Kotlin interfaces. This support for Java means that Kotlin function literals can be automatically converted into
implementations of Java interfaces with a single non-default method, as long as the parameter types of the interface method match the parameter types of the
Kotlin function.

You can use this for creating instances of SAM interfaces:

val	runnable	=	Runnable	{	println("This	runs	in	a	runnable")	}

...and in method calls:

val	executor	=	ThreadPoolExecutor()
//	Java	signature:	void	execute(Runnable	command)
executor.execute	{	println("This	runs	in	a	thread	pool")	}

If the Java class has multiple methods taking functional interfaces, you can choose the one you need to call by using an adapter function that converts a lambda to
a specific SAM type. Those adapter functions are also generated by the compiler when needed:

executor.execute(Runnable	{	println("This	runs	in	a	thread	pool")	})

Using
JNI
with
Kotlin
To declare a function that is implemented in native (C or C++) code, you need to mark it with the external modifier:

external	fun	foo(x:	Int):	Double

The rest of the procedure works in exactly the same way as in Java.

You can also mark property getters and setters as external:

var	myProperty:	String
				external	get
				external	set

Behind the scenes, this will create two functions getMyProperty and setMyProperty, both marked as external.

Using
Lombok-generated
declarations
in
Kotlin
You can use Java's Lombok-generated declarations in Kotlin code. If you need to generate and use these declarations in the same mixed Java/Kotlin module, you
can learn how to do this on the Lombok compiler plugin's page. If you call such declarations from another module, then you don't need to use this plugin to compile
that module.

Calling
Kotlin
from
Java
Kotlin code can be easily called from Java. For example, instances of a Kotlin class can be seamlessly created and operated in Java methods. However, there are
certain differences between Java and Kotlin that require attention when integrating Kotlin code into Java. On this page, we'll describe the ways to tailor the interop
of your Kotlin code with its Java clients.

Properties
A Kotlin property is compiled to the following Java elements:

SAM conversions only work for interfaces, not for abstract classes, even if those also have just a single abstract method.

577

a getter method, with the name calculated by prepending the get prefix

a setter method, with the name calculated by prepending the set prefix (only for var properties)

a private field, with the same name as the property name (only for properties with backing fields)

For example, var firstName: String compiles to the following Java declarations:

private	String	firstName;

public	String	getFirstName()	{
				return	firstName;
}

public	void	setFirstName(String	firstName)	{
				this.firstName	=	firstName;
}

If the name of the property starts with is, a different name mapping rule is used: the name of the getter will be the same as the property name, and the name of the
setter will be obtained by replacing is with set. For example, for a property isOpen, the getter will be called isOpen() and the setter will be called setOpen(). This rule
applies for properties of any type, not just Boolean.

Package-level
functions
All the functions and properties declared in a file app.kt inside a package org.example, including extension functions, are compiled into static methods of a Java
class named org.example.AppKt.

//	app.kt
package	org.example

class	Util

fun	getTime()	{	/*...*/	}

//	Java
new	 Util();

AppKt.getTime();

To set a custom name to the generated Java class, use the @JvmName annotation:

@file:JvmName("DemoUtils")

package	org.example

class	Util

fun	getTime()	{	/*...*/	}

//	Java
new	 Util();

DemoUtils.getTime();

Having multiple files with the same generated Java class name (the same package and the same name or the same @JvmName annotation) is normally an error.
However, the compiler can generate a single Java facade class which has the specified name and contains all the declarations from all the files which have that
name. To enable the generation of such a facade, use the @JvmMultifileClass annotation in all such files.

//	oldutils.kt
@file:JvmName("Utils")
@file:JvmMultifileClass

package	org.example

fun	getTime()	{	/*...*/	}

//	newutils.kt
@file:JvmName("Utils")

578

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-name/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-multifile-class/index.html

@file:JvmMultifileClass

package	org.example

fun	getDate()	{	/*...*/	}

//	Java
Utils.getTime();
Utils.getDate();

Instance
fields
If you need to expose a Kotlin property as a field in Java, annotate it with the @JvmField annotation. The field will have the same visibility as the underlying
property. You can annotate a property with @JvmField if it:

has a backing field

is not private

does not have open, override or const modifiers

is not a delegated property

class	User(id:	String)	{
				@JvmField	val	ID	=	id
}

//	Java
class	JavaClient	{
				public	String	getID(User	user)	{
								return	user.ID;
				}
}

Late-Initialized properties are also exposed as fields. The visibility of the field will be the same as the visibility of lateinit property setter.

Static
fields
Kotlin properties declared in a named object or a companion object will have static backing fields either in that named object or in the class containing the
companion object.

Usually these fields are private but they can be exposed in one of the following ways:

@JvmField annotation

lateinit modifier

const modifier

Annotating such a property with @JvmField makes it a static field with the same visibility as the property itself.

class	Key(val	value:	Int)	{
				companion	object	{
								@JvmField
								val	COMPARATOR:	Comparator<Key>	=	compareBy<Key>	{	it.value	}
				}
}

//	Java
Key.COMPARATOR.compare(key1,	key2);
//	public	static	final	field	in	Key	class

A late-initialized property in an object or a companion object has a static backing field with the same visibility as the property setter.

579

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-field/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-field/index.html

object	Singleton	{
				lateinit	var	provider:	Provider
}

//	Java
Singleton.provider	=	new	Provider();
//	public	static	non-final	field	in	Singleton	class

Properties declared as const (in classes as well as at the top level) are turned into static fields in Java:

//	file	example.kt

object	Obj	{
				const	val	CONST	=	1
}

class	C	{
				companion	object	{
								const	val	VERSION	=	9
				}
}

const	val	MAX	=	239

In Java:

int	constant	=	Obj.CONST;
int	max	=	ExampleKt.MAX;
int	version	=	C.VERSION;

Static
methods
As mentioned above, Kotlin represents package-level functions as static methods. Kotlin can also generate static methods for functions defined in named objects
or companion objects if you annotate those functions as @JvmStatic. If you use this annotation, the compiler will generate both a static method in the enclosing
class of the object and an instance method in the object itself. For example:

class	C	{
				companion	object	{
								@JvmStatic	fun	callStatic()	{}
								fun	callNonStatic()	{}
				}
}

Now, callStatic() is static in Java while callNonStatic() is not:

C.callStatic();	//	works	fine
C.callNonStatic();	//	error:	not	a	static	method
C.Companion.callStatic();	//	instance	method	remains
C.Companion.callNonStatic();	//	the	only	way	it	works

Same for named objects:

object	Obj	{
				@JvmStatic	fun	callStatic()	{}
				fun	callNonStatic()	{}
}

In Java:

Obj.callStatic();	//	works	fine
Obj.callNonStatic();	//	error
Obj.INSTANCE.callNonStatic();	//	works,	a	call	through	the	singleton	instance
Obj.INSTANCE.callStatic();	//	works	too

Starting from Kotlin 1.3, @JvmStatic applies to functions defined in companion objects of interfaces as well. Such functions compile to static methods in interfaces.

580

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-static/index.html

Note that static method in interfaces were introduced in Java 1.8, so be sure to use the corresponding targets.

interface	ChatBot	{
				companion	object	{
								@JvmStatic	fun	greet(username:	String)	{
												println("Hello,	$username")
								}
				}
}

@JvmStatic annotation can also be applied on a property of an object or a companion object making its getter and setter methods static members in that object or
the class containing the companion object.

Default
methods
in
interfaces

Starting from JDK 1.8, interfaces in Java can contain default methods. To make all non-abstract members of Kotlin interfaces default for the Java classes
implementing them, compile the Kotlin code with the -Xjvm-default=all compiler option.

Here is an example of a Kotlin interface with a default method:

//	compile	with	-Xjvm-default=all

interface	Robot	{
				fun	move()	{	println("~walking~")	}		//	will	be	default	in	the	Java	interface
				fun	speak():	Unit
}

The default implementation is available for Java classes implementing the interface.

//Java	implementation
public	class	C3PO	implements	Robot	{
				//	move()	implementation	from	Robot	is	available	implicitly
				@Override
				public	void	speak()	{
								System.out.println("I	beg	your	pardon,	sir");
				}
}

C3PO	c3po	=	new	C3PO();
c3po.move();	//	default	implementation	from	the	Robot	interface
c3po.speak();

Implementations of the interface can override default methods.

//Java
public	class	BB8	implements	Robot	{
				//own	implementation	of	the	default	method
				@Override
				public	void	move()	{
								System.out.println("~rolling~");
				}

				@Override
				public	void	speak()	{
								System.out.println("Beep-beep");
				}
}

Default methods are available only for targets JVM 1.8 and above.

581

https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

Compatibility
modes
for
default
methods
If there are clients that use your Kotlin interfaces compiled without the -Xjvm-default=all option, then they may be binary-incompatible with the code compiled with
this option. To avoid breaking the compatibility with such clients, use the -Xjvm-default=all mode and mark interfaces with the @JvmDefaultWithCompatibility
annotation. This allows you to add this annotation to all interfaces in the public API once, and you won't need to use any annotations for new non-public code.

Learn more about compatibility modes:

disable
Default behavior. Do not generate JVM default methods and prohibit @JvmDefault annotation usage.

all
Generate JVM default methods for all interface declarations with bodies in the module. Do not generate DefaultImpls stubs for interface declarations with bodies,
which are generated by default in the disable mode.

If interface inherits a method with body from an interface compiled in the disable mode and doesn't override it, then a DefaultImpls stub will be generated for it.

Breaks binary compatibility if some client code relies on the presence of DefaultImpls classes.

all-compatibility
In addition to the all mode, generate compatibility stubs in the DefaultImpls classes. Compatibility stubs could be useful for library and runtime authors to keep
backward binary compatibility for existing clients compiled against previous library versions. all and all-compatibility modes are changing the library ABI surface that
clients will use after the recompilation of the library. In that sense, clients might be incompatible with previous library versions. This usually means that you need a
proper library versioning, for example, major version increase in SemVer.

The compiler generates all the members of DefaultImpls with the @Deprecated annotation: you shouldn't use these members in Java code, because the compiler
generates them only for compatibility purposes.

In case of inheritance from a Kotlin interface compiled in all or all-compatibility modes, DefaultImpls compatibility stubs will invoke the default method of the
interface with standard JVM runtime resolution semantics.

Perform additional compatibility checks for classes inheriting generic interfaces where in some cases additional implicit method with specialized signatures was
generated in the disable mode: unlike in the disable mode, the compiler will report an error if you don't override such method explicitly and don't annotate the class
with @JvmDefaultWithoutCompatibility (see this YouTrack issue for more details).

Visibility
The Kotlin visibility modifiers map to Java in the following way:

private members are compiled to private members

private top-level declarations are compiled to package-local declarations

protected remains protected (note that Java allows accessing protected members from other classes in the same package and Kotlin doesn't, so Java classes
will have broader access to the code)

Prior to Kotlin 1.4, to generate default methods, you could use the @JvmDefault annotation on these methods. Compiling with -Xjvm-default=all in 1.4+
generally works as if you annotated all non-abstract methods of interfaces with @JvmDefaultand compiled with -Xjvm-default=enable. However, there are
cases when their behavior differs. Detailed information about the changes in default methods generation in Kotlin 1.4 is provided in this post on the Kotlin
blog.

Starting from Kotlin 1.6.20, you can compile modules in the default mode (the -Xjvm-default=disable compiler option) against modules compiled with the -
Xjvm-default=all or -Xjvm-default=all-compatibility modes.

If interface delegation is used, all interface methods are delegated. The only exception are methods annotated with the deprecated @JvmDefault
annotation.

582

https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-default-with-compatibility/
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://blog.jetbrains.com/kotlin/2020/07/kotlin-1-4-m3-generating-default-methods-in-interfaces/
https://youtrack.jetbrains.com/issue/KT-39603

internal declarations become public in Java. Members of internal classes go through name mangling, to make it harder to accidentally use them from Java and
to allow overloading for members with the same signature that don't see each other according to Kotlin rules

public remains public

KClass
Sometimes you need to call a Kotlin method with a parameter of type KClass. There is no automatic conversion from Class to KClass, so you have to do it manually
by invoking the equivalent of the Class<T>.kotlin extension property:

kotlin.jvm.JvmClassMappingKt.getKotlinClass(MainView.class)

Handling
signature
clashes
with
@JvmName
Sometimes we have a named function in Kotlin, for which we need a different JVM name in the bytecode. The most prominent example happens due to type
erasure:

fun	List<String>.filterValid():	List<String>
fun	List<Int>.filterValid():	List<Int>

These two functions can not be defined side-by-side, because their JVM signatures are the same: filterValid(Ljava/util/List;)Ljava/util/List;. If we really want them to
have the same name in Kotlin, we can annotate one (or both) of them with @JvmName and specify a different name as an argument:

fun	List<String>.filterValid():	List<String>

@JvmName("filterValidInt")
fun	List<Int>.filterValid():	List<Int>

From Kotlin they will be accessible by the same name filterValid, but from Java it will be filterValid and filterValidInt.

The same trick applies when we need to have a property x alongside with a function getX():

val	x:	Int
				@JvmName("getX_prop")
				get()	=	15

fun	getX()	=	10

To change the names of generated accessor methods for properties without explicitly implemented getters and setters, you can use @get:JvmName and
@set:JvmName:

@get:JvmName("x")
@set:JvmName("changeX")
var	x:	Int	=	23

Overloads
generation
Normally, if you write a Kotlin function with default parameter values, it will be visible in Java only as a full signature, with all parameters present. If you wish to
expose multiple overloads to Java callers, you can use the @JvmOverloads annotation.

The annotation also works for constructors, static methods, and so on. It can't be used on abstract methods, including methods defined in interfaces.

class	Circle	@JvmOverloads	constructor(centerX:	Int,	centerY:	Int,	radius:	Double	=	1.0)	{
				@JvmOverloads	fun	draw(label:	String,	lineWidth:	Int	=	1,	color:	String	=	"red")	{	/*...*/	}
}

For every parameter with a default value, this will generate one additional overload, which has this parameter and all parameters to the right of it in the parameter
list removed. In this example, the following will be generated:

583

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-name/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.jvm/-jvm-overloads/index.html

//	Constructors:
Circle(int	centerX,	int	centerY,	double	radius)
Circle(int	centerX,	int	centerY)

//	Methods
void	draw(String	label,	int	lineWidth,	String	color)	{	}
void	draw(String	label,	int	lineWidth)	{	}
void	draw(String	label)	{	}

Note that, as described in Secondary constructors, if a class has default values for all constructor parameters, a public constructor with no arguments will be
generated for it. This works even if the @JvmOverloads annotation is not specified.

Checked
exceptions
Kotlin does not have checked exceptions. So, normally the Java signatures of Kotlin functions do not declare exceptions thrown. Thus, if you have a function in
Kotlin like this:

//	example.kt
package	demo

fun	writeToFile()	{
				/*...*/
				throw	IOException()
}

And you want to call it from Java and catch the exception:

//	Java
try	{
				 Example.writeToFile();
}	catch	(IOException	e)	{	
				//	error:	writeToFile()	does	not	declare	IOException	in	the	throws	list
				//	...
}

You get an error message from the Java compiler, because writeToFile() does not declare IOException. To work around this problem, use the @Throws annotation
in Kotlin:

@Throws(IOException::class)
fun	writeToFile()	{
				/*...*/
				throw	IOException()
}

Null-safety
When calling Kotlin functions from Java, nobody prevents us from passing null as a non-nullable parameter. That's why Kotlin generates runtime checks for all
public functions that expect non-nulls. This way we get a NullPointerException in the Java code immediately.

Variant
generics
When Kotlin classes make use of declaration-site variance, there are two options of how their usages are seen from the Java code. For example, imagine you have
the following class and two functions that use it:

class	Box<out	T>(val	value:	T)

interface	Base
class	Derived	:	Base

fun	boxDerived(value:	Derived):	Box<Derived>	=	Box(value)
fun	unboxBase(box:	Box<Base>):	Base	=	box.value

A naive way of translating these functions into Java would be this:

584

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-throws/index.html

Box<Derived>	boxDerived(Derived	value)	{	...	}
Base	unboxBase(Box<Base>	box)	{	...	}

The problem is that in Kotlin you can write unboxBase(boxDerived(Derived())) but in Java that would be impossible because in Java the class Box is invariant in its
parameter T, and thus Box<Derived> is not a subtype of Box<Base>. To make this work in Java, you would have to define unboxBase as follows:

Base	unboxBase(Box<?	extends	Base>	box)	{	...	}		

This declaration uses Java's wildcards types (? extends Base) to emulate declaration-site variance through use-site variance, because it is all Java has.

To make Kotlin APIs work in Java, the compiler generates Box<Super> as Box<? extends Super> for covariantly defined Box (or Foo<? super Bar> for
contravariantly defined Foo) when it appears as a parameter. When it's a return value, wildcards are not generated, because otherwise Java clients will have to deal
with them (and it's against the common Java coding style). Therefore, the functions from our example are actually translated as follows:

//	return	type	-	no	wildcards
Box<Derived>	boxDerived(Derived	value)	{	...	}
	
//	parameter	-	wildcards	
Base	unboxBase(Box<?	extends	Base>	box)	{	...	}

If you need wildcards where they are not generated by default, use the @JvmWildcard annotation:

fun	boxDerived(value:	Derived):	Box<@JvmWildcard	Derived>	=	Box(value)
//	is	translated	to	
//	Box<?	extends	Derived>	boxDerived(Derived	value)	{	...	}

In the opposite case, if you don't need wildcards where they are generated, use @JvmSuppressWildcards:

fun	unboxBase(box:	Box<@JvmSuppressWildcards	Base>):	Base	=	box.value
//	is	translated	to	
//	Base	unboxBase(Box<Base>	box)	{	...	}

Translation
of
type
Nothing
The type Nothing is special, because it has no natural counterpart in Java. Indeed, every Java reference type, including java.lang.Void, accepts null as a value, and
Nothing doesn't accept even that. So, this type cannot be accurately represented in the Java world. This is why Kotlin generates a raw type where an argument of
type Nothing is used:

fun	emptyList():	List<Nothing>	=	listOf()
//	is	translated	to
//	List	emptyList()	{	...	}

Get
started
with
Spring
Boot
and
Kotlin
Get started with Spring Boot and Kotlin by completing this tutorial: it walks you through the process of creating a simple application with Spring Boot and adding a
database to store the information.

Going through these four steps, you'll learn a lot of essential features of the Kotlin language:

 Create a Spring Boot project

When the argument type is final, there's usually no point in generating the wildcard, so Box<String> is always Box<String>, no matter what position it
takes.

@JvmSuppressWildcards can be used not only on individual type arguments, but on entire declarations, such as functions or classes, causing all
wildcards inside them to be suppressed.

585

 Add a data class to Spring Boot project

 Add database support for the Spring Boot project

 Use Spring Data CrudRepository for database access

Next
step
Start by creating a Spring Boot project with Kotlin using IntelliJ IDEA.

See
also
Look through our Java to Kotlin (J2K) interop and migration guides:

Calling Java from Kotlin and Calling Kotlin from Java

Collections in Java and Kotlin

Strings in Java and Kotlin

Join
the
community
 Kotlin slack: get an invitation and join the #spring and #server channels

 Stack Overflow: subscribe to the "kotlin", "spring-kotlin", or "ktor" tags

 Kotlin YouTube channel: subscribe and watch videos about Kotlin with Spring

Create
a
Spring
Boot
project
with
Kotlin
The first part of the tutorial shows you how to create a Spring Boot project in IntelliJ IDEA using Project Wizard.

Before
you
start
Download and install the latest version of IntelliJ IDEA Ultimate Edition.

Create
a
Spring
Boot
project
Create a new Spring Boot project with Kotlin by using the Project Wizard in IntelliJ IDEA Ultimate Edition:

1. In IntelliJ IDEA, select File | New | Project.

2. In the panel on the left, select New Project | Spring Initializr.

3. Specify the following fields and options in the Project Wizard window:

Name: demo

Language: Kotlin

Build system: Gradle

JDK: Java 17 JDK

If you use IntelliJ IDEA Community Edition or another IDE, you can generate a Spring Boot project using a web-based project generator.

You can also create a new project using IntelliJ IDEA with the Spring Boot plugin.

586

https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://kotlinlang.slack.com/archives/C0B8ZTWE4
https://kotlinlang.slack.com/archives/C0B8RC352
https://stackoverflow.com/questions/tagged/kotlin
https://stackoverflow.com/questions/tagged/spring-kotlin
https://stackoverflow.com/questions/tagged/ktor
https://www.youtube.com/playlist?list=PLlFc5cFwUnmxOJL0GSSZ1Vot4KL2Vwe7x
https://www.jetbrains.com/idea/download/index.html
https://start.spring.io
https://www.jetbrains.com/help/idea/spring-boot.html

Java: 17

Create Spring Boot project

4. Ensure that you have specified all the fields and click Next.

5. Select the following dependencies that will be required for the tutorial:

Web / Spring Web

SQL / Spring Data JDBC

SQL / H2 Database

This tutorial uses Amazon Corretto version 18.

587

Set up Spring Boot project

6. Click Create to generate and set up the project.

7. After this, you can observe the following structure in the Project view:

The IDE will generate and open a new project. It may take some time to download and import the project dependencies.

588

Set up Spring Boot project

The generated Gradle project corresponds to the Maven's standard directory layout:

There are packages and classes under the main/kotlin folder that belong to the application.

The entry point to the application is the main() method of the DemoApplication.kt file.

Explore
the
project
Gradle
build
file
Open the build.gradle.kts file: it is the Gradle Kotlin build script, which contains a list of the dependencies required for the application.

The Gradle file is standard for Spring Boot, but it also contains necessary Kotlin dependencies, including the kotlin-spring Gradle plugin – kotlin("plugin.spring").

Here is the full script with the explanation of all parts and dependencies:

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompile	//	For	`KotlinCompile`	task	below

plugins	{	
				id("org.springframework.boot")	version	"3.1.2"
				id("io.spring.dependency-management")	version	"1.1.2"
				kotlin("jvm")	version	"1.9.20"	//	The	version	of	Kotlin	to	use
				kotlin("plugin.spring")	version	"1.9.20"	//	The	Kotlin	Spring	plugin
}

589

group	=	"com.example"
version	=	"0.0.1-SNAPSHOT"

java	{
				sourceCompatibility	=	JavaVersion.VERSION_17
}

repositories	{
				mavenCentral()
}

dependencies	{	
				implementation("org.springframework.boot:spring-boot-starter-data-jdbc")	
				implementation("org.springframework.boot:spring-boot-starter-web")	
				implementation("com.fasterxml.jackson.module:jackson-module-kotlin")	//	Jackson	extensions	for	Kotlin	for	working	with	JSON
				implementation("org.jetbrains.kotlin:kotlin-reflect")	//	Kotlin	reflection	library,	required	for	working	with	Spring
				runtimeOnly("com.h2database:h2")	
				testImplementation("org.springframework.boot:spring-boot-starter-test")
}

tasks.withType<KotlinCompile>	{	//	Settings	for	`KotlinCompile`	tasks
				kotlinOptions	{	//	Kotlin	compiler	options
								freeCompilerArgs	=	listOf("-Xjsr305=strict")	//	`-Xjsr305=strict`	enables	the	strict	mode	for	JSR-305	annotations
								jvmTarget	=	"17"	//	This	option	specifies	the	target	version	of	the	generated	JVM	bytecode
				}
}

tasks.withType<Test>	{	
				useJUnitPlatform()
}

As you can see, there are a few Kotlin-related artifacts added to the Gradle build file:

1. In the plugins block, there are two Kotlin artifacts:

kotlin("jvm") – the plugin defines the version of Kotlin to be used in the project

kotlin("plugin.spring") – Kotlin Spring compiler plugin for adding the open modifier to Kotlin classes in order to make them compatible with Spring Framework
features

2. In the dependencies block, a few Kotlin-related modules listed:

com.fasterxml.jackson.module:jackson-module-kotlin – the module adds support for serialization and deserialization of Kotlin classes and data classes

org.jetbrains.kotlin:kotlin-reflect – Kotlin reflection library

3. After the dependencies section, you can see the KotlinCompile task configuration block. This is where you can add extra arguments to the compiler to enable or
disable various language features.

Explore
the
generated
Spring
Boot
application
Open the DemoApplication.kt file:

package	com.example.demo

import	org.springframework.boot.autoconfigure.SpringBootApplication
import	org.springframework.boot.runApplication

@SpringBootApplication
class	DemoApplication

fun	main(args:	Array<String>)	{
				runApplication<DemoApplication>(*args)
}

Declaring classes – class DemoApplication
Right after package declaration and import statements you can see the first class declaration, class DemoApplication.

In Kotlin, if a class doesn't include any members (properties or functions), you can omit the class body ({}) for good.

@SpringBootApplication annotation
@SpringBootApplication annotation is a convenience annotation in a Spring Boot application. It enables Spring Boot's auto-configuration, component scan, and be
able to define an extra configuration on their "application class".

590

https://docs.spring.io/spring-boot/docs/current/reference/html/using.html#using.using-the-springbootapplication-annotation
https://docs.spring.io/spring-boot/docs/current/reference/html/using.html#using.auto-configuration
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html

Program entry point – main()
The main() function is the entry point to the application.

It is declared as a top-level function outside the DemoApplication class. The main() function invokes the Spring's runApplication(*args) function to start the
application with the Spring Framework.

Variable arguments – args: Array
If you check the declaration of the runApplication() function, you will see that the parameter of the function is marked with vararg modifier: vararg args: String. This
means that you can pass a variable number of String arguments to the function.

The spread operator – (*args)
The args is a parameter to the main() function declared as an array of Strings. Since there is an array of strings, and you want to pass its content to the function, use
the spread operator (prefix the array with a star sign *).

Create
a
controller
The application is ready to run, but let's update its logic first.

In the Spring application, a controller is used to handle the web requests. In the DemoApplication.kt file, create the MessageController class as follows:

@RestController
class	MessageController	{
				@GetMapping("/")
				fun	index(@RequestParam("name")	name:	String)	=	"Hello,	$name!"
}

@RestController annotation
You need to tell Spring that MessageController is a REST Controller, so you should mark it with the @RestController annotation.

This annotation means this class will be picked up by the component scan because it's in the same package as our DemoApplication class.

@GetMapping annotation
@GetMapping marks the functions of the REST controller that implement the endpoints corresponding to HTTP GET calls:

@GetMapping("/")
fun	index(@RequestParam("name")	name:	String)	=	"Hello,	$name!"

@RequestParam annotation
The function parameter name is marked with @RequestParam annotation. This annotation indicates that a method parameter should be bound to a web request
parameter.

Hence, if you access the application at the root and supply a request parameter called "name", like /?name=<your-value>, the parameter value will be used as an
argument for invoking the index() function.

Single-expression functions – index()
Since the index() function contains only one statement you can declare it as a single-expression function.

This means the curly braces can be omitted and the body is specified after the equals sign =.

Type inference for function return types
The index() function does not declare the return type explicitly. Instead, the compiler infers the return type by looking at the result of the statement on the right-hand
side from the equals sign =.

The type of Hello, $name! expression is String, hence the return type of the function is also String.

String templates – $name
Hello, $name! expression is called a String template in Kotlin.

String templates are String literals that contain embedded expressions.

This is a convenient replacement for String concatenation operations.

591

Here is a complete code of the DemoApplication.kt:

package com.example.demo import org.springframework.boot.autoconfigure.SpringBootApplication import
org.springframework.boot.runApplication import org.springframework.web.bind.annotation.GetMapping import
org.springframework.web.bind.annotation.RequestParam import org.springframework.web.bind.annotation.RestController
@SpringBootApplication class DemoApplication fun main(args: Array<String>) { runApplication<DemoApplication>(*args) } @RestController
class MessageController { @GetMapping("/") fun index(@RequestParam("name") name: String) = "Hello, $name!" }

Run
the
application
The Spring application is now ready to run:

1. Click the green Run icon in the gutter beside the main() method:

Run Spring Boot application

This starts the local server on your computer.

2. Once the application starts, open the following URL:

http://localhost:8080?name=John

These Spring annotations also require additional imports:

import	org.springframework.web.bind.annotation.GetMapping
import	org.springframework.web.bind.annotation.RequestParam
import	org.springframework.web.bind.annotation.RestController

You can also run the ./gradlew bootRun command in the terminal.

592

You should see "Hello, John!" printed as a response:

Spring Application response

Next
step
In the next part of the tutorial you'll learn about Kotlin data classes and how you can use them in your application.

Proceed to the next chapter

Get
the
Kotlin
language
map
Get your personal language map to help you navigate Kotlin features and track your progress in studying the language. We will also send you language tips and
useful materials on using Kotlin with Spring.

Get the Kotlin language map

Add
a
data
class
to
Spring
Boot
project
In this part of the tutorial, you'll add some more functionality to the application and discover more Kotlin language features, such as data classes. It requires
changing the MessageController class to respond with a JSON document containing a collection of serialized objects.

Update
your
application

You will need to share your email address on the next page to receive the materials.

593

https://info.jetbrains.com/kotlin-tips.html
https://info.jetbrains.com/kotlin-tips.html

1. In the DemoApplication.kt file, create a Message data class with two properties: id and text:

data	class	Message(val	id:	String?,	val	text:	String)

Message class will be used for data transfer: a list of serialized Message objects will make up the JSON document that the controller is going to respond to the
browser request.

Data classes – data class Message
The main purpose of data classes in Kotlin is to hold data. Such classes are marked with the data keyword, and some standard functionality and some utility
functions are often mechanically derivable from the class structure.

In this example, you declared Message as a data class as its main purpose is to store the data.

val and var properties
Properties in Kotlin classes can be declared either as:

mutable, using the var keyword

read-only, using the val keyword

The Message class declares two properties using val keyword, the id and text. The compiler will automatically generate the getters for both of these properties.
It will not be possible to reassign the values of these properties after an instance of the Message class is created.

Nullable types – String?
Kotlin provides built-in support for nullable types. In Kotlin, the type system distinguishes between references that can hold null (nullable references) and those
that cannot (non-nullable references).
For example, a regular variable of type String cannot hold null. To allow nulls, you can declare a variable as a nullable string by writing String?.

The id property of the Message class is declared as a nullable type this time. Hence, it is possible to create an instance of Message class by passing null as a
value for id:

Message(null,	"Hello!")

2. In the same file, amend the index() function of a MessageController class to return a list of Message objects:

@RestController
class	MessageController	{
				@GetMapping("/")
				fun	index()	=	listOf(
								Message("1",	"Hello!"),
								Message("2",	"Bonjour!"),
								Message("3",	"Privet!"),
)
}

Collections – listOf()
The Kotlin Standard Library provides implementations for basic collection types: sets, lists, and maps.
A pair of interfaces represents each collection type:

A read-only interface that provides operations for accessing collection elements.

A mutable interface that extends the corresponding read-only interface with write operations: adding, removing, and updating its elements.

The corresponding factory functions are also provided by the Kotlin Standard Library to create instances of such collections.

In this tutorial, you use the listOf() function to create a list of Message objects. This is the factory function to create a read-only list of objects: you can't add or
remove elements from the list.
If it is required to perform write operations on the list, call the mutableListOf() function to create a mutable list instance.

Trailing comma
A trailing comma is a comma symbol after the last item of a series of elements:

Message("3",	"Privet!"),

This is a convenient feature of Kotlin syntax and is entirely optional – your code will still work without them.

In the example above, creating a list of Message objects includes the trailing comma after the last listOf() function argument.

594

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/list-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-list-of.html

The response from MessageController will now be a JSON document containing a collection of Message objects.

Here is a complete code of the DemoApplication.kt:

package com.example.demo import org.springframework.boot.autoconfigure.SpringBootApplication import
org.springframework.boot.runApplication import org.springframework.data.annotation.Id import
org.springframework.web.bind.annotation.GetMapping import org.springframework.web.bind.annotation.RestController
@SpringBootApplication class DemoApplication fun main(args: Array<String>) { runApplication<DemoApplication>(*args) } @RestController
class MessageController { @GetMapping("/") fun index() = listOf(Message("1", "Hello!"), Message("2", "Bonjour!"), Message("3", "Privet!"),) }
data class Message(val id: String?, val text: String)

Run
the
application
The Spring application is ready to run:

1. Run the application again.

2. Once the application starts, open the following URL:

http://localhost:8080

You will see a page with a collection of messages in JSON format:

Run the application

Next
step
In the next part of the tutorial, you'll add and configure a database to your project, and make HTTP requests.

Proceed to the next chapter

Any controller in the Spring application renders JSON response by default if Jackson library is on the classpath. As you specified the spring-boot-starter-
web dependency in the build.gradle.kts file, you received Jackson as a transitive dependency. Hence, the application responds with a JSON document if
the endpoint returns a data structure that can be serialized to JSON.

595

Get
the
Kotlin
language
map
Get your personal language map to help you navigate Kotlin features and track your progress in studying the language. We will also send you language tips and
useful materials on using Kotlin with Spring.

Get the Kotlin language map

Add
database
support
for
Spring
Boot
project
In this part of the tutorial, you'll add and configure a database to your project using JDBC. In JVM applications, you use JDBC to interact with databases. For
convenience, the Spring Framework provides the JdbcTemplate class that simplifies the use of JDBC and helps to avoid common errors.

Add
database
support
The common practice in Spring Framework based applications is to implement the database access logic within the so-called service layer – this is where business
logic lives. In Spring, you should mark classes with the @Service annotation to imply that the class belongs to the service layer of the application. In this application,
you will create the MessageService class for this purpose.

In the DemoApplication.kt file, create the MessageService class as follows:

import	org.springframework.stereotype.Service
import	org.springframework.jdbc.core.JdbcTemplate

@Service
class	MessageService(val	db:	JdbcTemplate)	{
				fun	findMessages():	List<Message>	=	db.query("select	*	from	messages")	{	response,	_	->
								Message(response.getString("id"),	response.getString("text"))
				}

				fun	save(message:	Message){
								db.update("insert	into	messages	values	(?,	?)",
											message.id,	message.text)
				}
}

Constructor argument and dependency injection – (val db: JdbcTemplate)
A class in Kotlin has a primary constructor. It can also have one or more secondary constructors. The primary constructor is a part of the class header, and it goes
after the class name and optional type parameters. In our case, the constructor is (val db: JdbcTemplate).

val db: JdbcTemplate is the constructor's argument:

@Service
class	MessageService(val	db:	JdbcTemplate)

Trailing lambda and SAM conversion
The findMessages() function calls the query() function of the JdbcTemplate class. The query() function takes two arguments: an SQL query as a String instance, and
a callback that will map one object per row:

db.query("...",	RowMapper	{	...	})

The RowMapper interface declares only one method, so it is possible to implement it via lambda expression by omitting the name of the interface. The Kotlin
compiler knows the interface that the lambda expression needs to be converted to because you use it as a parameter for the function call. This is known as SAM

You will need to share your email address on the next page to receive the materials.

596

https://info.jetbrains.com/kotlin-tips.html
https://info.jetbrains.com/kotlin-tips.html

conversion in Kotlin:

db.query("...",	{	...	})

After the SAM conversion, the query function ends up with two arguments: a String at the first position, and a lambda expression at the last position. According to
the Kotlin convention, if the last parameter of a function is a function, then a lambda expression passed as the corresponding argument can be placed outside the
parentheses. Such syntax is also known as trailing lambda:

db.query("...")	{	...	}

Underscore for unused lambda argument
For a lambda with multiple parameters, you can use the underscore _ character to replace the names of the parameters you don't use.

Hence, the final syntax for query function call looks like this:

db.query("select	*	from	messages")	{	response,	_	->
Message(response.getString("id"),	response.getString("text"))
}

Update
the
MessageController
class
Update MessageController to use the new MessageService class:

import	org.springframework.web.bind.annotation.RequestBody
import	org.springframework.web.bind.annotation.PostMapping

@RestController
class	MessageController(val	service:	MessageService)	{
				@GetMapping("/")
				fun	index():	List<Message>	=	service.findMessages()

				@PostMapping("/")
				fun	post(@RequestBody	message:	Message)	{
							service.save(message)
				}
}

@PostMapping annotation
The method responsible for handling HTTP POST requests needs to be annotated with @PostMapping annotation. To be able to convert the JSON sent as HTTP
Body content into an object, you need to use the @RequestBody annotation for the method argument. Thanks to having Jackson library in the classpath of the
application, the conversion happens automatically.

Update
the
MessageService
class
The id for Message class was declared as a nullable String:

data	class	Message(val	id:	String?,	val	text:	String)

It would not be correct to store the null as an id value in the database though: you need to handle this situation gracefully.

Update your code to generate a new value when the id is null while storing the messages in the database:

import	java.util.UUID

@Service
class	MessageService(val	db:	JdbcTemplate)	{
				fun	findMessages():	List<Message>	=	db.query("select	*	from	messages")	{	response,	_	->
								Message(response.getString("id"),	response.getString("text"))
				}

				fun	save(message:	Message){
								val	id	=	message.id	?:	UUID.randomUUID().toString()
								db.update("insert	into	messages	values	(?,	?)",

597

																		id,	message.text)
				}	
}

Elvis operator – ?:
The code message.id ?: UUID.randomUUID().toString() uses the Elvis operator (if-not-null-else shorthand) ?:. If the expression to the left of ?: is not null, the Elvis
operator returns it; otherwise, it returns the expression to the right. Note that the expression on the right-hand side is evaluated only if the left-hand side is null.

The application code is ready to work with the database. It is now required to configure the data source.

Configure
the
database
Configure the database in the application:

1. Create schema.sql file in the src/main/resources directory. It will store the database object definitions:

Create database schema

2. Update the src/main/resources/schema.sql file with the following code:

CREATE	TABLE	IF	NOT	EXISTS	messages	(
id							VARCHAR(60)		PRIMARY	KEY,
text					VARCHAR						NOT	NULL
);

It creates the messages table with two columns: id and text. The table structure matches the structure of the Message class.

3. Open the application.properties file located in the src/main/resources folder and add the following application properties:

spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.url=jdbc:h2:file:./data/testdb
spring.datasource.username=name
spring.datasource.password=password
spring.sql.init.schema-locations=classpath:schema.sql
spring.sql.init.mode=always

These settings enable the database for the Spring Boot application.
See the full list of common application properties in the Spring documentation.

Add
messages
to
database
via
HTTP
request
You should use an HTTP client to work with previously created endpoints. In IntelliJ IDEA, use the embedded HTTP client:

1. Run the application. Once the application is up and running, you can execute POST requests to store messages in the database. Create the requests.http file in
the src/main/resources folder and add the following HTTP requests:

###	Post	"Hello!"

598

https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html

POST	http://localhost:8080/
Content-Type:	application/json

{
		"text":	"Hello!"
}

###	Post	"Bonjour!"

POST	http://localhost:8080/
Content-Type:	application/json

{
		"text":	"Bonjour!"
}

###	Post	"Privet!"

POST	http://localhost:8080/
Content-Type:	application/json

{
		"text":	"Privet!"
}

###	Get	all	the	messages
GET	http://localhost:8080/

2. Execute all POST requests. Use the green Run icon in the gutter next to the request declaration. These requests write the text messages to the database:

Execute POST request

3. Execute the GET request and see the result in the Run tool window:

599

Execute GET requests

Alternative
way
to
execute
requests
You can also use any other HTTP client or the cURL command-line tool. For example, run the following commands in the terminal to get the same result:

curl	-X	POST	--location	"http://localhost:8080"	-H	"Content-Type:	application/json"	-d	"{	\"text\":	\"Hello!\"	}"

curl	-X	POST	--location	"http://localhost:8080"	-H	"Content-Type:	application/json"	-d	"{	\"text\":	\"Bonjour!\"	}"

curl	-X	POST	--location	"http://localhost:8080"	-H	"Content-Type:	application/json"	-d	"{	\"text\":	\"Privet!\"	}"

curl	-X	GET	--location	"http://localhost:8080"

Retrieve
messages
by
id
Extend the functionality of the application to retrieve the individual messages by id.

1. In the MessageService class, add the new function findMessageById(id: String) to retrieve the individual messages by id:

import	org.springframework.jdbc.core.query

@Service
class	MessageService(val	db:	JdbcTemplate)	{

				fun	findMessages():	List<Message>	=	db.query("select	*	from	messages")	{	response,	_	->
								Message(response.getString("id"),	response.getString("text"))
				}

				fun	findMessageById(id:	String):	List<Message>	=	db.query("select	*	from	messages	where	id	=	?",	id)	{	response,	_	->
								Message(response.getString("id"),	response.getString("text"))
				}

				fun	save(message:	Message)	{

600

								val	id	=	message.id	?:	UUID.randomUUID().toString()
								db.update("insert	into	messages	values	(?,	?)",	
																		id,	message.text)
				}
}

2. Add the new index(...) function with the id parameter to the MessageController class:

import	org.springframework.web.bind.annotation.*

@RestController
class	MessageController(val	service:	MessageService)	{
				@GetMapping("/")
				fun	index():	List<Message>	=	service.findMessages()

				@GetMapping("/{id}")
				fun	index(@PathVariable	id:	String):	List<Message>	=
								service.findMessageById(id)

				@PostMapping("/")
				fun	post(@RequestBody	message:	Message)	{
								service.save(message)
				}
}

Retrieving a value from the context path
The message id is retrieved from the context path by the Spring Framework as you annotated the new function by @GetMapping("/{id}"). By annotating the
function argument with @PathVariable, you tell the framework to use the retrieved value as a function argument. The new function makes a call to
MessageService to retrieve the individual message by its id.

vararg argument position in the parameter list
The query() function takes three arguments:

SQL query string that requires a parameter to run

`id`, which is a parameter of type String

RowMapper instance is implemented by a lambda expression

The second parameter for the query() function is declared as a variable argument (vararg). In Kotlin, the position of the variable arguments parameter is not
required to be the last in the parameters list.

Here is a complete code of the DemoApplication.kt:

package com.example.demo import org.springframework.boot.autoconfigure.SpringBootApplication import
org.springframework.boot.runApplication import org.springframework.stereotype.Service import
org.springframework.jdbc.core.JdbcTemplate import java.util.UUID import org.springframework.jdbc.core.query import
org.springframework.web.bind.annotation.* @SpringBootApplication class DemoApplication fun main(args: Array<String>) {
runApplication<DemoApplication>(*args) } @RestController class MessageController(val service: MessageService) { @GetMapping("/") fun
index(): List<Message> = service.findMessages() @GetMapping("/{id}") fun index(@PathVariable id: String): List<Message> =
service.findMessageById(id) @PostMapping("/") fun post(@RequestBody message: Message) { service.save(message) } } data class
Message(val id: String?, val text: String) @Service class MessageService(val db: JdbcTemplate) { fun findMessages(): List<Message> =
db.query("select * from messages") { response, _ -> Message(response.getString("id"), response.getString("text")) } fun findMessageById(id:
String): List<Message> = db.query("select * from messages where id = ?", id) { response, _ -> Message(response.getString("id"),
response.getString("text")) } fun save(message: Message) { val id = message.id ?: UUID.randomUUID().toString() db.update("insert into
messages values (?, ?)", id, message.text) } }

Run
the
application
The Spring application is ready to run:

1. Run the application again.

2. Open the requests.http file and add the new GET request:

###	Get	the	message	by	its	id
GET	http://localhost:8080/id

The .query() function that is used to fetch the message by its id is a Kotlin extension function provided by the Spring Framework and requires an
additional import as in the code above.

601

3. Execute the GET request to retrieve all the messages from the database.

4. In the Run tool window copy one of the ids and add it to the request, like this:

###	Get	the	message	by	its	id
GET	http://localhost:8080/f16c1d2e-08dc-455c-abfe-68440229b84f

5. Execute the GET request and see the result in the Run tool window:

Retrieve message by its id

Next
step
The final step shows you how to use more popular connection to database using Spring Data.

Proceed to the next chapter

Get
the
Kotlin
language
map
Get your personal language map to help you navigate Kotlin features and track your progress in studying the language. We will also send you language tips and
useful materials on using Kotlin with Spring.

Put your message id instead of the mentioned above.

602

https://info.jetbrains.com/kotlin-tips.html

Get the Kotlin language map

Use
Spring
Data
CrudRepository
for
database
access
In this part, you will migrate the service layer to use the Spring Data CrudRepository instead of JdbcTemplate for database access. CrudRepository is a Spring
Data interface for generic CRUD operations on a repository of a specific type. It provides several methods out of the box for interacting with a database.

Update
your
application
First, you need to adjust the Message class for work with the CrudRepository API:

1. Add the @Table annotation to the Message class to declare mapping to a database table.
Add the @Id annotation before the id field.

import	org.springframework.data.annotation.Id
import	org.springframework.data.relational.core.mapping.Table

@Table("MESSAGES")
data	class	Message(@Id	var	id:	String?,	val	text:	String)

Besides adding the annotations, you also need to make the id mutable (var) for the reasons of how CrudRepository works when inserting the new objects to the
database.

2. Declare an interface for the CrudRepository that will work with the Message data class:

import	org.springframework.data.repository.CrudRepository

interface	MessageRepository	:	CrudRepository<Message,	String>

3. Update the MessageService class. It will now call to the MessageRepository instead of executing SQL queries:

import	java.util.*

@Service
class	MessageService(val	db:	MessageRepository)	{
				fun	findMessages():	List<Message>	=	db.findAll().toList()

				fun	findMessageById(id:	String):	List<Message>	=	db.findById(id).toList()

				fun	save(message:	Message)	{
								db.save(message)
				}

				fun	<T	:	Any>	Optional<out	T>.toList():	List<T>	=
								if	(isPresent)	listOf(get())	else	emptyList()
}

Extension functions
The return type of the findById() function in the CrudRepository interface is an instance of the Optional class. However, it would be convenient to return a List

You will need to share your email address on the next page to receive the materials.

These annotations also require additional imports.

603

https://info.jetbrains.com/kotlin-tips.html
https://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

with a single message for consistency. For that, you need to unwrap the Optional value if it’s present, and return a list with the value. This can be implemented
as an extension function to the Optional type.

In the code, Optional<out T>.toList(), .toList() is the extension function for Optional. Extension functions allow you to write additional functions to any classes,
which is especially useful when you want to extend functionality of some library class.

CrudRepository save() function
This function works with an assumption that the new object doesn’t have an id in the database. Hence, the id should be null for insertion.

If the id isn’t null, CrudRepository assumes that the object already exists in the database and this is an update operation as opposed to an insert operation. After
the insert operation, the id will be generated by the data store and assigned back to the Message instance. This is why the id property should be declared using
the var keyword.

4. Update the messages table definition to generate the ids for the inserted objects. Since id is a string, you can use the RANDOM_UUID() function to generate the
id value by default:

CREATE	TABLE	IF	NOT	EXISTS	messages	(
				id						VARCHAR(60)		DEFAULT	RANDOM_UUID()	PRIMARY	KEY,
				text				VARCHAR						NOT	NULL
);

5. Update the name of the database in the application.properties file located in the src/main/resources folder:

spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.url=jdbc:h2:file:./data/testdb2
spring.datasource.username=name
spring.datasource.password=password
spring.sql.init.schema-locations=classpath:schema.sql
spring.sql.init.mode=always

Here is the complete code for DemoApplication.kt:

package com.example.demo import org.springframework.boot.autoconfigure.SpringBootApplication import
org.springframework.boot.runApplication import org.springframework.data.annotation.Id import
org.springframework.data.relational.core.mapping.Table import org.springframework.data.repository.CrudRepository import
org.springframework.stereotype.Service import org.springframework.web.bind.annotation.* import java.util.* @SpringBootApplication class
DemoApplication fun main(args: Array<String>) { runApplication<DemoApplication>(*args) } @RestController class MessageController(val
service: MessageService) { @GetMapping("/") fun index(): List<Message> = service.findMessages() @GetMapping("/{id}") fun
index(@PathVariable id: String): List<Message> = service.findMessageById(id) @PostMapping("/") fun post(@RequestBody message:
Message) { service.save(message) } } interface MessageRepository : CrudRepository<Message, String> @Table("MESSAGES") data class
Message(@Id var id: String?, val text: String) @Service class MessageService(val db: MessageRepository) { fun findMessages():
List<Message> = db.findAll().toList() fun findMessageById(id: String): List<Message> = db.findById(id).toList() fun save(message: Message) {
db.save(message) } fun <T : Any> Optional<out T>.toList(): List<T> = if (isPresent) listOf(get()) else emptyList() }

Run
the
application
The application is ready to run again. By replacing the JdbcTemplate with CrudRepository, the functionality didn't change hence the application should work the
same way as previously.

Next
step
Get your personal language map to help you navigate Kotlin features and track your progress in studying the language. We will also send you language tips and
useful materials on using Kotlin with Spring.

Get the Kotlin language map

You will need to share your email address on the next page to receive the materials.

604

https://docs.spring.io/spring-data/jdbc/docs/current/reference/html/#jdbc.entity-persistence
https://info.jetbrains.com/kotlin-tips.html
https://info.jetbrains.com/kotlin-tips.html

Test
code
using
JUnit
in
JVM
–
tutorial
This tutorial will show you how to write a simple unit test and run it with the Gradle build tool.

The example in the tutorial has the kotlin.test library under the hood and runs the test using JUnit.

To get started, first download and install the latest version of IntelliJ IDEA.

Add
dependencies
1. Open a Kotlin project in IntelliJ IDEA. If you don't already have a project, create one.

2. Open the build.gradle(.kts) file and add the following dependency to the Gradle configuration. This dependency will allow you to work with kotlin.test and JUnit:

Kotlin

dependencies	{
				//	Other	dependencies.
				testImplementation(kotlin("test"))
}

Groovy

dependencies	{
				//	Other	dependencies.
				testImplementation	'org.jetbrains.kotlin:kotlin-test'
}

3. Add the test task to the build.gradle(.kts) file:

Kotlin

tasks.test	{
				useJUnitPlatform()
}

Groovy

test	{
				useJUnitPlatform()
}

Add
the
code
to
test
it
1. Open the main.kt file in src/main/kotlin.

The src directory contains Kotlin source files and resources. The main.kt file contains sample code that will print Hello, World!.

2. Create the Sample class with the sum() function that adds two integers together:

class	Sample()	{

Specify JUnit 5 as your test framework when creating your project.

If you created the project using the New Project wizard, the task will be added automatically.

605

https://kotlinlang.org/api/latest/kotlin.test/index.html
https://www.jetbrains.com/idea/download/index.html

				fun	sum(a:	Int,	b:	Int):	Int	{
								return	a	+	b
				}
}

Create
a
test
1. In IntelliJ IDEA, select Code | Generate | Test... for the Sample class.

Create a test

2. Specify the name of the test class. For example, SampleTest.

IntelliJ IDEA creates the SampleTest.kt file in the test directory. This directory contains Kotlin test source files and resources.

3. Add the test code for the sum() function in SampleTest.kt:

Define the test testSum() function using the @Test annotation.

Check that the sum() function returns the expected value by using the assertEquals() function.

import	kotlin.test.Test
import	kotlin.test.assertEquals

internal	class	SampleTest	{

				private	val	testSample:	Sample	=	Sample()

				@Test
				fun	testSum()	{
								val	expected	=	42
								assertEquals(expected,	testSample.sum(40,	2))
				}
}

Run
a
test
1. Run the test using the gutter icon.

You can also manually create a *.kt file for tests in src/test/kotlin.

606

https://kotlinlang.org/api/latest/kotlin.test/kotlin.test/-test/index.html
https://kotlinlang.org/api/latest/kotlin.test/kotlin.test/assert-equals.html

Run the test

2. Check the result in the Run tool window:

Check the test result. The test passed successfully

The test function was executed successfully.

3. Make sure that the test works correctly by changing the expected variable value to 43:

@Test
fun	testSum()	{
				val	expected	=	43
				assertEquals(expected,	classForTesting.sum(40,	2))
}

4. Run the test again and check the result:

You can also run all project tests via the command-line interface using the ./gradlew check command.

607

Check the test result. The test has been failed

The test execution failed.

What's
next
Once you've finished your first test, you can:

Try to write another test using other kotlin.test functions. For example, you could use the assertNotEquals() function.

Create your first application with Kotlin and Spring Boot.

Watch these video tutorials on YouTube, which demonstrate how to use Spring Boot with Kotlin and JUnit 5.

Mixing
Java
and
Kotlin
in
one
project
–
tutorial
Kotlin provides the first-class interoperability with Java, and modern IDEs make it even better. In this tutorial, you'll learn how to use both Kotlin and Java sources in
the same project in IntelliJ IDEA. To learn how to start a new Kotlin project in IntelliJ IDEA, see Getting started with IntelliJ IDEA.

Adding
Java
source
code
to
an
existing
Kotlin
project
Adding Java classes to a Kotlin project is pretty straightforward. All you need to do is create a new Java file. Select a directory or a package inside your project and
go to File | New | Java Class or use the Alt + Insert/Cmd + N shortcut.

608

https://kotlinlang.org/api/latest/kotlin.test/kotlin.test/
https://kotlinlang.org/api/latest/kotlin.test/kotlin.test/assert-not-equals.html
https://www.youtube.com/playlist?list=PL6gx4Cwl9DGDPsneZWaOFg0H2wsundyGr

Add new Java class

If you already have the Java classes, you can just copy them to the project directories.

You can now consume the Java class from Kotlin or vice versa without any further actions.

For example, adding the following Java class:

public	class	Customer	{

				private	String	name;

				public	Customer(String	s){
								name	=	s;
				}

				public	String	getName()	{
								return	name;
				}

				public	void	setName(String	name)	{
								this.name	=	name;
				}
				
				public	void	placeOrder()	{
								System.out.println("A	new	order	is	placed	by	"	+	name);
				}
}

lets you call it from Kotlin like any other type in Kotlin.

val	customer	=	Customer("Phase")
println(customer.name)
println(customer.placeOrder())

Adding
Kotlin
source
code
to
an
existing
Java
project
Adding a Kotlin file to an existing Java project is pretty much the same.

609

Add new Kotlin file class

If this is the first time you're adding a Kotlin file to this project, IntelliJ IDEA will automatically add the required Kotlin runtime.

Bundling Kotlin runtime

You can also open the Kotlin runtime configuration manually from Tools | Kotlin | Configure Kotlin in Project.

Converting
an
existing
Java
file
to
Kotlin
with
J2K
The Kotlin plugin also bundles a Java to Kotlin converter (J2K) that automatically converts Java files to Kotlin. To use J2K on a file, click Convert Java File to Kotlin
File in its context menu or in the Code menu of IntelliJ IDEA.

610

Convert Java to Kotlin

While the converter is not fool-proof, it does a pretty decent job of converting most boilerplate code from Java to Kotlin. Some manual tweaking however is
sometimes required.

Using
Java
records
in
Kotlin
Records are classes in Java for storing immutable data. Records carry a fixed set of values – the records components. They have a concise syntax in Java and save
you from having to write boilerplate code:

//	Java
public	record	Person	(String	name,	int	age)	{}

The compiler automatically generates a final class inherited from java.lang.Record with the following members:

a private final field for each record component

a public constructor with parameters for all fields

a set of methods to implement structural equality: equals(), hashCode(), toString()

a public method for reading each record component

Records are very similar to Kotlin data classes.

611

https://openjdk.java.net/jeps/395
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Record.html

Using
Java
records
from
Kotlin
code
You can use record classes with components that are declared in Java the same way you would use classes with properties in Kotlin. To access the record
component, just use its name like you do for Kotlin properties:

val	newPerson	=	Person("Kotlin",	10)
val	firstName	=	newPerson.name

Declare
records
in
Kotlin
Kotlin supports record declaration only for data classes, and the data class must meet the requirements.

To declare a record class in Kotlin, use the @JvmRecord annotation:

@JvmRecord
data	class	Person(val	name:	String,	val	age:	Int)

This JVM-specific annotation enables generating:

the record components corresponding to the class properties in the class file

the property accessor methods named according to the Java record naming convention

The data class provides equals(), hashCode(), and toString() method implementations.

Requirements
To declare a data class with the @JvmRecord annotation, it must meet the following requirements:

The class must be in a module that targets JVM 16 bytecode (or 15 if the -Xjvm-enable-preview compiler option is enabled).

The class cannot explicitly inherit any other class (including Any) because all JVM records implicitly inherit java.lang.Record. However, the class can implement
interfaces.

The class cannot declare any properties with backing fields – except those initialized from the corresponding primary constructor parameters.

The class cannot declare any mutable properties with backing fields.

The class cannot be local.

The primary constructor of the class must be as visible as the class itself.

Enabling
JVM
records
JVM records require the 16 target version or higher of the generated JVM bytecode.

To specify it explicitly, use the jvmTarget compiler option in Gradle or Maven.

Further
discussion
See this language proposal for JVM records for further technical details and discussion.

Strings
in
Java
and
Kotlin
This guide contains examples of how to perform typical tasks with strings in Java and Kotlin. It will help you migrate from Java to Kotlin and write your code in the
authentically Kotlin way.

Applying @JvmRecord to an existing class is not a binary compatible change. It alters the naming convention of the class property accessors.

612

https://github.com/Kotlin/KEEP/blob/master/proposals/jvm-records.md

Concatenate
strings
In Java, you can do this in the following way:

//	Java
String	name	=	"Joe";
System.out.println("Hello,	"	+	name);
System.out.println("Your	name	is	"	+	name.length()	+	"	characters	long");

In Kotlin, use the dollar sign ($) before the variable name to interpolate the value of this variable into your string:

fun	main()	{
//sampleStart
				//	Kotlin
				val	name	=	"Joe"
				println("Hello,	$name")
				println("Your	name	is	${name.length}	characters	long")
//sampleEnd
}

You can interpolate the value of a complicated expression by surrounding it with curly braces, like in ${name.length}. See string templates for more information.

Build
a
string
In Java, you can use the StringBuilder:

//	Java
StringBuilder	countDown	=	new	StringBuilder();
for	(int	i	=	5;	i	>	0;	i--)	{
				countDown.append(i);
				countDown.append("\n");
}
System.out.println(countDown);

In Kotlin, use buildString() – an inline function that takes logic to construct a string as a lambda argument:

fun	main()	{
//sampleStart
							//	Kotlin
							val	countDown	=	buildString	{
											for	(i	in	5	downTo	1)	{
															append(i)
															appendLine()
											}
							}
							println(countDown)
//sampleEnd
}

Under the hood, the buildString uses the same StringBuilder class as in Java, and you access it via an implicit this inside the lambda.

Learn more about lambda coding conventions.

Create
a
string
from
collection
items
In Java, you use the Stream API to filter, map, and then collect the items:

//	Java
List<Integer>	numbers	=	List.of(1,	2,	3,	4,	5,	6);
String	invertedOddNumbers	=	numbers
								.stream()
								.filter(it	->	it	%	2	!=	0)
								.map(it	->	-it)
								.map(Object::toString)
								.collect(Collectors.joining(";	"));
System.out.println(invertedOddNumbers);

613

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/StringBuilder.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/build-string.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/stream/package-summary.html

In Kotlin, use the joinToString() function, which Kotlin defines for every List:

fun	main()	{
//sampleStart
				//	Kotlin
				val	numbers	=	listOf(1,	2,	3,	4,	5,	6)
				val	invertedOddNumbers	=	numbers
								.filter	{	it	%	2	!=	0	}
								.joinToString(separator	=	";")	{"${-it}"}
				println(invertedOddNumbers)
//sampleEnd
}

Learn more about joinToString() usage.

Set
default
value
if
the
string
is
blank
In Java, you can use the ternary operator:

//	Java
public	void	defaultValueIfStringIsBlank()	{
				String	nameValue	=	getName();
				String	name	=	nameValue.isBlank()	?	"John	Doe"	:	nameValue;
				System.out.println(name);
}

public	String	getName()	{
				Random	rand	=	new	Random();
				return	rand.nextBoolean()	?	""	:	"David";
}

Kotlin provides the inline function ifBlank() that accepts the default value as an argument:

//	Kotlin
import	kotlin.random.Random

//sampleStart
fun	main()	{
				val	name	=	getName().ifBlank	{	"John	Doe"	}
				println(name)
}

fun	getName():	String	=
				if	(Random.nextBoolean())	""	else	"David"
//sampleEnd

Replace
characters
at
the
beginning
and
end
of
a
string
In Java, you can use the replaceAll() function. The replaceAll() function in this case accepts regular expressions ^## and ##$, which define strings starting and
ending with ## respectively:

//	Java
String	input	=	"##place##holder##";
String	result	=	input.replaceAll("^##|##$",	"");
System.out.println(result);

In Kotlin, use the removeSurrounding() function with the string delimiter ##:

fun	main()	{
//sampleStart
				//	Kotlin
				val	input	=	"##place##holder##"
				val	result	=	input.removeSurrounding("##")

In Java, if you want spaces between your delimiters and following items, you need to add a space to the delimiter explicitly.

614

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/join-to-string.html
https://en.wikipedia.org/wiki/%253F:
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/if-blank.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#replaceAll(java.lang.String,java.lang.String)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/remove-surrounding.html

				println(result)
//sampleEnd
}

Replace
occurrences
In Java, you can use the Pattern and the Matcher classes, for example, to obfuscate some data:

//	Java
String	input	=	"login:	Pokemon5,	password:	1q2w3e4r5t";
Pattern	pattern	=	Pattern.compile("\\w*\\d+\\w*");
Matcher	matcher	=	pattern.matcher(input);
String	replacementResult	=	matcher.replaceAll(it	->	"xxx");
System.out.println("Initial	input:	'"	+	input	+	"'");
System.out.println("Anonymized	input:	'"	+	replacementResult	+	"'");

In Kotlin, you use the Regex class that simplifies working with regular expressions. Additionally, use multiline strings to simplify a regex pattern by reducing the
count of backslashes:

fun	main()	{
//sampleStart
				//	Kotlin
				val	regex	=	Regex("""\w*\d+\w*""")	//	multiline	string
				val	input	=	"login:	Pokemon5,	password:	1q2w3e4r5t"
				val	replacementResult	=	regex.replace(input,	replacement	=	"xxx")
				println("Initial	input:	'$input'")
				println("Anonymized	input:	'$replacementResult'")
//sampleEnd
}

Split
a
string
In Java, to split a string with the period character (.), you need to use shielding (\\). This happens because the split() function of the String class accepts a regular
expression as an argument:

//	Java
System.out.println(Arrays.toString("Sometimes.text.should.be.split".split("\\.")));

In Kotlin, use the Kotlin function split(), which accepts varargs of delimiters as input parameters:

fun	main()	{
//sampleStart
				//	Kotlin
				println("Sometimes.text.should.be.split".split("."))
//sampleEnd
}

If you need to split with a regular expression, use the overloaded split() version that accepts the Regex as a parameter.

Take
a
substring
In Java, you can use the substring() function, which accepts an inclusive beginning index of a character to start taking the substring from. To take a substring after
this character, you need to increment the index:

//	Java
String	input	=	"What	is	the	answer	to	the	Ultimate	Question	of	Life,	the	Universe,	and	Everything?	42";
String	answer	=	input.substring(input.indexOf("?")	+	1);
System.out.println(answer);

In Kotlin, you use the substringAfter() function and don't need to calculate the index of the character you want to take a substring after:

fun	main()	{
//sampleStart

615

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/regex/Matcher.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-regex/
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#split(java.lang.String)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/split.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#substring(int)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/substring-after.html

				//	Kotlin
				val	input	=	"What	is	the	answer	to	the	Ultimate	Question	of	Life,	the	Universe,	and	Everything?	42"
				val	answer	=	input.substringAfter("?")
				println(answer)
//sampleEnd
}

Additionally, you can take a substring after the last occurrence of a character:

fun	main()	{
//sampleStart
				//	Kotlin
				val	input	=	"To	be,	or	not	to	be,	that	is	the	question."
				val	question	=	input.substringAfterLast(",")
				println(question)
//sampleEnd
}

Use
multiline
strings
Before Java 15, there were several ways to create a multiline string. For example, using the join() function of the String class:

//	Java
String	lineSeparator	=	System.getProperty("line.separator");
String	result	=	String.join(lineSeparator,
							"Kotlin",
							"Java");
System.out.println(result);

In Java 15, text blocks appeared. There is one thing to keep in mind: if you print a multiline string and the triple-quote is on the next line, there will be an extra empty
line:

//	Java
String	result	=	"""
				Kotlin
							Java
				""";
System.out.println(result);

The output:

Java 15 multiline output

If you put the triple-quote on the same line as the last word, this difference in behavior disappears.

In Kotlin, you can format your line with the quotes on the new line, and there will be no extra empty line in the output. The left-most character of any line identifies
the beginning of the line. The difference with Java is that Java automatically trims indents, and in Kotlin you should do it explicitly:

fun	main()	{
//sampleStart
				//	Kotlin			
				val	result	=	"""
								Kotlin
											Java	
				""".trimIndent()
				println(result)
//sampleEnd
}

616

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#join(java.lang.CharSequence,java.lang.CharSequence...)
https://docs.oracle.com/en/java/javase/15/text-blocks/index.html

The output:

Kotlin multiline output

To have an extra empty line, you should add this empty line to your multiline string explicitly.

In Kotlin, you can also use the trimMargin() function to customize the indents:

//	Kotlin
fun	main()	{
				val	result	=	"""
							#		Kotlin
							#		Java
			""".trimMargin("#")
				println(result)
}

Learn more about multiline strings.

What's
next?
Look through other Kotlin idioms.

Learn how to convert existing Java code to Kotlin with the Java to Kotlin converter.

If you have a favorite idiom, we invite you to share it by sending a pull request.

Collections
in
Java
and
Kotlin
Collections are groups of a variable number of items (possibly zero) that are significant to the problem being solved and are commonly operated on. This guide
explains and compares collection concepts and operations in Java and Kotlin. It will help you migrate from Java to Kotlin and write your code in the authentically
Kotlin way.

The first part of this guide contains a quick glossary of operations on the same collections in Java and Kotlin. It is divided into operations that are the same and
operations that exist only in Kotlin. The second part of the guide, starting from Mutability, explains some of the differences by looking at specific cases.

For an introduction to collections, see the Collections overview or watch this video by Sebastian Aigner, Kotlin Developer Advocate.

Operations
that
are
the
same
in
Java
and
Kotlin
In Kotlin, there are many operations on collections that look exactly the same as their counterparts in Java.

Operations
on
lists,
sets,
queues,
and
deques

Description Common operations More Kotlin alternatives

All of the examples below use Java and Kotlin standard library APIs only.

617

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/trim-margin.html
https://www.youtube.com/watch?v=F8jj7e-_jFA

Add an element or elements add(), addAll() Use the plusAssign(+=) operator: collection += element, collection +=
anotherCollection.

Check whether a collection contains an element or
elements

contains(),
containsAll()

Use the in keyword to call contains() in the operator form: element in collection.

Check whether a collection is empty isEmpty() Use isNotEmpty() to check whether a collection is not empty.

Remove under a certain condition removeIf()

Leave only selected elements retainAll()

Remove all elements from a collection clear()

Get a stream from a collection stream() Kotlin has its own way to process streams: sequences and methods like map() and
filter().

Get an iterator from a collection iterator()

Description Common operations More Kotlin alternatives

Operations
on
maps

Description Common
operations

More Kotlin alternatives

Add an element or elements put(), putAll(),
putIfAbsent()

In Kotlin, the assignment map[key] = value behaves the same as put(key, value). Also, you may use the
plusAssign(+=) operator: map += Pair(key, value) or map += anotherMap.

Replace an element or elements put(), replace(),
replaceAll()

Use the indexing operator map[key] = value instead of put() and replace().

Get an element get() Use the indexing operator to get an element: map[index].

Check whether a map contains
an element or elements

containsKey(),
containsValue()

Use the in keyword to call contains() in the operator form: element in map.

Check whether a map is empty isEmpty() Use isNotEmpty() to check whether a map is not empty.

Remove an element remove(key),
remove(key, value)

Use the minusAssign(-=) operator: map -= key.

618

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/is-not-empty.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/is-not-empty.html

Remove all elements from a
map

clear()

Get a stream from a map stream() on entries,
keys, or values

Description Common
operations

More Kotlin alternatives

Operations
that
exist
only
for
lists

Description Common operations More Kotlin alternatives

Get an index of an element indexOf()

Get the last index of an element lastIndexOf()

Get an element get() Use the indexing operator to get an element: list[index].

Take a sublist subList()

Replace an element or elements set(), replaceAll() Use the indexing operator instead of set(): list[index] = value.

Operations
that
differ
a
bit

Operations
on
any
collection
type

Description Java Kotlin

Get a collection's size size() count(), size

Get flat access to nested collection elements collectionOfCollections.forEach(flatCollection::addAll) or
collectionOfCollections.stream().flatMap().collect()

flatten() or
flatMap()

Apply the given function to every element stream().map().collect() map()

Apply the provided operation to collection elements sequentially and
return the accumulated result

stream().reduce() reduce(),

fold()

Group elements by a classifier and count them stream().collect(Collectors.groupingBy(classifier, counting())) eachCount()

619

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/flat-map.html

Filter by a condition stream().filter().collect() filter()

Check whether collection elements satisfy a condition stream().noneMatch(), stream().anyMatch(), stream().allMatch() none(), any(),

all()

Sort elements stream().sorted().collect() sorted()

Take the first N elements stream().limit(N).collect() take(N)

Take elements with a predicate stream().takeWhile().collect() takeWhile()

Skip the first N elements stream().skip(N).collect() drop(N)

Skip elements with a predicate stream().dropWhile().collect() dropWhile()

Build maps from collection elements and certain values associated
with them

stream().collect(toMap(keyMapper, valueMapper)) associate()

Description Java Kotlin

To perform all of the operations listed above on maps, you first need to get an entrySet of a map.

Operations
on
lists

Description Java Kotlin

Sort a list into natural order sort(null) sort()

Sort a list into descending order sort(comparator) sortDescending()

Remove an element from a list remove(index), remove(element) removeAt(index), remove(element) or collection -=

element

Fill all elements of a list with a certain value Collections.fill() fill()

Get unique elements from a list stream().distinct().toList() distinct()

Operations
that
don't
exist
in
Java's
standard
library
zip(), unzip() – transform a collection.

aggregate() – group by a condition.

takeLast(), takeLastWhile(), dropLast(), dropLastWhile() – take or drop elements by a predicate.

620

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fill.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/distinct.html

slice(), chunked(), windowed() – retrieve collection parts.

Plus (+) and minus (-) operators – add or remove elements.

If you want to take a deep dive into zip(), chunked(), windowed(), and some other operations, watch this video by Sebastian Aigner about advanced collection
operations in Kotlin:

Watch video online.

Mutability
In Java, there are mutable collections:

//	Java
//	This	list	is	mutable!
public	List<Customer>	getCustomers()	{	...	}

Partially mutable ones:

//	Java
List<String>	numbers	=	Arrays.asList("one",	"two",	"three",	"four");
numbers.add("five");	//	Fails	in	runtime	with	`UnsupportedOperationException`

And immutable ones:

//	Java
List<String>	numbers	=	new	LinkedList<>();
//	This	list	is	immutable!
List<String>	immutableCollection	=	Collections.unmodifiableList(numbers);
immutableCollection.add("five");	//	Fails	in	runtime	with	`UnsupportedOperationException`

If you write the last two pieces of code in IntelliJ IDEA, the IDE will warn you that you're trying to modify an immutable object. This code will compile and fail in
runtime with UnsupportedOperationException. You can't tell whether a collection is mutable by looking at its type.

Unlike in Java, in Kotlin you explicitly declare mutable or read-only collections depending on your needs. If you try to modify a read-only collection, the code won't
compile:

//	Kotlin
val	numbers	=	mutableListOf("one",	"two",	"three",	"four")
numbers.add("five")												//	This	is	OK
val	immutableNumbers	=	listOf("one",	"two")
//immutableNumbers.add("five")	//	Compilation	error	-	Unresolved	reference:	add

Read more about immutability on the Kotlin coding conventions page.

Gif

621

https://youtube.com/v/N4CpLxGJlq0

Covariance
In Java, you can't pass a collection with a descendant type to a function that takes a collection of the ancestor type. For example, if Rectangle extends Shape, you
can't pass a collection of Rectangle elements to a function that takes a collection of Shape elements. To make the code compilable, use the ? extends Shape type
so the function can take collections with any inheritors of Shape:

//	Java
class	Shape	{}

class	Rectangle	extends	Shape	{}

public	void	doSthWithShapes(List<?	extends	Shape>	shapes)	{
/*	If	using	just	List<Shape>,	the	code	won't	compile	when	calling
this	function	with	the	List<Rectangle>	as	the	argument	as	below	*/
}

public	void	main()	{
				var	rectangles	=	List.of(new	Rectangle(),	new	Rectangle());
				doSthWithShapes(rectangles);
}

In Kotlin, read-only collection types are covariant. This means that if a Rectangle class inherits from the Shape class, you can use the type List<Rectangle>
anywhere the List<Shape> type is required. In other words, the collection types have the same subtyping relationship as the element types. Maps are covariant on
the value type, but not on the key type. Mutable collections aren't covariant – this would lead to runtime failures.

//	Kotlin
open	class	Shape(val	name:	String)

class	Rectangle(private	val	rectangleName:	String)	:	Shape(rectangleName)

fun	doSthWithShapes(shapes:	List<Shape>)	{
				println("The	shapes	are:	${shapes.joinToString	{	it.name	}}")
}

fun	main()	{
				val	rectangles	=	listOf(Rectangle("rhombus"),	Rectangle("parallelepiped"))
				doSthWithShapes(rectangles)
}

Read more about collection types here.

Ranges
and
progressions
In Kotlin, you can create intervals using ranges. For example, Version(1, 11)..Version(1, 30) includes all of the versions from 1.11 to 1.30. You can check that your
version is in the range by using the in operator: Version(0, 9) in versionRange.

In Java, you need to manually check whether a Version fits both bounds:

//	Java
class	Version	implements	Comparable<Version>	{

				int	major;
				int	minor;

				Version(int	major,	int	minor)	{
								this.major	=	major;
								this.minor	=	minor;
				}

				@Override
				public	int	compareTo(Version	o)	{
								if	(this.major	!=	o.major)	{
												return	this.major	-	o.major;
								}
								return	this.minor	-	o.minor;
				}
}

public	void	compareVersions()	{
				var	minVersion	=	new	Version(1,	11);
				var	maxVersion	=	new	Version(1,	31);

622

			System.out.println(
											versionIsInRange(new	Version(0,	9),	minVersion,	maxVersion));
			System.out.println(
											versionIsInRange(new	Version(1,	20),	minVersion,	maxVersion));
}

public	Boolean	versionIsInRange(Version	versionToCheck,	Version	minVersion,	
																																Version	maxVersion)	{
				return	versionToCheck.compareTo(minVersion)	>=	0	
												&&	versionToCheck.compareTo(maxVersion)	<=	0;
}

In Kotlin, you operate with a range as a whole object. You don't need to create two variables and compare a Version with them:

//	Kotlin
class	Version(val	major:	Int,	val	minor:	Int):	Comparable<Version>	{
				override	fun	compareTo(other:	Version):	Int	{
								if	(this.major	!=	other.major)	{
												return	this.major	-	other.major
								}
								return	this.minor	-	other.minor
				}
}

fun	main()	{
				val	versionRange	=	Version(1,	11)..Version(1,	30)

				println(Version(0,	9)	in	versionRange)
				println(Version(1,	20)	in	versionRange)
}

As soon as you need to exclude one of the bounds, like to check whether a version is greater than or equal to (>=) the minimum version and less than (<) the
maximum version, these inclusive ranges won't help.

Comparison
by
several
criteria
In Java, to compare objects by several criteria, you may use the comparing() and thenComparingX() functions from the Comparator interface. For example, to
compare people by their name and age:

class	Person	implements	Comparable<Person>	{
				String	name;
				int	age;

				public	String	getName()	{
								return	name;
				}

				public	int	getAge()	{
								return	age;
				}

				Person(String	name,	int	age)	{
								this.name	=	name;
								this.age	=	age;
				}

				@Override
				public	String	toString()	{
								return	this.name	+	"	"	+	age;
				}
}

public	void	comparePersons()	{
				var	persons	=	List.of(new	Person("Jack",	35),	new	Person("David",	30),	
												new	Person("Jack",	25));
				System.out.println(persons.stream().sorted(Comparator
												.comparing(Person::getName)
												.thenComparingInt(Person::getAge)).collect(toList()));
}

In Kotlin, you just enumerate which fields you want to compare:

data	class	Person(

623

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html#comparing-java.util.function.Function-
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html#thenComparing-java.util.Comparator-
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

				val	name:	String,
				val	age:	Int
)

fun	main()	{
				val	persons	=	listOf(Person("Jack",	35),	Person("David",	30),	
								Person("Jack",	25))
				println(persons.sortedWith(compareBy(Person::name,	Person::age)))
}

Sequences
In Java, you can generate a sequence of numbers this way:

//	Java
int	sum	=	IntStream.iterate(1,	e	->	e	+	3)
				.limit(10).sum();
System.out.println(sum);	//	Prints	145

In Kotlin, use sequences. Multi-step processing of sequences is executed lazily when possible – actual computing happens only when the result of the whole
processing chain is requested.

fun	main()	{
//sampleStart
				//	Kotlin
				val	sum	=	generateSequence(1)	{
								it	+	3
				}.take(10).sum()
				println(sum)	//	Prints	145
//sampleEnd
}

Sequences may reduce the number of steps that are needed to perform some filtering operations. See the sequence processing example, which shows the
difference between Iterable and Sequence.

Removal
of
elements
from
a
list
In Java, the remove() function accepts an index of an element to remove.

When removing an integer element, use the Integer.valueOf() function as the argument for the remove() function:

//	Java
public	void	remove()	{
				var	numbers	=	new	ArrayList<>();
				numbers.add(1);
				numbers.add(2);
				numbers.add(3);
				numbers.add(1);
				numbers.remove(1);	//	This	removes	by	index
				System.out.println(numbers);	//	[1,	3,	1]
				numbers.remove(Integer.valueOf(1));
				System.out.println(numbers);	//	[3,	1]
}

In Kotlin, there are two types of element removal: by index with removeAt() and by value with remove().

fun	main()	{
//sampleStart
				//	Kotlin
				val	numbers	=	mutableListOf(1,	2,	3,	1)
				numbers.removeAt(0)
				println(numbers)	//	[2,	3,	1]
				numbers.remove(1)
				println(numbers)	//	[2,	3]
//sampleEnd
}

624

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html#remove(int)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/remove-at.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/remove.html

Traverse
a
map
In Java, you can traverse a map via forEach:

//	Java
numbers.forEach((k,v)	->	System.out.println("Key	=	"	+	k	+	",	Value	=	"	+	v));

In Kotlin, use a for loop or a forEach, similar to Java's forEach, to traverse a map:

//	Kotlin
for	((k,	v)	in	numbers)	{
				println("Key	=	$k,	Value	=	$v")
}
//	Or
numbers.forEach	{	(k,	v)	->	println("Key	=	$k,	Value	=	$v")	}

Get
the
first
and
the
last
items
of
a
possibly
empty
collection
In Java, you can safely get the first and the last items by checking the size of the collection and using indices:

//	Java
var	list	=	new	ArrayList<>();
//...
if	(list.size()	>	0)	{
				System.out.println(list.get(0));
				System.out.println(list.get(list.size()	-	1));
}

You can also use the getFirst() and getLast() functions for Deque and its inheritors:

//	Java
var	deque	=	new	ArrayDeque<>();
//...
if	(deque.size()	>	0)	{
				System.out.println(deque.getFirst());
				System.out.println(deque.getLast());
}

In Kotlin, there are the special functions firstOrNull() and lastOrNull(). Using the Elvis operator, you can perform further actions right away depending on the result of
a function. For example, firstOrNull():

//	Kotlin
val	emails	=	listOf<String>()	//	Might	be	empty
val	theOldestEmail	=	emails.firstOrNull()	?:	""
val	theFreshestEmail	=	emails.lastOrNull()	?:	""

Create
a
set
from
a
list
In Java, to create a Set from a List, you can use the Set.copyOf function:

//	Java
public	void	listToSet()	{
				var	sourceList	=	List.of(1,	2,	3,	1);
				var	copySet	=	Set.copyOf(sourceList);
				System.out.println(copySet);
}

In Kotlin, use the function toSet():

fun	main()	{
//sampleStart
				//	Kotlin
				val	sourceList	=	listOf(1,	2,	3,	1)
				val	copySet	=	sourceList.toSet()

625

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#forEach(java.util.function.BiConsumer)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Deque.html#getFirst()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Deque.html#getLast()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Deque.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last-or-null.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Set.html#copyOf(java.util.Collection)

				println(copySet)
//sampleEnd
}

Group
elements
In Java, you can group elements with the Collectors function groupingBy():

//	Java
public	void	analyzeLogs()	{
				var	requests	=	List.of(
								new	Request("https://kotlinlang.org/docs/home.html",	200),
								new	Request("https://kotlinlang.org/docs/home.html",	400),
								new	Request("https://kotlinlang.org/docs/comparison-to-java.html",	200)
);
				var	urlsAndRequests	=	requests.stream().collect(
												Collectors.groupingBy(Request::getUrl));
				System.out.println(urlsAndRequests);
}

In Kotlin, use the function groupBy():

class	Request(
				val	url:	String,
				val	responseCode:	Int
)

fun	main()	{
//sampleStart
				//	Kotlin
				val	requests	=	listOf(
								Request("https://kotlinlang.org/docs/home.html",	200),
								Request("https://kotlinlang.org/docs/home.html",	400),
								Request("https://kotlinlang.org/docs/comparison-to-java.html",	200)
)
				println(requests.groupBy(Request::url))
//sampleEnd
}

Filter
elements
In Java, to filter elements from a collection, you need to use the Stream API. The Stream API has intermediate and terminal operations. filter() is an intermediate
operation, which returns a stream. To receive a collection as the output, you need to use a terminal operation, like collect(). For example, to leave only those pairs
whose keys end with 1 and whose values are greater than 10:

//	Java
public	void	filterEndsWith()	{
				var	numbers	=	Map.of("key1",	1,	"key2",	2,	"key3",	3,	"key11",	11);
				var	filteredNumbers	=	numbers.entrySet().stream()
								.filter(entry	->	entry.getKey().endsWith("1")	&&	entry.getValue()	>	10)
								.collect(Collectors.toMap(Map.Entry::getKey,	Map.Entry::getValue));
				System.out.println(filteredNumbers);
}

In Kotlin, filtering is built into collections, and filter() returns the same collection type that was filtered. So, all you need to write is the filter() and its predicate:

fun	main()	{
//sampleStart
				//	Kotlin
				val	numbers	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key11"	to	11)
				val	filteredNumbers	=	numbers.filter	{	(key,	value)	->	key.endsWith("1")	&&	value	>	10	}
				println(filteredNumbers)
//sampleEnd
}

Learn more about filtering maps here.

626

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Collectors.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/group-by.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html

Filter
elements
by
type
In Java, to filter elements by type and perform actions on them, you need to check their types with the instanceof operator and then do the type cast:

//	Java
public	void	objectIsInstance()	{
				var	numbers	=	new	ArrayList<>();
				numbers.add(null);
				numbers.add(1);
				numbers.add("two");
				numbers.add(3.0);
				numbers.add("four");
				System.out.println("All	String	elements	in	upper	case:");
				numbers.stream().filter(it	->	it	instanceof	String)
								.forEach(it	->	System.out.println(((String)	it).toUpperCase()));
}

In Kotlin, you just call filterIsInstance<NEEDED_TYPE>() on your collection, and the type cast is done by Smart casts:

//	Kotlin
fun	main()	{
//sampleStart
				//	Kotlin
				val	numbers	=	listOf(null,	1,	"two",	3.0,	"four")
				println("All	String	elements	in	upper	case:")
				numbers.filterIsInstance<String>().forEach	{
								println(it.uppercase())
				}
//sampleEnd
}

Test
predicates
Some tasks require you to check whether all, none, or any elements satisfy a condition. In Java, you can do all of these checks via the Stream API functions
allMatch(), noneMatch(), and anyMatch():

//	Java
public	void	testPredicates()	{
				var	numbers	=	List.of("one",	"two",	"three",	"four");
				System.out.println(numbers.stream().noneMatch(it	->	it.endsWith("e")));	//	false
				System.out.println(numbers.stream().anyMatch(it	->	it.endsWith("e")));	//	true
				System.out.println(numbers.stream().allMatch(it	->	it.endsWith("e")));	//	false
}

In Kotlin, the extension functions none(), any(), and all() are available for every Iterable object:

fun	main()	{
//sampleStart
//	Kotlin
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.none	{	it.endsWith("e")	})
				println(numbers.any	{	it.endsWith("e")	})
				println(numbers.all	{	it.endsWith("e")	})
//sampleEnd
}

Learn more about test predicates.

Collection
transformation
operations

Zip
elements
In Java, you can make pairs from elements with the same positions in two collections by iterating simultaneously over them:

//	Java
public	void	zip()	{
				var	colors	=	List.of("red",	"brown");
				var	animals	=	List.of("fox",	"bear",	"wolf");

627

https://docs.oracle.com/en/java/javase/17/language/pattern-matching-instanceof-operator.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-is-instance.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html#allMatch(java.util.function.Predicate)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html#noneMatch(java.util.function.Predicate)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/Stream.html#anyMatch(java.util.function.Predicate)
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/#kotlin.collections.Iterable

				for	(int	i	=	0;	i	<	Math.min(colors.size(),	animals.size());	i++)	{
								String	animal	=	animals.get(i);
								System.out.println("The	"	+	animal.substring(0,	1).toUpperCase()
															+	animal.substring(1)	+	"	is	"	+	colors.get(i));
			}
}

If you want to do something more complex than just printing pairs of elements into the output, you can use Records. In the example above, the record would be
record AnimalDescription(String animal, String color) {}.

In Kotlin, use the zip() function to do the same thing:

fun	main()	{
//sampleStart
				//	Kotlin
				val	colors	=	listOf("red",	"brown")
				val	animals	=	listOf("fox",	"bear",	"wolf")

				println(colors.zip(animals)	{	color,	animal	->	
								"The	${animal.replaceFirstChar	{	it.uppercase()	}}	is	$color"	})
//sampleEnd
}

zip() returns the List of Pair objects.

Associate
elements
In Java, you can use the Stream API to associate elements with characteristics:

//	Java
public	void	associate()	{
				var	numbers	=	List.of("one",	"two",	"three",	"four");
				var	wordAndLength	=	numbers.stream()
								.collect(toMap(number	->	number,	String::length));
				System.out.println(wordAndLength);
}

In Kotlin, use the associate() function:

fun	main()	{
//sampleStart
				//	Kotlin
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.associateWith	{	it.length	})
//sampleEnd
}

What's
next?
Visit Kotlin Koans – complete exercises to learn Kotlin syntax. Each exercise is created as a failing unit test and your job is to make it pass.

Look through other Kotlin idioms.

Learn how to convert existing Java code to Kotlin with the Java to Kotlin converter.

Discover collections in Kotlin.

If you have a favorite idiom, we invite you to share it by sending a pull request.

Nullability
in
Java
and
Kotlin
Nullability is the ability of a variable to hold a null value. When a variable contains null, an attempt to dereference the variable leads to a NullPointerException. There

If collections have different sizes, the result of zip() is the smaller size. The last elements of the larger collection are not included in the result.

628

https://blogs.oracle.com/javamagazine/post/records-come-to-java
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-pair/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html

are many ways to write code in order to minimize the probability of receiving null pointer exceptions.

This guide covers differences between Java's and Kotlin's approaches to handling possibly nullable variables. It will help you migrate from Java to Kotlin and write
your code in authentic Kotlin style.

The first part of this guide covers the most important difference – support for nullable types in Kotlin and how Kotlin processes types from Java code. The second
part, starting from Checking the result of a function call, examines several specific cases to explain certain differences.

Learn more about null safety in Kotlin.

Support
for
nullable
types
The most important difference between Kotlin's and Java's type systems is Kotlin's explicit support for nullable types. It is a way to indicate which variables can
possibly hold a null value. If a variable can be null, it's not safe to call a method on the variable because this can cause a NullPointerException. Kotlin prohibits such
calls at compile time and thereby prevents lots of possible exceptions. At runtime, objects of nullable types and objects of non-nullable types are treated the same:
A nullable type isn't a wrapper for a non-nullable type. All checks are performed at compile time. That means there's almost no runtime overhead for working with
nullable types in Kotlin.

In Java, if you don't write null checks, methods may throw a NullPointerException:

//	Java
int	stringLength(String	a)	{
				return	a.length();
}

void	main()	{
				stringLength(null);	//	Throws	a	`NullPointerException`
}

This call will have the following output:

NullPointerException:	Cannot	invoke	"String.length()"	because	"a"	is	null
				at	 Nullability.stringLength(Nullability.java:8)
				at	 Nullability.main(Nullability.java:12)
				at	java.base/ ArrayList.forEach(ArrayList.java:1511)
				at	java.base/ ArrayList.forEach(ArrayList.java:1511)

In Kotlin, all regular types are non-nullable by default unless you explicitly mark them as nullable. If you don't expect a to be null, declare the stringLength() function
as follows:

//	Kotlin
fun	stringLength(a:	String)	=	a.length

The parameter a has the String type, which in Kotlin means it must always contain a String instance and it cannot contain null. Nullable types in Kotlin are marked
with a question mark ?, for example, String?. The situation with a NullPointerException at runtime is impossible if a is String because the compiler enforces the rule
that all arguments of stringLength() not be null.

An attempt to pass a null value to the stringLength(a: String) function will result in a compile-time error, "Null can not be a value of a non-null type String":

We say "almost" because, even though intrinsic checks are generated, their overhead is minimal.

629

https://en.wikipedia.org/wiki/Intrinsic_function

Passing null to a non-nullable function error

If you want to use this function with any arguments, including null, use a question mark after the argument type String? and check inside the function body to
ensure that the value of the argument is not null:

//	Kotlin
fun	stringLength(a:	String?):	Int	=	if	(a	!=	null)	a.length	else	0

After the check is passed successfully, the compiler treats the variable as if it were of the non-nullable type String in the scope where the compiler performs the
check.

If you don't perform this check, the code will fail to compile with the following message: "Only safe (?.) or non-nullable asserted (!!.) calls are allowed on a nullable
receiver of type String?".

You can write the same shorter – use the safe-call operator ?. (If-not-null shorthand), which allows you to combine a null check and a method call into a single
operation:

//	Kotlin
fun	stringLength(a:	String?):	Int	=	a?.length	?:	0

Platform
types
In Java, you can use annotations showing whether a variable can or cannot be null. Such annotations aren't part of the standard library, but you can add them
separately. For example, you can use the JetBrains annotations @Nullable and @NotNull (from the org.jetbrains.annotations package) or annotations from Eclipse
(org.eclipse.jdt.annotation). Kotlin can recognize such annotations when you're calling Java code from Kotlin code and will treat types according to their
annotations.

If your Java code doesn't have these annotations, then Kotlin will treat Java types as platform types. But since Kotlin doesn't have nullability information for such
types, its compiler will allow all operations on them. You will need to decide whether to perform null checks, because:

Just as in Java, you'll get a NullPointerException if you try to perform an operation on null.

The compiler won't highlight any redundant null checks, which it normally does when you perform a null-safe operation on a value of a non-nullable type.

Learn more about calling Java from Kotlin in regard to null-safety and platform types.

Support
for
definitely
non-nullable
types
In Kotlin, if you want to override a Java method that contains @NotNull as an argument, you need Kotlin's definitely non-nullable types.

For example, consider this load() method in Java:

import	 *;

public	interface	Game<T>	{
		public	T	save(T	x)	{}
		@NotNull
		public	T	load(@NotNull	T	x)	{}
}

630

To override the load() method in Kotlin successfully, you need T1 to be declared as definitely non-nullable (T1 & Any):

interface	ArcadeGame<T1>	:	Game<T1>	{
		override	fun	save(x:	T1):	T1
		//	T1	is	definitely	non-nullable
		override	fun	load(x:	T1	&	Any):	T1	&	Any
}

Learn more about generic types that are definitely non-nullable.

Checking
the
result
of
a
function
call
One of the most common situations where you need to check for null is when you obtain a result from a function call.

In the following example, there are two classes, Order and Customer. Order has a reference to an instance of Customer. The findOrder() function returns an
instance of the Order class, or null if it can't find the order. The objective is to process the customer instance of the retrieved order.

Here are the classes in Java:

//Java
record	Order	(Customer	customer)	{}

record	Customer	(String	name)	{}

In Java, call the function and do an if-not-null check on the result to proceed with the dereferencing of the required property:

//	Java
Order	order	=	findOrder();

if	(order	!=	null)	{
				processCustomer(order.getCustomer());
}

Converting the Java code above to Kotlin code directly results in the following:

//	Kotlin
data	class	Order(val	customer:	Customer)

data	class	Customer(val	name:	String)

val	order	=	findOrder()

//	Direct	conversion
if	(order	!=	null){
				processCustomer(order.customer)
}

Use the safe-call operator ?. (If-not-null shorthand) in combination with any of the scope functions from the standard library. The let function is usually used for this:

//	Kotlin
val	order	=	findOrder()

order?.let	{
				processCustomer(it.customer)
}

Here is a shorter version of the same:

//	Kotlin
findOrder()?.customer?.let(::processCustomer)

Default
values
instead
of
null
Checking for null is often used in combination with setting the default value in case the null check is successful.

631

The Java code with a null check:

//	Java
Order	order	=	findOrder();
if	(order	==	null)	{
				order	=	new	Order(new	Customer("Antonio"))
}

To express the same in Kotlin, use the Elvis operator (If-not-null-else shorthand):

//	Kotlin
val	order	=	findOrder()	?:	Order(Customer("Antonio"))

Functions
returning
a
value
or
null
In Java, you need to be careful when working with list elements. You should always check whether an element exists at an index before you attempt to use the
element:

//	Java
var	numbers	=	new	ArrayList<Integer>();
numbers.add(1);
numbers.add(2);

System.out.println(numbers.get(0));
//numbers.get(5)	//	Exception!

The Kotlin standard library often provides functions whose names indicate whether they can possibly return a null value. This is especially common in the collections
API:

fun	main()	{
//sampleStart
				//	Kotlin
				//	The	same	code	as	in	Java:
				val	numbers	=	listOf(1,	2)
				
				println(numbers[0])		//	Can	throw	IndexOutOfBoundsException	if	the	collection	is	empty
				//numbers.get(5)					//	Exception!

				//	More	abilities:
				println(numbers.firstOrNull())
				println(numbers.getOrNull(5))	//	null
//sampleEnd
}

Aggregate
operations
When you need to get the biggest element or null if there are no elements, in Java you would use the Stream API:

//	Java
var	numbers	=	new	ArrayList<Integer>();
var	max	=	numbers.stream().max(Comparator.naturalOrder()).orElse(null);
System.out.println("Max:	"	+	max);

In Kotlin, use aggregate operations:

//	Kotlin
val	numbers	=	listOf<Int>()
println("Max:	${numbers.maxOrNull()}")

Learn more about collections in Java and Kotlin.

Casting
types
safely

632

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html

When you need to safely cast a type, in Java you would use the instanceof operator and then check how well it worked:

//	Java
int	getStringLength(Object	y)	{
				return	y	instanceof	String	x	?	x.length()	:	-1;
}

void	main()	{
				System.out.println(getStringLength(1));	//	Prints	`-1`
}

To avoid exceptions in Kotlin, use the safe cast operator as?, which returns null on failure:

//	Kotlin
fun	main()	{
				println(getStringLength(1))	//	Prints	`-1`
}

fun	getStringLength(y:	Any):	Int	{
				val	x:	String?	=	y	as?	String	//	null
				return	x?.length	?:	-1	//	Returns	-1	because	`x`	is	null
}

What's
next?
Browse other Kotlin idioms.

Learn how to convert existing Java code to Kotlin with the Java-to-Kotlin (J2K) converter.

Check out other migration guides:

Strings in Java and Kotlin

Collections in Java and Kotlin

If you have a favorite idiom, feel free to share it with us by sending a pull request!

Introduction
A good library is one that has:

Backward compatibility

Complete and easy-to-understand documentation

Minimum cognitive complexity

Consistent API

This guide contains a summary of best practices and ideas to consider when writing an API for your library. It consists of the following chapters:

Readability

Predictability

Debuggability

Backward compatibility

Many of the following best practices provide advice on how to reduce the cognitive complexity of an API. As such, this guide provides an explanation of cognitive
complexity before proceeding to best practices.

In the Java example above, the function getStringLength() returns a result of the primitive type int. To make it return null, you can use the boxed type
Integer. However, it's more resource-efficient to make such functions return a negative value and then check the value – you would do the check anyway,
but no additional boxing is performed this way.

633

https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Cognitive
complexity
Cognitive complexity is the amount of mental effort a person needs to spend to understand a piece of code. A codebase with high cognitive complexity is more
difficult to understand and maintain, which can lead to bugs and delays in development.

An example of high cognitive complexity is a class or module that does not follow the Single Responsibility Principle. A class or module that does too many things
is hard to understand and modify. In contrast, a class or module that has one clear and well-defined responsibility is easier to work with.

Functions can also have high cognitive complexity. Some traits of a "badly written" function are:

Too many arguments, variables, or loops.

Complex logic with many nested if-else statements.

A function like that is harder to work with than a function with clear and simple logic – one with few parameters and an easy-to-understand control flow. An example
of high cognitive complexity:

fun	processData(
				data:	List<String>,
				delimiter:	String,
				ignoreCase:	Boolean,
				sort:	Boolean,
				maxLength:	Int
)	{
				//	Some	complex	processing	logic
}

Decomposing this functionality lowers the cognitive complexity:

fun	delimit(data:	List<String>,	delimiter:	String)	{	…	}
fun	ignoreCase(data:	List<String>)	{	…	}
fun	sortAscending(data:	List<String>)	{	…	}
fun	sortDescending(data:	List<String>)	{	…	}
fun	maxLength(data:	List<String>,	maxLength:	Int)	{	…	}

You can simplify the code above even more with the help of extension functions:

fun	List<String>.delimit(delimiter:	String):	List<String>	{	…	}
fun	List<String>.sortAscending():	List<String>	{	…	}
fun	List<String>.sortDescending():	List<String>	{	…	}
fun	List<String>.maxLength(maxLength:	Int):	List<String>	{	…	}
…

What's
next?
Learn about APIs' readability.

Readability
This chapter discusses considerations about API consistency and provides the following recommendations:

Use a builder DSL

Use constructor-like functions where applicable

Use member and extension functions appropriately

Avoid using Boolean arguments in functions

API
consistency
A consistent and well-documented API is crucial for a good development experience. The same is valid for argument order, overall naming scheme, and overloads.
Also, it's worth documenting all conventions.

634

https://en.wikipedia.org/wiki/Single-responsibility_principle

For example, if one of your methods accepts offset and length as parameters, then so should other methods, instead of, for example, accepting startIndex and
endIndex. Parameters like these are most likely of Int or Long type, and thus it's very easy to confuse them.

The same works for parameter order: Keep it consistent between methods and overloads. Otherwise, users of your library might incorrectly guess the order they
should pass arguments in.

Here is an example that preserves the parameter order and uses consistent naming:

fun	String.chop(length:	Int):	String	=	substring(0,	length)
fun	String.chop(length:	Int,	startIndex:	Int)	=
				substring(startIndex,	length	+	startIndex)

If you have many lookalike methods, name them consistently and predictably. This is how the stdlib API works: There are methods first() and firstOrNull(), single()
and singleOrNull(), and so on. It's clear from their names that they are all pairs, and some of them might return null while others might throw an exception.

Use
a
builder
DSL
"Builder" is a well-known pattern in development. It allows you to build a complex entity not in a single expression, but gradually while getting more information.
When you need to use a builder, it's better to write it using a builder DSL, which is binary-compatible and more idiomatic.

A canonical example of a Kotlin builder DSL is kotlinx.html. Consider the following example:

header("modal-card-head")	{
				p("modal-card-title")	{
								+book.book.name
				}
				button(classes	=	"delete")	{
								attributes["aria-label"]	=	"close"
								attributes["_"]	=	closeModalScript
				}
}

It could be implemented as a traditional builder, but that would be considerably more verbose:

headerBuilder()
				.addClasses("modal-card-head")
				.addElement(
								pBuilder()
												.addClasses("modal-card-title")
												.addContent(book.book.name)
												.build()
)
				.addElement(
								buttonBuilder()
												.addClasses("delete")
												.addAttribute("aria-label",	"close")
												.addAttribute("_",	closeModalScript)
												.build()
)
				.build()

This implementation has too many details that you don't necessarily need to know, and it requires you to build each entity at the end.

The situation gets even worse if you need to generate a builder's content dynamically in a loop. In this scenario, you have to instantiate a variable and dynamically
overwrite it:

var	buttonBuilder	=	buttonBuilder()
				.addClasses("delete")
for	((attributeName,	attributeValue)	in	attributes)	{
				buttonBuilder	=	buttonBuilder.addAttribute(attributeName,	attributeValue)
}
buttonBuilder.build()

Inside the builder DSL, you can directly call a loop and all necessary DSL calls:

div("tags")	{
				for	(genre	in	book.genres)	{
								span("tag	is-rounded	is-normal	is-info	is-light")	{
												+genre

635

https://en.wikipedia.org/wiki/Builder_pattern#:~:text=The%20builder%20pattern%20is%20a,Gang%20of%20Four%20design%20patterns

								}
				}
}

Keep in mind that inside curly braces it's impossible to check at compile time whether you have set all the required attributes. To avoid this, pass required
arguments as function arguments, not as builder's properties. For example, if you want href to be a mandatory HTML attribute, your function will look like:

fun	a(href:	String,	block:	A.()	->	Unit):	A

And not just:

fun	a(block:	A.()	->	Unit):	A

Use
constructor-like
functions
where
applicable
Sometimes, you can simplify your API's appearance by using constructor-like functions. A constructor-like function is a function whose name starts with a capital
letter, so it looks like a constructor. This approach can make your library easier to understand.

Suppose you want to introduce an Option type in your library:

sealed	interface	Option<T>
class	Some<T	:	Any>(val	t:	T)	:	Option<T>
object	None	:	Option<Nothing>

You can define implementations of all the Option interface methods – map(), flatMap(), and so on. However, each time your API users create such an Option, they
must write extra logic to check what they create. For example:

fun	findById(id:	Int):	Option<Person>	{
				val	person	=	db.personById(id)
				return	if	(person	==	null)	None	else	Some(person)
}

To save your users from having to write the same check each time, you can add just one line to your API:

fun	<T>	Option(t:	T?):	Option<out	T	&	Any>	=
				if	(t	==	null)	None	else	Some(t)

//	Usage	of	the	code	above:
fun	findById(id:	Int):	Option<Person>	=	Option(db.personById(id))

Now, creating a valid Option is as simple as can be: Just call Option(x) and you have a null-safe, purely functional Option idiom.

Another use case for using a constructor-like function is when you need to return "hidden" things, such as a private instance or an internal object. For example, let's
look at a method from the standard library:

public	fun	<T>	listOf(vararg	elements:	T):	List<T>	=
				if	(elements.isNotEmpty())	elements.asList()	else	emptyList()

In the code above, emptyList() returns the following:

internal	object	EmptyList	:	List<Nothing>,	Serializable,	RandomAccess

You can write a constructor-like function to lower the cognitive complexity of your code and reduce the size of your API:

fun	<T>	List():	List<T>	=	EmptyList

//	Usage	of	the	code	above:

Builder DSLs are backward-compatible as long as you don't delete anything from them. Typically this isn't a problem, because most developers only add
more properties to their builder classes over time.

636

https://en.wikipedia.org/wiki/Option_type

public	fun	<T>	listOf(vararg	elements:	T):	List<T>	=
				if	(elements.isNotEmpty())	elements.asList()	else	List()

Use
member
and
extension
functions
appropriately
Write only the very core of the API as member functions, and everything else as extension functions. This will help you clearly show to the reader what is the core
functionality and what isn't.

For example, consider the following class for a graph:

class	Graph	{
				private	val	_vertices:	MutableSet<Int>	=	mutableSetOf()
				private	val	_edges:	MutableMap<Int,	MutableSet<Int>>	=	mutableMapOf()

				fun	addVertex(vertex:	Int)	{
								_vertices.add(vertex)
				}

				fun	addEdge(vertex1:	Int,	vertex2:	Int)	{
								_vertices.add(vertex1)
								_vertices.add(vertex2)
								_edges.getOrPut(vertex1)	{	mutableSetOf()	}.add(vertex2)
								_edges.getOrPut(vertex2)	{	mutableSetOf()	}.add(vertex1)
				}

				val	vertices:	Set<Int>	get()	=	_vertices
				val	edges:	Map<Int,	Set<Int>>	get()	=	_edges
}

This class contains a bare minimum of vertices and edges as private variables, functions to add vertices and edges, and accessor functions that return an
immutable representation of the current state.

You can add all the remaining functionality outside the class:

fun	Graph.getNumberOfVertices():	Int	=	vertices.size
fun	Graph.getNumberOfEdges():	Int	=	edges.size
fun	Graph.getDegree(vertex:	Int):	Int	=	edges[vertex]?.size	?:	0

Only properties, overrides, and accessors should be members.

Avoid
using
Boolean
arguments
in
functions
Ideally, a reader should be able to tell the purpose of a function argument just by reading code. With Boolean arguments, however, this is almost impossible to do,
especially if you're not using an IDE (for example, if you're reviewing the code in a version control service). Using named arguments can help clarify the purpose of
arguments, but for now there is no way to force developers to use them in IDEs. Another option is to create a function that contains the action of the Boolean
argument and give this function a descriptive name.

For example, in the standard library there are two functions for map():

fun	map(transform:	(T)	->	R):	List<R>

fun	mapNotNull(transform:	(T)	->	R?):	List<R>

It was possible to add something like map(filterNulls: Boolean) and write code like this:

listOf(1,	null,	2).map(false)	{	it.toString()	}

From reading this code, it's difficult to infer what false refers to. However, if you use the mapNotNull() function, readers will be able to understand the logic at a
glance:

listOf(1,	null,	2).mapNotNull	{	it.toString()	}	

637

What's
next?
Learn about APIs':

Predictability

Debuggability

Backward compatibility

Predictability
This chapter contains the following recommendations:

Use sealed interfaces

Hide implementations with sealed classes

Validate your inputs and state

Validate inputs with the require() function

Validate state with the check() function

Avoid arrays in public signatures

Avoid varargs

Use
sealed
interfaces
Interfaces in your API are usually necessary when you need to have an abstraction from an implementation. If you have to use interfaces, consider using sealed
interfaces. This is especially important if you don't want your API's users to extend your hierarchy.

For example, JSON types can be of six types: object, array, number, string, boolean, and null. Creating a generic interface JsonElement can result in errors because
a user can accidentally define a new implementation of JsonElement, which could break your code. Instead, you can make interface JsonElement sealed and add
an implementation for each type:

sealed	interface	JsonElement

class	JsonNumber(val	value:	Number)	:	JsonElement
class	JsonObject(val	values:	Map<String,	JsonElement>)	:	JsonElement
class	JsonArray(val	values:	List<JsonElement>)	:	JsonElement
class	JsonBoolean(val	value:	Boolean)	:	JsonElement
class	JsonString(val	value:	String)	:	JsonElement
object	JsonNull	:	JsonElement

This approach helps you avoid mistakes on both the library and the client sides.

The key benefit of using sealed types comes into play when you use them in a when expression. If it's possible to verify that the statement covers all cases, you
don't need to add an else clause to the statement:

fun	processJson(json:	JsonElement)	=	when	(json)	{
				is	JsonNumber	->	{	/*	Process	as	a	number	*/	}
				is	JsonObject	->	{	/*	Process	as	an	object	*/	}
				is	JsonArray	->	{	/*	Process	as	an	array	*/	}
				is	JsonBoolean	->	{	/*	Process	as	a	boolean	*/	}
				is	JsonString	->	{	/*	Process	as	a	string	*/	}
				is	JsonNull	->	{	/*	Process	as	null	*/	}
				//	`else`	clause	is	not	required	because	all	the	cases	are	covered
}

Remember that adding a new implementation to a sealed interface will immediately make a user's existing code invalid.

638

Hide
implementations
with
sealed
classes
If you have a sealed interface in your API, it doesn't mean that you should expose all its implementations in your API, too. Minimizing is typically better. If you need
to avoid leaky abstractions or want to prevent API users from extending your interfaces, consider using sealed classes or interfaces with your internal
implementations, too.

For example, a library that works with different databases can have an interface of a database response like this:

sealed	interface	DBResponse	{
				operator	fun	<T>	get(columnName:	String):	Sequence<T>
}

Exposing implementations of this interface, such as SQLiteResponse or MongoResponse, to API users is a leaky abstraction, and it complicates the support of this
API. In such a library, you might handle only your implementations of DBResponse. If a user passes their implementation of DBResponse into a library's method
accepting responses, it can cause an error. Using sealed interfaces and classes prevents this.

Validate
your
inputs
and
state

Validate
inputs
with
the
require()
function
It's possible to misuse an API. To help your users work with your API correctly, you should validate inputs as early as possible with the require() function.

For example, this is a simple library function that saves users to some external API:

fun	saveUser(username:	String,	password:	String)	{
				api.saveUser(User(username,	password))
}

You should perform validation on the function's arguments to make sure that everything behaves as expected. For example, check that username is unique and not
empty, even if you have already defined these constraints in your database:

fun	saveUser(username:	String,	password:	String)	{
				require(username.isNotBlank())	{	"Username	should	not	be	blank"	}
				require(api.usernameAvailable(username))	{	"Username	$username	is	already	taken"	}
				require(password.isNotBlank())	{	"Password	should	not	be	blank"	}
				require(password.length	>	6)	{	"Password	should	contain	at	least	7	letters"	}
				require(
								/*	Some	complex	check	*/
)	{	"..."	}

				api.saveUser(User(username,	password))
}

This way you ensure that your user doesn't need to dig into complex stack traces that lead to the database. In the event of an exception, it will be an
IllegalArgumentException with a meaningful message, not a generic database exception.

Validate
state
with
the
check()
function
The same recommendations apply to checking the internal state. The most obvious example is InputStream because you can't read from a closed input stream.

Consider the class InputStream with a readByte() method and its usage:

class	InputStream	:	Closeable	{
				private	var	open	=	true
				fun	readByte():	Byte	{	/*	Read	and	return	one	byte	*/	}
				override	fun	close()	{
								//	Dispose	of	the	underlying	resource
								open	=	false
				}
}

fun	readTwoBytes(inputStream:	InputStream):	Pair<Byte,	Byte>	{
				val	first	=	inputStream.use	{	it.readByte()	}

If you have implemented input validation, you should also document these checks.

639

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/require.html

				val	second	=	inputStream.readByte()
				return	Pair(first,	second)
}

The readTwoBytes() method has to throw an IllegalStateException because use{} closes a Closeable input stream, and a user shouldn't be able to read from a
closed stream. To implement this, modify the code of the readByte() function:

fun	readByte():	Byte	{
				check(open)	{	"Can't	read	from	the	already	closed	stream"	}
				//	Read	and	return	one	byte
}

In the example above, the check() function is used, not require(). These functions throw different exceptions: require() throws an IllegalArgumentException, whereas
check() throws an IllegalStateException. This difference might become significant when debugging.

Avoid
arrays
in
public
signatures
Arrays are always mutable, and Kotlin is built around safe – read-only or immutable – objects. If you have to use arrays in your API, copy them before passing them
anywhere so that you can check that they have not been modified. As an alternative, use read-only and mutable collections according to your intentions. Generally,
it is best to avoid using arrays, and if you must, do so with extra caution.

For example, enum classes in Kotlin have the values() function that returns an array of all elements of the enum. If the array is not copied, a user is able to rewrite
the elements:

enum	class	Test	{	A,	B	}

fun	main()	{	Test.values()[0]	=	Test.B	}

If you cache values inside the enum, the cache will be corrupted after running the code above. If the values are not cached, it's an additional runtime overhead for
each call of the values() function.

Avoid
varargs
A vararg – variable number of arguments – works as an array under the hood, but the array elements are passed individually to the function, not the whole array.
This operation is costly because it's copying the same array repeatedly.

Consider the following code:

fun	printElements(delimiter:	String,	vararg	elements:	String)	{
				for	(i	in	elements.indices)	{
								print(elements[i])
								if	(i	<	elements.lastIndex)	print(delimiter)
				}
}

fun	printWithSpace(vararg	elements:	String)	{
				printElements("	",	*elements)
}

fun	main()	{
				printWithSpace("x",	"y",	"z")
}

The printElements() function prints all strings from the vararg argument elements with a delimiter, and the printWithSpace() function calls printElements() with the
delimiter defined as a space. The code looks innocent: you just pass elements from printWithSpace() to printElements(). Without the spread operator *, the code
won't compile, but with it, the array is actually copied before being passed to the printElements() function. The longer the chain is, the more copies are created and
the bigger the unexpected memory overhead is.

What's
next?
Learn about APIs':

Debuggability

640

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/use.html

Backward compatibility

Debuggability
This chapter contains considerations about debuggability.

Always
provide
a
toString()
method
To make debugging easier, add a toString() implementation to every class you introduce, even to internal ones. If toString() is part of a contract, document it
explicitly.

The following code is a simplified example from a graphical modeling area:

class	Vector2D(val	x:	Int,	val	y:	Int)

fun	main()	{
				val	result	=	(1..20).map	{	Vector2D(it,	it)	}
				println(result)
}

The output of this code is not very useful:

[Vector2D@27bc2616,	Vector2D@3941a79c,	Vector2D@506e1b77,...]

Neither is the information provided in the debug tool window:

Vector class objects in the debug tool window

To make both logging and debugging much more readable, add a simple toString() implementation like this:

override	fun	toString():	String	=
				"Vector2D(x=$x,	y=$y)"

This results in improved output:

[Vector2D(x=1,	y=1),	Vector2D(x=2,	y=2),	Vector2D(x=3,	y=3),	...

641

Improved output of vector class objects in the debug tool window

Consider implementing toString() even if you don't think the class is going to be printed anywhere, as it can help in unexpected ways. For example, inside builders,
it may be important to see the current state of the builder.

class	Person(
				val	name:	String?,
				val	age:	Int?,
				val	children:	List<Person>
)	{
				override	fun	toString():	String	=
								"Person(name=$name,	age=$age,	children=$children)"
}

class	PersonBuilder	{
				var	name:	String?	=	null
				var	age:	Int?	=	null
				val	children	=	arrayListOf<Person>()
				fun	child(personBuilder:	PersonBuilder.()	->	Unit	=	{})	{
								children.add(person(personBuilder))
				}
}

fun	person(personBuilder:	PersonBuilder.()	->	Unit	=	{}):	Person	{
				val	builder	=	PersonBuilder()
				builder.personBuilder()
				return	Person(builder.name,	builder.age,	builder.children)
}

The intended use of the code above is the following:

Usage of the person DSL and a breakpoint

If you set a breakpoint on the line after the closing brace of the first child (as on the picture above), you see a non-descriptive string in debug output:

It might seem like a good idea to use data classes because they have a toString() method automatically. In the Backward compatibility section of this
guide, you'll learn why it's better not to do this.

642

https://en.wikipedia.org/wiki/Builder_pattern#:~:text=The%20builder%20pattern%20is%20a,Gang%20of%20Four%20design%20patterns

Result of a PersonBuilder debugging

If you add a simple toString() implementation like this:

override	fun	toString():	String	=
				"PersonBuilder(name=$name,	age=$age,	children=$children)"

The debug data becomes much clearer:

You can also see immediately which fields are set and which are not.

What's
next?
Learn about APIs' backward compatibility.

Backward
compatibility
This chapter contains considerations about backward compatibility. Here are the "don't do" recommendations:

Don't add arguments to existing API functions

Don't use data classes in an API

Don't make return types narrower

Consider using:

@PublishedApi annotation

@RequiresOptIn annotation

Explicit API mode

Learn about the tools designed to enforce backward compatibility.

Definition
of
backward
compatibility
One of the cornerstones of a good API is backward compatibility. Backward-compatible code allows clients of newer API versions to use the same API code that
they used with an older API version. This section describes the main points you should think about to make your API backward-compatible.

There are at least three types of compatibility when talking about APIs:

Source

Behavioral

Binary

Read
more
about
compatibility
types
You can count versions of a library as source-compatible when you're sure that your client's application will recompile correctly against a newer version of your
library. Usually, it's difficult to implement and check this automatically unless the changes are trivial. In any API, there are always corner cases where source

Be careful with exposing fields in toString() because it might be easy to get a StackOverflowException. For example, if children has a reference to a
parent, that would create a circular reference. Also, be careful about exposing lists and maps, as toString() can expand a deeply nested hierarchy.

643

compatibility might be broken by a particular change.

Behavioral compatibility ensures that any new code does not change the semantics of the original code behavior, apart from fixing bugs.

A binary backward-compatible version of a library can replace a previously compiled version of the library. Any software that was compiled against the previous
version of the library should continue to work correctly.

It's possible to break binary compatibility without breaking source compatibility, and vice versa.

Some principles of keeping binary backward compatibility are obvious: Don't just remove parts of a public API; instead, deprecate them. The following sections
contain lesser-known principles.

"Don't
do"
recommendations

Don't
add
arguments
to
existing
API
functions
Adding non-default arguments to a public API is a breaking change because the existing code won't have enough information to call the updated methods. Adding
even default arguments might also break your users' code.

Breaking backward compatibility is shown below in an example of two classes: lib.kt representing a "library", and client.kt representing a "client" of this "library".
This construct for libraries and their clients is common in real-world applications. In this example, the "library" has one function that computes the fifth member of
the Fibonacci sequence. The file lib.kt contains:

fun	fib()	=	…	//	Returns	the	fifth	element

Let's call this function from another file, client.kt:

fun	main()	{
				println(fib())	//	Returns	3
}

Let's compile the classes:

kotlinc	lib.kt	client.kt	

The compilation results in two files: LibKt.class and ClientKt.class.

Let's call the client to make sure that it works:

$	kotlin	ClientKt.class
3

The design is far from perfect and hardcoded for learning purposes. It predefines what element of the sequence you want to obtain, which is incorrect and doesn't
follow clean code principles. Let's rewrite it preserving the same default behavior: It will return the fifth element by default, but now it will be possible to provide an
element number that you want to get.

lib.kt:

fun	fib(numberOfElement:	Int	=	5)	=	…	//	Returns	requested	member

Let's recompile only the "library": kotlinc lib.kt.

Let's run the "client":

$	kotlin	ClientKt.class

The result is:

Exception	in	thread	"main"	java.lang.NoSuchMethodError:	'int	LibKt.fib()'
							at	LibKt.main(fib.kt:2)
							at	LibKt.main(fib.kt)
							…

644

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-deprecated/

There is a NoSuchMethodError because the signature of the fib() function changed after compilation.

If you recompile client.kt, it will work again because it will be aware of the new signature. In this example, binary compatibility was broken while preserving source
compatibility.

Learn more about what happened with the help of decompilation

Let's call javap on the LibKt class before the changes:

❯	javap	LibKt
Compiled	from	"lib.kt"
public	final	class	LibKt	{
	public	static	final	int	fib();
}

And after the changes:

❯	javap	LibKt
Compiled	from	"lib.kt"
public	final	class	LibKt	{
	public	static	final	int	fib(int);
	public	static	int	fib$default(int,	int,	java.lang.Object);
}

The method with the signature public static final int fib() was replaced with a new method with the signature public static final int fib(int). At the same time, a proxy
method fib$default delegates the execution to fib(int). For the JVM, it's possible to work around this: You need to add a @JvmOverloads annotation. For
multiplatform projects, there is no workaround.

Don't
use
data
classes
in
an
API
Data classes are tempting to use because they are short, concise, and provide some nice functionality out of the box. However, because of some specifics of how
data classes work, it's better not to use them in library APIs. Almost any change makes the API not backward-compatible.

Usually, it's difficult to predict how you will need to change a class over time. Even if today you think that it's self-contained, there is no way to be sure that your
needs won't change in the future. So, all the issues with data classes only arise when you decide to change such a class.

First, the considerations from the previous section, Don't add arguments to existing API functions, also apply to the constructor as it is also a method. Second,
even if you add secondary constructors, it won't solve the compatibility problem. Let's look at the following data class:

data	class	User(
				val	name:	String,
				val	email:	String
)

For example, over time, you understand that users should go through an activation procedure, so you want to add a new field, "active", with a default value equal to
"true". This new field should allow the existing code to work mostly without changes.

As it was already discussed in the section above, you can't just add a new field like this:

data	class	User(
				val	name:	String,
				val	email:	String,
				val	active:	Boolean	=	true
)

Because this change is not binary-compatible.

Let's add a new constructor that accepts only two arguments and calls the primary constructor with a third default argument:

data	class	User(
				val	name:	String,

This explanation is JVM-specific.

645

https://docs.oracle.com/en/java/javase/20/docs/specs/man/javap.html

				val	email:	String,
				val	active:	Boolean	=	true
)	{
				constructor(name:	String,	email:	String)	:
												this(name,	email,	active	=	true)
}

This time there are two constructors, and a signature of one of them matches the constructor of the class before the change:

public	User(String,	 String);

But the issue is not with the constructor – it's with the copy function. Its signature has changed from:

public	final	User	copy(String,	 String);

To:

public	final	User	copy(String,	 String,	boolean);

And it has made the code binary-incompatible.

Of course, it's possible just to add a property inside the data class, but that would remove all the bonuses of it being a data class. Therefore, it's better not to use
data classes in your API because almost any change in them breaks source, binary, or behavioral compatibility.

If you have to use a data class for whatever reason, you have to override the constructor and the copy() method. In addition, if you add a field into the class's body,
you have to override the hashCode() and equals() methods.

Don't
make
return
types
narrower
Sometimes, especially when you don't use explicit API mode, a return type declaration can change implicitly. But even if that's not the case, you might want to
narrow the signature. For example, you might realize that you need index access to the elements of your collection and want to change the return type from
Collection to List. Widening a return type usually breaks source compatibility; for example, converting from List to Collection breaks all the code that uses index
access. Narrowing return types is usually a source-compatible change, but it breaks binary compatibility, and this section describes how.

Consider a library function in the library.kt file:

public	fun	x():	Number	=	3

And an example of its use in the client.kt file:

fun	main()	{
				println(x())	//	Prints	3
}

Let's compile it with kotlinc library.kt client.kt and make sure that it works:

$	kotlin	ClientKt
3

Let's change the return type of the "library" function x() from Number to Int:

fun	x():	Int	=	3

And recompile only the client: kotlinc client.kt. ClientKt doesn't work as expected anymore. It doesn't print 3 and throws an exception instead:

Exception	in	thread	"main"	java.lang.NoSuchMethodError:	'java.lang.Number	Library.x()'
					at	ClientKt.main(call.kt:2)
					at	ClientKt.main(call.kt)

It's always an incompatible change to swap the order of arguments because of componentX() methods. It breaks source compatibility and probably will
break binary compatibility, too.

646

					…

This happens because of the following line in bytecode:

0:	invokestatic		#12	//	Method	Library.x:()Ljava/lang/Number;

This line means that you call the static method x() returning the type Number. But there is no longer such a method, and so binary compatibility has been violated.

The
@PublishedApi
annotation
Sometimes, you might need to use a part of your internal API to implement inline functions. You can do this with the @PublishedApi annotation. You should treat
parts of code annotated with @PublishedApi as parts of a public API, and, therefore, you should be careful about their backward compatibility.

The
@RequiresOptIn
annotation
Sometimes, you might want to experiment with your API. In Kotlin, there is a nice way to define that some API is unstable – by using the @RequiresOptIn annotation.
However, be aware of the following:

1. If you haven't changed a part of your API for a long time and it's stable, you should reconsider using the @RequiresOptIn annotation.

2. You may use the @RequiresOptIn annotation to define different guarantees to different parts of the API: Preview, Experimental, Internal, Delicate, or Alpha, Beta,
RC.

3. You should explicitly define what each level means, write KDoc comments, and add a warning message.

If you depend on an API requiring opt-in, don't use the @OptIn annotation. Instead, use the @RequiresOptIn annotation so that your user is able to consciously
choose which API they want to use and which not.

Another example of @RequiresOptIn is when you want to explicitly warn users about the usage of some API. For example, if you maintain a library that utilizes Kotlin
reflection, you can annotate classes in this library with @RequiresFullKotlinReflection.

Explicit
API
mode
You should try to keep your API as transparent as possible. To force the API to be transparent, use the explicit API mode.

Kotlin gives you vast freedom in how you can write code. It is possible to omit type definitions, visibility declarations, or documentation. The explicit API mode
forces you as a developer to make implicit things explicit. By the link above, you can find out how to enable it. Let's try to understand why you might need it:

1. Without an explicit API, it's easier to break backward compatibility:

//	version	1
fun	getToken()	=	1

//	version	1.1
fun	getToken()	=	"1"

The return type of getToken() changes, but you don't even need to update the signature for it to break users' code. They expect to get Int, but they get String.

2. The same applies to visibility. If the getToken() function is private, then backward compatibility is not broken. But without an explicit visibility declaration, it's
unclear whether an API user should be able to access it. If they should be able to, it should be declared as public and documented; in this case, the change
breaks backward compatibility. If not, it should be defined as private or internal, and this change won't be breaking.

Tools
designed
to
enforce
backward
compatibility
Backward compatibility is a crucial aspect of software development, as it ensures that new versions of a library or framework can be used with existing code
without causing any issues. Maintaining backward compatibility can be a difficult and time-consuming task, especially when dealing with a large codebase or
complex APIs. It's hard to control it manually, and developers often have to rely on testing and manual inspection to ensure that changes do not break existing
code. To address this issue, JetBrains created the Binary compatibility validator, and there is also another solution: japicmp.

647

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-published-api
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-requires-opt-in/-level/

Both solutions have their advantages and disadvantages. japicmp works for any JVM language, and it's both a CLI tool and a build system plugin. However, it
requires having both old and new applications packaged as JAR files. It's not that easy to use when you don't have access to older builds of your library. Also,
japicmp gives information on changes in Kotlin metadata, which you may not need (because a metadata format is not specified and is considered to be used only
for Kotlin internal usage).

The Binary compatibility validator works only as a Gradle plugin, and it is on the Alpha stability level. It doesn't need access to JAR files. It only needs specific
dumps of the previous API and the current API. It's capable of collecting these dumps itself. Learn more about these tools below.

Binary
compatibility
validator
The Binary compatibility validator is a tool that helps you ensure the backward compatibility of your libraries and frameworks by automatically detecting and
reporting any breaking changes in the API. The tool analyzes the library's bytecode before and after you made changes and compares the two versions to identify
any changes that may break existing code. This makes it easy to detect and fix any issues before they become a problem for your users.

This tool can save a significant amount of time and effort that you would otherwise spend on manual testing and inspection. It can also help prevent issues that may
arise due to breaking changes in the API. This can ultimately lead to a better user experience, as users will be able to rely on the stability and compatibility of the
library or framework.

japicmp
If you target only the JVM as your platform, you can also use japicmp. japicmp operates on a different level from the Binary compatibility validator: It compares two
jar files – old and new – and reports incompatibilities between them.

Be aware that japicmp reports not only incompatibilities but also changes that should not affect a user in any way. For example, consider the following code:

class	Calculator	{
				fun	add(a:	Int,	b:	Int):	Int	=	a	+	b
				fun	multiply(a:	Int,	b:	Int):	Int	=	a	*	b
}

If you add a new method without breaking the compatibility like this:

class	Calculator	{
				fun	add(a:	Int,	b:	Int):	Int	=	a	+	b
				fun	multiply(a:	Int,	b:	Int):	Int	=	a	*	b
				fun	divide(a:	Int,	b:	Int):	Int	=	a	/	b
}

Then japicmp reports the following change:

Output of japicmp checking compatibility

It's just a change in the @Metadata annotation, which isn't very interesting, but japicmp is JVM-language agnostic and has to report everything it sees.

Get
started
with
Kotlin/Native
in
IntelliJ
IDEA

At the moment, both work only for the JVM.

648

https://github.com/Kotlin/binary-compatibility-validator
https://siom79.github.io/japicmp/

This tutorial demonstrates how to use IntelliJ IDEA for creating a Kotlin/Native application.

To get started, install the latest version of IntelliJ IDEA. The tutorial is applicable to both IntelliJ IDEA Community Edition and the Ultimate Edition.

Before
you
start
1. Download and install the latest version of IntelliJ IDEA with the latest Kotlin plugin.

2. Clone the project template by selecting File | New | Project from Version Control in IntelliJ IDEA.

3. Open the build.gradle.kts file, the build script that contains the project settings. To create Kotlin/Native applications, you need the Kotlin Multiplatform Gradle
plugin installed. Ensure that you use the latest version of the plugin:

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

Build
and
run
the
application
Start the application by clicking Run next to the run configuration at the top of the screen:

Run the application

IntelliJ IDEA opens the Run tab and shows the output:

Application output

You can configure IntelliJ IDEA to build your project automatically:

1. Go to Settings/Preferences | Build, Execution, Deployment | Compiler.

Read more about these settings in the Multiplatform Gradle DSL reference.

Read more about the Gradle build system in the documentation.

649

https://www.jetbrains.com/idea/download/index.html
https://www.jetbrains.com/idea/
https://github.com/Kotlin/kmp-native-wizard
https://www.jetbrains.com/help/idea/compiling-applications.html#auto-build

2. On the Compiler page, select Build project automatically.

3. Apply the changes.

Now when you make changes in the class files or save the file (Ctrl + S/Cmd + S), IntelliJ IDEA automatically performs the incremental build of the project.

Update
the
application

Count
the
letters
in
your
name
1. Open the file Main.kt in src/nativeMain/kotlin.

The src directory contains the Kotlin source files and resources. The file Main.kt includes sample code that prints "Hello, Kotlin/Native!" using the println()
function.

2. Add code to read the input. Use the readln() function to read the input value and assign it to the name variable:

fun	main()	{
				//	Read	the	input	value.
				println("Hello,	enter	your	name:")
				val	name	=	readln()
}

3. Eliminate the whitespaces and count the letters:

Use the replace() function to remove the empty spaces in the name.

Use the scope function let to run the function within the object context.

Use a string template to insert your name length into the string by adding a dollar sign $ and enclosing it in curly braces – ${it.length}. it is the default name of
a lambda parameter.

fun	main()	{
				//	Read	the	input	value.
				println("Hello,	enter	your	name:")
				val	name	=	readln()
				//	Count	the	letters	in	the	name.
				name.replace("	",	"").let	{
								println("Your	name	contains	${it.length}	letters")
				}
}

4. Save the changes and run the application.

5. Enter your name and enjoy the result:

Application output

Count
the
unique
letters
in
your
name
1. Open the file Main.kt in src/nativeMain/kotlin.

650

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/println.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/readln.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/replace.html

2. Declare the new extension function countDistinctCharacters() for String:

Convert the name to lowercase using the lowercase() function.

Convert the input string to a list of characters using the toList() function.

Select only the distinct characters in your name using the distinct() function.

Count the distinct characters using the count() function.

fun	String.countDistinctCharacters()	=	lowercase().toList().distinct().count()

3. Use the countDistinctCharacters() function to count the unique letters in your name:

fun	String.countDistinctCharacters()	=	lowercase().toList().distinct().count()

fun	main()	{
				//	Read	the	input	value.
				println("Hello,	enter	your	name:")
				val	name	=	readln()
				//	Count	the	letters	in	the	name.
				name.replace("	",	"").let	{
								println("Your	name	contains	${it.length}	letters")
								//	Print	the	number	of	unique	letters.
								println("Your	name	contains	${it.countDistinctCharacters()}	unique	letters")
				}
}

4. Save the changes and run the application.

5. Enter your name and enjoy the result:

Application output

What's
next?
Once you have created your first application, you can complete our long-form tutorial on Kotlin/Native, Create an app using C Interop and libcurl that explains how
to create a native HTTP client and interoperate with C libraries.

Get
started
with
Kotlin/Native
using
Gradle
Gradle is a build system that is very commonly used in the Java, Android, and other ecosystems. It is the default choice for Kotlin/Native and Multiplatform when it
comes to build systems.

While most IDEs, including IntelliJ IDEA, can generate necessary Gradle files, this tutorial covers how to create them manually to provide a better understanding of
how things work under the hood.

To get started, install the latest version of Gradle.

651

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/lowercase.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/to-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/distinct.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/count.html
https://gradle.org
https://www.jetbrains.com/idea
https://gradle.org/install/

Create
project
files
1. Create a project directory. Inside it, create build.gradle(.kts) Gradle build file with the following content:

Kotlin

//	build.gradle.kts
plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
				macosX64("native")	{	//	on	macOS
				//	linuxX64("native")	//	on	Linux
				//	mingwX64("native")	//	on	Windows
								binaries	{
												executable()
								}
				}
}

tasks.withType<Wrapper>	{
				gradleVersion	=	"8.1.1"
				distributionType	=	Wrapper.DistributionType.BIN
}

Groovy

//	build.gradle
plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
				macosX64('native')	{	//	on	macOS
				//	linuxX64('native')	//	on	Linux
				//	mingwX64('native')	//	on	Windows
								binaries	{
												executable()
								}
				}
}

wrapper	{
				gradleVersion	=	'8.1.1'
				distributionType	=	'BIN'
}

You can use different target presets, such as macosX64, mingwX64, linuxX64, iosX64, to define the corresponding target platform. The preset name describes a
platform for which you are compiling your code. These target presets optionally take the target name as a parameter, which is native in this case. The target
name is used to generate the source paths and task names in the project.

2. Create an empty settings.gradle or settings.gradle.kts file in the project directory.

3. Create a directory src/nativeMain/kotlin and place inside the hello.kt file with the following content:

fun	main()	{
				println("Hello,	Kotlin/Native!")
}

If you would like to use an IDE, check out the Using IntelliJ IDEA tutorial.

652

By convention, all sources are located in the src/<target name>[Main|Test]/kotlin directories, where main is for the source code and test is for tests. <target
name> corresponds to the target platform (in this case native), as specified in the build file.

Now you are ready to build your project and run the application.

Build
and
run
the
application
1. From the root project directory, run the build command:

gradle	nativeBinaries

This command creates the build/bin/native directory with two directories inside: debugExecutable and releaseExecutable. They contain corresponding binary
files.

By default, the name of the binary file is the same as the project directory.

2. To run the project, execute the following command:

build/bin/native/debugExecutable/<project_name>.kexe

Terminal prints "Hello, Kotlin/Native!".

Open
the
project
in
an
IDE
Now you can open your project in any IDE that supports Gradle. If you use IntelliJ IDEA:

1. Select File | Open....

2. Select the project directory and click Open.
IntelliJ IDEA will automatically detect it as Kotlin/Native project.

What's
next?
Learn how to write Gradle build scripts for real-life Kotlin/Native projects.

Get
started
with
Kotlin/Native
using
the
command-line
compiler

Obtain
the
compiler
The Kotlin/Native compiler is available for macOS, Linux, and Windows. It is available as a command line tool and ships as part of the standard Kotlin distribution
and can be downloaded from GitHub Releases. It supports different targets including Linux, macOS, iOS, and others. See the full list of supported targets. While
cross-platform compilation is possible, which means using one platform to compile for a different one, in this Kotlin case we'll be targeting the same platform we're
compiling on.

While the output of the compiler does not have any dependencies or virtual machine requirements, the compiler itself requires Java 1.8 or higher runtime.

Install the compiler by unpacking its archive to a directory of your choice and adding the path to its /bin directory to the PATH environment variable.

Write
"Hello
Kotlin/Native"
program
The application will print "Hello Kotlin/Native" on the standard output. In a working directory of choice, create a file named hello.kt and enter the following contents:

fun	main()	{

If you face any problem with the project, IntelliJ IDEA will show the error message in the Build tab.

653

https://github.com/JetBrains/kotlin/releases/tag/v1.9.20
https://jdk.java.net/11/

		println("Hello	Kotlin/Native!")
}

Compile
the
code
from
the
console
To compile the application use the downloaded compiler to execute the following command:

kotlinc-native	hello.kt	-o	hello

The value of -o option specifies the name of the output file, so this call should generate a hello.kexe (Linux and macOS) or hello.exe (Windows) binary file. For the
full list of available compiler options, see the compiler options reference.

While compilation from the console seems to be easy and clear, it does not scale well for larger projects with hundreds of files and libraries. For real-world projects,
it is recommended to use a build system and IDE.

Interoperability
with
C

Kotlin/Native follows the general tradition of Kotlin to provide excellent existing platform software interoperability. In the case of a native platform, the most
important interoperability target is a C library. So Kotlin/Native comes with a cinterop tool, which can be used to quickly generate everything needed to interact with
an external library.

The following workflow is expected when interacting with the native library:

1. Create a .def file describing what to include into bindings.

2. Use the cinterop tool to produce Kotlin bindings.

3. Run the Kotlin/Native compiler on an application to produce the final executable.

The interoperability tool analyses C headers and produces a "natural" mapping of the types, functions, and constants into the Kotlin world. The generated stubs can
be imported into an IDE for the purpose of code completion and navigation.

Interoperability with Swift/Objective-C is provided too and covered in Objective-C interop.

Platform
libraries
Note that in many cases there's no need to use custom interoperability library creation mechanisms described below, as for APIs available on the platform
standardized bindings called platform libraries could be used. For example, POSIX on Linux/macOS platforms, Win32 on Windows platform, or Apple frameworks
on macOS/iOS are available this way.

Simple
example
Install libgit2 and prepare stubs for the git library:

cd	samples/gitchurn
../../dist/bin/cinterop	-def	src/nativeInterop/cinterop/libgit2.def	\
	-compiler-option	-I/usr/local/include	-o	libgit2

Compile the client:

../../dist/bin/kotlinc	src/gitChurnMain/kotlin	\

The C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from C libraries should have the @ExperimentalForeignApi
annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

654

https://github.com/JetBrains/kotlin/releases

	-library	libgit2	-o	GitChurn

Run the client:

./GitChurn.kexe	../..

Create
bindings
for
a
new
library
To create bindings for a new library, start from creating a .def file. Structurally it's a simple property file, which looks like this:

headers	=	png.h
headerFilter	=	png.h
package	=	png

Then run the cinterop tool with something like this (note that for host libraries that are not included in the sysroot search paths, headers may be needed):

cinterop	-def	png.def	-compiler-option	-I/usr/local/include	-o	png

This command will produce a png.klib compiled library and png-build/kotlin directory containing Kotlin source code for the library.

If the behavior for a certain platform needs to be modified, you can use a format like compilerOpts.osx or compilerOpts.linux to provide platform-specific values to
the options.

Note that the generated bindings are generally platform-specific, so if you are developing for multiple targets, the bindings need to be regenerated.

After the generation of bindings, they can be used by the IDE as a proxy view of the native library.

For a typical Unix library with a config script, the compilerOpts will likely contain the output of a config script with the --cflags flag (maybe without exact paths).

The output of a config script with --libs will be passed as a -linkedArgs kotlinc flag value (quoted) when compiling.

Select
library
headers
When library headers are imported to a C program with the #include directive, all of the headers included by these headers are also included in the program. So all
header dependencies are included in generated stubs as well.

This behavior is correct but it can be very inconvenient for some libraries. So it is possible to specify in the .def file which of the included headers are to be
imported. The separate declarations from other headers can also be imported in case of direct dependencies.

Filter headers by globs
It is possible to filter headers by globs using filter properties from the .def file. They are treated as a space-separated list of globs.

To include declarations from headers, use the headerFilter property. If the included header matches any of the globs, the declarations are included in the
bindings.

The globs are applied to the header paths relative to the appropriate include path elements, for example, time.h or curl/curl.h. So if the library is usually included
with #include <SomeLibrary/Header.h>, it would probably be correct to filter headers with the following filter:

headerFilter	=	SomeLibrary/**

If headerFilter is not provided, all the headers are included. However, we encourage you to use headerFilter and specify the glob as precisely as possible. In this
case, the generated library contains only the necessary declarations. It can help avoid various issues when upgrading Kotlin or tools in your development
environment.

To exclude specific headers, use the excludeFilter property.

It can be helpful to remove redundant or problematic headers and optimize compilation, as declarations from the specified headers are not included into the
bindings.

excludeFilter	=	SomeLibrary/time.h

655

Filter headers by module maps
Some libraries have proper module.modulemap or module.map files in their headers. For example, macOS and iOS system libraries and frameworks do. The
module map file describes the correspondence between header files and modules. When the module maps are available, the headers from the modules that are not
included directly can be filtered out using the experimental excludeDependentModules option of the .def file:

headers	=	OpenGL/gl.h	OpenGL/glu.h	GLUT/glut.h
compilerOpts	=	-framework	OpenGL	-framework	GLUT
excludeDependentModules	=	true

When both excludeDependentModules and headerFilter are used, they are applied as an intersection.

C
compiler
and
linker
options
Options passed to the C compiler (used to analyze headers, such as preprocessor definitions) and the linker (used to link final executables) can be passed in the
definition file as compilerOpts and linkerOpts respectively. For example:

compilerOpts	=	-DFOO=bar
linkerOpts	=	-lpng

Target-specific options only applicable to the certain target can be specified as well:

compilerOpts	=	-DBAR=bar
compilerOpts.linux_x64	=	-DFOO=foo1
compilerOpts.macos_x64	=	-DFOO=foo2

With such a configuration, C headers will be analyzed with -DBAR=bar -DFOO=foo1 on Linux and with -DBAR=bar -DFOO=foo2 on macOS . Note that any
definition file option can have both common and the platform-specific part.

Linker errors
Linker errors might occur when a Kotlin library depends on C or Objective-C libraries, for example, using the CocoaPods integration. If dependent libraries aren't
installed locally on the machine or configured explicitly in the project build script, the "Framework not found" error occurs.

If you're a library author, you can help your users resolve linker errors with custom messages. To do that, add a userSetupHint=message property to your .def file or
pass the -Xuser-setup-hint compiler option to cinterop.

Add
custom
declarations
Sometimes it is required to add custom C declarations to the library before generating bindings (e.g., for macros). Instead of creating an additional header file with
these declarations, you can include them directly to the end of the .def file, after a separating line, containing only the separator sequence ---:

headers	=	errno.h

static	inline	int	getErrno()	{
				return	errno;
}

Note that this part of the .def file is treated as part of the header file, so functions with the body should be declared as static. The declarations are parsed after
including the files from the headers list.

Include
a
static
library
in
your
klib
Sometimes it is more convenient to ship a static library with your product, rather than assume it is available within the user's environment. To include a static library
into .klib use staticLibrary and libraryPaths clauses. For example:

headers	=	foo.h
staticLibraries	=	libfoo.a	

If the same header is both included with headerFilter, and excluded with excludeFilter, the latter will have a higher priority. The specified header will not
be included into the bindings.

656

https://clang.llvm.org/docs/Modules.html#module-map-language

libraryPaths	=	/opt/local/lib	/usr/local/opt/curl/lib

When given the above snippet the cinterop tool will search libfoo.a in /opt/local/lib and /usr/local/opt/curl/lib, and if it is found include the library binary into klib.

When using such klib in your program, the library is linked automatically.

Bindings

Basic
interop
types
All the supported C types have corresponding representations in Kotlin:

Signed, unsigned integral, and floating point types are mapped to their Kotlin counterpart with the same width.

Pointers and arrays are mapped to CPointer<T>?.

Enums can be mapped to either Kotlin enum or integral values, depending on heuristics and the definition file hints.

Structs and unions are mapped to types having fields available via the dot notation, i.e. someStructInstance.field1.

typedef are represented as typealias.

Also, any C type has the Kotlin type representing the lvalue of this type, i.e., the value located in memory rather than a simple immutable self-contained value. Think
C++ references, as a similar concept. For structs (and typedefs to structs) this representation is the main one and has the same name as the struct itself, for Kotlin
enums it is named ${type}Var, for CPointer<T> it is CPointerVar<T>, and for most other types it is ${type}Var.

For types that have both representations, the one with a "lvalue" has a mutable .value property for accessing the value.

Pointer types
The type argument T of CPointer<T> must be one of the "lvalue" types described above, e.g., the C type struct S* is mapped to CPointer<S>, int8_t* is mapped to
CPointer<int_8tVar>, and char** is mapped to CPointer<CPointerVar<ByteVar>>.

C null pointer is represented as Kotlin's null, and the pointer type CPointer<T> is not nullable, but the CPointer<T>? is. The values of this type support all the Kotlin
operations related to handling null, e.g. ?:, ?., !! etc.:

val	path	=	getenv("PATH")?.toKString()	?:	""

Since the arrays are also mapped to CPointer<T>, it supports the [] operator for accessing values by index:

fun	shift(ptr:	CPointer<BytePtr>,	length:	Int)	{
				for	(index	in	0	..	length	-	2)	{
								ptr[index]	=	ptr[index	+	1]
				}
}

The .pointed property for CPointer<T> returns the lvalue of type T, pointed by this pointer. The reverse operation is .ptr: it takes the lvalue and returns the pointer to
it.

void* is mapped to COpaquePointer – the special pointer type which is the supertype for any other pointer type. So if the C function takes void*, then the Kotlin
binding accepts any CPointer.

Casting a pointer (including COpaquePointer) can be done with .reinterpret<T>, e.g.:

val	intPtr	=	bytePtr.reinterpret<IntVar>()

or

val	intPtr:	CPointer<IntVar>	=	bytePtr.reinterpret()

As is with C, these reinterpret casts are unsafe and can potentially lead to subtle memory problems in the application.

Also, there are unsafe casts between CPointer<T>? and Long available, provided by the .toLong() and .toCPointer<T>() extension methods:

657

val	longValue	=	ptr.toLong()
val	originalPtr	=	longValue.toCPointer<T>()

Note that if the type of the result is known from the context, the type argument can be omitted as usual due to the type inference.

Memory
allocation
The native memory can be allocated using the NativePlacement interface, e.g.

val	byteVar	=	placement.alloc<ByteVar>()

or

val	bytePtr	=	placement.allocArray<ByteVar>(5)

The most "natural" placement is in the object nativeHeap. It corresponds to allocating native memory with malloc and provides an additional .free() operation to free
allocated memory:

val	buffer	=	nativeHeap.allocArray<ByteVar>(size)
<use	buffer>
nativeHeap.free(buffer)

However, the lifetime of allocated memory is often bound to the lexical scope. It is possible to define such scope with memScoped { ... }. Inside the braces, the
temporary placement is available as an implicit receiver, so it is possible to allocate native memory with alloc and allocArray, and the allocated memory will be
automatically freed after leaving the scope.

For example, the C function returning values through pointer parameters can be used like

val	fileSize	=	memScoped	{
				val	statBuf	=	alloc<stat>()
				val	error	=	stat("/",	statBuf.ptr)
				statBuf.st_size
}

Pass
pointers
to
bindings
Although C pointers are mapped to the CPointer<T> type, the C function pointer-typed parameters are mapped to CValuesRef<T>. When passing CPointer<T> as
the value of such a parameter, it is passed to the C function as is. However, the sequence of values can be passed instead of a pointer. In this case the sequence is
passed "by value", i.e., the C function receives the pointer to the temporary copy of that sequence, which is valid only until the function returns.

The CValuesRef<T> representation of pointer parameters is designed to support C array literals without explicit native memory allocation. To construct the
immutable self-contained sequence of C values, the following methods are provided:

${type}Array.toCValues(), where type is the Kotlin primitive type

Array<CPointer<T>?>.toCValues(), List<CPointer<T>?>.toCValues()

cValuesOf(vararg elements: ${type}), where type is a primitive or pointer

For example:

C:

void	foo(int*	elements,	int	count);
...
int	elements[]	=	{1,	2,	3};
foo(elements,	3);

Kotlin:

foo(cValuesOf(1,	2,	3),	3)

658

Strings
Unlike other pointers, the parameters of type const char* are represented as a Kotlin String. So it is possible to pass any Kotlin string to a binding expecting a C
string.

There are also some tools available to convert between Kotlin and C strings manually:

fun CPointer<ByteVar>.toKString(): String

val String.cstr: CValuesRef<ByteVar>.

To get the pointer, .cstr should be allocated in native memory, e.g.

val cString = kotlinString.cstr.getPointer(nativeHeap)

In all cases, the C string is supposed to be encoded as UTF-8.

To skip automatic conversion and ensure raw pointers are used in the bindings, a noStringConversion statement in the .def file could be used, i.e.

noStringConversion	=	LoadCursorA	LoadCursorW

This way any value of type CPointer<ByteVar> can be passed as an argument of const char* type. If a Kotlin string should be passed, code like this could be used:

memScoped	{
				LoadCursorA(null,	"cursor.bmp".cstr.ptr)			//	for	ASCII	version
				LoadCursorW(null,	"cursor.bmp".wcstr.ptr)		//	for	Unicode	version
}

Scope-local
pointers
It is possible to create a scope-stable pointer of C representation of CValues<T> instance using the CValues<T>.ptr extension property, available under
memScoped { ... }. It allows using the APIs which require C pointers with a lifetime bound to a certain MemScope. For example:

memScoped	{
				items	=	arrayOfNulls<CPointer<ITEM>?>(6)
				arrayOf("one",	"two").forEachIndexed	{	index,	value	->	items[index]	=	value.cstr.ptr	}
				menu	=	new_menu("Menu".cstr.ptr,	items.toCValues().ptr)
				...
}

In this example, all values passed to the C API new_menu() have a lifetime of the innermost memScope it belongs to. Once the control flow leaves the memScoped
scope the C pointers become invalid.

Pass
and
receive
structs
by
value
When a C function takes or returns a struct / union T by value, the corresponding argument type or return type is represented as CValue<T>.

CValue<T> is an opaque type, so the structure fields cannot be accessed with the appropriate Kotlin properties. It should be possible, if an API uses structures as
handles, but if field access is required, there are the following conversion methods available:

fun T.readValue(): CValue<T>. Converts (the lvalue) T to a CValue<T>. So to construct the CValue<T>, T can be allocated, filled, and then converted to
CValue<T>.

CValue<T>.useContents(block: T.() -> R): R. Temporarily places the CValue<T> to memory, and then runs the passed lambda with this placed value T as
receiver. So to read a single field, the following code can be used:

val	fieldValue	=	structValue.useContents	{	field	}

Callbacks
To convert a Kotlin function to a pointer to a C function, staticCFunction(::kotlinFunction) can be used. It is also able to provide the lambda instead of a function
reference. The function or lambda must not capture any values.

Pass user data to callbacks
Often C APIs allow passing some user data to callbacks. Such data is usually provided by the user when configuring the callback. It is passed to some C function

659

(or written to the struct) as e.g. void*. However, references to Kotlin objects can't be directly passed to C. So they require wrapping before configuring the callback
and then unwrapping in the callback itself, to safely swim from Kotlin to Kotlin through the C world. Such wrapping is possible with StableRef class.

To wrap the reference:

val	stableRef	=	StableRef.create(kotlinReference)
val	voidPtr	=	stableRef.asCPointer()

where the voidPtr is a COpaquePointer and can be passed to the C function.

To unwrap the reference:

val	stableRef	=	voidPtr.asStableRef<KotlinClass>()
val	kotlinReference	=	stableRef.get()

where kotlinReference is the original wrapped reference.

The created StableRef should eventually be manually disposed using the .dispose() method to prevent memory leaks:

stableRef.dispose()

After that it becomes invalid, so voidPtr can't be unwrapped anymore.

See the samples/libcurl for more details.

Macros
Every C macro that expands to a constant is represented as a Kotlin property. Other macros are not supported. However, they can be exposed manually by
wrapping them with supported declarations. E.g. function-like macro FOO can be exposed as function foo by adding the custom declaration to the library:

headers	=	library/base.h

static	inline	int	foo(int	arg)	{
				return	FOO(arg);
}

Definition
file
hints
The .def file supports several options for adjusting the generated bindings.

excludedFunctions property value specifies a space-separated list of the names of functions that should be ignored. This may be required because a function
declared in the C header is not generally guaranteed to be really callable, and it is often hard or impossible to figure this out automatically. This option can also
be used to workaround a bug in the interop itself.

strictEnums and nonStrictEnums properties values are space-separated lists of the enums that should be generated as a Kotlin enum or as integral values
correspondingly. If the enum is not included into any of these lists, then it is generated according to the heuristics.

noStringConversion property value is space-separated lists of the functions whose const char* parameters shall not be auto-converted as Kotlin string

Portability
Sometimes the C libraries have function parameters or struct fields of a platform-dependent type, e.g. long or size_t. Kotlin itself doesn't provide neither implicit
integer casts nor C-style integer casts (e.g. (size_t) intValue), so to make writing portable code in such cases easier, the convert method is provided:

fun	${type1}.convert<${type2}>():	${type2}

where each of type1 and type2 must be an integral type, either signed or unsigned.

.convert<${type}> has the same semantics as one of the .toByte, .toShort, .toInt, .toLong, .toUByte, .toUShort, .toUInt or .toULong methods, depending on type.

The example of using convert:

660

fun	zeroMemory(buffer:	COpaquePointer,	size:	Int)	{
				memset(buffer,	0,	size.convert<size_t>())
}

Also, the type parameter can be inferred automatically and so may be omitted in some cases.

Object
pinning
Kotlin objects could be pinned, i.e. their position in memory is guaranteed to be stable until unpinned, and pointers to such objects inner data could be passed to
the C functions. For example

fun	readData(fd:	Int):	String	{
				val	buffer	=	ByteArray(1024)
				buffer.usePinned	{	pinned	->
								while	(true)	{
												val	length	=	recv(fd,	pinned.addressOf(0),	buffer.size.convert(),	0).toInt()

												if	(length	<=	0)	{
															break
												}
												//	Now	`buffer`	has	raw	data	obtained	from	the	`recv()`	call.
								}
				}
}

Here we use service function usePinned, which pins an object, executes block and unpins it on normal and exception paths.

Mapping
primitive
data
types
from
C
–
tutorial

In this tutorial, you will learn what C data types are visible in Kotlin/Native and vice versa. You will:

See what Data types are in C language.

Create a tiny C Library that uses those types in exports.

Inspect generated Kotlin APIs from a C library.

Find how Primitive types in Kotlin are mapped to C.

Types
in
C
language
What types are there in the C language? Let's take the C data types article from Wikipedia as a basis. There are following types in the C programming language:

basic types char, int, float, double with modifiers signed, unsigned, short, long

structures, unions, arrays

pointers

function pointers

There are also more specific types:

boolean type (from C99)

size_t and ptrdiff_t (also ssize_t)

fixed width integer types, such as int32_t or uint64_t (from C99)

The C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from C libraries should have the @ExperimentalForeignApi
annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

661

https://en.wikipedia.org/wiki/C_data_types
https://en.wikipedia.org/wiki/C99
https://en.wikipedia.org/wiki/C99

There are also the following type qualifiers in the C language: const, volatile, restruct, atomic.

The best way to see what C data types are visible in Kotlin is to try it.

Example
C
library
Create a lib.h file to see how C functions are mapped into Kotlin:

#ifndef	LIB2_H_INCLUDED
#define	LIB2_H_INCLUDED

void	ints(char	c,	short	d,	int	e,	long	f);
void	uints(unsigned	char	c,	unsigned	short	d,	unsigned	int	e,	unsigned	long	f);
void	doubles(float	a,	double	b);

#endif

The file is missing the extern "C" block, which is not needed for this example, but may be necessary if you use C++ and overloaded functions. The C++
compatibility thread on Stackoverflow contains more details on this.

For every set of .h files, you will be using the cinterop tool from Kotlin/Native to generate a Kotlin/Native library, or .klib. The generated library will bridge calls from
Kotlin/Native to C. It includes respective Kotlin declarations for the definitions form the .h files. It is only necessary to have a .h file to run the cinterop tool. And you
do not need to create a lib.c file, unless you want to compile and run the example. More details on this are covered in the C interop page. It is enough for the tutorial
to create the lib.def file with the following content:

headers	=	lib.h

You may include all declarations directly into the .def file after a --- separator. It can be helpful to include macros or other C defines into the code generated by the
cinterop tool. Method bodies are compiled and fully included into the binary too. Use that feature to have a runnable example without a need for a C compiler. To
implement that, you need to add implementations to the C functions from the lib.h file, and place these functions into a .def file. You will have the following
interop.def result:

void	ints(char	c,	short	d,	int	e,	long	f)	{	}
void	uints(unsigned	char	c,	unsigned	short	d,	unsigned	int	e,	unsigned	long	f)	{	}
void	doubles(float	a,	double	b)	{	}

The interop.def file is enough to compile and run the application or open it in an IDE. Now it is time to create project files, open the project in IntelliJ IDEA and run it.

Inspect
generated
Kotlin
APIs
for
a
C
library
While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big
projects that have hundreds of files and libraries. It is then better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{

662

https://stackoverflow.com/questions/1041866/what-is-the-effect-of-extern-c-in-c
https://jetbrains.com/idea
https://gradle.org

				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				val	main	by	compilations.getting
				val	interop	by	main.cinterops.creating
				
				binaries	{
						executable()
				}
		}
}

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.BIN
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64('native')	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64('native')	{	//	on	Windows
				compilations.main.cinterops	{
						interop	
				}
				
				binaries	{
						executable()
				}
		}
}

wrapper	{
		gradleVersion	=	'8.1.1'
		distributionType	=	'BIN'
}

The project file configures the C interop as an additional step of the build. Let's move the interop.def file to the src/nativeInterop/cinterop directory. Gradle
recommends using conventions instead of configurations, for example, the source files are expected to be in the src/nativeMain/kotlin folder. By default, all the
symbols from C are imported to the interop package, you may want to import the whole package in our .kt files. Check out the Multiplatform Gradle DSL reference
to learn about all the different ways you could configure it.

Create a src/nativeMain/kotlin/hello.kt stub file with the following content to see how C primitive type declarations are visible from Kotlin:

import	interop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
		
		ints(/*	fix	me*/)
		uints(/*	fix	me*/)
		doubles(/*	fix	me*/)
}

Now you are ready to open the project in IntelliJ IDEA and to see how to fix the example project. While doing that, see how C primitive types are mapped into
Kotlin/Native.

663

Primitive
types
in
kotlin
With the help of IntelliJ IDEA's Go to | Declaration or compiler errors, you see the following generated API for the C functions:

fun	ints(c:	Byte,	d:	Short,	e:	Int,	f:	Long)
fun	uints(c:	UByte,	d:	UShort,	e:	UInt,	f:	ULong)
fun	doubles(a:	Float,	b:	Double)

C types are mapped in the way we would expect, note that char type is mapped to kotlin.Byte as it is usually an 8-bit signed value.

C Kotlin

char kotlin.Byte

unsigned char kotlin.UByte

short kotlin.Short

unsigned short kotlin.UShort

int kotlin.Int

unsigned int kotlin.UInt

long long kotlin.Long

unsigned long long kotlin.ULong

float kotlin.Float

double kotlin.Double

Fix
the
code
You've seen all definitions and it is the time to fix the code. Run the runDebugExecutableNative Gradle task in IDE or use the following command to run the code:

./gradlew	runDebugExecutableNative

The final code in the hello.kt file may look like that:

import	interop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
		
		ints(1,	2,	3,	4)
		uints(5,	6,	7,	8)
		doubles(9.0f,	10.0)
}

664

Next
steps
Continue to explore more complicated C language types and their representation in Kotlin/Native in the next tutorials:

Mapping struct and union types from C

Mapping function pointers from C

Mapping strings from C

The C interop documentation covers more advanced scenarios of the interop.

Mapping
struct
and
union
types
from
C
–
tutorial

This is the second post in the series. The very first tutorial of the series is Mapping primitive data types from C. There are also the Mapping function pointers from C
and Mapping Strings from C tutorials.

In the tutorial, you will learn:

How struct and union types are mapped

How to use struct and union type from Kotlin

Mapping
struct
and
union
C
types
The best way to understand the mapping between Kotlin and C is to try a tiny example. We will declare a struct and a union in the C language, to see how they are
mapped into Kotlin.

Kotlin/Native comes with the cinterop tool, the tool generates bindings between the C language and Kotlin. It uses a .def file to specify a C library to import. More
details are discussed in the Interop with C Libraries tutorial.

In the previous tutorial, you've created a lib.h file. This time, include those declarations directly into the interop.def file, after the --- separator line:

typedef	struct	{
		int	a;
		double	b;
}	MyStruct;

void	struct_by_value(MyStruct	s)	{}
void	struct_by_pointer(MyStruct*	s)	{}

typedef	union	{
		int	a;
		MyStruct	b;
		float	c;
}	MyUnion;

void	union_by_value(MyUnion	u)	{}
void	union_by_pointer(MyUnion*	u)	{}

The interop.def file is enough to compile and run the application or open it in an IDE. Now it is time to create project files, open the project in IntelliJ IDEA and run it.

Inspect
Generated
Kotlin
APIs
for
a
C
library
While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big

The C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from C libraries should have the @ExperimentalForeignApi
annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

665

https://jetbrains.com/idea

projects that have hundreds of files and libraries. It is then better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				val	main	by	compilations.getting
				val	interop	by	main.cinterops.creating
				
				binaries	{
						executable()
				}
		}
}

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.BIN
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64('native')	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64('native')	{	//	on	Windows
				compilations.main.cinterops	{
						interop	
				}
				
				binaries	{
						executable()
				}
		}
}

wrapper	{
		gradleVersion	=	'8.1.1'
		distributionType	=	'BIN'
}

The project file configures the C interop as an additional step of the build. Let's move the interop.def file to the src/nativeInterop/cinterop directory. Gradle
recommends using conventions instead of configurations, for example, the source files are expected to be in the src/nativeMain/kotlin folder. By default, all the

666

https://gradle.org

symbols from C are imported to the interop package, you may want to import the whole package in our .kt files. Check out the Multiplatform Gradle DSL reference
plugin documentation to learn about all the different ways you could configure it.

Create a src/nativeMain/kotlin/hello.kt stub file with the following content to see how C struct and union declarations are visible from Kotlin:

import	interop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
		
		struct_by_value(/*	fix	me*/)
		struct_by_pointer(/*	fix	me*/)
		union_by_value(/*	fix	me*/)
		union_by_pointer(/*	fix	me*/)
}

Now you are ready to open the project in IntelliJ IDEA and to see how to fix the example project. While doing that, see how C struct and union types are mapped
into Kotlin/Native.

Struct
and
union
types
in
Kotlin
With the help of IntelliJ IDEA's Go to | Declaration or compiler errors, you see the following generated API for the C functions, struct, and union:

fun	struct_by_value(s:	CValue<MyStruct>)
fun	struct_by_pointer(s:	CValuesRef<MyStruct>?)

fun	union_by_value(u:	CValue<MyUnion>)
fun	union_by_pointer(u:	CValuesRef<MyUnion>?)

class	MyStruct	constructor(rawPtr:	NativePtr	/*	=	NativePtr	*/)	:	CStructVar	{
				var	a:	Int
				var	b:	Double
				companion	object	:	CStructVar.Type
}

class	MyUnion	constructor(rawPtr:	NativePtr	/*	=	NativePtr	*/)	:	CStructVar	{
				var	a:	Int
				val	b:	MyStruct
				var	c:	Float
				companion	object	:	CStructVar.Type
}

You see that cinterop generated wrapper types for our struct and union types. For MyStruct and MyUnion type declarations in C, there are the Kotlin classes
MyStruct and MyUnion generated respectively. The wrappers inherit from the CStructVar base class and declare all fields as Kotlin properties. It uses CValue<T> to
represent a by-value structure parameter and CValuesRef<T>? to represent passing a pointer to a structure or a union.

Technically, there is no difference between struct and union types on the Kotlin side. Note that a, b, and c properties of MyUnion class in Kotlin use the same
memory location to read/write their value just like union does in C language.

More details and advanced use-cases are presented in the
C Interop documentation

Use
struct
and
union
types
from
Kotlin
It is easy to use the generated wrapper classes for C struct and union types from Kotlin. Thanks to the generated properties, it feels natural to use them in Kotlin
code. The only question, so far, is how to create a new instance on those classes. As you see from the declarations of MyStruct and MyUnion, their constructors
require a NativePtr. Of course, you are not willing to deal with pointers manually. Instead, you can use Kotlin API to have those objects instantiated for us.

Let's take a look at the generated functions that take our MyStruct and MyUnion as parameters. You see that by-value parameters are represented as
kotlinx.cinterop.CValue<T>. And for typed pointer parameters you see kotlinx.cinterop.CValuesRef<T>. Kotlin provides us with an API to deal with both types easily,
let's try it and see.

Create
a
CValue
CValue<T> type is used to pass by-value parameters to a C function call. Use cValue function to create CValue<T> object instance. The function requires a lambda
function with a receiver to initialize the underlying C type in-place. The function is declared as follows:

667

fun	<reified	T	:	CStructVar>	cValue(initialize:	T.()	->	Unit):	CValue<T>

Now it is time to see how to use cValue and pass by-value parameters:

fun	callValue()	{

		val	cStruct	=	cValue<MyStruct>	{
				a	=	42
				b	=	3.14
		}
		struct_by_value(cStruct)

		val	cUnion	=	cValue<MyUnion>	{
				b.a	=	5
				b.b	=	2.7182
		}

		union_by_value(cUnion)
}

Create
struct
and
union
as
CValuesRef
CValuesRef<T> type is used in Kotlin to pass a typed pointer parameter of a C function. First, you need an instance of MyStruct and MyUnion classes. Create them
directly in the native memory. Use the

fun	<reified	T	:	kotlinx.cinterop.CVariable>	alloc():	T			

extension function on kotlinx.cinterop.NativePlacement type for this.

NativePlacement represents native memory with functions similar to malloc and free. There are several implementations of NativePlacement. The global one is
called with kotlinx.cinterop.nativeHeap and don't forget to call the nativeHeap.free(..) function to free the memory after use.

Another option is to use the

fun	<R>	memScoped(block:	kotlinx.cinterop.MemScope.()	->	R):	R				

function. It creates a short-lived memory allocation scope, and all allocations will be cleaned up automatically at the end of the block.

Your code to call functions with pointers will look like this:

fun	callRef()	{
		memScoped	{
				val	cStruct	=	alloc<MyStruct>()
				cStruct.a	=	42
				cStruct.b	=	3.14

				struct_by_pointer(cStruct.ptr)

val	cUnion	=	alloc<MyUnion>()
				cUnion.b.a	=	5
				cUnion.b.b	=	2.7182

				union_by_pointer(cUnion.ptr)
		}
}

Note that this code uses the extension property ptr which comes from a memScoped lambda receiver type, to turn MyStruct and MyUnion instances into native
pointers.

The MyStruct and MyUnion classes have the pointer to the native memory underneath. The memory will be released when a memScoped function ends, which is
equal to the end of its block. Make sure that a pointer is not used outside of the memScoped call. You may use Arena() or nativeHeap for pointers that should be
available longer, or are cached inside a C library.

Conversion
between
CValue
and
CValuesRef
Of course, there are use cases when you need to pass a struct as a value to one call, and then, to pass the same struct as a reference to another call. This is
possible in Kotlin/Native too. A NativePlacement will be needed here.

668

Let's see now CValue<T> is turned to a pointer first:

fun	callMix_ref()	{
		val	cStruct	=	cValue<MyStruct>	{
				a	=	42
				b	=	3.14
		}
		
		memScoped	{	
				struct_by_pointer(cStruct.ptr)
		}
}

This code uses the extension property ptr which comes from memScoped lambda receiver type to turn MyStruct and MyUnion instances into native pointers. Those
pointers are only valid inside the memScoped block.

For the opposite conversion, to turn a pointer into a by-value variable, we call the readValue() extension function:

fun	callMix_value()	{
		memScoped	{
				val	cStruct	=	alloc<MyStruct>()
				cStruct.a	=	42
				cStruct.b	=	3.14

				struct_by_value(cStruct.readValue())
		}
}

Run
the
code
Now when you have learned how to use C declarations in your code, you are ready to try it out on a real example. Let's fix the code and see how it runs by calling
the runDebugExecutableNative Gradle task in the IDE or by using the following console command:

./gradlew	runDebugExecutableNative

The final code in the hello.kt file may look like this:

import	interop.*
import	kotlinx.cinterop.alloc
import	kotlinx.cinterop.cValue
import	kotlinx.cinterop.memScoped
import	kotlinx.cinterop.ptr
import	kotlinx.cinterop.readValue

fun	main()	{
		println("Hello	Kotlin/Native!")

		val	cUnion	=	cValue<MyUnion>	{
				b.a	=	5
				b.b	=	2.7182
		}

		memScoped	{
				union_by_value(cUnion)
				union_by_pointer(cUnion.ptr)
		}

		memScoped	{
				val	cStruct	=	alloc<MyStruct>	{
						a	=	42
						b	=	3.14
				}

				struct_by_value(cStruct.readValue())
				struct_by_pointer(cStruct.ptr)
		}
}

Next
steps

669

Continue exploring the C language types and their representation in Kotlin/Native in the related tutorials:

Mapping primitive data types from C

Mapping function pointers from C

Mapping strings from C

The C Interop documentation covers more advanced scenarios of the interop.

Mapping
function
pointers
from
C
–
tutorial

This is the third post in the series. The very first tutorial is Mapping primitive data types from C. There are also Mapping struct and union types from C and Mapping
strings from C tutorials.

In this tutorial We will learn how to:

Pass Kotlin function as C function pointer

Use C function pointer from Kotlin

Mapping
function
pointer
types
from
C
The best way to understand the mapping between Kotlin and C is to try a tiny example. Declare a function that accepts a function pointer as a parameter and
another function that returns a function pointer.

Kotlin/Native comes with the cinterop tool; the tool generates bindings between the C language and Kotlin. It uses a .def file to specify a C library to import. More
details on this are in Interop with C Libraries.

The quickest way to try out C API mapping is to have all C declarations in the interop.def file, without creating any .h of .c files at all. Then place the C declarations
in a .def file after the special --- separator line:

int	myFun(int	i)	{
		return	i+1;
}

typedef	int		(*MyFun)(int);

void	accept_fun(MyFun	f)	{
		f(42);
}

MyFun	supply_fun()	{
		return	myFun;
}

The interop.def file is enough to compile and run the application or open it in an IDE. Now it is time to create project files, open the project in IntelliJ IDEA and run it.

Inspect
generated
Kotlin
APIs
for
a
C
library
While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big
projects that have hundreds of files and libraries. It is then better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

The C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from C libraries should have the @ExperimentalForeignApi
annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

670

https://jetbrains.com/idea
https://gradle.org

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				val	main	by	compilations.getting
				val	interop	by	main.cinterops.creating
				
				binaries	{
						executable()
				}
		}
}

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.BIN
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64('native')	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS		
		//	mingwX64('native')	{	//	on	Windows
				compilations.main.cinterops	{
						interop	
				}
				
				binaries	{
						executable()
				}
		}
}

wrapper	{
		gradleVersion	=	'8.1.1'
		distributionType	=	'BIN'
}

The project file configures the C interop as an additional step of the build. Let's move the interop.def file to the src/nativeInterop/cinterop directory. Gradle
recommends using conventions instead of configurations, for example, the source files are expected to be in the src/nativeMain/kotlin folder. By default, all the
symbols from C are imported to the interop package, you may want to import the whole package in our .kt files. Check out the Multiplatform Gradle DSL reference
to learn about all the different ways you could configure it.

671

Let's create a src/nativeMain/kotlin/hello.kt stub file with the following content to see how C function pointer declarations are visible from Kotlin:

import	interop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
		
		accept_fun(https://kotlinlang.org/*fix	me	*/)
		val	useMe	=	supply_fun()
}

Now you are ready to open the project in IntelliJ IDEA and to see how to fix the example project. While doing that, see how C functions are mapped into
Kotlin/Native declarations.

C
function
pointers
in
Kotlin
With the help of IntelliJ IDEA's Go To | Declaration or Usages or compiler errors, see the following declarations for the C functions:

fun	accept_fun(f:	MyFun?	/*	=	CPointer<CFunction<(Int)	->	Int>>?	*/)
fun	supply_fun():	MyFun?	/*	=	CPointer<CFunction<(Int)	->	Int>>?	*/

fun	myFun(i:	kotlin.Int):	kotlin.Int

typealias	MyFun	=	kotlinx.cinterop.CPointer<kotlinx.cinterop.CFunction<(kotlin.Int)	->	kotlin.Int>>

typealias	MyFunVar	=	kotlinx.cinterop.CPointerVarOf<lib.MyFun>

You see that the function's typedef from C has been turned into Kotlin typealias. It uses CPointer<..> type to represent the pointer parameters, and CFunction<(Int)-
>Int> to represent the function signature. There is an invoke operator extension function available for all CPointer<CFunction<..> types, so that it is possible to call it
as you would call any other function in Kotlin.

Pass
Kotlin
function
as
C
function
pointer
It is the time to try using C functions from the Kotlin program. Call the accept_fun function and pass the C function pointer to a Kotlin lambda:

fun	myFun()	{
		accept_fun(staticCFunction<Int,	Int>	{	it	+	1	})
}

This call uses the staticCFunction{..} helper function from Kotlin/Native to wrap a Kotlin lambda function into a C function pointer. It only allows having unbound and
non-capturing lambda functions. For example, it is not able to use a local variable from the function. You may only use globally visible declarations. Throwing
exceptions from a staticCFunction{..} will end up in non-deterministic side-effects. It is vital to make sure that you code is not throwing any sudden exceptions from
it.

Use
the
C
function
pointer
from
Kotlin
The next step is to call a C function pointer from a C pointer that you have from the supply_fun() call:

fun	myFun2()	{
		val	functionFromC	=	supply_fun()	?:	error("No	function	is	returned")
		
		functionFromC(42)
}

Kotlin turns the function pointer return type into a nullable CPointer<CFunction<..> object. There is the need to explicitly check for null first. The elvis operator for
that in the code above. The cinterop tool helps us to turn a C function pointer into an easy to call object in Kotlin. This is what we did on the last line.

Fix
the
code
You've seen all definitions and it is time to fix and run the code. Run the runDebugExecutableNative Gradle task in the IDE or use the following command to run the
code:

672

./gradlew	runDebugExecutableNative

The code in the hello.kt file may look like this:

import	interop.*
import	kotlinx.cinterop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
	
		val	cFunctionPointer	=	staticCFunction<Int,	Int>	{	it	+	1	}
		accept_fun(cFunctionPointer)

		val	funFromC	=	supply_fun()	?:	error("No	function	is	returned")
		funFromC(42)
}

Next
Steps
Continue exploring more C language types and their representation in Kotlin/Native in next tutorials:

Mapping primitive data types from C

Mapping struct and union types from C

Mapping strings from C

The C Interop documentation covers more advanced scenarios of the interop.

Mapping
Strings
from
C
–
tutorial

This is the last tutorial in the series. The first tutorial of the series is Mapping primitive data types from C. There are also Mapping struct and union types from C and
Mapping function pointers from C tutorials.

In this tutorial, you'll see how to deal with C strings in Kotlin/Native. You will learn how to:

Pass a Kotlin string to C

Read a C string in Kotlin

Receive C string bytes into a Kotlin string

Working
with
C
strings
There is no dedicated type in C language for strings. A developer knows from a method signature or the documentation, whether a given char * means a C string in
the context. Strings in the C language are null-terminated, a trailing zero character \0 is added at the end of a bytes sequence to mark a string termination. Usually,
UTF-8 encoded strings are used. The UTF-8 encoding uses variable width characters, and it is backward compatible with ASCII. Kotlin/Native uses UTF-8
character encoding by default.

The best way to understand the mapping between C and Kotlin languages is to try it out on a small example. Create a small library headers for that. First, create a
lib.h file with the following declaration of functions that deal with the C strings:

#ifndef	LIB2_H_INCLUDED
#define	LIB2_H_INCLUDED

void	pass_string(char*	str);
char*	return_string();
int	copy_string(char*	str,	int	size);

The C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from C libraries, should have the @ExperimentalForeignApi
annotation.

673

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/ASCII

#endif

In the example, you see the most popular ways to pass or receive a string in the C language. Take the return of return_string with care. In general, it is best to make
sure you use the right function to dispose the returned char* with the right free(..) function call.

Kotlin/Native comes with the cinterop tool; the tool generates bindings between the C language and Kotlin. It uses a .def file to specify a C library to import. More
details on this are in the Interop with C Libraries tutorial. The quickest way to try out C API mapping is to have all C declarations in the interop.def file, without
creating any .h of .c files at all. Then place the C declarations in a interop.def file after the special --- separator line:

headers	=	lib.h

void	pass_string(char*	str)	{
}

char*	return_string()	{
		return	"C	string";
}

int	copy_string(char*	str,	int	size)	{
		*str++	=	'C';
		*str++	=	'	';
		*str++	=	'K';
		*str++	=	'/';
		*str++	=	'N';
		*str++	=	0;
		return	0;
}

The interop.def file is enough to compile and run the application or open it in an IDE. Now it is time to create project files, open the project in IntelliJ IDEA and run it.

Inspect
generated
Kotlin
APIs
for
a
C
library
While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big
projects that have hundreds of files and libraries. It is then better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				val	main	by	compilations.getting
				val	interop	by	main.cinterops.creating
				
				binaries	{
						executable()
				}
		}
}

674

https://jetbrains.com/idea
https://gradle.org

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.BIN
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64('native')	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64('native')	{	//	on	Windows
				compilations.main.cinterops	{
						interop	
				}
				
				binaries	{
						executable()
				}
		}
}

wrapper	{
		gradleVersion	=	'8.1.1'
		distributionType	=	'BIN'
}

The project file configures the C interop as an additional step of the build. Let's move the interop.def file to the src/nativeInterop/cinterop directory. Gradle
recommends using conventions instead of configurations, for example, the source files are expected to be in the src/nativeMain/kotlin folder. By default, all the
symbols from C are imported to the interop package, you may want to import the whole package in our .kt files. Check out the Multiplatform Gradle DSL reference
to learn about all the different ways you could configure it.

Let's create a src/nativeMain/kotlin/hello.kt stub file with the following content to see how C string declarations are visible from Kotlin:

import	interop.*

fun	main()	{
		println("Hello	Kotlin/Native!")
		
		pass_string(/*fix	me*/)
		val	useMe	=	return_string()
		val	useMe2	=	copy_string(/*fix	me*/)
}

Now you are ready to open the project in IntelliJ IDEA and to see how to fix the example project. While doing that, see how C strings are mapped into Kotlin/Native.

Strings
in
Kotlin
With the help of IntelliJ IDEA's Go to | Declaration or compiler errors, you see the following generated API for the C functions:

fun	pass_string(str:	CValuesRef<ByteVar	/*	=	ByteVarOf<Byte>	*/>?)
fun	return_string():	CPointer<ByteVar	/*	=	ByteVarOf<Byte>	*/>?
fun	copy_string(str:	CValuesRef<ByteVar	/*	=	ByteVarOf<Byte>	*/>?,	size:	Int):	Int

These declarations look clear. All char * pointers are turned into str: CValuesRef<ByteVar>? for parameters and to CPointer<ByteVar>? in return types. Kotlin turns
char type into kotlin.Byte type, as it is usually an 8-bit signed value.

In the generated Kotlin declarations, you see that str is represented as CValuesRef<ByteVar/>?. The type is nullable, and you can simply pass Kotlin null as the
parameter value.

675

Pass
Kotlin
string
to
C
Let's try to use the API from Kotlin. Call pass_string first:

fun	passStringToC()	{
		val	str	=	"this	is	a	Kotlin	String"
		pass_string(str.cstr)
}

Passing a Kotlin string to C is easy, thanks to the fact that there is String.cstr extension property in Kotlin for it. There is also String.wcstr for cases when you need
UTF-16 wide characters.

Read
C
Strings
in
Kotlin
This time you'll take a returned char * from the return_string function and turn it into a Kotlin string. For that, do the following in Kotlin:

fun	passStringToC()	{
		val	stringFromC	=	return_string()?.toKString()
		
		println("Returned	from	C:	$stringFromC")
}

This code uses the toKString() extension function above. Please do not miss out the toString() function. The toKString() has two overloaded extension functions in
Kotlin:

fun	CPointer<ByteVar>.toKString():	String
fun	CPointer<ShortVar>.toKString():	String

The first extension takes a char * as a UTF-8 string and turns it into a String. The second function does the same but for wide UTF-16 strings.

Receive
C
string
bytes
from
Kotlin
This time we will ask a C function to write us a C string to a given buffer. The function is called copy_string. It takes a pointer to the location writing characters and
the allowed buffer size. The function returns something to indicate if it has succeeded or failed. Let's assume 0 means it succeeded, and the supplied buffer was big
enough:

fun	sendString()	{
		val	buf	=	ByteArray(255)
		buf.usePinned	{	pinned	->
				if	(copy_string(pinned.addressOf(0),	buf.size	-	1)	!=	0)	{
						throw	Error("Failed	to	read	string	from	C")
				}
		}

		val	copiedStringFromC	=	buf.decodeToString()
		println("Message	from	C:	$copiedStringFromC")
}

First of all, you need to have a native pointer to pass to the C function. Use the usePinned extension function to temporarily pin the native memory address of the
byte array. The C function fills in the byte array with data. Use another extension function ByteArray.decodeToString() to turn the byte array into a Kotlin String,
assuming UTF-8 encoding.

Fix
the
Code
You've now seen all the definitions and it is time to fix the code. Run the runDebugExecutableNative Gradle task in the IDE or use the following command to run the
code:

./gradlew	runDebugExecutableNative

The code in the final hello.kt file may look like this:

676

import	interop.*
import	kotlinx.cinterop.*

fun	main()	{
		println("Hello	Kotlin/Native!")

		val	str	=	"this	is	a	Kotlin	String"
		pass_string(str.cstr)

		val	useMe	=	return_string()?.toKString()	?:	error("null	pointer	returned")
		println(useMe)

		val	copyFromC	=	ByteArray(255).usePinned	{	pinned	->

				val	useMe2	=	copy_string(pinned.addressOf(0),	pinned.get().size	-	1)
				if	(useMe2	!=	0)	throw	Error("Failed	to	read	string	from	C")
				pinned.get().decodeToString()
		}

		println(copyFromC)
}

Next
steps
Continue to explore more C language types and their representation in Kotlin/Native in our other tutorials:

Mapping primitive data types from C

Mapping struct and union types from C

Mapping function pointers from C

The C Interop documentation documentation covers more advanced scenarios of the interop.

Create
an
app
using
C
Interop
and
libcurl
–
tutorial
This tutorial demonstrates how to use IntelliJ IDEA to create a command-line application. You'll learn how to create a simple HTTP client that can run natively on
specified platforms using Kotlin/Native and the libcurl library.

The output will be an executable command-line app that you can run on macOS and Linux and make simple HTTP GET requests.

Before
you
start
1. Download and install the latest version of IntelliJ IDEA with the latest Kotlin plugin.

2. Clone the project template by selecting File | New | Project from Version Control in IntelliJ IDEA.

3. Explore the project structure:

While it is possible to use the command line, either directly or by combining it with a script file (such as a .sh or a .bat file), this approach doesn't scale
well for big projects with hundreds of files and libraries. In this case, it is better to use the Kotlin/Native compiler with a build system, as it helps download
and cache the Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle
build system through the kotlin-multiplatform plugin.

677

https://www.jetbrains.com/idea/
https://github.com/Kotlin/kmp-native-wizard

Native application project structure

The template includes a project with the files and folders you need to get you started. It's important to understand that an application written in Kotlin/Native can
target different platforms if the code does not have platform-specific requirements. Your code is placed in the nativeMain directory with a corresponding
nativeTest. For this tutorial, keep the folder structure as is.

4. Open the build.gradle.kts file, the build script that contains the project settings. Pay special attention to the following in the build file:

kotlin	{
				val	hostOs	=	System.getProperty("os.name")
				val	isArm64	=	System.getProperty("os.arch")	==	"aarch64"
				val	isMingwX64	=	hostOs.startsWith("Windows")
				val	nativeTarget	=	when	{
								hostOs	==	"Mac	OS	X"	&&	isArm64	->	macosArm64("native")
								hostOs	==	"Mac	OS	X"	&&	!isArm64	->	macosX64("native")
								hostOs	==	"Linux"	&&	isArm64	->	linuxArm64("native")
								hostOs	==	"Linux"	&&	!isArm64	->	linuxX64("native")
								isMingwX64	->	mingwX64("native")
								else	->	throw	GradleException("Host	OS	is	not	supported	in	Kotlin/Native.")
				}

				nativeTarget.apply	{
								binaries	{
												executable	{
																entryPoint	=	"main"
												}
								}
				}
}

Targets are defined using macOSX64, macosArm64, linuxX64, linuxArm64, and mingwX64 for macOS, Linux, and Windows. See the complete list of
supported platforms.

The entry itself defines a series of properties to indicate how the binary is generated and the entry point of the applications. These can be left as default
values.

C interoperability is configured as an additional step in the build. By default, all the symbols from C are imported to the interop package. You may want to
import the whole package in .kt files. Learn more about how to configure it.

Create
a
definition
file

678

When writing native applications, you often need access to certain functionalities that are not included in the Kotlin standard library, such as making HTTP requests,
reading and writing from disk, and so on.

Kotlin/Native helps consume standard C libraries, opening up an entire ecosystem of functionality that exists for pretty much anything you may need. Kotlin/Native
is already shipped with a set of prebuilt platform libraries, which provide some additional common functionality to the standard library.

An ideal scenario for interop is to call C functions as if you are calling Kotlin functions, following the same signature and conventions. This is when the cinterop tool
comes in handy. It takes a C library and generates the corresponding Kotlin bindings, so that the library can be used as if it were Kotlin code.

To generate these bindings, create a library definition .def file that contains some information about the necessary headers. In this app, you'll need the libcurl library
to make some HTTP calls. To create a definition file:

1. Select the src folder and create a new directory with File | New | Directory.

2. Name new directory nativeInterop/cinterop. This is the default convention for header file locations, though it can be overridden in the build.gradle.kts file if you
use a different location.

3. Select this new subfolder and create a new libcurl.def file with File | New | File.

4. Update your file with the following code:

headers	=	curl/curl.h
headerFilter	=	curl/*

compilerOpts.linux	=	-I/usr/include	-I/usr/include/x86_64-linux-gnu
linkerOpts.osx	=	-L/opt/local/lib	-L/usr/local/opt/curl/lib	-lcurl
linkerOpts.linux	=	-L/usr/lib/x86_64-linux-gnu	-lcurl

headers is the list of header files to generate Kotlin stubs. You can add multiple files to this entry, separating each with a \ on a new line. In this case, it's only
curl.h. The referenced files need to be available on the system path (in this case, it's /usr/include/curl).

headerFilter shows what exactly is included. In C, all the headers are also included when one file references another one with the #include directive.
Sometimes it's not necessary, and you can add this parameter using glob patterns to fine-tune things.

headerFilter is an optional argument and is mostly used when the library is installed as a system library. You don't want to fetch external dependencies (such
as system stdint.h header) into the interop library. It may be important to optimize the library size and fix potential conflicts between the system and the
provided Kotlin/Native compilation environment.

The next lines are about providing linker and compiler options, which can vary depending on different target platforms. In this case, they are macOS (the .osx
suffix) and Linux (the .linux suffix). Parameters without a suffix are also possible (for example, linkerOpts=) and applied to all platforms.

The convention is that each library gets its definition file, usually with the same name as the library. For more information on all the options available to cinterop, see
the Interop section.

Add
interoperability
to
the
build
process
To use header files, make sure they are generated as a part of the build process. For this, add the following entry to the build.gradle.kts file:

nativeTarget.apply	{
				compilations.getByName("main")	{				//	NL
								cinterops	{																					//	NL
												val	libcurl	by	creating					//	NL
								}																															//	NL
				}																																			//	NL
				binaries	{
								executable	{
												entryPoint	=	"main"
								}
				}
}

The new lines are marked with // NL. First, cinterops is added, and then an entry for each def file. By default, the name of the file is used. You can override this with

You need to have the curl library binaries on your system to make the sample work. On macOS and Linux, they are usually included. On Windows, you
can build it from sources (you'll need Visual Studio or Windows SDK Commandline tools). For more details, see the related blog post. Alternatively, you
may want to consider a MinGW/MSYS2 curl binary.

679

https://kotlinlang.org/api/latest/jvm/stdlib/
https://en.wikipedia.org/wiki/Glob_(programming)
https://curl.haxx.se/download.html
https://jonnyzzz.com/blog/2018/10/29/kn-libcurl-windows/
https://www.msys2.org/

additional parameters:

val	libcurl	by	creating	{
				defFile(project.file("src/nativeInterop/cinterop/libcurl.def"))
				packageName("com.jetbrains.handson.http")
				compilerOpts("-I/path")
				includeDirs.allHeaders("path")
}

See the Interoperability with C section for more details on the available options.

Write
the
application
code
Now you have the library and the corresponding Kotlin stubs and can use them from your application. For this tutorial, convert the simple.c example to Kotlin.

In the src/nativeMain/kotlin/ folder, update your Main.kt file with the following code:

import	kotlinx.cinterop.*
import	libcurl.*

@OptIn(ExperimentalForeignApi::class)
fun	main(args:	Array<String>)	{
				val	curl	=	curl_easy_init()
				if	(curl	!=	null)	{
								curl_easy_setopt(curl,	CURLOPT_URL,	"https://example.com")
								curl_easy_setopt(curl,	CURLOPT_FOLLOWLOCATION,	1L)
								val	res	=	curl_easy_perform(curl)
								if	(res	!=	CURLE_OK)	{
												println("curl_easy_perform()	failed	${curl_easy_strerror(res)?.toKString()}")
								}
								curl_easy_cleanup(curl)
				}
}

As you can see, explicit variable declarations are eliminated in the Kotlin version, but everything else is pretty much the same as the C version. All the calls you'd
expect in the libcurl library are available in the Kotlin equivalent.

Compile
and
run
the
application
1. Compile the application. To do that, call runDebugExecutableNative in the list of run Gradle tasks or use the following command in the terminal:

./gradlew	runDebugExecutableNative

In this case, the cinterop generated part is implicitly included in the build.

2. If there are no errors during compilation, click the green Run icon in the gutter beside the main() method or use the Alt+Enter shortcut to invoke the launch menu
in IntelliJ IDEA.

IntelliJ IDEA opens the Run tab and shows the output — the contents of https://example.com:

This is a line-by-line literal translation. You could also write this in a more Kotlin idiomatic way.

680

https://curl.haxx.se/libcurl/c/simple.html

Application output with HTML-code

You can see the actual output because the call curl_easy_perform prints the result to the standard output. You could hide this using curl_easy_setopt.

Interoperability
with
Swift/Objective-C

This document covers some details of Kotlin/Native interoperability with Swift/Objective-C.

Usage
Kotlin/Native provides bidirectional interoperability with Objective-C. Objective-C frameworks and libraries can be used in Kotlin code if properly imported to the
build (system frameworks are imported by default). See compilation configurations for more details. A Swift library can be used in Kotlin code if its API is exported to
Objective-C with @objc. Pure Swift modules are not yet supported.

Kotlin modules can be used in Swift/Objective-C code if compiled into a framework (see here for how to declare binaries). See Kotlin Multiplatform Mobile Sample
for an example.

You can get the full code here.

The Objective-C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from Objective-C libraries should have the
@ExperimentalForeignApi annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

681

https://github.com/Kotlin/kotlin-hands-on-intro-kotlin-native
https://github.com/Kotlin/kmm-basic-sample

Hiding
Kotlin
declarations
If you don't want to export Kotlin declarations to Objective-C and Swift, use special annotations:

@HiddenFromObjC hides a Kotlin declaration from Objective-C and Swift. The annotation disables a function or property export to Objective-C, making your
Kotlin code more Objective-C/Swift-friendly.

@ShouldRefineInSwift helps to replace a Kotlin declaration with a wrapper written in Swift. The annotation marks a function or property as swift_private in the
generated Objective-C API. Such declarations get the __ prefix, which makes them invisible from Swift.

You can still use these declarations in your Swift code to create a Swift-friendly API, but they won't be suggested in the Xcode autocomplete.

For more information on refining Objective-C declarations in Swift, see the official Apple documentation.

Mappings
The table below shows how Kotlin concepts are mapped to Swift/Objective-C and vice versa.

"->" and "<-" indicate that mapping only goes one way.

Kotlin Swift Objective-C Notes

class class @interface note

interface protocol @protocol

constructor/create Initializer Initializer note

Property Property Property note 1, note 2

Method Method Method note 1, note 2

enum class class @interface note

suspend-> completionHandler:/async completionHandler: note 1, note 2

@Throws fun throws error:(NSError**)error note

Extension Extension Category member note

companion member <- Class method or property Class method or property

null nil nil

Singleton shared or companion property shared or companion property note

Using these annotations requires opt-in.

682

https://developer.apple.com/documentation/swift/improving-objective-c-api-declarations-for-swift

Primitive type Primitive type / NSNumber note

Unit return type Void void

String String NSString

String NSMutableString NSMutableString note

List Array NSArray

MutableList NSMutableArray NSMutableArray

Set Set NSSet

MutableSet NSMutableSet NSMutableSet note

Map Dictionary NSDictionary

MutableMap NSMutableDictionary NSMutableDictionary note

Function type Function type Block pointer type note

Inline classes Unsupported Unsupported note

Kotlin Swift Objective-C Notes

Name
translation
Objective-C classes are imported into Kotlin with their original names. Protocols are imported as interfaces with Protocol name suffix, i.e. @protocol Foo-> interface
FooProtocol. These classes and interfaces are placed into a package specified in build configuration (platform.* packages for preconfigured system frameworks).

The names of Kotlin classes and interfaces are prefixed when imported to Objective-C. The prefix is derived from the framework name.

Objective-C does not support packages in a framework. If the Kotlin compiler finds Kotlin classes in the same framework which have the same name but different
packages, it renames them. This algorithm is not stable yet and can change between Kotlin releases. To work around this, you can rename the conflicting Kotlin
classes in the framework.

To avoid renaming Kotlin declarations, use the @ObjCName annotation. It instructs the Kotlin compiler to use a custom Objective-C and Swift name for classes,
interfaces, and other Kotlin concepts:

@ObjCName(swiftName	=	"MySwiftArray")
class	MyKotlinArray	{
				@ObjCName("index")
				fun	indexOf(@ObjCName("of")	element:	String):	Int	=	TODO()
}

//	Usage	with	the	ObjCName	annotations
let	array	=	MySwiftArray()
let	index	=	array.index(of:	"element")

683

Initializers
Swift/Objective-C initializers are imported to Kotlin as constructors and factory methods named create. The latter happens with initializers declared in the Objective-
C category or as a Swift extension, because Kotlin has no concept of extension constructors.

Kotlin constructors are imported as initializers to Swift/Objective-C.

Setters
Writeable Objective-C properties overriding read-only properties of the superclass are represented as setFoo() method for the property foo. The same goes for a
protocol's read-only properties that are implemented as mutable.

Top-level
functions
and
properties
Top-level Kotlin functions and properties are accessible as members of special classes. Each Kotlin file is translated into such a class. E.g.

//	MyLibraryUtils.kt
package	my.library

fun	foo()	{}

can be called from Swift like

MyLibraryUtilsKt.foo()

Method
names
translation
Generally, Swift argument labels and Objective-C selector pieces are mapped to Kotlin parameter names. These two concepts have different semantics, so
sometimes Swift/Objective-C methods can be imported with a clashing Kotlin signature. In this case, the clashing methods can be called from Kotlin using named
arguments, e.g.:

[player	moveTo:LEFT	byMeters:17]
[player	moveTo:UP	byInches:42]

In Kotlin, it would be:

player.moveTo(LEFT,	byMeters	=	17)
player.moveTo(UP,	byInches	=	42)

The methods of kotlin.Any (equals(), hashCode() and toString()) are mapped to the methods isEquals:, hash and description in Objective-C, and to the method
isEquals(_:) and the properties hash, description in Swift.

You can specify a more idiomatic name in Swift or Objective-C, instead of renaming the Kotlin declaration. Use the @ObjCName annotation that instructs the Kotlin
compiler to use a custom Objective-C and Swift name for methods or parameters.

Errors
and
exceptions
Kotlin has no concept of checked exceptions, all Kotlin exceptions are unchecked. Swift has only checked errors. So if Swift or Objective-C code calls a Kotlin
method which throws an exception to be handled, then the Kotlin method should be marked with a @Throws annotation specifying a list of "expected" exception
classes.

When compiling to the Objective-C/Swift framework, non-suspend functions that have or inherit the @Throws annotation are represented as NSError*-producing
methods in Objective-C and as throws methods in Swift. Representations for suspend functions always have NSError*/Error parameter in completion handler.

When Kotlin function called from Swift/Objective-C code throws an exception which is an instance of one of the @Throws-specified classes or their subclasses, it is
propagated as NSError. Other Kotlin exceptions reaching Swift/Objective-C are considered unhandled and cause program termination.

Using this annotation requires opt-in.

Using this annotation requires opt-in.

684

suspend functions without @Throws propagate only CancellationException as NSError. Non-suspend functions without @Throws don't propagate Kotlin exceptions
at all.

Note that the opposite reversed translation is not implemented yet: Swift/Objective-C error-throwing methods aren't imported to Kotlin as exception-throwing.

Enums
Kotlin enums are imported into Objective-C as @interface and into Swift as class. These data structures have properties corresponding to each enum value.
Consider this Kotlin code:

//	Kotlin
enum	class	Colors	{
				RED,	GREEN,	BLUE
}

You can access the properties of this enum class from Swift as follows:

//	Swift
Colors.red
Colors.green
Colors.blue

To use variables of a Kotlin enum in a Swift switch statement, provide a default statement to prevent a compilation error:

switch	color	{
				case	.red:	print("It's	red")
				case	.green:	print("It's	green")
				case	.blue:	print("It's	blue")
				default:	fatalError("No	such	color")
}

Suspending
functions

Kotlin's suspending functions (suspend) are presented in the generated Objective-C headers as functions with callbacks, or completion handlers in Swift/Objective-
C terminology.

Starting from Swift 5.5, Kotlin's suspend functions are also available for calling from Swift as async functions without using the completion handlers. Currently, this
functionality is highly experimental and has certain limitations. See this YouTrack issue for details.

Extensions
and
category
members
Members of Objective-C categories and Swift extensions are generally imported to Kotlin as extensions. That's why these declarations can't be overridden in Kotlin.
And the extension initializers aren't available as Kotlin constructors.

See how exceptions are handled in the Swift part of a multiplatform project.

Support for calling suspend functions from Swift code as async is Experimental. It may be dropped or changed at any time. Use it only for evaluation
purposes. We would appreciate your feedback on it in YouTrack.

See how Kotlin's suspending functions are used in the Swift part of a multiplatform project.

Learn more about the async/await mechanism in the Swift documentation.

Currently, there are two exceptions. Starting with Kotlin 1.8.20, category members that are declared in the same headers as the NSView class (from the
AppKit framework) or UIView classes (from the UIKit framework) are imported as members of these classes. This means that you can override methods
that subclass from NSView or UIView.

685

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-upgrade-app.html#ios-app
https://youtrack.jetbrains.com/issue/KT-47610
https://developer.apple.com/documentation/swift/calling_objective-c_apis_asynchronously
https://youtrack.jetbrains.com/issue/KT-47610
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-upgrade-app.html#ios-app
https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html

Kotlin extensions to "regular" Kotlin classes are imported to Swift and Objective-C as extensions and category members, respectively. Kotlin extensions to other
types are treated as top-level declarations with an additional receiver parameter. These types include:

Kotlin String type

Kotlin collection types and subtypes

Kotlin interface types

Kotlin primitive types

Kotlin inline classes

Kotlin Any type

Kotlin function types and subtypes

Objective-C classes and protocols

Kotlin
singletons
Kotlin singleton (made with an object declaration, including companion object) is imported to Swift/Objective-C as a class with a single instance.

The instance is available through the shared and companion properties.

For the following Kotlin code:

object	MyObject	{
				val	x	=	"Some	value"
}

class	MyClass	{
				companion	object	{
								val	x	=	"Some	value"
				}
}

Access these objects as follows:

MyObject.shared
MyObject.shared.x
MyClass.companion
MyClass.Companion.shared

NSNumber
Kotlin primitive type boxes are mapped to special Swift/Objective-C classes. For example, kotlin.Int box is represented as KotlinInt class instance in Swift (or
${prefix}Int instance in Objective-C, where prefix is the framework names prefix). These classes are derived from NSNumber, so the instances are proper
NSNumbers supporting all corresponding operations.

NSNumber type is not automatically translated to Kotlin primitive types when used as a Swift/Objective-C parameter type or return value. The reason is that
NSNumber type doesn't provide enough information about a wrapped primitive value type, i.e. NSNumber is statically not known to be Byte, Boolean, or Double. So
Kotlin primitive values should be cast to/from NSNumber manually (see below).

NSMutableString
NSMutableString Objective-C class is not available from Kotlin. All instances of NSMutableString are copied when passed to Kotlin.

Collections
Kotlin collections are converted to Swift/Objective-C collections as described in the table above. Swift/Objective-C collections are mapped to Kotlin in the same
way, except for NSMutableSet and NSMutableDictionary. NSMutableSet isn't converted to a Kotlin MutableSet. To pass an object for Kotlin MutableSet, you can
create this kind of Kotlin collection explicitly by either creating it in Kotlin with e.g. mutableSetOf(), or using the KotlinMutableSet class in Swift (or

Access objects through [MySingleton mySingleton] in Objective-C and MySingleton() in Swift has been deprecated.

686

${prefix}MutableSet in Objective-C, where prefix is the framework names prefix). The same holds for MutableMap.

Function
types
Kotlin function-typed objects (e.g. lambdas) are converted to Swift functions / Objective-C blocks. However, there is a difference in how types of parameters and
return values are mapped when translating a function and a function type. In the latter case, primitive types are mapped to their boxed representation. Kotlin Unit
return value is represented as a corresponding Unit singleton in Swift/Objective-C. The value of this singleton can be retrieved in the same way as it is for any other
Kotlin object (see singletons in the table above). To sum the things up:

fun	foo(block:	(Int)	->	Unit)	{	...	}

would be represented in Swift as

func	foo(block:	(KotlinInt)	->	KotlinUnit)

and can be called like

foo	{
				bar($0	as!	Int32)
				return	KotlinUnit()
}

Generics
Objective-C supports "lightweight generics" defined on classes, with a relatively limited feature set. Swift can import generics defined on classes to help provide
additional type information to the compiler.

Generic feature support for Objective-C and Swift differ from Kotlin, so the translation will inevitably lose some information, but the features supported retain
meaningful information.

Limitations
Objective-C generics do not support all features of either Kotlin or Swift, so there will be some information lost in the translation.

Generics can only be defined on classes, not on interfaces (protocols in Objective-C and Swift) or functions.

Nullability
Kotlin and Swift both define nullability as part of the type specification, while Objective-C defines nullability on methods and properties of a type. As such, the
following:

class	Sample<T>()	{
				fun	myVal():	T
}

will (logically) look like this:

class	Sample<T>()	{
				fun	myVal():	T?
}

In order to support a potentially nullable type, the Objective-C header needs to define myVal with a nullable return value.

To mitigate this, when defining your generic classes, if the generic type should never be null, provide a non-nullable type constraint:

class	Sample<T	:	Any>()	{
				fun	myVal():	T
}

That will force the Objective-C header to mark myVal as non-nullable.

Variance

687

Objective-C allows generics to be declared covariant or contravariant. Swift has no support for variance. Generic classes coming from Objective-C can be force-
cast as needed.

data	class	SomeData(val	num:	Int	=	42)	:	BaseData()
class	GenVarOut<out	T	:	Any>(val	arg:	T)

let	variOut	=	GenVarOut<SomeData>(arg:	sd)
let	variOutAny	:	GenVarOut<BaseData>	=	variOut	as!	GenVarOut<BaseData>

Constraints
In Kotlin, you can provide upper bounds for a generic type. Objective-C also supports this, but that support is unavailable in more complex cases, and is currently
not supported in the Kotlin - Objective-C interop. The exception here being a non-nullable upper bound will make Objective-C methods/properties non-nullable.

To disable
To have the framework header written without generics, add the flag to the compiler config:

binaries.framework	{
				freeCompilerArgs	+=	"-Xno-objc-generics"
}

Casting
between
mapped
types
When writing Kotlin code, an object may need to be converted from a Kotlin type to the equivalent Swift/Objective-C type (or vice versa). In this case, a plain old
Kotlin cast can be used, e.g.

val	nsArray	=	listOf(1,	2,	3)	as	NSArray
val	string	=	nsString	as	String
val	nsNumber	=	42	as	NSNumber

Subclassing

Subclassing
Kotlin
classes
and
interfaces
from
Swift/Objective-C
Kotlin classes and interfaces can be subclassed by Swift/Objective-C classes and protocols.

Subclassing
Swift/Objective-C
classes
and
protocols
from
Kotlin
Swift/Objective-C classes and protocols can be subclassed with a Kotlin final class. Non-final Kotlin classes inheriting Swift/Objective-C types aren't supported yet,
so it is not possible to declare a complex class hierarchy inheriting Swift/Objective-C types.

Normal methods can be overridden using the override Kotlin keyword. In this case, the overriding method must have the same parameter names as the overridden
one.

Sometimes it is required to override initializers, e.g. when subclassing UIViewController. Initializers imported as Kotlin constructors can be overridden by Kotlin
constructors marked with the @OverrideInit annotation:

class	ViewController	:	UIViewController	{
				@OverrideInit	constructor(coder:	NSCoder)	:	super(coder)

				...
}

The overriding constructor must have the same parameter names and types as the overridden one.

To override different methods with clashing Kotlin signatures, you can add a @Suppress("CONFLICTING_OVERLOADS") annotation to the class.

688

By default, the Kotlin/Native compiler doesn't allow calling a non-designated Objective-C initializer as a super(...) constructor. This behaviour can be inconvenient if
the designated initializers aren't marked properly in the Objective-C library. Adding a disableDesignatedInitializerChecks = true to the .def file for this library would
disable these compiler checks.

C
features
See Interoperability with C for an example case where the library uses some plain C features, such as unsafe pointers, structs, and so on.

Export
of
KDoc
comments
to
generated
Objective-C
headers

By default, KDocs documentation comments are not translated into corresponding comments when generating an Objective-C header.
For example, the following Kotlin code with KDoc:

/**
	*	Prints	the	sum	of	the	arguments.
	*	Properly	handles	the	case	when	the	sum	doesn't	fit	in	32-bit	integer.
	*/
fun	printSum(a:	Int,	b:	Int)	=	println(a.toLong()	+	b)

will produce an Objective-C declaration without any comments:

+	(void)printSumA:(int32_t)a	b:(int32_t)b	__attribute__((swift_name("printSum(a:b:)")));

To enable export of KDoc comments, add the following compiler option to your build.gradle(.kts):

Kotlin

kotlin	{
				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								compilations.get("main").compilerOptions.options.freeCompilerArgs.add("-Xexport-kdoc")
				}
}

Groovy

kotlin	{
				targets.withType(org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget)	{
								compilations.get("main").compilerOptions.options.freeCompilerArgs.add("-Xexport-kdoc")
				}
}

After that, the Objective-C header will contain a corresponding comment:

/**
	*	Prints	the	sum	of	the	arguments.
	*	Properly	handles	the	case	when	the	sum	doesn't	fit	in	32-bit	integer.
	*/
+	(void)printSumA:(int32_t)a	b:(int32_t)b	__attribute__((swift_name("printSum(a:b:)")));

Known limitations:

Suppressing an error on clashing Kotlin signatures is a temporary workaround. Stability isn't guaranteed in this case so use it with caution. We're working
on fixing this behavior in future Kotlin releases.

The ability to export KDoc comments to generated Objective-C headers is Experimental. It may be dropped or changed at any time. Opt-in is required
(see the details below), and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

689

https://youtrack.jetbrains.com/issue/KT-38600

Dependency documentation is not exported unless it is compiled with -Xexport-kdoc itself. The feature is experimental, so libraries compiled with this flag might
be incompatible with other compiler versions.

KDoc comments are mostly exported "as is". Many KDoc features (for example, @property) are not supported.

Unsupported
Some features of Kotlin programming language are not yet mapped into respective features of Objective-C or Swift. Currently, the following features are not
properly exposed in generated framework headers:

inline classes (arguments are mapped as either underlying primitive type or id)

custom classes implementing standard Kotlin collection interfaces (List, Map, Set) and other special classes

Kotlin subclasses of Objective-C classes

Kotlin/Native
as
an
Apple
framework
–
tutorial

Kotlin/Native provides bi-directional interoperability with Objective-C/Swift. Objective-C frameworks and libraries can be used in Kotlin code. Kotlin modules can be
used in Swift/Objective-C code too. Besides that, Kotlin/Native has C Interop. There is also the Kotlin/Native as a Dynamic Library tutorial for more information.

In this tutorial, you will see how to use Kotlin/Native code from Objective-C and Swift applications on macOS and iOS.

In this tutorial you'll:

create a Kotlin Library and compile it to a framework

examine the generated Objective-C and Swift API code

use the framework from Objective-C and Swift

Configure Xcode to use the framework for macOS and iOS

Create
a
Kotlin
library
The Kotlin/Native compiler can produce a framework for macOS and iOS out of the Kotlin code. The created framework contains all declarations and binaries
needed to use it with Objective-C and Swift. The best way to understand the techniques is to try it for ourselves. Let's create a tiny Kotlin library first and use it from
an Objective-C program.

Create the hello.kt file with the library contents:

package	example

object	Object	{
		val	field	=	"A"
}

interface	Interface	{
		fun	iMember()	{}
}

class	Clazz	:	Interface	{
		fun	member(p:	Int):	ULong?	=	42UL
}

fun	forIntegers(b:	Byte,	s:	UShort,	i:	Int,	l:	ULong?)	{	}
fun	forFloats(f:	Float,	d:	Double?)	{	}

The Objective-C libraries import is Experimental. All Kotlin declarations generated by the cinterop tool from Objective-C libraries should have the
@ExperimentalForeignApi annotation.

Native platform libraries shipped with Kotlin/Native (like Foundation, UIKit, and POSIX), require opt-in only for some APIs. In such cases, you get an IDE
warning.

690

fun	strings(str:	String?)	:	String	{
		return	"That	is	'$str'	from	C"
}

fun	acceptFun(f:	(String)	->	String?)	=	f("Kotlin/Native	rocks!")
fun	supplyFun()	:	(String)	->	String?	=	{	"$it	is	cool!"	}

While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big
projects that have hundreds of files and libraries. It is therefore better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
		macosX64("native")	{
				binaries	{
						framework	{
								baseName	=	"Demo"
						}
				}
		}
}

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.ALL
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		macosX64("native")	{
				binaries	{
						framework	{
								baseName	=	"Demo"
						}
				}
		}
}

wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	"ALL"
}

Move the sources file into the src/nativeMain/kotlin folder under the project. That is the default path, where sources are located, when the kotlin-multiplatform plugin

691

https://gradle.org

is used. Use the following block to configure the project to generate a dynamic or shared library:

binaries	{
		framework	{
				baseName	=	"Demo"
		}		
}

Along with macOS X64, Kotlin/Native supports macos arm64 and iOS arm32, arm64 and X64 targets. You may replace the macosX64 with respective functions as
shown in the table:

Target platform/device Gradle function

macOS x86_64 macosX64()

macOS ARM 64 macosArm64()

iOS ARM 64 iosArm64()

iOS Simulator (x86_64) iosX64()

iOS Simulator (arm64) iosSimulatorArm64

Run the linkNative Gradle task to build the library in the IDE or by calling the following console command:

./gradlew	linkNative

Depending on the variant, the build generates the framework into the build/bin/native/debugFramework and build/bin/native/releaseFramework folders. Let's see
what is inside.

Generated
framework
headers
Each of the created frameworks contains the header file in <Framework>/Headers/Demo.h. The headers do not depend on the target platform (at least with
Kotlin/Native v.0.9.2). It contains the definitions for our Kotlin code and a few Kotlin-wide declarations.

Kotlin/Native
runtime
declarations
Take a look at Kotlin runtime declarations:

NS_ASSUME_NONNULL_BEGIN

@interface	KotlinBase	:	NSObject
-	(instancetype)init	__attribute__((unavailable));
+	(instancetype)new	__attribute__((unavailable));
+	(void)initialize	__attribute__((objc_requires_super));
@end;

@interface	KotlinBase	(KotlinBaseCopying)	<NSCopying>
@end;

__attribute__((objc_runtime_name("KotlinMutableSet")))
__attribute__((swift_name("KotlinMutableSet")))
@interface	DemoMutableSet<ObjectType>	:	NSMutableSet<ObjectType>
@end;

The way Kotlin/Native exports symbols is subject to change without notice.

692

__attribute__((objc_runtime_name("KotlinMutableDictionary")))
__attribute__((swift_name("KotlinMutableDictionary")))
@interface	DemoMutableDictionary<KeyType,	ObjectType>	:	NSMutableDictionary<KeyType,	ObjectType>
@end;

@interface	NSError	(NSErrorKotlinException)
@property	(readonly)	id	_Nullable	kotlinException;
@end;

Kotlin classes have a KotlinBase base class in Objective-C, the class extends the NSObject class there. There are also have wrappers for collections and
exceptions. Most of the collection types are mapped to similar collection types from the other side:

Kotlin Swift Objective-C

List Array NSArray

MutableList NSMutableArray NSMutableArray

Set Set NSSet

Map Dictionary NSDictionary

MutableMap NSMutableDictionary NSMutableDictionary

Kotlin
numbers
and
NSNumber
The next part of the <Framework>/Headers/Demo.h contains number type mappings between Kotlin/Native and NSNumber. There is the base class called
DemoNumber in Objective-C and KotlinNumber in Swift. It extends NSNumber. There are also child classes per Kotlin number type:

Kotlin Swift Objective-C Simple type

- KotlinNumber <Package>Number -

Byte KotlinByte <Package>Byte char

UByte KotlinUByte <Package>UByte unsigned char

Short KotlinShort <Package>Short short

UShort KotlinUShort <Package>UShort unsigned short

Int KotlinInt <Package>Int int

UInt KotlinUInt <Package>UInt unsigned int

Long KotlinLong <Package>Long long long

693

ULong KotlinULong <Package>ULong unsigned long long

Float KotlinFloat <Package>Float float

Double KotlinDouble <Package>Double double

Boolean KotlinBoolean <Package>Boolean BOOL/Bool

Kotlin Swift Objective-C Simple type

Every number type has a class method to create a new instance from the related simple type. Also, there is an instance method to extract a simple value back.
Schematically, declarations look like that:

__attribute__((objc_runtime_name("Kotlin__TYPE__")))
__attribute__((swift_name("Kotlin__TYPE__")))
@interface	Demo__TYPE__	:	DemoNumber
-	(instancetype)initWith__TYPE__:(__CTYPE__)value;
+	(instancetype)numberWith__TYPE__:(__CTYPE__)value;
@end;

Where __TYPE__ is one of the simple type names and __CTYPE__ is the related Objective-C type, for example, initWithChar(char).

These types are used to map boxed Kotlin number types into Objective-C and Swift. In Swift, you may simply call the constructor to create an instance, for
example, KotlinLong(value: 42).

Classes
and
objects
from
Kotlin
Let's see how class and object are mapped to Objective-C and Swift. The generated <Framework>/Headers/Demo.h file contains the exact definitions for Class,
Interface, and Object:

NS_ASSUME_NONNULL_BEGIN

__attribute__((objc_subclassing_restricted))
__attribute__((swift_name("Object")))
@interface	DemoObject	:	KotlinBase
+	(instancetype)alloc	__attribute__((unavailable));
+	(instancetype)allocWithZone:(struct	_NSZone	*)zone	__attribute__((unavailable));
+	(instancetype)object	__attribute__((swift_name("init()")));
@property	(readonly)	NSString	*field;
@end;

__attribute__((swift_name("Interface")))
@protocol	DemoInterface
@required
-	(void)iMember	__attribute__((swift_name("iMember()")));
@end;

__attribute__((objc_subclassing_restricted))
__attribute__((swift_name("Clazz")))
@interface	DemoClazz	:	KotlinBase	<DemoInterface>
-	(instancetype)init	__attribute__((swift_name("init()")))	__attribute__((objc_designated_initializer));
+	(instancetype)new	__attribute__((availability(swift,	unavailable,	message="use	object	initializers	instead")));
-	(DemoLong	*	_Nullable)memberP:(int32_t)p	__attribute__((swift_name("member(p:)")));
@end;

The code is full of Objective-C attributes, which are intended to help the use of the framework from both Objective-C and Swift languages. DemoClazz,
DemoInterface, and DemoObject are created for Clazz, Interface, and Object respectively. The Interface is turned into @protocol, both a class and an object are
represented as @interface. The Demo prefix comes from the -output parameter of the kotlinc-native compiler and the framework name. You can see here that the
nullable return type ULong? is turned into DemoLong* in Objective-C.

Global
declarations
from
Kotlin
All global functions from Kotlin are turned into DemoLibKt in Objective-C and into LibKt in Swift, where Demo is the framework name and set by the -output

694

parameter of kotlinc-native.

NS_ASSUME_NONNULL_BEGIN

__attribute__((objc_subclassing_restricted))
__attribute__((swift_name("LibKt")))
@interface	DemoLibKt	:	KotlinBase
+	(void)forIntegersB:(int8_t)b	s:(int16_t)s	i:(int32_t)i	l:(DemoLong	*	_Nullable)l	
__attribute__((swift_name("forIntegers(b:s:i:l:)")));
+	(void)forFloatsF:(float)f	d:(DemoDouble	*	_Nullable)d	__attribute__((swift_name("forFloats(f:d:)")));
+	(NSString	*)stringsStr:(NSString	*	_Nullable)str	__attribute__((swift_name("strings(str:)")));
+	(NSString	*	_Nullable)acceptFunF:(NSString	*	_Nullable	(^)(NSString	*))f	__attribute__((swift_name("acceptFun(f:)")));
+	(NSString	*	_Nullable	(^)(NSString	*))supplyFun	__attribute__((swift_name("supplyFun()")));
@end;

You see that Kotlin String and Objective-C NSString* are mapped transparently. Similarly, Unit type from Kotlin is mapped to void. We see primitive types are
mapped directly. Non-nullable primitive types are mapped transparently. Nullable primitive types are mapped into Kotlin<TYPE>* types, as shown in the table
above. Both higher order functions acceptFunF and supplyFun are included, and accept Objective-C blocks.

More information about all other types mapping details can be found in the Objective-C Interop documentation article

Garbage
collection
and
reference
counting
Objective-C and Swift use reference counting. Kotlin/Native has its own garbage collection too. Kotlin/Native garbage collection is integrated with Objective-C/Swift
reference counting. You do not need to use anything special to control the lifetime of Kotlin/Native instances from Swift or Objective-C.

Use
the
code
from
Objective-C
Let's call the framework from Objective-C. For that, create the main.m file with the following content:

#import	<Foundation/Foundation.h>
#import	<Demo/Demo.h>

int	main(int	argc,	const	char	*	argv[])	{
				@autoreleasepool	{
								[[DemoObject	object]	field];
								
								DemoClazz*	clazz	=	[[DemoClazz	alloc]	init];
								[clazz	memberP:42];
								
								[DemoLibKt	forIntegersB:1	s:1	i:3	l:[DemoULong	numberWithUnsignedLongLong:4]];
								[DemoLibKt	forIntegersB:1	s:1	i:3	l:nil];
								
								[DemoLibKt	forFloatsF:2.71	d:[DemoDouble	numberWithDouble:2.71]];
								[DemoLibKt	forFloatsF:2.71	d:nil];
								
								NSString*	ret	=	[DemoLibKt	acceptFunF:^NSString	*	_Nullable(NSString	*	it)	{
												return	[it	stringByAppendingString:@"	Kotlin	is	fun"];
								}];
								
								NSLog(@"%@",	ret);
								return	0;
				}
}

Here you call Kotlin classes directly from Objective-C code. A Kotlin object has the class method function object, which allows us to get the only instance of the
object and to call Object methods on it. The widespread pattern is used to create an instance of the Clazz class. You call the [[DemoClazz alloc] init] on Objective-
C. You may also use [DemoClazz new] for constructors without parameters. Global declarations from the Kotlin sources are scoped under the DemoLibKt class in
Objective-C. All methods are turned into class methods of that class. The strings function is turned into DemoLibKt.stringsStr function in Objective-C, you can pass
NSString directly to it. The return is visible as NSString too.

Use
the
code
from
Swift
The framework that you compiled with Kotlin/Native has helper attributes to make it easier to use with Swift. Convert the previous Objective-C example into Swift.
As a result, you'll have the following code in main.swift:

695

import	Foundation
import	Demo

let	kotlinObject	=	Object()
assert(kotlinObject	===	Object(),	"Kotlin	object	has	only	one	instance")

let	field	=	Object().field

let	clazz	=	Clazz()
clazz.member(p:	42)

LibKt.forIntegers(b:	1,	s:	2,	i:	3,	l:	4)
LibKt.forFloats(f:	2.71,	d:	nil)

let	ret	=	LibKt.acceptFun	{	"\($0)	Kotlin	is	fun"	}
if	(ret	!=	nil)	{
		print(ret!)
}

The Kotlin code is turned into very similar looking code in Swift. There are some small differences, though. In Kotlin any object has only one instance. Kotlin object
Object now has a constructor in Swift, and we use the Object() syntax to access the only instance of it. The instance is always the same in Swift, so that Object()
=== Object() is true. Methods and property names are translated as-is. Kotlin String is turned into Swift String too. Swift hides NSNumber* boxing from us too. We
can pass a Swift closure to Kotlin and call a Kotlin lambda function from Swift too.

More documentation on the types mapping can be found in the Objective-C Interop article.

Xcode
and
framework
dependencies
You need to configure an Xcode project to use our framework. The configuration depends on the target platform.

Xcode
for
macOS
target
First, in the General tab of the target configuration, under the Linked Frameworks and Libraries section, you need to include our framework. This will make Xcode
look at our framework and resolve imports both from Objective-C and Swift.

The second step is to configure the framework search path of the produced binary. It is also known as rpath or run-time search path. The binary uses the path to
look for the required frameworks. We do not recommend installing additional frameworks to the OS if it is not needed. You should understand the layout of your
future application, for example, you may have the Frameworks folder under the application bundle with all the frameworks you use. The @rpath parameter can be
configured in Xcode. You need to open the project configuration and find the Runpath Search Paths section. Here you specify the relative path to the compiled
framework.

Xcode
for
iOS
targets
First, you need to include the compiled framework in the Xcode project. To do this, add the framework to the Frameworks, Libraries, and Embedded Content
section of the General tab of the target configuration page.

The second step is to then include the framework path into the Framework Search Paths section of the Build Settings tab of the target configuration page. It is
possible to use the $(PROJECT_DIR) macro to simplify the setup.

The iOS simulator requires a framework compiled for the ios_x64 target, the iOS_sim folder in our case.

This Stackoverflow thread contains a few more recommendations. Also, the CocoaPods package manager may be helpful to automate the process too.

Next
steps
Kotlin/Native has bidirectional interop with Objective-C and Swift languages. Kotlin objects integrate with Objective-C/Swift reference counting. Unused Kotlin
objects are automatically removed. The Objective-C Interop article contains more information on the interop implementation details. Of course, it is possible to
import an existing framework and use it from Kotlin. Kotlin/Native comes with a good set of pre-imported system frameworks.

Kotlin/Native supports C interop too. Check out the Kotlin/Native as a Dynamic Library tutorial for that.

CocoaPods
overview
and
setup

696

https://en.wikipedia.org/wiki/Rpath
https://stackoverflow.com/questions/30963294/creating-ios-osx-frameworks-is-it-necessary-to-codesign-them-before-distributin
https://cocoapods.org/

Kotlin/Native provides integration with the CocoaPods dependency manager. You can add dependencies on Pod libraries as well as use a multiplatform project
with native targets as a CocoaPods dependency.

You can manage Pod dependencies directly in IntelliJ IDEA and enjoy all the additional features such as code highlighting and completion. You can build the whole
Kotlin project with Gradle and not ever have to switch to Xcode.

Use Xcode only when you need to write Swift/Objective-C code or run your application on a simulator or device. To work correctly with Xcode, you should update
your Podfile.

Depending on your project and purposes, you can add dependencies between a Kotlin project and a Pod library as well as a Kotlin Gradle project and an Xcode
project.

Set
up
an
environment
to
work
with
CocoaPods
Install the CocoaPods dependency manager using the installation tool of your choice:

RVM

1. Install Ruby version manager in case you don't have it yet.

2. Install Ruby. You can choose a specific version:

rvm	install	ruby	3.0.0

3. Install CocoaPods:

sudo	gem	install	-n	/usr/local/bin	cocoapods

Rbenv

1. Install rbenv from GitHub in case you don't have it yet.

2. Install Ruby. You can choose a specific version:

rbenv	install	3.0.0

3. Set the Ruby version as local for a particular directory or global for the whole machine:

rbenv	global	3.0.0

4. Install CocoaPods:

sudo	gem	install	cocoapods

Default
Ruby

You can install the CocoaPods dependency manager with the default Ruby that should be available on macOS:

sudo	gem	install	cocoapods

Homebrew

This way of installation doesn't work on devices with Apple M chips. Use other tools to set up an environment to work with CocoaPods.

The CocoaPods installation with Homebrew might result in compatibility issues.

When installing CocoaPods, Homebrew also installs the Xcodeproj gem that is necessary for working with Xcode. However, it cannot be updated with Homebrew, and if the

installed Xcodeproj doesn't support the newest Xcode version yet, you'll get errors with Pod installation. If this is the case, try other tools to install CocoaPods.

697

https://cocoapods.org/
https://cocoapods.org/
https://rvm.io/rvm/install
https://github.com/rbenv/rbenv#installation
https://github.com/CocoaPods/Xcodeproj

1. Install Homebrew in case you don't have it yet.

2. Install CocoaPods:

brew	install	cocoapods

If
you
use
Kotlin
prior
to
version
1.7.0
If your current version of Kotlin is earlier than 1.7.0, additionally install the cocoapods-generate plugin:

sudo	gem	install	-n	/usr/local/bin	cocoapods-generate

If you encounter problems during the installation, check the Possible issues and solutions section.

Add
and
configure
Kotlin
CocoaPods
Gradle
plugin
If your environment is set up correctly, you can create a new Kotlin Multiplatform project and choose CocoaPods Dependency Manager as the iOS framework
distribution option. The plugin will automatically generate the project for you.

If you want to configure your project manually:

1. In build.gradle(.kts) of your project, apply the CocoaPods plugin as well as the Kotlin Multiplatform plugin:

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
				kotlin("native.cocoapods")	version	"1.9.20"
}

2. Configure version, summary, homepage, and baseName of the Podspec file in the cocoapods block:

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
				kotlin("native.cocoapods")	version	"1.9.20"
}

kotlin	{
				cocoapods	{
								//	Required	properties
								//	Specify	the	required	Pod	version	here.	Otherwise,	the	Gradle	project	version	is	used.
								version	=	"1.0"
								summary	=	"Some	description	for	a	Kotlin/Native	module"
								homepage	=	"Link	to	a	Kotlin/Native	module	homepage"

								//	Optional	properties
								//	Configure	the	Pod	name	here	instead	of	changing	the	Gradle	project	name
								name	=	"MyCocoaPod"

								framework	{
												//	Required	properties														
												//	Framework	name	configuration.	Use	this	property	instead	of	deprecated	'frameworkName'
												baseName	=	"MyFramework"

												//	Optional	properties
												//	Specify	the	framework	linking	type.	It's	dynamic	by	default.	
												isStatic	=	false
												//	Dependency	export
												export(project(":anotherKMMModule"))
												transitiveExport	=	false	//	This	is	default.
												//	Bitcode	embedding
												embedBitcode(BITCODE)
								}

								//	Maps	custom	Xcode	configuration	to	NativeBuildType
								xcodeConfigurationToNativeBuildType["CUSTOM_DEBUG"]	=	NativeBuildType.DEBUG
								xcodeConfigurationToNativeBuildType["CUSTOM_RELEASE"]	=	NativeBuildType.RELEASE
				}
}

Mind that cocoapods-generate couldn't be installed on Ruby 3.0.0 and later. If it's your case, downgrade Ruby or upgrade Kotlin to 1.7.0 or later.

698

https://brew.sh/
https://github.com/square/cocoapods-generate
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-create-first-app.html

3. Re-import the project.

4. Generate the Gradle wrapper to avoid compatibility issues during an Xcode build.

When applied, the CocoaPods plugin does the following:

Adds both debug and release frameworks as output binaries for all macOS, iOS, tvOS, and watchOS targets.

Creates a podspec task which generates a Podspec file for the project.

The Podspec file includes a path to an output framework and script phases that automate building this framework during the build process of an Xcode project.

Update
Podfile
for
Xcode
If you want to import your Kotlin project in an Xcode project, you need to make some changes to your Podfile:

If your project has any Git, HTTP, or custom Podspec repository dependencies, you should also specify the path to the Podspec in the Podfile.

For example, if you add a dependency on podspecWithFilesExample, declare the path to the Podspec in the Podfile:

target	'ios-app'	do
				#	...	other	dependencies	...
				pod	'podspecWithFilesExample',	:path	=>	'cocoapods/externalSources/url/podspecWithFilesExample'
end

The :path should contain the filepath to the Pod.

When you add a library from the custom Podspec repository, you should also specify the location of specs at the beginning of your Podfile:

source	'https://github.com/Kotlin/kotlin-cocoapods-spec.git'

target	'kotlin-cocoapods-xcproj'	do
				#	...	other	dependencies	...
				pod	'example'
end

If you don't make these changes to the Podfile, the podInstall task will fail, and the CocoaPods plugin will show an error message in the log.

Check out the withXcproject branch of the sample project, which contains an example of Xcode integration with an existing Xcode project named kotlin-cocoapods-
xcproj.

Possible
issues
and
solutions

CocoaPods
installation

Ruby installation
CocoaPods is built with Ruby, and you can install it with the default Ruby that should be available on macOS. Ruby 1.9 or later has a built-in RubyGems package
management framework that helps you install the CocoaPods dependency manager.

If you're experiencing problems installing CocoaPods and getting it to work, follow this guide to install Ruby or refer to the RubyGems website to install the
framework.

See the full syntax of Kotlin DSL in the Kotlin Gradle plugin repository.

Re-import the project after making changes in the Podfile.

699

https://github.com/JetBrains/kotlin/blob/master/libraries/tools/kotlin-gradle-plugin/src/common/kotlin/org/jetbrains/kotlin/gradle/targets/native/cocoapods/CocoapodsExtension.kt
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://guides.cocoapods.org/syntax/podspec.html
https://guides.cocoapods.org/syntax/podfile.html#source
https://github.com/Kotlin/kmm-with-cocoapods-sample
https://guides.cocoapods.org/using/getting-started.html#installation
https://www.ruby-lang.org/en/documentation/installation/
https://rubygems.org/pages/download/

Version compatibility
We recommend using the latest Kotlin version. If your current version is earlier than 1.7.0, you'll need to additionally install the cocoapods-generate plugin.

However, cocoapods-generate is not compatible with Ruby 3.0.0 or later. In this case, downgrade Ruby or upgrade Kotlin to 1.7.0 or later.

Module
not
found
You may encounter a module 'SomeSDK' not found error that is connected with the C-interop issue. Try these workarounds to avoid this error:

Specify the framework name
1. Look through the downloaded Pod directory [shared_module_name]/build/cocoapods/synthetic/IOS/Pods/... for the module.modulemap file.

2. Check the framework name inside the module, for example AppsFlyerLib {}. If the framework name doesn't match the Pod name, specify it explicitly:

pod("FirebaseAuth")	{
				moduleName	=	"AppsFlyerLib"
}

Check the definition file
If the Pod doesn't contain a .modulemap file, like the pod("NearbyMessages"), in the generated .def file, replace modules with headers with the pointing main
header:

tasks.named<org.jetbrains.kotlin.gradle.tasks.DefFileTask>("generateDefNearbyMessages").configure	{
				doLast	{
								outputFile.writeText("""
												language	=	Objective-C
												headers	=	GNSMessages.h
								""".trimIndent())
				}
}

Check the CocoaPods documentation for more information. If nothing works, and you still encounter this error, report an issue in YouTrack.

Rsync
error
You might encounter the rsync error: some files could not be transferred error. It's a known issue that occurs if the application target in Xcode has sandboxing of
the user scripts enabled.

To solve this issue:

1. Disable sandboxing of user scripts in the application target:

Disable sandboxing CocoaPods

2. Stop the Gradle daemon process that might have been sandboxed:

./gradlew	--stop

Add
dependencies
on
a
Pod
library

700

https://github.com/square/cocoapods-generate#installation
https://guides.cocoapods.org/
https://youtrack.jetbrains.com/newissue?project=kt
https://github.com/CocoaPods/CocoaPods/issues/11946

To add dependencies between a Kotlin project and a Pod library, complete the initial configuration. You can then add dependencies on different types of Pod
libraries.

When you add a new dependency and re-import the project in IntelliJ IDEA, the new dependency will be added automatically. No additional steps are required.

To use your Kotlin project with Xcode, you should make changes in your project Podfile.

A Kotlin project requires the pod() function call in build.gradle(.kts) for adding a Pod dependency. Each dependency requires its separate function call. You can
specify the parameters for the dependency in the configuration block of the function.

You can find a sample project here.

From
the
CocoaPods
repository
1. Specify the name of a Pod library in the pod() function.

In the configuration block, you can specify the version of the library using the version parameter. To use the latest version of the library, you can just omit this
parameter altogether.

2. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

				cocoapods	{
								ios.deploymentTarget	=	"13.5"

								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								pod("FirebaseAuth")	{
												version	=	"10.16.0"
								}
				}
}

3. Re-import the project.

To use these dependencies from the Kotlin code, import the packages cocoapods.<library-name>:

import	cocoapods.FirebaseAuth.*

On
a
locally
stored
library
1. Specify the name of a Pod library in the pod() function.

In the configuration block, specify the path to the local Pod library: use the path() function in the source parameter value.

2. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

If you don't specify the minimum deployment target version and a dependency Pod requires a higher deployment target, you will get an error.

You can add dependencies on subspecs.

You can add local dependencies on subspecs as well. The cocoapods block can include dependencies to Pods stored locally and Pods from the
CocoaPods repository at the same time.

701

https://github.com/Kotlin/kmm-with-cocoapods-sample

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								pod("pod_dependency")	{
												version	=	"1.0"
												source	=	path(project.file("../pod_dependency"))
								}
								pod("subspec_dependency/Core")	{
												version	=	"1.0"
												source	=	path(project.file("../subspec_dependency"))
								}
								pod("FirebaseAuth")	{
												version	=	"10.16.0"
								}
				}
}

3. Re-import the project.

To use these dependencies from the Kotlin code, import the packages cocoapods.<library-name>:

import	cocoapods.pod_dependency.*
import	cocoapods.subspec_dependency.*
import	cocoapods.FirebaseAuth.*

From
a
custom
Git
repository
1. Specify the name of a Pod library in the pod() function.

In the configuration block, specify the path to the git repository: use the git() function in the source parameter value.

Additionally, you can specify the following parameters in the block after git():

commit – to use a specific commit from the repository

tag – to use a specific tag from the repository

branch – to use a specific branch from the repository

The git() function prioritizes passed parameters in the following order: commit, tag, branch. If you don't specify a parameter, the Kotlin plugin uses HEAD from
the master branch.

2. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								pod("FirebaseAuth")	{
												source	=	git("https://github.com/firebase/firebase-ios-sdk")	{
																tag	=	"10.16.0"
												}
								}

You can also specify the version of the library using version parameter in the configuration block. To use the latest version of the library, omit the
parameter.

You can combine branch, commit, and tag parameters to get the specific version of a Pod.

702

								pod("JSONModel")	{
												source	=	git("https://github.com/jsonmodel/jsonmodel.git")	{
																branch	=	"key-mapper-class"
												}
								}

								pod("CocoaLumberjack")	{
												source	=	git("https://github.com/CocoaLumberjack/CocoaLumberjack.git")	{
																commit	=	"3e7f595e3a459c39b917aacf9856cd2a48c4dbf3"
												}
								}
				}
}

3. Re-import the project.

To use these dependencies from the Kotlin code, import the packages cocoapods.<library-name>:

import	cocoapods.Alamofire.*
import	cocoapods.JSONModel.*
import	cocoapods.CocoaLumberjack.*

From
a
custom
Podspec
repository
1. Specify the HTTP address to the custom Podspec repository using the url() inside the specRepos block.

2. Specify the name of a Pod library in the pod() function.

3. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								specRepos	{
												url("https://github.com/Kotlin/kotlin-cocoapods-spec.git")
								}
								pod("example")
				}
}

4. Re-import the project.

To use these dependencies from the Kotlin code, import the packages cocoapods.<library-name>:

import	cocoapods.example.*

With
custom
cinterop
options
1. Specify the name of a Pod library in the pod() function.

In the configuration block, specify the cinterop options:

extraOpts – to specify the list of options for a Pod library. For example, specific flags: extraOpts = listOf("-compiler-option").

To work correctly with Xcode, you should specify the location of specs at the beginning of your Podfile. For example,

source	'https://github.com/Kotlin/kotlin-cocoapods-spec.git'

703

packageName – to specify the package name. If you specify this, you can import the library using the package name: import <packageName>.

2. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								pod("YandexMapKit")	{
												packageName	=	"YandexMK"
								}
				}
}

3. Re-import the project.

To use these dependencies from the Kotlin code, import the packages cocoapods.<library-name>:

import	cocoapods.YandexMapKit.*

If you use the packageName parameter, you can import the library using the package name import <packageName>:

import	YandexMK.YMKPoint
import	YandexMK.YMKDistance

Support
for
Objective-C
headers
with
@import
directives

Some Objective-C libraries, specifically those that serve as wrappers for Swift libraries, have @import directives in their headers. By default, cinterop doesn't
provide support for these directives.

To enable support for @import directives, specify the -fmodules option in the configuration block of the pod() function:

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"

								ios.deploymentTarget	=	"13.5"

								pod("PodName")	{
												extraOpts	=	listOf("-compiler-option",	"-fmodules")
								}
				}
}

Share
Kotlin
cinterop
between
dependent
Pods
If you add multiple dependencies on Pods using the pod() function, you might encounter issues when there are dependencies between APIs of your Pods.

To make the code compile in such cases, use the useInteropBindingFrom() function. It utilizes the cinterop binding generated for another Pod while building a
binding for the new Pod.

You should declare the dependent Pod before setting up the dependency:

//	The	cinterop	of	pod("WebImage"):

This feature is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We'd appreciate your feedback on it in
YouTrack.

704

https://kotl.in/issue

fun	loadImage():	WebImage

//	The	cinterop	of	pod("Info"):
fun	printImageInfo(image:	WebImage)

//	Your	code:
printImageInfo(loadImage())

If you haven't configured the correct dependencies between cinterops in this case, the code would be invalid because the WebImage type would be sourced from
different cinterop files and, consequently, different packages.

Use
a
Kotlin
Gradle
project
as
a
CocoaPods
dependency
To use a Kotlin Multiplatform project with native targets as a CocoaPods dependency, complete the initial configuration. You can include such a dependency in the
Podfile of the Xcode project by its name and path to the project directory containing the generated Podspec.

This dependency will be automatically built (and rebuilt) along with this project. Such an approach simplifies importing to Xcode by removing a need to write the
corresponding Gradle tasks and Xcode build steps manually.

You can add dependencies between a Kotlin Gradle project and an Xcode project with one or several targets. It's also possible to add dependencies between a
Gradle project and multiple Xcode projects. However, in this case, you need to add a dependency by calling pod install manually for each Xcode project. In other
cases, it's done automatically.

Xcode
project
with
one
target
1. Create an Xcode project with a Podfile if you haven't done so yet.

2. Make sure to disable User Script Sandboxing under Build Options in the application target:

Disable sandboxing CocoaPods

3. Add the path to your Xcode project Podfile with podfile = project.file(..) in the build.gradle(.kts) file of your Kotlin project. This step helps synchronize your Xcode
project with Gradle project dependencies by calling pod install for your Podfile.

4. Specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"
								ios.deploymentTarget	=	"13.5"
								pod("FirebaseAuth")	{
												version	=	"10.16.0"
								}

To correctly import the dependencies into the Kotlin/Native module, the Podfile must contain either use_modular_headers! or use_frameworks!
directive.

If you don't specify the minimum deployment target version and a dependency Pod requires a higher deployment target, you will get an error.

705

https://guides.cocoapods.org/syntax/podfile.html#use_modular_headers_bang
https://guides.cocoapods.org/syntax/podfile.html#use_frameworks_bang

								podfile	=	project.file("../ios-app/Podfile")
				}
}

5. Add the name and path of the Gradle project you want to include in the Xcode project to Podfile.

use_frameworks!

platform	:ios,	'13.5'

target	'ios-app'	do
								pod	'kotlin_library',	:path	=>	'../kotlin-library'
end

6. Re-import the project.

Xcode
project
with
several
targets
1. Create an Xcode project with a Podfile if you haven't done so yet.

2. Add the path to your Xcode project Podfile with podfile = project.file(..) to build.gradle(.kts) of your Kotlin project. This step helps synchronize your Xcode project
with Gradle project dependencies by calling pod install for your Podfile.

3. Add dependencies to the Pod libraries you want to use in your project with pod().

4. For each target, specify the minimum deployment target version for the Pod library.

kotlin	{
				ios()
				tvos()

				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"
								ios.deploymentTarget	=	"13.5"
								tvos.deploymentTarget	=	"13.4"

								pod("FirebaseAuth")	{
												version	=	"10.16.0"
								}
								podfile	=	project.file("../severalTargetsXcodeProject/Podfile")	//	specify	the	path	to	the	Podfile
				}
}

5. Add the name and path of the Gradle project you want to include in the Xcode project to the Podfile.

target	'iosApp'	do
		use_frameworks!
		platform	:ios,	'13.5'
		#	Pods	for	iosApp
		pod	'kotlin_library',	:path	=>	'../kotlin-library'
end

target	'TVosApp'	do
		use_frameworks!
		platform	:tvos,	'13.4'

		#	Pods	for	TVosApp
		pod	'kotlin_library',	:path	=>	'../kotlin-library'
end

6. Re-import the project.

You can find a sample project here.

CocoaPods
Gradle
plugin
DSL
reference
Kotlin CocoaPods Gradle plugin is a tool for creating Podspec files. These files are necessary to integrate your Kotlin project with the CocoaPods dependency

706

https://github.com/Kotlin/kmm-with-cocoapods-multitarget-xcode-sample
https://cocoapods.org/

manager.

This reference contains the complete list of blocks, functions, and properties for the Kotlin CocoaPods Gradle plugin that you can use when working with the
CocoaPods integration.

Learn how to set up the environment and configure the Kotlin CocoaPods Gradle plugin.

Depending on your project and purposes, you can add dependencies between a Kotlin project and a Pod library as well as a Kotlin Gradle project and an Xcode
project.

Enable
the
plugin
To apply the CocoaPods plugin, add the following lines to the build.gradle(.kts) file:

plugins	{
			kotlin("multiplatform")	version	"1.9.20"
			kotlin("native.cocoapods")	version	"1.9.20"
}

The plugin versions match the Kotlin release versions. The latest stable version is 1.9.20.

cocoapods
block
The cocoapods block is the top-level block for the CocoaPods configuration. It contains general information on the Pod, including required information like the Pod
version, summary, and homepage, as well as optional features.

You can use the following blocks, functions, and properties inside it:

Name Description

version The version of the Pod. If this is not specified, a Gradle project version is used. If none of these properties are configured,
you'll get an error.

summary A required description of the Pod built from this project.

homepage A required link to the homepage of the Pod built from this project.

authors Specifies authors of the Pod built from this project.

podfile Configures the existing Podfile file.

noPodspec() Sets up the plugin not to produce a Podspec file for the cocoapods section.

name The name of the Pod built from this project. If not provided, the project name is used.

license The license of the Pod built from this project, its type, and the text.

framework The framework block configures the framework produced by the plugin.

source The location of the Pod built from this project.

707

extraSpecAttributes Configures other Podspec attributes like libraries or vendored_frameworks.

xcodeConfigurationToNativeBuildType Maps custom Xcode configuration to NativeBuildType: "Debug" to NativeBuildType.DEBUG and "Release" to
NativeBuildType.RELEASE.

publishDir Configures the output directory for Pod publishing.

pods Returns a list of Pod dependencies.

pod() Adds a CocoaPods dependency to the Pod built from this project.

specRepos Adds a specification repository using url(). This is necessary when a private Pod is used as a dependency. See the
CocoaPods documentation for more information.

Name Description

Targets
ios

osx

tvos

watchos

For each target, use the deploymentTarget property to specify the minimum target version for the Pod library.

When applied, CocoaPods adds both debug and release frameworks as output binaries for all of the targets.

kotlin	{
				ios()
			
				cocoapods	{
								version	=	"2.0"
								name	=	"MyCocoaPod"
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"
								
								extraSpecAttributes["vendored_frameworks"]	=	'CustomFramework.xcframework'
								license	=	"{	:type	=>	'MIT',	:text	=>	'License	text'}"
								source	=	"{	:git	=>	'git@github.com:vkormushkin/kmmpodlibrary.git',	:tag	=>	'$version'	}"
								authors	=	"Kotlin	Dev"
								
								specRepos	{
												url("https://github.com/Kotlin/kotlin-cocoapods-spec.git")
								}
								pod("example")
								
								xcodeConfigurationToNativeBuildType["CUSTOM_RELEASE"]	=	NativeBuildType.RELEASE
			}
}

framework
block
The framework block is nested inside cocoapods and configures the framework properties of the Pod built from the project.

Note that baseName is a required field.

708

https://guides.cocoapods.org/making/private-cocoapods.html

Name Description

baseName A required framework name. Use this property instead of the deprecated frameworkName.

isStatic Defines the framework linking type. It's dynamic by default.

transitiveExport Enables dependency export.

kotlin	{
				cocoapods	{
								framework	{
												baseName	=	"MyFramework"
												isStatic	=	false
												export(project(":anotherKMMModule"))
												transitiveExport	=	true
								}
				}
}

pod()
function
The pod() function call adds a CocoaPods dependency to the Pod built from this project. Each dependency requires a separate function call.

You can specify the name of a Pod library in the function parameters and additional parameter values, like the version and source of the library, in its configuration
block:

Name Description

version The library version. To use the latest version of the library, omit the parameter.

source Configures the Pod from:

The Git repository using git(). In the block after git(), you can specify commit to use a specific commit, tag to use a specific tag,
and branch to use a specific branch from the repository

The local repository using path()

An archived (tar, jar, zip) Pod folder using url()

packageName Specifies the package name.

extraOpts Specifies the list of options for a Pod library. For example, specific flags:

extraOpts	=	listOf("-compiler-option")

linkOnly Instructs the CocoaPods plugin to use Pod dependencies with dynamic frameworks without generating cinterop bindings. If used
with static frameworks, the option will remove the Pod dependency entirely.

interopBindingDependencies Contains a list of dependencies to other Pods. This list is used when building a Kotlin binding for the new Pod.

709

useInteropBindingFrom() Specifies the name of the existing Pod that is used as dependency. This Pod should be declared before the function execution.
The function instructs the CocoaPods plugin to use a Kotlin binding of the existing Pod when building a binding for the new one.

Name Description

kotlin	{
				ios()
			
				cocoapods	{
								summary	=	"CocoaPods	test	library"
								homepage	=	"https://github.com/JetBrains/kotlin"
						
								ios.deploymentTarget	=	"13.5"
						
								pod("pod_dependency")	{
												version	=	"1.0"
												linkOnly	=	true
												source	=	path(project.file("../pod_dependency"))
								}
				}
}

Kotlin/Native
libraries

Kotlin
compiler
specifics
To produce a library with the Kotlin/Native compiler use the -produce library or -p library flag. For example:

$	kotlinc-native	foo.kt	-p	library	-o	bar

This command will produce a bar.klib with the compiled contents of foo.kt.

To link to a library use the -library <name> or -l <name> flag. For example:

$	kotlinc-native	qux.kt	-l	bar

This command will produce a program.kexe out of qux.kt and bar.klib

cinterop
tool
specifics
The cinterop tool produces .klib wrappers for native libraries as its main output. For example, using the simple libgit2.def native library definition file provided in your
Kotlin/Native distribution

$	cinterop	-def	samples/gitchurn/src/nativeInterop/cinterop/libgit2.def	-compiler-option	-I/usr/local/include	-o	libgit2

we will obtain libgit2.klib.

See more details in C Interop.

klib
utility
The klib library management utility allows you to inspect and install the libraries.

The following commands are available:

content – list library contents:

710

$	klib	contents	<name>

info – inspect the bookkeeping details of the library

$	klib	info	<name>

install – install the library to the default location use

$	klib	install	<name>

remove – remove the library from the default repository use

$	klib	remove	<name>

All of the above commands accept an additional -repository <directory> argument for specifying a repository different to the default one.

$	klib	<command>	<name>	-repository	<directory>

Several
examples
First let's create a library. Place the tiny library source code into kotlinizer.kt:

package	kotlinizer
val	String.kotlinized
				get()	=	"Kotlin	$this"

$	kotlinc-native	kotlinizer.kt	-p	library	-o	kotlinizer

The library has been created in the current directory:

$	ls	kotlinizer.klib
kotlinizer.klib

Now let's check out the contents of the library:

$	klib	contents	kotlinizer

You can install kotlinizer to the default repository:

$	klib	install	kotlinizer

Remove any traces of it from the current directory:

$	rm	kotlinizer.klib

Create a very short program and place it into a use.kt:

import	kotlinizer.*

fun	main(args:	Array<String>)	{
				println("Hello,	${"world".kotlinized}!")
}

Now compile the program linking with the library you have just created:

$	kotlinc-native	use.kt	-l	kotlinizer	-o	kohello

711

And run the program:

$./kohello.kexe
Hello,	Kotlin	world!

Have fun!

Advanced
topics

Library
search
sequence
When given a -library foo flag, the compiler searches the foo library in the following order:

Current compilation directory or an absolute path.

All repositories specified with -repo flag.

Libraries installed in the default repository (For now the default is ~/.konan, however it could be changed by setting KONAN_DATA_DIR environment variable).

Libraries installed in $installation/klib directory.

Library
format
Kotlin/Native libraries are zip files containing a predefined directory structure, with the following layout:

foo.klib when unpacked as foo/ gives us:

-	foo/
		-	$component_name/
				-	ir/
						-	Serialized	Kotlin	IR.
				-	targets/
						-	$platform/
								-	kotlin/
										-	Kotlin	compiled	to	LLVM	bitcode.
								-	native/
										-	Bitcode	files	of	additional	native	objects.
						-	$another_platform/
								-	There	can	be	several	platform	specific	kotlin	and	native	pairs.
				-	linkdata/
						-	A	set	of	ProtoBuf	files	with	serialized	linkage	metadata.
				-	resources/
						-	General	resources	such	as	images.	(Not	used	yet).
				-	manifest	-	A	file	in	the	java	property	format	describing	the	library.

An example layout can be found in klib/stdlib directory of your installation.

Using
relative
paths
in
klibs

A serialized IR representation of source files is a part of a klib library. It includes paths of files for generating proper debug information. By default, stored paths are
absolute. With the -Xklib-relative-path-base compiler option, you can change the format and use only relative path in the artifact. To make it work, pass one or
multiple base paths of source files as an argument:

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named<KotlinCompilationTask<*>>("compileKotlin").configure	{
				//	$base	is	a	base	path	of	source	files
				compilerOptions.freeCompilerArgs.add("-Xklib-relative-path-base=$base")
}

Using relative paths in klibs is available since Kotlin 1.6.20.

712

Groovy

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named('compileKotlin',	KotlinCompilationTask)	{
				compilerOptions	{
								//	$base	is	a	base	path	of	source	files
								freeCompilerArgs.add("-Xklib-relative-path-base=$base")
				}
}

Platform
libraries
To provide access to user's native operating system services, Kotlin/Native distribution includes a set of prebuilt libraries specific to each target. We call them
Platform Libraries.

POSIX
bindings
For all Unix- or Windows-based targets (including Android and iOS targets) we provide the POSIX platform lib. It contains bindings to platform's implementation of
the POSIX standard.

To use the library, just import it:

import	platform.posix.*

The only target for which it is not available is WebAssembly.

Note that the content of platform.posix is NOT identical on different platforms, in the same way as different POSIX implementations are a little different.

Popular
native
libraries
There are many more platform libraries available for host and cross-compilation targets. Kotlin/Native distribution provides access to OpenGL, zlib and other
popular native libraries on applicable platforms.

On Apple platforms, objc library is provided for interoperability with Objective-C.

Inspect the contents of dist/klib/platform/$target of the distribution for the details.

Availability
by
default
The packages from platform libraries are available by default. No special link flags need to be specified to use them. Kotlin/Native compiler automatically detects
which of the platform libraries have been accessed and automatically links the needed libraries.

On the other hand, the platform libs in the distribution are merely just wrappers and bindings to the native libraries. That means the native libraries themselves (.so,
.a, .dylib, .dll etc) should be installed on the machine.

Kotlin/Native
as
a
dynamic
library
–
tutorial
Learn how you can use the Kotlin/Native code from existing native applications or libraries. For this, you need to compile the Kotlin code into a dynamic library, .so,
.dylib, and .dll.

Kotlin/Native also has tight integration with Apple technologies. The Kotlin/Native as an Apple Framework tutorial explains how to compile Kotlin code into a
framework for Swift and Objective-C.

In this tutorial, you will:

713

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/Objective-C

Compile Kotlin code to a dynamic library

Examine generated C headers

Use the Kotlin dynamic library from C

Compile and run the example on Linux and Mac and Windows

Create
a
Kotlin
library
Kotlin/Native compiler can produce a dynamic library out of the Kotlin code. A dynamic library often comes with a header file, a .h file, which you will use to call the
compiled code from C.

The best way to understand these techniques is to try them out. First, create a first tiny Kotlin library and use it from a C program.

Start by creating a library file in Kotlin and save it as hello.kt:

package	example

object	Object	{
		val	field	=	"A"
}

class	Clazz	{
		fun	memberFunction(p:	Int):	ULong	=	42UL
}

fun	forIntegers(b:	Byte,	s:	Short,	i:	UInt,	l:	Long)	{	}
fun	forFloats(f:	Float,	d:	Double)	{	}

fun	strings(str:	String)	:	String?	{
		return	"That	is	'$str'	from	C"
}

val	globalString	=	"A	global	String"

While it is possible to use the command line, either directly or by combining it with a script file (such as .sh or .bat file), this approach doesn't scale well for big
projects that have hundreds of files and libraries. It is then better to use the Kotlin/Native compiler with a build system, as it helps to download and cache the
Kotlin/Native compiler binaries and libraries with transitive dependencies and run the compiler and tests. Kotlin/Native can use the Gradle build system through the
kotlin-multiplatform plugin.

We covered the basics of setting up an IDE compatible project with Gradle in the A Basic Kotlin/Native Application tutorial. Please check it out if you are looking for
detailed first steps and instructions on how to start a new Kotlin/Native project and open it in IntelliJ IDEA. In this tutorial, we'll look at the advanced C interop
related usages of Kotlin/Native and multiplatform builds with Gradle.

First, create a project folder. All the paths in this tutorial will be relative to this folder. Sometimes the missing directories will have to be created before any new files
can be added.

Use the following build.gradle(.kts) Gradle build file:

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux	
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				binaries	{
						sharedLib	{
								baseName	=	"native"	//	on	Linux	and	macOS
								//	baseName	=	"libnative"	//	on	Windows
						}
				}

714

https://gradle.org

		}
}

tasks.wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	Wrapper.DistributionType.ALL
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

kotlin	{
		linuxX64("native")	{	//	on	Linux
		//	macosX64("native")	{	//	on	x86_64	macOS
		//	macosArm64("native")	{	//	on	Apple	Silicon	macOS
		//	mingwX64("native")	{	//	on	Windows
				binaries	{
						sharedLib	{
								baseName	=	"native"	//	on	Linux	and	macOS
								//	baseName	=	"libnative"	//	on	Windows
						}
				}
		}
}

wrapper	{
		gradleVersion	=	"8.1.1"
		distributionType	=	"ALL"
}

Move the sources file into the src/nativeMain/kotlin folder under the project. This is the default path, for where sources are located, when the kotlin-multiplatform
plugin is used. Use the following block to instruct and configure the project to generate a dynamic or shared library:

binaries	{
		sharedLib	{
				baseName	=	"native"	//	on	Linux	and	macOS
				//	baseName	=	"libnative"	//	on	Windows
		}		
}

The libnative is used as the library name, the generated header file name prefix. It is also prefixes all declarations in the header file.

Now you can open the project in IntelliJ IDEA and to see how to fix the example project. While doing this, we'll examine how C functions are mapped into
Kotlin/Native declarations.

Run the linkNative Gradle task to build the library in the IDE or by calling the following console command:

./gradlew	linkNative

The build generates the following files under the build/bin/native/debugShared folder, depending on the host OS:

macOS: libnative_api.h and libnative.dylib

Linux: libnative_api.h and libnative.so

Windows: libnative_api.h, libnative_symbols.def and libnative.dll

The same rules are used by the Kotlin/Native compiler to generate the .h file for all platforms.
Let's check out the C API of our Kotlin library.

Generated
headers
file
In the libnative_api.h, you'll find the following code. Let's discuss the code in parts to make it easier to understand.

715

The very first part contains the standard C/C++ header and footer:

#ifndef	KONAN_DEMO_H
#define	KONAN_DEMO_H
#ifdef	__cplusplus
extern	"C"	{
#endif

///	THE	REST	OF	THE	GENERATED	CODE	GOES	HERE

#ifdef	__cplusplus
}		/*	extern	"C"	*/
#endif
#endif		/*	KONAN_DEMO_H	*/

After the rituals in the libnative_api.h, there is a block with the common type definitions:

#ifdef	__cplusplus
typedef	bool												libnative_KBoolean;
#else
typedef	_Bool											libnative_KBoolean;
#endif
typedef	unsigned	short					libnative_KChar;
typedef	signed	char								libnative_KByte;
typedef	short														libnative_KShort;
typedef	int																libnative_KInt;
typedef	long	long										libnative_KLong;
typedef	unsigned	char						libnative_KUByte;
typedef	unsigned	short					libnative_KUShort;
typedef	unsigned	int							libnative_KUInt;
typedef	unsigned	long	long	libnative_KULong;
typedef	float														libnative_KFloat;
typedef	double													libnative_KDouble;
typedef	void*														libnative_KNativePtr;

Kotlin uses the libnative_ prefix for all declarations in the created libnative_api.h file. Let's present the mapping of the types in a more readable way:

Kotlin Define C Type

libnative_KBoolean bool or _Bool

libnative_KChar unsigned short

libnative_KByte signed char

libnative_KShort short

libnative_KInt int

libnative_KLong long long

libnative_KUByte unsigned char

libnative_KUShort unsigned short

The way Kotlin/Native exports symbols is subject to change without notice.

716

libnative_KUInt unsigned int

libnative_KULong unsigned long long

libnative_KFloat float

libnative_KDouble double

libnative_KNativePtr void*

Kotlin Define C Type

The definitions part shows how Kotlin primitive types map into C primitive types. The reverse mapping is described in the Mapping primitive data types from C
tutorial.

The next part of the libnative_api.h file contains definitions of the types that are used in the library:

struct	libnative_KType;
typedef	struct	libnative_KType	libnative_KType;

typedef	struct	{
		libnative_KNativePtr	pinned;
}	libnative_kref_example_Object;

typedef	struct	{
		libnative_KNativePtr	pinned;
}	libnative_kref_example_Clazz;

The typedef struct { .. } TYPE_NAME syntax is used in C language to declare a structure. This thread on Stackoverflow provides more explanations of that pattern.

As you can see from these definitions, the Kotlin object Object is mapped into libnative_kref_example_Object, and Clazz is mapped into
libnative_kref_example_Clazz. Both structs contain nothing but the pinned field with a pointer, the field type libnative_KNativePtr is defined as void* above.

There is no namespaces support in C, so the Kotlin/Native compiler generates long names to avoid any possible clashes with other symbols in the existing native
project.

A significant part of the definitions goes in the libnative_api.h file. It includes the definition of our Kotlin/Native library world:

typedef	struct	{
		/*	Service	functions.	*/
		void	(*DisposeStablePointer)(libnative_KNativePtr	ptr);
		void	(*DisposeString)(const	char*	string);
		libnative_KBoolean	(*IsInstance)(libnative_KNativePtr	ref,	const	libnative_KType*	type);

		/*	User	functions.	*/
		struct	{
				struct	{
						struct	{
								void	(*forIntegers)(libnative_KByte	b,	libnative_KShort	s,	libnative_KUInt	i,	libnative_KLong	l);
								void	(*forFloats)(libnative_KFloat	f,	libnative_KDouble	d);
								const	char*	(*strings)(const	char*	str);
								const	char*	(*get_globalString)();
								struct	{
										libnative_KType*	(*_type)(void);
										libnative_kref_example_Object	(*_instance)();
										const	char*	(*get_field)(libnative_kref_example_Object	thiz);
								}	Object;
								struct	{
										libnative_KType*	(*_type)(void);
										libnative_kref_example_Clazz	(*Clazz)();
										libnative_KULong	(*memberFunction)(libnative_kref_example_Clazz	thiz,	libnative_KInt	p);
								}	Clazz;
						}	example;
				}	root;
		}	kotlin;

717

https://stackoverflow.com/questions/1675351/typedef-struct-vs-struct-definitions

}	libnative_ExportedSymbols;

The code uses anonymous structure declarations. The code struct { .. } foo declares a field in the outer struct of that anonymous structure type, the type with no
name.

C does not support objects either. People use function pointers to mimic object semantics. A function pointer is declared as follows RETURN_TYPE (*
FIELD_NAME)(PARAMETERS). It is tricky to read, but we should be able to see function pointer fields in the structures above.

Runtime
functions
The code reads as follows. You have the libnative_ExportedSymbols structure, which defines all the functions that Kotlin/Native and our library provides us. It uses
nested anonymous structures heavily to mimic packages. The libnative_ prefix comes from the library name.

The libnative_ExportedSymbols structure contains several helper functions:

void	(*DisposeStablePointer)(libnative_KNativePtr	ptr);
void	(*DisposeString)(const	char*	string);
libnative_KBoolean	(*IsInstance)(libnative_KNativePtr	ref,	const	libnative_KType*	type);

These functions deal with Kotlin/Native objects. Call the DisposeStablePointer to release a Kotlin object and DisposeString to release a Kotlin String, which has the
char* type in C. It is possible to use the IsInstance function to check if a Kotlin type or a libnative_KNativePtr is an instance of another type. The actual set of
operations generated depends on the actual usages.

Kotlin/Native has garbage collection, but it does not help us deal with Kotlin objects from the C language. Kotlin/Native has interop with Objective-C and Swift and
integrates with their reference counters. The Objective-C Interop documentation article contains more details on it. Also, there is the tutorial Kotlin/Native as an
Apple Framework.

Your
library
functions
Let's take a look at the kotlin.root.example field, it mimics the package structure of our Kotlin code with a kotlin.root. prefix.

There is a kotlin.root.example.Clazz field that represents the Clazz from Kotlin. The Clazz#memberFunction is accessible with the memberFunction field. The only
difference is that the memberFunction accepts a this reference as the first parameter. The C language does not support objects, and this is the reason to pass a
this pointer explicitly.

There is a constructor in the Clazz field (aka kotlin.root.example.Clazz.Clazz), which is the constructor function to create an instance of the Clazz.

Kotlin object Object is accessible as kotlin.root.example.Object. There is the _instance function to get the only instance of the object.

Properties are translated into functions. The get_ and set_ prefix is used to name the getter and the setter functions respectively. For example, the read-only
property globalString from Kotlin is turned into a get_globalString function in C.

Global functions forInts, forFloats, or strings are turned into the functions pointers in the kotlin.root.example anonymous struct.

Entry
point
You can see how the API is created. To start with, you need to initialize the libnative_ExportedSymbols structure. Let's take a look at the latest part of the
libnative_api.h for this:

extern	libnative_ExportedSymbols*	libnative_symbols(void);

The function libnative_symbols allows you to open the way from the native code to the Kotlin/Native library. This is the entry point you'll use. The library name is
used as a prefix for the function name.

Use
generated
headers
from
C
The usage from C is straightforward and uncomplicated. Create a main.c file with the following code:

Kotlin/Native object references do not support multi-threaded access. Hosting the returned libnative_ExportedSymbols* pointer per thread might be
necessary.

718

#include	"libnative_api.h"
#include	"stdio.h"

int	main(int	argc,	char**	argv)	{
		//obtain	reference	for	calling	Kotlin/Native	functions
		libnative_ExportedSymbols*	lib	=	libnative_symbols();

		lib->kotlin.root.example.forIntegers(1,	2,	3,	4);
		lib->kotlin.root.example.forFloats(1.0f,	2.0);

		//use	C	and	Kotlin/Native	strings
		const	char*	str	=	"Hello	from	Native!";
		const	char*	response	=	lib->kotlin.root.example.strings(str);
		printf("in:	%s\nout:%s\n",	str,	response);
		lib->DisposeString(response);

		//create	Kotlin	object	instance
		libnative_kref_example_Clazz	newInstance	=	lib->kotlin.root.example.Clazz.Clazz();
		long	x	=	lib->kotlin.root.example.Clazz.memberFunction(newInstance,	42);
		lib->DisposeStablePointer(newInstance.pinned);

		printf("DemoClazz	returned	%ld\n",	x);

		return	0;
}

Compile
and
run
the
example
on
Linux
and
macOS
On macOS 10.13 with Xcode, compile the C code and link it with the dynamic library with the following command:

clang	main.c	libnative.dylib

On Linux call a similar command:

gcc	main.c	libnative.so

The compiler generates an executable called a.out. Run it to see in action the Kotlin code being executed from C library. On Linux, you'll need to include . into the
LD_LIBRARY_PATH to let the application know to load the libnative.so library from the current folder.

Compile
and
run
the
example
on
Windows
To start with, you'll need a Microsoft Visual C++ compiler installed that supports a x64_64 target. The easiest way to do this is to have a version of Microsoft Visual
Studio installed on a Windows machine.

In this example, you'll be using the x64 Native Tools Command Prompt <VERSION> console. You'll see the shortcut to open the console in the start menu. It comes
with a Microsoft Visual Studio package.

On Windows, Dynamic libraries are included either via a generated static library wrapper or with manual code, which deals with the LoadLibrary or similar Win32API
functions. Follow the first option and generate the static wrapper library for the libnative.dll as described below.

Call lib.exe from the toolchain to generate the static library wrapper libnative.lib that automates the DLL usage from the code:

lib	/def:libnative_symbols.def	/out:libnative.lib

Now you are ready to compile our main.c into an executable. Include the generated libnative.lib into the build command and start:

cl.exe	main.c	libnative.lib

The command produces the main.exe file, which you can run.

Next
steps
Dynamic libraries are the main way to use Kotlin code from existing programs. You can use them to share your code with many platforms or languages, including

719

https://docs.microsoft.com/en-gb/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

JVM, Python, iOS, Android, and others.

Kotlin/Native also has tight integration with Objective-C and Swift. It is covered in the Kotlin/Native as an Apple Framework tutorial.

Kotlin/Native
memory
management
Kotlin/Native uses a modern memory manager that is similar to JVM, Go, and other mainstream technologies:

Objects are stored in a shared heap and can be accessed from any thread.

Tracing garbage collector (GC) is executed periodically to collect objects that are not reachable from the "roots", like local and global variables.

Garbage
collector
The exact algorithm of GC is constantly evolving. Currently, it is the Stop-the-World Mark and Concurrent Sweep collector that does not separate the heap into
generations.

The GC uses a full parallel mark that combines paused mutators, the GC thread, and optional marker threads to process the mark queue. By default, paused
mutators and at least one GC thread participate in the marking process. You can disable the full parallel mark with -Xbinary=gcMarkSingleThreaded=true
compilation option. However, it may increase the pause time of the garbage collector.

When the marking phase is completed, GC processes weak references and nullifies reference points to an unmarked object. To decrease the GC pause time, you
can enable the concurrent processing of weak references. To do that, use the -Xbinary=concurrentWeakSweep=true compilation option.

GC is executed on a separate thread and kicked off based on the timer and memory pressure heuristics, or can be called manually.

Enable
garbage
collection
manually
To force-start the garbage collector, call kotlin.native.internal.GC.collect(). It triggers a new collection and waits for its completion.

Monitor
GC
performance
There are no special instruments to monitor the GC performance yet. However, it's still possible to look through GC logs for diagnosis. To enable logging, set the
following compilation flag in the Gradle build script:

-Xruntime-logs=gc=info

Currently, the logs are only printed to stderr.

Disable
garbage
collection
It's recommended to keep GC enabled. However, you can disable it in certain cases, for example, for testing purposes or if you encounter issues and have a short-
lived program. To do that, set the following compilation flag in the Gradle build script:

-Xgc=noop

Memory
consumption
Kotlin/Native uses its own memory allocator. It divides system memory into pages, allowing independent sweeping in consecutive order. Each allocation becomes a
memory block within a page, and the page keeps track of block sizes. Different page types are optimized for various allocation sizes. The consecutive arrangement
of memory blocks ensures efficient iteration through all allocated blocks.

When a thread allocates memory, it searches for a suitable page based on the allocation size. Threads maintain a set of pages for different size categories.
Typically, the current page for a given size can accommodate the allocation. If not, the thread requests a different page from the shared allocation space. This page
may already be available, require sweeping, or have to be created first.

With this option enabled, GC doesn't collect Kotlin objects, so memory consumption will keep rising as long as the program runs. Be careful not to
exhaust the system memory.

720

https://github.com/JetBrains/kotlin/blob/master/kotlin-native/runtime/src/alloc/custom/README.md

The Kotlin/Native memory allocator comes with protection against sudden spikes in memory allocations. It prevents situations when the mutator starts to allocate a
lot of garbage quickly, and the GC thread cannot keep up with it, making the memory usage grow endlessly. In this case, the GC forces Stop-the-World phase until
the iteration is completed.

You can monitor memory consumption yourself, check for memory leaks, and adjust memory consumption if necessary.

Check
for
memory
leaks
To access the memory manager metrics, call kotlin.native.internal.GC.lastGCInfo(). It returns statistics for the last run of the garbage collector. The statistics can be
useful for:

Debugging memory leaks when using global variables

Checking if there are any leaks when running tests

import	kotlin.native.internal.*
import	kotlin.test.*

class	Resource

val	global	=	mutableListOf<Resource>()

@OptIn(ExperimentalStdlibApi::class)
fun	getUsage()	:	Long	{
				GC.collect()
				return	GC.lastGCInfo!!.memoryUsageAfter["heap"]!!.totalObjectsSizeBytes
}

fun	run()	{
				global.add(Resource())
				//	The	test	will	fail	if	you	remove	the	next	line
				global.clear()
}

@Test
fun	test()	{
				val	before	=	getUsage()
				//	A	separate	function	is	used	to	ensure	that	all	temporary	objects	are	cleared
				run()
				val	after	=	getUsage()
				assertEquals(before,	after)
}

Adjust
memory
consumption
If there are no memory leaks in the program, but you still see unexpectedly high memory consumption, try updating Kotlin to the latest version. We're constantly
improving the memory manager, so even a simple compiler update might improve memory consumption.

If you experience high memory consumption anyway, a few options are available:

Switch to a different memory allocator. To do that, use the following compilation options in your Gradle build script:

-Xallocator=mimalloc for the mimalloc allocator.

-Xallocator=std for the system allocator.

If you use the mimalloc allocator, you can instruct it to promptly release memory back to the system. It's a smaller performance cost, but it gives less definitive
results compared to the standard system allocator.

To do that, enable the following binary option in your gradle.properties file:

kotlin.native.binary.mimallocUseCompaction=true

If none of these options improved the memory consumption, report an issue in YouTrack.

Unit
tests
in
the
background
In unit tests, nothing processes the main thread queue, so don't use Dispatchers.Main unless it was mocked, which can be done by calling Dispatchers.setMain
from kotlinx-coroutines-test.

721

https://github.com/microsoft/mimalloc
https://youtrack.jetbrains.com/newissue?project=kt

If you don't rely on kotlinx.coroutines or Dispatchers.setMain doesn't work for you for some reason, try the following workaround for implementing the test launcher:

package testlauncher import platform.CoreFoundation.* import kotlin.native.concurrent.* import kotlin.native.internal.test.* import
kotlin.system.* fun mainBackground(args: Array<String>) { val worker = Worker.start(name = "main-background")
worker.execute(TransferMode.SAFE, { args.freeze() }) { val result = testLauncherEntryPoint(it) exitProcess(result) } CFRunLoopRun()
error("CFRunLoopRun should never return") }
Then, compile the test binary with the -e testlauncher.mainBackground compiler flag.

What's
next
Migrate from the legacy memory manager

Configure integration with iOS

iOS
integration
Integration of Kotlin/Native garbage collector with Swift/Objective-C ARC is seamless and generally requires no additional work to be done. Learn more about
Swift/Objective-C interoperability.

However, there are some specifics you should keep in mind:

Threads

Deinitializers
Deinitialization on the Swift/Objective-C objects and the objects they refer to is called on the main thread if these objects are passed to Kotlin on the main thread,
for example:

//	Kotlin
class	KotlinExample	{
				fun	action(arg:	Any)	{
								println(arg)
				}
}

//	Swift
class	SwiftExample	{
				init()	{
								print("init	on	\(Thread.current)")
				}

				deinit	{
								print("deinit	on	\(Thread.current)")
				}
}

func	test()	{
				KotlinExample().action(arg:	SwiftExample())
}

The resulting output:

init	on	<_NSMainThread:	0x600003bc0000>{number	=	1,	name	=	main}
shared.SwiftExample
deinit	on	<_NSMainThread:	0x600003bc0000>{number	=	1,	name	=	main}

Deinitialization on the Swift/Objective-C objects is called on a special GC thread instead of the main one if:

Swift/Objective-C objects are passed to Kotlin on a thread other than main.

The main dispatch queue isn't processed.

If you want to call deinitialization on a special GC thread explicitly, set kotlin.native.binary.objcDisposeOnMain=false in your gradle.properties. This option enables
deinitialization on a special GC thread, even if Swift/Objective-C objects were passed to Kotlin on the main thread.

722

A special GC thread complies with the Objective-C runtime, meaning that it has a run loop and drain autorelease pools.

Completion
handlers
When calling Kotlin suspending functions from Swift, completion handlers might be called on threads other than the main one, for example:

//	Kotlin
//	coroutineScope,	launch,	and	delay	are	from	kotlinx.coroutines
suspend	fun	asyncFunctionExample()	=	coroutineScope	{
				launch	{
								delay(1000L)
								println("World!")
				}
				println("Hello")
}

//	Swift
func	test()	{
				print("Running	test	on	\(Thread.current)")
				PlatformKt.asyncFunctionExample(completionHandler:	{	_	in
								print("Running	completion	handler	on	\(Thread.current)")
				})
}

The resulting output:

Running	test	on	<_NSMainThread:	0x600001b100c0>{number	=	1,	name	=	main}
Hello
World!
Running	completion	handler	on	<NSThread:	0x600001b45bc0>{number	=	7,	name	=	(null)}

Calling
Kotlin
suspending
functions
The Kotlin/Native memory manager has a restriction on calling Kotlin suspending functions from Swift and Objective-C from threads other than the main one.

This restriction was originally introduced in the legacy memory manager due to cases when the code dispatched a continuation to be resumed on the original
thread. If this thread didn't have a supported event loop, the task would never run, and the coroutine would never be resumed.

In certain cases, this restriction is not required anymore. You can lift it by adding the following option to your gradle.properties:

kotlin.native.binary.objcExportSuspendFunctionLaunchThreadRestriction=none

Garbage
collection
and
lifecycle

Object
reclamation
An object is reclaimed only during the garbage collection. This applies to Swift/Objective-C objects that cross interop boundaries into Kotlin/Native, for example:

//	Kotlin
class	KotlinExample	{
				fun	action(arg:	Any)	{
								println(arg)
				}
}

//	Swift
class	SwiftExample	{
				deinit	{
								print("SwiftExample	deinit")
				}
}

func	test()	{
				swiftTest()
				kotlinTest()

723

}

func	swiftTest()	{
				print(SwiftExample())
				print("swiftTestFinished")
}

func	kotlinTest()	{
				KotlinExample().action(arg:	SwiftExample())
				print("kotlinTest	finished")
}

The resulting output:

shared.SwiftExample
SwiftExample	deinit
swiftTestFinished
shared.SwiftExample
kotlinTest	finished
SwiftExample	deinit

Objective-C
objects
lifecycle
The Objective-C objects might live longer than they should, which sometimes might cause performance issues. For example, when a long-running loop creates
several temporary objects that cross the Swift/Objective-C interop boundary on each iteration.

In the GC logs, there's a number of stable refs in the root set. If this number keeps growing, it may indicate that the Swift/Objective-C objects are not freed up when
they should. In this case, try the autoreleasepool block around loop bodies that do interop calls:

//	Kotlin
fun	growingMemoryUsage()	{
				repeat(Int.MAX_VALUE)	{
								NSLog("$it\n")
				}
}

fun	steadyMemoryUsage()	{
				repeat(Int.MAX_VALUE)	{
								autoreleasepool	{
												NSLog("$it\n")
								}
				}
}

Garbage
collection
of
Swift
and
Kotlin
objects'
chains
Consider the following example:

//	Kotlin
interface	Storage	{
				fun	store(arg:	Any)
}

class	KotlinStorage(var	field:	Any?	=	null)	:	Storage	{
				override	fun	store(arg:	Any)	{
								field	=	arg
				}
}

class	KotlinExample	{
				fun	action(firstSwiftStorage:	Storage,	secondSwiftStorage:	Storage)	{
								//	Here,	we	create	the	following	chain:
								//	firstKotlinStorage	->	firstSwiftStorage	->	secondKotlinStorage	->	secondSwiftStorage.
								val	firstKotlinStorage	=	KotlinStorage()
								firstKotlinStorage.store(firstSwiftStorage)
								val	secondKotlinStorage	=	KotlinStorage()
								firstSwiftStorage.store(secondKotlinStorage)
								secondKotlinStorage.store(secondSwiftStorage)
				}
}

//	Swift

724

class	SwiftStorage	:	Storage	{

				let	name:	String

				var	field:	Any?	=	nil

				init(_	name:	String)	{
								self.name	=	name
				}

				func	store(arg:	Any)	{
								field	=	arg
				}

				deinit	{
								print("deinit	SwiftStorage	\(name)")
				}
}

func	test()	{
				KotlinExample().action(
								firstSwiftStorage:	SwiftStorage("first"),
								secondSwiftStorage:	SwiftStorage("second")
)
}

It takes some time between "deinit SwiftStorage first" and "deinit SwiftStorage second" messages to appear in the log. The reason is that firstKotlinStorage and
secondKotlinStorage are collected in different GC cycles. Here's the sequence of events:

1. KotlinExample.action finishes. firstKotlinStorage is considered "dead" because nothing references it, while secondKotlinStorage is not because it is referenced
by firstSwiftStorage.

2. First GC cycle starts, and firstKotlinStorage is collected.

3. There are no references to firstSwiftStorage, so it is "dead" as well, and deinit is called.

4. Second GC cycle starts. secondKotlinStorage is collected because firstSwiftStorage is no longer referencing it.

5. secondSwiftStorage is finally reclaimed.

It requires two GC cycles to collect these four objects because deinitialization of Swift and Objective-C objects happens after the GC cycle. The limitation stems
from deinit, which can call arbitrary code, including the Kotlin code that cannot be run during the GC pause.

Support
for
background
state
and
App
Extensions
The current memory manager does not track application state by default and does not integrate with App Extensions out of the box.

It means that the memory manager doesn't adjust GC behavior accordingly, which might be harmful in some cases. To change this behavior, add the following
Experimental binary option to your gradle.properties:

kotlin.native.binary.appStateTracking=enabled

It turns off a timer-based invocation of the garbage collector when the application is in the background, so GC is called only when memory consumption becomes
too high.

Migrate
to
the
new
memory
manager
This guide compares the new Kotlin/Native memory manager with the legacy one and describes how to migrate your projects.

The most noticeable change in the new memory manager is lifting restrictions on object sharing. You don't need to freeze objects to share them between threads,
specifically:

Top-level properties can be accessed and modified by any thread without using @SharedImmutable.

Objects passing through interop can be accessed and modified by any thread without freezing them.

Worker.executeAfter no longer requires operations to be frozen.

725

https://developer.apple.com/app-extensions/

Worker.execute no longer requires producers to return an isolated object subgraph.

Reference cycles containing AtomicReference and FreezableAtomicReference do not cause memory leaks.

Apart from easy object sharing, the new memory manager also brings other major changes:

Global properties are initialized lazily when the file they are defined in is accessed first. Previously global properties were initialized at the program startup. As a
workaround, you can mark properties that must be initialized at the program start with the @EagerInitialization annotation. Before using, check its documentation.

by lazy {} properties support thread-safety modes and do not handle unbounded recursion.

Exceptions that escape operation in Worker.executeAfter are processed like in other runtime parts, by trying to execute a user-defined unhandled exception
hook or terminating the program if the hook was not found or failed with an exception itself.

Freezing is deprecated, disabled by default, and will be removed in future releases. Do not use freezing if you don't need your code to work with the legacy
memory manager.

Follow these guidelines to migrate your projects from the legacy memory manager:

Update
Kotlin
The new Kotlin/Native memory manager has been enabled by default since Kotlin 1.7.20. Check the Kotlin version and update to the latest one if necessary.

Update
dependencies
kotlinx.coroutines
Update to version 1.6.0 or later. Do not use versions with the native-mt suffix.

There are also some specifics with the new memory manager you should keep in mind:

Every common primitive (channels, flows, coroutines) works through the Worker boundaries, since freezing is not required.

Dispatchers.Default is backed by a pool of Workers on Linux and Windows and by a global queue on Apple targets.

Use newSingleThreadContext to create a coroutine dispatcher that is backed by a Worker.

Use newFixedThreadPoolContext to create a coroutine dispatcher backed by a pool of N Workers.

Dispatchers.Main is backed by the main queue on Darwin and by a standalone Worker on other platforms.

Ktor
Update to version 2.0 or later.

Other dependencies
The majority of libraries should work without any changes, however, there might be exceptions.

Make sure that you update dependencies to the latest versions, and there is no difference between library versions for the legacy and the new memory manager.

Update
your
code
To support the new memory manager, remove usages of the affected API:

Old API What to do

@SharedImmutable You can remove all usages, though there are no warnings for using this API in the new memory manager.

The FreezableAtomicReference class Use AtomicReference instead.

The FreezingException class Remove all usages.

726

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-eager-initialization/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-shared-immutable/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-freezable-atomic-reference/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-atomic-reference/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-freezing-exception/

The InvalidMutabilityException class Remove all usages.

The IncorrectDereferenceException class Remove all usages.

The freeze() function Remove all usages.

The isFrozen property You can remove all usages. Since freezing is deprecated, the property always returns false.

The ensureNeverFrozen() function Remove all usages.

The atomicLazy() function Use lazy() instead.

The MutableData class Use any regular collection instead.

The WorkerBoundReference<out T : Any>

class

Use T directly.

The DetachedObjectGraph<T> class Use T directly. To pass the value through the C interop, use the StableRef class.

Old API What to do

Support
both
new
and
legacy
memory
managers
If you're a library author and need to maintain support for the legacy memory manager or want to have a fallback in case of issues with the new memory manager,
you can temporarily support code for both new and legacy memory managers.

To ignore deprecation warnings, do one of the following:

Annotate usages of the deprecated API with @OptIn(FreezingIsDeprecated::class).

Apply languageSettings.optIn("kotlin.native.FreezingIsDeprecated") to all the Kotlin source sets in Gradle.

Pass the compiler flag -opt-in=kotlin.native.FreezingIsDeprecated.

See Opt-in requirements for more details.

What's
next
Learn about the new memory manager

Configure integration with iOS

Debugging
Kotlin/Native
Currently, the Kotlin/Native compiler produces debug info compatible with the DWARF 2 specification, so modern debugger tools can perform the following
operations:

breakpoints

stepping

727

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-invalid-mutability-exception/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native/-incorrect-dereference-exception/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/freeze.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/is-frozen.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/ensure-never-frozen.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/atomic-lazy.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/lazy.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-mutable-data/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-worker-bound-reference/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.native.concurrent/-detached-object-graph/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlinx.cinterop/-stable-ref/

inspection of type information

variable inspection

Produce
binaries
with
debug
info
with
Kotlin/Native
compiler
To produce binaries with the Kotlin/Native compiler, use the -g option on the command line.

0:b-debugger-fixes:minamoto@unit-703(0)#	cat	-	>	hello.kt
fun	main(args:	Array<String>)	{
		println("Hello	world")
		println("I	need	your	clothes,	your	boots	and	your	motocycle")
}
0:b-debugger-fixes:minamoto@unit-703(0)#	dist/bin/konanc	-g	hello.kt	-o	terminator
KtFile:	hello.kt
0:b-debugger-fixes:minamoto@unit-703(0)#	lldb	terminator.kexe
(lldb)	target	create	"terminator.kexe"
Current	executable	set	to	'terminator.kexe'	(x86_64).
(lldb)	b	kfun:main(kotlin.Array<kotlin.String>)
Breakpoint	1:	where	=	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	4	at	hello.kt:2,	address	=	0x00000001000012e4
(lldb)	r
Process	28473	launched:	'/Users/minamoto/ws/.git-trees/debugger-fixes/terminator.kexe'	(x86_64)
Process	28473	stopped
*	thread	#1,	queue	=	'com.apple.main-thread',	stop	reason	=	breakpoint	1.1
				frame	#0:	0x00000001000012e4	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	at	hello.kt:2
			1				fun	main(args:	Array<String>)	{
->	2						println("Hello	world")
			3						println("I	need	your	clothes,	your	boots	and	your	motocycle")
			4				}
(lldb)	n
Hello	world
Process	28473	stopped
*	thread	#1,	queue	=	'com.apple.main-thread',	stop	reason	=	step	over
				frame	#0:	0x00000001000012f0	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	at	hello.kt:3
			1				fun	main(args:	Array<String>)	{
			2						println("Hello	world")
->	3						println("I	need	your	clothes,	your	boots	and	your	motocycle")
			4				}
(lldb)

Breakpoints
Modern debuggers provide several ways to set a breakpoint, see below for a tool-by-tool breakdown:

lldb
by name

(lldb)	b	-n	kfun:main(kotlin.Array<kotlin.String>)
Breakpoint	4:	where	=	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	4	at	hello.kt:2,	address	=	0x00000001000012e4

-n is optional, this flag is applied by default

by location (filename, line number)

(lldb)	b	-f	hello.kt	-l	1
Breakpoint	1:	where	=	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	4	at	hello.kt:2,	address	=	0x00000001000012e4

by address

(lldb)	b	-a	0x00000001000012e4
Breakpoint	2:	address	=	0x00000001000012e4

Supporting the DWARF 2 specification means that the debugger tool recognizes Kotlin as C89, because before the DWARF 5 specification, there is no
identifier for the Kotlin language type in specification.

728

by regex, you might find it useful for debugging generated artifacts, like lambda etc. (where used # symbol in name).

3:	regex	=	'main\(',	locations	=	1
		3.1:	where	=	terminator.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	4	at	hello.kt:2,	address	=	
terminator.kexe[0x00000001000012e4],	unresolved,	hit	count	=	0

gdb
by regex

(gdb)	rbreak	main(
Breakpoint	1	at	0x1000109b4
struct	ktype:kotlin.Unit	&kfun:main(kotlin.Array<kotlin.String>);

by name unusable, because : is a separator for the breakpoint by location

(gdb)	b	kfun:main(kotlin.Array<kotlin.String>)
No	source	file	named	kfun.
Make	breakpoint	pending	on	future	shared	library	load?	(y	or	[n])	y
Breakpoint	1	(kfun:main(kotlin.Array<kotlin.String>))	pending

by location

(gdb)	b	hello.kt:1
Breakpoint	2	at	0x100001704:	file	/Users/minamoto/ws/.git-trees/hello.kt,	line	1.

by address

(gdb)	b	*0x100001704
Note:	breakpoint	2	also	set	at	pc	0x100001704.
Breakpoint	3	at	0x100001704:	file	/Users/minamoto/ws/.git-trees/hello.kt,	line	2.

Stepping
Stepping functions works mostly the same way as for C/C++ programs.

Variable
inspection
Variable inspections for var variables works out of the box for primitive types. For non-primitive types there are custom pretty printers for lldb in konan_lldb.py:

λ	cat	main.kt	|	nl
					1		fun	main(args:	Array<String>)	{
					2						var	x	=	1
					3						var	y	=	2
					4						var	p	=	Point(x,	y)
					5						println("p	=	$p")
					6		}
							
					7		data	class	Point(val	x:	Int,	val	y:	Int)

λ	lldb	./program.kexe	-o	'b	main.kt:5'	-o
(lldb)	target	create	"./program.kexe"
Current	executable	set	to	'./program.kexe'	(x86_64).
(lldb)	b	main.kt:5
Breakpoint	1:	where	=	program.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	289	at	main.kt:5,	address	=	0x000000000040af11
(lldb)	r
Process	4985	stopped
*	thread	#1,	name	=	'program.kexe',	stop	reason	=	breakpoint	1.1
				frame	#0:	program.kexe`kfun:main(kotlin.Array<kotlin.String>)	at	main.kt:5
			2								var	x	=	1
			3								var	y	=	2
			4								var	p	=	Point(x,	y)
->	5								println("p	=	$p")
			6				}
			7			
			8				data	class	Point(val	x:	Int,	val	y:	Int)

729

Process	4985	launched:	'./program.kexe'	(x86_64)
(lldb)	fr	var
(int)	x	=	1
(int)	y	=	2
(ObjHeader	*)	p	=	0x00000000007643d8
(lldb)	command	script	import	dist/tools/konan_lldb.py
(lldb)	fr	var
(int)	x	=	1
(int)	y	=	2
(ObjHeader	*)	p	=	[x:	...,	y:	...]
(lldb)	p	p
(ObjHeader	*)	$2	=	[x:	...,	y:	...]
(lldb)	script	lldb.frame.FindVariable("p").GetChildMemberWithName("x").Dereference().GetValue()
'1'
(lldb)	

Getting representation of the object variable (var) could also be done using the built-in runtime function Konan_DebugPrint (this approach also works for gdb, using
a module of command syntax):

0:b-debugger-fixes:minamoto@unit-703(0)#	cat	../debugger-plugin/1.kt	|	nl	-p
					1		fun	foo(a:String,	b:Int)	=	a	+	b
					2		fun	one()	=	1
					3		fun	main(arg:Array<String>)	{
					4				var	a_variable	=	foo("(a_variable)	one	is	",	1)
					5				var	b_variable	=	foo("(b_variable)	two	is	",	2)
					6				var	c_variable	=	foo("(c_variable)	two	is	",	3)
					7				var	d_variable	=	foo("(d_variable)	two	is	",	4)
					8				println(a_variable)
					9				println(b_variable)
				10				println(c_variable)
				11				println(d_variable)
				12		}
0:b-debugger-fixes:minamoto@unit-703(0)#	lldb	./program.kexe	-o	'b	-f	1.kt	-l	9'	-o	r
(lldb)	target	create	"./program.kexe"
Current	executable	set	to	'./program.kexe'	(x86_64).
(lldb)	b	-f	1.kt	-l	9
Breakpoint	1:	where	=	program.kexe`kfun:main(kotlin.Array<kotlin.String>)	+	463	at	1.kt:9,	address	=	0x0000000100000dbf
(lldb)	r
(a_variable)	one	is	1
Process	80496	stopped
*	thread	#1,	queue	=	'com.apple.main-thread',	stop	reason	=	breakpoint	1.1
				frame	#0:	0x0000000100000dbf	program.kexe`kfun:main(kotlin.Array<kotlin.String>)	at	1.kt:9
			6						var	c_variable	=	foo("(c_variable)	two	is	",	3)
			7						var	d_variable	=	foo("(d_variable)	two	is	",	4)
			8						println(a_variable)
->	9						println(b_variable)
			10					println(c_variable)
			11					println(d_variable)
			12			}

Process	80496	launched:	'./program.kexe'	(x86_64)
(lldb)	expression	--	(int32_t)Konan_DebugPrint(a_variable)
(a_variable)	one	is	1(int32_t)	$0	=	0
(lldb)

Known
issues
performance of Python bindings.

Symbolicating
iOS
crash
reports
Debugging an iOS application crash sometimes involves analyzing crash reports. More info about crash reports can be found in the Apple documentation.

Crash reports generally require symbolication to become properly readable: symbolication turns machine code addresses into human-readable source locations.
The document below describes some specific details of symbolicating crash reports from iOS applications using Kotlin.

Producing
.dSYM
for
release
Kotlin
binaries
To symbolicate addresses in Kotlin code (e.g. for stack trace elements corresponding to Kotlin code) .dSYM bundle for Kotlin code is required.

730

https://developer.apple.com/library/archive/technotes/tn2151/_index.html

By default, Kotlin/Native compiler produces .dSYM for release (i.e. optimized) binaries on Darwin platforms. This can be disabled with -Xadd-light-debug=disable
compiler flag. At the same time, this option is disabled by default for other platforms. To enable it, use the -Xadd-light-debug=enable compiler option.

Kotlin

kotlin	{
				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								binaries.all	{
												freeCompilerArgs	+=	"-Xadd-light-debug={enable|disable}"
								}
				}
}

Groovy

kotlin	{
				targets.withType(org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget)	{
								binaries.all	{
												freeCompilerArgs	+=	"-Xadd-light-debug={enable|disable}"
								}
				}
}

In projects created from IntelliJ IDEA or AppCode templates these .dSYM bundles are then discovered by Xcode automatically.

Make
frameworks
static
when
using
rebuild
from
bitcode
Rebuilding Kotlin-produced framework from bitcode invalidates the original .dSYM. If it is performed locally, make sure the updated .dSYM is used when
symbolicating crash reports.

If rebuilding is performed on App Store side, then .dSYM of rebuilt dynamic framework seems discarded and not downloadable from App Store Connect. In this
case, it may be required to make the framework static.

Kotlin

kotlin	{
				targets.withType<org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget>	{
								binaries.withType<org.jetbrains.kotlin.gradle.plugin.mpp.Framework>	{
												isStatic	=	true
								}
				}
}

Groovy

kotlin	{
				targets.withType(org.jetbrains.kotlin.gradle.plugin.mpp.KotlinNativeTarget)	{
								binaries.withType(org.jetbrains.kotlin.gradle.plugin.mpp.Framework)	{
												isStatic	=	true
								}
				}
}

Decode
inlined
stack
frames
Xcode doesn't seem to properly decode stack trace elements of inlined function calls (these aren't only Kotlin inline functions but also functions that are inlined
when optimizing machine code). So some stack trace elements may be missing. If this is the case, consider using lldb to process crash report that is already
symbolicated by Xcode, for example:

$	lldb	-b	-o	"script	import	lldb.macosx"	-o	"crashlog	file.crash"

This command should output crash report that is additionally processed and includes inlined stack trace elements.

731

More details can be found in LLDB documentation.

Kotlin/Native
target
support
The Kotlin/Native compiler supports a great number of different targets, though it is hard to provide the same level of support for all of them. This document
describes which targets Kotlin/Native supports and breaks them into several tiers depending on how well the compiler supports them.

Mind the following terms used in tier tables:

Gradle target name is a target preset that is used in the Kotlin Multiplatform Gradle plugin to enable the target.

Target triple is a target name according to the <architecture>-<vendor>-<system>-<abi> structure that is commonly used by compilers.

Running tests indicates out of the box support for running tests in Gradle and IDE.

This is only available on a native host for the specific target. For example, you can run macosX64 and iosX64 tests only on macOS x86-64 host.

Tier
1
The target is regularly tested on CI to be able to compile and run.

We provide a source and binary compatibility between compiler releases.

Gradle target name Target triple Running tests Description

Apple macOS hosts only:

macosX64 x86_64-apple-macos ✅ Apple macOS on x86_64 platforms

macosArm64 aarch64-apple-macos ✅ Apple macOS on Apple Silicon platforms

iosSimulatorArm64 aarch64-apple-ios-simulator ✅ Apple iOS simulator on Apple Silicon platforms

iosX64 x86_64-apple-ios-simulator ✅ Apple iOS simulator on x86-64 platforms

Tier
2
The target is regularly tested on CI to be able to compile, but may not be automatically tested to be able to run.

We're doing our best to provide a source and binary compatibility between compiler releases.

Gradle target name Target triple Running tests Description

linuxX64 x86_64-unknown-linux-gnu ✅ Linux on x86_64 platforms

linuxArm64 aarch64-unknown-linux-gnu Linux on ARM64 platforms

We can adjust the number of tiers, the list of supported targets, and their features as we go.

732

https://lldb.llvm.org/use/symbolication.html
https://clang.llvm.org/docs/CrossCompilation.html#target-triple
https://youtrack.jetbrains.com/issue/KT-42293
https://youtrack.jetbrains.com/issue/KT-42293

Apple macOS hosts only:

watchosSimulatorArm64 aarch64-apple-watchos-simulator ✅ Apple watchOS simulator on Apple Silicon platforms

watchosX64 x86_64-apple-watchos-simulator ✅ Apple watchOS 64-bit simulator on x86_64 platforms

watchosArm32 armv7k-apple-watchos Apple watchOS on ARM32 platforms

watchosArm64 arm64_32-apple-watchos Apple watchOS on ARM64 platforms with ILP32

tvosSimulatorArm64 aarch64-apple-tvos-simulator ✅ Apple tvOS simulator on Apple Silicon platforms

tvosX64 x86_64-apple-tvos-simulator ✅ Apple tvOS simulator on x86_64 platforms

tvosArm64 aarch64-apple-tvos Apple tvOS on ARM64 platforms

iosArm64 aarch64-apple-ios Apple iOS and iPadOS on ARM64 platforms

Gradle target name Target triple Running tests Description

Tier
3
The target is not guaranteed to be tested on CI.

We can't promise a source and binary compatibility between different compiler releases, though such changes for these targets are quite rare.

Gradle target name Target triple Running tests Description

androidNativeArm32 arm-unknown-linux-androideabi Android NDK on ARM32 platforms

androidNativeArm64 aarch64-unknown-linux-android Android NDK on ARM64 platforms

androidNativeX86 i686-unknown-linux-android Android NDK on x86 platforms

androidNativeX64 x86_64-unknown-linux-android Android NDK on x86_64 platforms

mingwX64 x86_64-pc-windows-gnu ✅ 64-bit MinGW on Windows 7 and later

We're doing our best to move iosArm64 to Tier 1, as it's a crucial target for Kotlin Multiplatform. To do that, we need first to create a dedicated testing
infrastructure because platform limitations make it difficult to run compiler tests on Apple devices.

Meanwhile, we sometimes run tests manually on iOS devices and rely on testing similar targets, like iosSimulatorArm64, which should be sufficient in
most cases.

733

https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://www.mingw-w64.org

Apple macOS hosts only:

watchosDeviceArm64 aarch64-apple-watchos Apple watchOS on ARM64 platforms

Gradle target name Target triple Running tests Description

For
library
authors
We don't recommend library authors to test more targets or provide stricter guarantees than the Kotlin/Native compiler does. You can use the following approach
when considering support for native targets:

Support all the targets from tier 1, 2, and 3.

Regularly test targets from tier 1 and 2 that support running tests out of the box.

The Kotlin team uses this approach in the official Kotlin libraries, for example, kotlinx.coroutines and kotlinx.serialization.

Tips
for
improving
Kotlin/Native
compilation
times
The Kotlin/Native compiler is constantly receiving updates that improve its performance. With the latest Kotlin/Native compiler and a properly configured build
environment, you can significantly improve the compilation times of your projects with Kotlin/Native targets.

Read on for our tips on how to speed up the Kotlin/Native compilation process.

General
recommendations
Use the most recent version of Kotlin. This way you will always have the latest performance improvements.

Avoid creating huge classes. They take a long time to compile and load during execution.

Preserve downloaded and cached components between builds. When compiling projects, Kotlin/Native downloads the required components and caches some
results of its work to the $USER_HOME/.konan directory. The compiler uses this directory for subsequent compilations, making them take less time to
complete.

When building in containers (such as Docker) or with continuous integration systems, the compiler may have to create the ~/.konan directory from scratch for
each build. To avoid this step, configure your environment to preserve ~/.konan between builds. For example, redefine its location using the KONAN_DATA_DIR
environment variable.

Gradle
configuration
The first compilation with Gradle usually takes more time than subsequent ones due to the need to download the dependencies, build caches, and perform
additional steps. You should build your project at least twice to get an accurate reading of the actual compilation times.

Here are some recommendations for configuring Gradle for better compilation performance:

Increase the Gradle heap size. Add org.gradle.jvmargs=-Xmx3g to gradle.properties. If you use parallel builds, you might need to choose the right number of
workers with the org.gradle.workers.max property or the --max-workers command-line option. The default value is the number of CPU processors.

Build only the binaries you need. Don't run Gradle tasks that build the whole project, such as build or assemble, unless you really need to. These tasks build the
same code more than once, increasing the compilation times. In typical cases such as running tests from IntelliJ IDEA or starting the app from Xcode, the Kotlin
tooling avoids executing unnecessary tasks.

If you have a non-typical case or build configuration, you might need to choose the task yourself.

The linuxArm32Hfp target is deprecated and will be removed in future releases.

734

https://docs.gradle.org/current/userguide/performance.html#adjust_the_daemons_heap_size
https://docs.gradle.org/current/userguide/performance.html#parallel_execution

linkDebug*: To run your code during development, you usually need only one binary, so running the corresponding linkDebug* task should be enough. Keep
in mind that compiling a release binary (linkRelease*) takes more time than compiling a debug one.

packForXcode: Since iOS simulators and devices have different processor architectures, it's a common approach to distribute a Kotlin/Native binary as a
universal (fat) framework. During local development, it will be faster to build the .framework for only the platform you're using.

To build a platform-specific framework, call the packForXcode task generated by the Kotlin Multiplatform project wizard.

Don't disable the Gradle daemon without having a good reason to. Kotlin/Native runs from the Gradle daemon by default. When it's enabled, the same JVM
process is used and there is no need to warm it up for each compilation.

Don't use transitiveExport = true. Using transitive export disables dead code elimination in many cases: the compiler has to process a lot of unused code. It
increases the compilation time. Use export explicitly for exporting the required projects and dependencies.

Use the Gradle build caches:

Local build cache: Add org.gradle.caching=true to your gradle.properties or run with --build-cache on the command line.

Remote build cache in continuous integration environments. Learn how to configure the remote build cache.

Enable previously disabled features of Kotlin/Native. There are properties that disable the Gradle daemon and compiler caches –
kotlin.native.disableCompilerDaemon=true and kotlin.native.cacheKind=none. If you had issues with these features before and added these lines to your
gradle.properties or Gradle arguments, remove them and check whether the build completes successfully. It is possible that these properties were added
previously to work around issues that have already been fixed.

Try incremental compilation of klib artifacts. With incremental compilation, if only a part of the klib artifact produced by the project module changes, just a part
of klib is further recompiled into a binary.

This feature is Experimental. To enable it, add the kotlin.incremental.native=true option to your gradle.properties file. If you face any problems, create an issue in
YouTrack.

Windows
OS
configuration
Configure Windows Security. Windows Security may slow down the Kotlin/Native compiler. You can avoid this by adding the .konan directory, which is located
in %USERPROFILE% by default, to Windows Security exclusions. Learn how to add exclusions to Windows Security.

License
files
for
the
Kotlin/Native
binaries
Like many other open-source projects, Kotlin relies on third-party code, meaning that the Kotlin project includes some code not developed by JetBrains or the
Kotlin programming language contributors. Sometimes it is derived work, such as code rewritten from C++ to Kotlin.

In particular, the Kotlin/Native compiler produces binaries that can include third-party code, data, or derived work. This means that the Kotlin/Native-compiled
binaries are subject to the terms and conditions of the third-party licenses.

In practice, if you distribute a Kotlin/Native-compiled final binary, you should always include necessary license files in your binary distribution. The files should be
accessible to users of your distribution in a readable form.

Always include the following license files for the corresponding projects:

Remember that in this case, you will need to clean the build using ./gradlew clean after switching between the device and the simulator. See this
issue for details.

You can find licenses for the third-party work used in Kotlin in our GitHub repository:

Kotlin compiler

Kotlin/Native

735

https://kmp.jetbrains.com/
https://youtrack.jetbrains.com/issue/KT-40907
https://docs.gradle.org/current/userguide/gradle_daemon.html
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/#kotlin-native
https://docs.gradle.org/current/userguide/build_cache.html
https://docs.gradle.org/current/userguide/build_cache.html#sec:build_cache_configure_remote
https://kotl.in/issue
https://support.microsoft.com/en-us/windows/add-an-exclusion-to-windows-security-811816c0-4dfd-af4a-47e4-c301afe13b26
https://github.com/JetBrains/kotlin/tree/master/license/third_party
https://github.com/JetBrains/kotlin/tree/master/kotlin-native/licenses/third_party

Project Files to be included

Kotlin Apache license 2.0

Apache Harmony copyright notice

Apache Harmony

GWT

Guava

libbacktrace 3-clause BSD license with copyright notice

mimalloc MIT license

Include in case you use the mimaloc memory allocator instead of the default one (the -Xallocator=mimalloc compiler
option is set).

For more information on allocators, see Kotlin/Native memory management

Unicode character database Unicode license

Multi-producer/multi-consumer bounded
queue

Copyright notice

The mingwX64 target requires additional license files:

Project Files to be included

MinGW-w64 headers and runtime

libraries

MinGW-w64 runtime license

Winpthreads license

Kotlin/Native
FAQ

How
do
I
run
my
program?
Define a top-level function fun main(args: Array<String>) or just fun main() if you are not interested in passed arguments, please ensure it's not in a package. Also,
compiler switch -entry could be used to make any function taking Array<String> or no arguments and return Unit as an entry point.

What
is
Kotlin/Native
memory
management
model?
Kotlin/Native uses an automated memory management scheme that is similar to what Java or Swift provide.

Learn about the Kotlin/Native memory manager

None of these libraries require the distributed Kotlin/Native binaries to be open-sourced.

736

https://kotlinlang.org/
https://github.com/JetBrains/kotlin/blob/master/license/LICENSE.txt
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/licenses/third_party/harmony_NOTICE.txt
https://harmony.apache.org/
https://www.gwtproject.org/
https://guava.dev
https://github.com/ianlancetaylor/libbacktrace
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/licenses/third_party/libbacktrace_LICENSE.txt
https://github.com/microsoft/mimalloc
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/licenses/third_party/mimalloc_LICENSE.txt
https://www.unicode.org/
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/licenses/third_party/unicode_LICENSE.txt
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/licenses/third_party/mpmc_queue_LICENSE.txt
https://www.mingw-w64.org/
https://sourceforge.net/p/mingw-w64/mingw-w64/ci/master/tree/COPYING.MinGW-w64-runtime/COPYING.MinGW-w64-runtime.txt
https://sourceforge.net/p/mingw-w64/mingw-w64/ci/master/tree/mingw-w64-libraries/winpthreads/COPYING

How
do
I
create
a
shared
library?
Use the -produce dynamic compiler switch, or binaries.sharedLib() in Gradle.

kotlin	{
				iosArm64("mylib")	{
								binaries.sharedLib()
				}
}

It will produce a platform-specific shared object (.so on Linux, .dylib on macOS, and .dll on Windows targets) and a C language header, allowing the use of all
public APIs available in your Kotlin/Native program from C/C++ code.

How
do
I
create
a
static
library
or
an
object
file?
Use the -produce static compiler switch, or binaries.staticLib() in Gradle.

kotlin	{
				iosArm64("mylib")	{
								binaries.staticLib()
				}
}

It will produce a platform-specific static object (.a library format) and a C language header, allowing you to use all the public APIs available in your Kotlin/Native
program from C/C++ code.

How
do
I
run
Kotlin/Native
behind
a
corporate
proxy?
As Kotlin/Native needs to download a platform specific toolchain, you need to specify -Dhttp.proxyHost=xxx -Dhttp.proxyPort=xxx as the compiler's or gradlew
arguments, or set it via the JAVA_OPTS environment variable.

How
do
I
specify
a
custom
Objective-C
prefix/name
for
my
Kotlin
framework?
Use the -module-name compiler option or matching Gradle DSL statement.

Kotlin

kotlin	{
				iosArm64("myapp")	{
								binaries.framework	{
												freeCompilerArgs	+=	listOf("-module-name",	"TheName")
								}
				}
}

Groovy

kotlin	{
				iosArm64("myapp")	{
								binaries.framework	{
												freeCompilerArgs	+=	["-module-name",	"TheName"]
								}
				}
}

How
do
I
rename
the
iOS
framework?
The default name is for an iOS framework is <project name>.framework. To set a custom name, use the baseName option. This will also set the module name.

kotlin	{

737

				iosArm64("myapp")	{
							binaries	{
										framework	{
														baseName	=	"TheName"
										}
							}
				}
}

How
do
I
enable
bitcode
for
my
Kotlin
framework?
By default gradle plugin adds it on iOS target.

For debug build it embeds placeholder LLVM IR data as a marker.

For release build it embeds bitcode as data.

Or commandline arguments: -Xembed-bitcode (for release) and -Xembed-bitcode-marker (debug)

Setting this in a Gradle DSL:

kotlin	{
				iosArm64("myapp")	{
								binaries	{
												framework	{
																//	Use	"marker"	to	embed	the	bitcode	marker	(for	debug	builds).
																//	Use	"disable"	to	disable	embedding.
																embedBitcode("bitcode")	//	for	release	binaries.
												}
								}
				}
}

These options have nearly the same effect as clang's -fembed-bitcode/-fembed-bitcode-marker and swiftc's -embed-bitcode/-embed-bitcode-marker.

Why
do
I
see
InvalidMutabilityException?

It likely happens, because you are trying to mutate a frozen object. An object can transfer to the frozen state either explicitly, as objects reachable from objects on
which the kotlin.native.concurrent.freeze is called, or implicitly (i.e. reachable from enum or global singleton object - see the next question).

How
do
I
make
a
singleton
object
mutable?

Currently, singleton objects are immutable (i.e. frozen after creation), and it's generally considered good practise to have the global state immutable. If for some
reason you need a mutable state inside such an object, use the @konan.ThreadLocal annotation on the object. Also, the kotlin.native.concurrent.AtomicReference
class could be used to store different pointers to frozen objects in a frozen object and automatically update them.

How
can
I
compile
my
project
with
unreleased
versions
of
Kotlin/Native?
First, please consider trying preview versions.

In case you need an even more recent development version, you can build Kotlin/Native from source code: clone Kotlin repository and follow these steps.

This issue is relevant for the legacy memory manager only. Check out Kotlin/Native memory management to learn about the new memory manager, which
has been enabled by default since Kotlin 1.7.20.

This issue is relevant for the legacy memory manager only. Check out Kotlin/Native memory management to learn about the new memory manager, which
has been enabled by default since Kotlin 1.7.20.

738

https://github.com/JetBrains/kotlin
https://github.com/JetBrains/kotlin/blob/master/kotlin-native/README.md#building-from-source

Get
started
with
Kotlin/Wasm
in
IntelliJ
IDEA

This tutorial demonstrates how to work with a Kotlin/Wasm application in IntelliJ IDEA.

Before
you
start
1. Download and install the latest version of IntelliJ IDEA.

2. Clone the Kotlin/Wasm examples repository by selecting File | New | Project from Version Control in IntelliJ IDEA.

You can also clone it from the command line:

git	clone	git@github.com:Kotlin/kotlin-wasm-examples.git

Run
the
application
1. Open the Gradle tool window: View | Tool Windows | Gradle.

2. In the kotlin-wasm-browser-example | Tasks | kotlin browser, select and run the wasmJsBrowserRun task.

Kotlin/Wasm is an Experimental feature. It may be dropped or changed at any time. It is available only starting with Kotlin 1.8.20.

739

https://www.jetbrains.com/idea/
https://github.com/Kotlin/kotlin-wasm-examples/tree/main

Run the Gradle task

Alternatively, you can run the following command in Terminal from the project directory:

./gradlew	wasmJsBrowserRun	-t

3. Once the application starts, open the following URL in your browser:

http://localhost:8080/

You should see "Hello, World!" text:

740

Run the Kotlin/Wasm application

Troubleshooting
Despite the fact that most of the browsers support WebAssembly, you need to update the settings in your browser.

To run a Kotlin/Wasm project, you need to update the settings of the target environment:

Chrome

For version 109:

Run the application with the --js-flags=--experimental-wasm-gc command line argument.

For version 110 or later:

1. Go to chrome://flags/#enable-webassembly-garbage-collection in your browser.

2. Enable WebAssembly Garbage Collection.

3. Relaunch your browser.

Firefox

For version 109 or later:

1. Go to about:config in your browser.

2. Enable javascript.options.wasm_function_references and javascript.options.wasm_gc options.

3. Relaunch your browser.

Edge

For version 109 or later:

Run the application with the --js-flags=--experimental-wasm-gc command line argument.

Update
your
application
1. Open Simple.kt and update the code:

import	kotlinx.browser.document
import	kotlinx.browser.window
import	kotlinx.dom.appendElement
import	kotlinx.dom.appendText

741

fun	main()	{
				document.body?.appendText("Hello,	${greet()}!")

				document.body?.appendElement("button")	{
								this.textContent	=	"Click	me,	I'm	a	button!"
								addEventListener("click")	{
												window.setTimeout({
																window.alert("��")
																null
												},	1000)
								}
				}
}

fun	greet()	=	"world"

This code adds a button to the document and an action.

2. Run the application again. Once the application starts, open the following URL in your browser:

http://localhost:8080

You should see the "Hello, World" text within the button:

Run Kotlin/Wasm application in browser

3. Click the button to see the alert message:

742

Alert action

Now you can work with Kotlin/Wasm code that runs in the browser!

What's
next?
Try out other Kotlin/Wasm examples from the kotlin-wasm-examples repository:

Compose image viewer

Jetsnack application

Node.js example

WASI example

Add
dependencies
on
Kotlin
libraries
to
Kotlin/Wasm
project
You can use the Kotlin standard library (stdlib) and test library (kotlin.test) in Kotlin/Wasm out of the box. The version of these libraries is the same as the version of
the kotlin-multiplatform plugin.

Other official Kotlin (kotlinx) and multiplatform libraries are not fully supported yet. You can try experimental versions of such libraries by adding the Kotlin
experimental repository to your Gradle project.

Supported
Kotlin
libraries
for
Kotlin/Wasm
You can use one of the following repositories to add Kotlin libraries to your project:

Maven Central for stdlib and kotlin.test libraries:

//	build.gradle.kts
repositories	{	
				mavenCentral()

For Kotlin 1.9.0 and later, use the latest available libraries' versions.

743

https://github.com/Kotlin/kotlin-wasm-examples/tree/main/compose-imageviewer
https://github.com/Kotlin/kotlin-wasm-examples/tree/main/compose-jetsnack
https://github.com/Kotlin/kotlin-wasm-examples/tree/main/nodejs-example
https://github.com/Kotlin/kotlin-wasm-examples/tree/main/wasi-example
https://kotlinlang.org/api/latest/kotlin.test/
https://maven.pkg.jetbrains.space/kotlin/p/wasm/experimental/

}

Custom Maven repository for experimental Kotlin/Wasm artifacts:

//	build.gradle.kts
repositories	{
				maven("https://maven.pkg.jetbrains.space/kotlin/p/wasm/experimental")
}

Custom Maven repository for Compose Multiplatform dev artifacts:

//	build.gradle.kts
repositories	{
				maven("https://maven.pkg.jetbrains.space/public/p/compose/dev/")
}

Library Version Repository

stdlib 1.9.20 Maven Central

kotlin-test 1.9.20 Maven Central

kotlinx-coroutines 1.7.2-wasm0 Custom for experimental Kotlin/Wasm artifacts

Compose Multiplatform 1.4.0-dev-wasm09 Custom for experimental Kotlin/Wasm artifacts

kotlinx-serialization 1.5.2-wasm0 Custom for experimental Kotlin/Wasm artifacts

Ktor 2.3.3-wasm0 Custom for experimental Kotlin/Wasm artifacts

kotlinx-atomicfu 0.21.0-wasm0 Custom for experimental Kotlin/Wasm artifacts

kotlinx-collections-immutable 0.4-wasm0 Custom for experimental Kotlin/Wasm artifacts

kotlinx-datetime 0.4.0-wasm1 Custom for experimental Kotlin/Wasm artifacts

skiko 0.0.7.68-wasm03 Custom for Compose Multiplatform dev artifacts

Enable
libraries
in
your
project
To set a dependency on a library, such as kotlinx.serilization and kotlinx.coroutines, update your build.gradle.kts file:

//	`build.gradle.kts`

repositories	{
				maven("https://maven.pkg.jetbrains.space/kotlin/p/wasm/experimental")
}

kotlin	{
				sourceSets	{
								val	wasmMain	by	getting	{
												dependencies	{

744

																implementation("org.jetbrains.kotlinx:kotlinx-serialization-core-wasm:1.5.1-wasm0")
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core-wasm:1.6.4-wasm0")
																implementation("io.ktor:ktor-client-core-wasm:2.3.1-wasm0")
												}
								}
				}
}

What's
next?
Explore the Kotlin/Wasm interoperability with JavaScript

Interoperability
with
JavaScript
Kotlin/Wasm allows you to both use JavaScript code from Kotlin and Kotlin code from JavaScript.

The Kotlin/JS compiler already provides the ability to transpile your Kotlin code to JavaScript. The Kotlin/Wasm interoperability with JavaScript is designed in a
similar way, taking into account that JavaScript is a dynamically typed language compared to Kotlin. Follow our guide to configure interoperability in your projects.

Remember that Kotlin/Wasm is still Experimental, and some features are not supported yet. We're planning to improve interoperability with JavaScript by
implementing some of the missing features or similar functionality.

Use
JavaScript
code
from
Kotlin

external
modifier
To access JavaScript declarations defined in the global scope, mark them with the external modifier. Consider this JavaScript code sample:

//	JavaScript

function	consoleLogExample()	{
				console.log("Hello");
}

let	externalInt	=	0;

let	Counter	=	{
				value:	0,
				step:	1,
				increment()	{
								this.value	+=	this.step;
				}
};

class	Rectangle	{
				constructor(height,	width)	{
								this.height	=	height;
								this.width	=	width;
				}

				get	area()	{
								return	this.calcArea();
				}

				calcArea()	{
								return	this.height	*	this.width;
				}
}

Here's how you can use this JavaScript code in Kotlin:

//	Kotlin/Wasm

//	Use	external	functions	to	call	JS	functions	defined	in	global	scope
external	fun	consoleLogExample():	Unit

//	In	addition	to	functions,	you	can	have	external	top-level	properties

745

external	var	externalInt:	Int

//	External	objects
external	object	Counter	{
				fun	increment():	Unit
				val	value:	Int
				var	step:	Int
}

//	External	class
external	class	Rectangle(height:	Double,	width:	Double)	{
				val	height:	Double
				val	width:	Double
				val	area:	Double
				fun	calcArea():	Double
}

See the full code in the example project Kotlin/Wasm browser.

@JsFun
annotation
To include a small piece of JS code in your Kotlin/Wasm module, use the @JsFun annotation with external top-level functions. The annotation argument should be a
string with JS code that evaluates a function with a matching signature:

@JsFun("function	count(x)	{	return	x	+	10;	}")
external	fun	count(x:	Int):	Int

To make it shorter, use arrow syntax:

@JsFun("x	=>	x	+	10")
external	fun	count(x:	Int):	Int

The Kotlin compiler doesn't verify these JavaScript snippets and evaluates them as-is. Syntax errors, if any, will be reported when running your JavaScript.

@JsModule
To indicate that an external class, package, function, or property is a JavaScript module, use the @JsModule annotation. Consider this JavaScript code sample:

//	jsModule.mjs
let	maxUsers	=	10;

function	getActiveUsers()	{
				return	10;
};

class	User	{
				constructor(maxUsers)	{
								this.maxUsers	=	maxUsers;
				}
}

export	{maxUsers,	getActiveUsers,	User};

Here's how you can use this JavaScript code in Kotlin:

//	kotlin

Some "external" Kotlin/JS features are not supported in Kotlin/Wasm:

Implementing or extending external types

External enum classes

These function expressions are evaluated only once, before the Wasm module is loaded. Do not rely on side effects as these expressions are not run if
the function is not called.

746

https://github.com/Kotlin/kotlin-wasm-examples/tree/main/browser-example

@file:JsModule("./jsModule.mjs")

package	example

external	val	maxUsers:	Int
external	fun	getActiveUsers():	Int
external	class	User	{
				constructor(username:	String)
				val	username	:	String
}

Use
Kotlin
code
from
JavaScript

@JsExport
annotation
To make the Kotlin/Wasm declaration available from JavaScript, use the @JsExport annotation with external top-level functions:

//	Kotlin/Wasm

@JsExport
fun	addOne(x:	Int):	Int	=	x	+	1

Now you can use this function from JavaScript in the following way:

//	JavaScript

import	exports	from	"module.mjs"
exports.addOne(10)

Functions marked at @JsExport are visible as properties on a default export of the generated .mjs module. Kotlin types in JavaScript In Kotlin/JS, values are
implemented internally as JavaScript primitives and objects. They are passed to and from JavaScript without wrapping or copying.

However, in Kotlin/Wasm, objects have a different representation and are not interchangeable with JavaScript. When you pass a Kotlin object to JavaScript, it's
considered as an empty opaque object by default.

The only thing you can do is store it and pass Kotlin objects back to Wasm. However, for primitive types, Kotlin/Wasm can adapt these values so that they can be
useful in JavaScript by either copying or wrapping. For efficiency purposes, this is done statically. It's important that these special concrete types are present in
function signatures. For example:

external	fun	convertIntAndString(num:	Int,	text:	String)
external	fun	convertAnyAndChars(num:	Any,	text:	CharSequence)

//	...

convertIntAndString(10,	"Hello")	//	Converts	Int	and	String	to	JS	Number	and	String

convertAnyAndChars(10,	"Hello")	//	No	conversion
																																//	values	are	passed	as	opaque	references	to	Wasm	objects

Kotlin
types
in
JavaScript

Supported
types
See how Kotlin types are mapped to JavaScript ones:

Kotlin JavaScript Comments

Kotlin/Wasm supports ES modules only. That's why you can't use the @JsNonModule annotation.

747

Byte, Short, Int, Char Number

Float, Double Number

Long BigInt

Boolean Boolean

String String String content is copied. In the future, the stringref proposal could allow the zero-copy string
interop.

Unit Undefined Only when non-nullable and in functions returning position.

Function type, for example (int,
String) → Int

Function reference Parameters and return values of function types follow the same type of conversion rules.

external interface Any JS value with given
properties

external class or external object Corresponding JS class

Other Kotlin types Not supported This includes type Any, arrays, the Throwable class, collections, and so on.

Nullable Type? Type / null / undefined

Type parameters <T : U> Same as the upper bound In interop declarations, only external types, like JsAny, are supported as upper bounds of
type parameters.

Kotlin JavaScript Comments

Exception
handling
The Kotlin/Wasm try-catch expression can't catch the JavaScript exceptions.

If you try to use JavaScript try-catch expression to catch the Kotlin/Wasm exceptions, it'll look like a generic WebAssembly.Exception without directly accessible
messages and data.

Workarounds
for
Kotlin/JS
features
non-supported
in
Kotlin/Wasm

Dynamic
type
Kotlin/JS dynamic type used for interoperability with untyped or loosely typed objects is not supported yet. In many cases, you can use external interfaces and the
@JsFun annotation instead:

//	Kotlin/JS

748

https://github.com/WebAssembly/stringref

val	user:	dynamic
val	age:	Int	=	0
user.profile.updateAge(age);

//	Kotlin/Wasm

external	interface	User

@JsFun("(user,	age)	=>	user.profile.updateAge(age)")
external	fun	updateUserAge(user:	User,	age:	Int)

val	user:	User
val	age:	Int	=	0
updateUserAge(user,	age);

Inline
JavaScript
The js() function used to inline JavaScript code to Kotlin code is not supported yet. Use the @JsFun annotation instead:

//	Kotlin/JS

fun	jsTypeOf(obj:	Any):	String	{
				return	js("typeof	obj")
}

//	Kotlin/Wasm
@JsFun("(obj)	=>	typeof	obj")
external	fun	jsTypeOf(obj:	SomeExternalInterfaceType):	String

Extending
external
interfaces
and
classes
with
non-external
classes
Extending JavaScript classes and using external interfaces is not supported yet. Use the @JsFun annotation instead:

external	interface	DataProcessor	{
				fun	processData(input:	String):	String
				fun	processResult(input:	String):	String
}

class	DataHandler(val	handlerData:	String)	{
				fun	processData(input:	String):	String	=	input	+	handlerData
				fun	processResult(input:	String):	String	=	handlerData	+	input
}

@JsFun("(processData,	processResult)	=>	({	processData,	processResult	})")
external	fun	createDataProcessor(
				processData:	(String)	->	String,
				processResult:	(String)	->	String
):	DataProcessor

fun	convertHandlerToProcessor(handler:	DataHandler):	DataProcessor	=
				createDataProcessor(
								processData	=	{	input	->	handler.processData(input)	},
								processResult	=	{	input	->	handler.processResult(input)	}
)

Set
up
a
Kotlin/JS
project
Kotlin/JS projects use Gradle as a build system. To let developers easily manage their Kotlin/JS projects, we offer the kotlin.multiplatform Gradle plugin that
provides project configuration tools together with helper tasks for automating routines typical for JavaScript development. For example, the plugin downloads the
Yarn package manager for managing npm dependencies in background and can build a JavaScript bundle from a Kotlin project using webpack. Dependency
management and configuration adjustments can be done to a large part directly from the Gradle build file, with the option to override automatically generated
configurations for full control.

You can apply the org.jetbrains.kotlin.multiplatform plugin to a Gradle project manually in the build.gradle(.kts) file:

Kotlin

plugins	{

749

https://yarnpkg.com/
https://www.npmjs.com/
https://webpack.js.org/

				kotlin("multiplatform")	version	"1.9.20"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

The Kotlin Multiplatform Gradle plugin lets you manage aspects of your project in the kotlin {} block of the build script:

kotlin	{
				//...
}

Inside the kotlin {} block, you can manage the following aspects:

Target execution environment: browser or Node.js

Project dependencies: Maven and npm

Run configuration

Test configuration

Bundling and CSS support for browser projects

Target directory and module name

Project's package.json file

Execution
environments
Kotlin/JS projects can target two different execution environments:

Browser for client-side scripting in browsers

Node.js for running JavaScript code outside of a browser, for example, for server-side scripting.

To define the target execution environment for a Kotlin/JS project, add the js {} block with browser {} or nodejs {} inside:

kotlin	{
				js	{
								browser	{
								}
								binaries.executable()
				}
}

The instruction binaries.executable() explicitly instructs the Kotlin compiler to emit executable .js files. This is the default behavior when using the current Kotlin/JS
compiler, but the instruction is explicitly required if you are working with the Kotlin/JS IR compiler, or have set kotlin.js.generate.executable.default=false in the
gradle.properties file. In those cases, omitting binaries.executable() will cause the compiler to only generate Kotlin-internal library files, which can be used from other
projects, but not run on their own.

The Kotlin Multiplatform plugin automatically configures its tasks for working with the selected environment. This includes downloading and installing the required
environment and dependencies for running and testing the application. This allows developers to build, run, and test simple projects without additional
configuration. For projects targeting Node.js, there is also an option to use an existing Node.js installation. Learn how to use pre-installed Node.js.

Dependencies

This is typically faster than creating executable files, and can be a possible optimization when dealing with non-leaf modules of your project.

750

https://nodejs.org/

Like any other Gradle projects, Kotlin/JS projects support traditional Gradle dependency declarations in the dependencies {} block of the build script:

Kotlin

dependencies	{
				implementation("org.example.myproject",	"1.1.0")
}

Groovy

dependencies	{
				implementation	'org.example.myproject:1.1.0'
}

The Kotlin Multiplatform Gradle plugin also supports dependency declarations for particular source sets in the kotlin {} block of the build script:

Kotlin

kotlin	{
				sourceSets	{
						val	jsMain	by	getting	{
												dependencies	{
																implementation("org.example.myproject:1.1.0")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								jsMain	{
												dependencies	{
																implementation	'org.example.myproject:1.1.0'
												}
								}
				}
}

If the library you are adding has dependencies on packages from npm, Gradle will automatically resolve these transitive dependencies as well.

Kotlin
standard
libraries
The dependencies on the standard library are added automatically. The version of the standard library is the same as the version of the Kotlin Multiplatform plugin.

The kotlin.test API is available for multiplatform tests. When you create a multiplatform project, the Project Wizard automatically adds test dependencies to all the
source sets.

If you don't use the Project Wizard to create your project, you can add the dependencies manually:

Kotlin

kotlin	{
				sourceSets	{
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))	//	Brings	all	the	platform	dependencies	automatically
												}
								}

Not all libraries available for the Kotlin programming language are available when targeting JavaScript: only libraries that include artifacts for Kotlin/JS can
be used.

751

https://docs.gradle.org/current/userguide/declaring_dependencies.html
https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/kotlin.test/

				}
}

Groovy

kotlin	{
				sourceSets	{
								commonTest	{
												dependencies	{
																implementation	kotlin("test")	//	Brings	all	the	platform	dependencies	automatically
												}
								}
				}
}

npm
dependencies
In the JavaScript world, the most common way to manage dependencies is npm. It offers the biggest public repository of JavaScript modules.

The Kotlin Multiplatform Gradle plugin lets you declare npm dependencies in the Gradle build script, just how you declare any other dependencies.

To declare an npm dependency, pass its name and version to the npm() function inside a dependency declaration. You can also specify one or multiple version
ranges based on npm's semver syntax.

Kotlin

dependencies	{
				implementation(npm("react",	">	14.0.0	<=16.9.0"))
}

Groovy

dependencies	{
				implementation	npm('react',	'>	14.0.0	<=16.9.0')
}

The plugin uses the Yarn package manager to download and install npm dependencies. It works out of the box without additional configuration, but you can tune it
to specific needs. Learn how to configure Yarn in Kotlin Multiplatform Gradle plugin.

Besides regular dependencies, there are three more types of dependencies that can be used from the Gradle DSL. To learn more about when each type of
dependency can best be used, have a look at the official documentation linked from npm:

devDependencies, via devNpm(...),

optionalDependencies via optionalNpm(...), and

peerDependencies via peerNpm(...).

Once an npm dependency is installed, you can use its API in your code as described in Calling JS from Kotlin.

run
task
The Kotlin/JS plugin provides a jsRun task that lets you run pure Kotlin/JS projects without additional configuration.

For running Kotlin/JS projects in the browser, this task is an alias for the browserDevelopmentRun task (which is also available in Kotlin multiplatform projects). It
uses the webpack-dev-server to serve your JavaScript artifacts. If you want to customize the configuration used by webpack-dev-server, for example, adjust the
port the server runs on, use the webpack configuration file.

For running Kotlin/JS projects targeting Node.js, use the jsRun task that is an alias for the nodeRun task.

To run a project, execute the standard lifecycle jsRun task, or the alias to which it corresponds:

./gradlew	jsRun

752

https://www.npmjs.com/
https://docs.npmjs.com/misc/semver#versions
https://yarnpkg.com/lang/en/
https://docs.npmjs.com/files/package.json#devdependencies
https://docs.npmjs.com/files/package.json#optionaldependencies
https://docs.npmjs.com/files/package.json#peerdependencies
https://webpack.js.org/configuration/dev-server/

To automatically trigger a re-build of your application after making changes to the source files, use the Gradle continuous build feature:

./gradlew	jsRun	--continuous

or

./gradlew	jsRun	-t

Once the build of your project has succeeded, the webpack-dev-server will automatically refresh the browser page.

test
task
The Kotlin Multiplatform Gradle plugin automatically sets up a test infrastructure for projects. For browser projects, it downloads and installs the Karma test runner
with other required dependencies; for Node.js projects, the Mocha test framework is used.

The plugin also provides useful testing features, for example:

Source maps generation

Test reports generation

Test run results in the console

For running browser tests, the plugin uses Headless Chrome by default. You can also choose another browser to run tests in, by adding the corresponding entries
inside the useKarma {} block of the build script:

kotlin	{
				js	{
								browser	{
												testTask	{
																useKarma	{
																				useIe()
																				useSafari()
																				useFirefox()
																				useChrome()
																				useChromeCanary()
																				useChromeHeadless()
																				usePhantomJS()
																				useOpera()
																}
												}
								}
								binaries.executable()
								//	...
				}
}

Alternatively, you can add test targets for browsers in the gradle.properties file:

kotlin.js.browser.karma.browsers=firefox,safari

This approach allows you to define a list of browsers for all modules, and then add specific browsers in the build scripts of particular modules.

Please note that the Kotlin Multiplatform Gradle plugin does not automatically install these browsers for you, but only uses those that are available in its execution
environment. If you are executing Kotlin/JS tests on a continuous integration server, for example, make sure that the browsers you want to test against are installed.

If you want to skip tests, add the line enabled = false to the testTask {}:

kotlin	{
				js	{
								browser	{
												testTask	{
																enabled	=	false
												}
								}
								binaries.executable()
								//	...
				}
}

753

https://docs.gradle.org/current/userguide/command_line_interface.html#sec:continuous_build
https://karma-runner.github.io/
https://mochajs.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md

To run tests, execute the standard lifecycle check task:

./gradlew	check

To specify environment variables used by your Node.js test runners (for example, to pass external information to your tests, or to fine-tune package resolution), use
the environment() function with a key-value pair inside the testTask {} block in your build script:

kotlin	{
				js	{
								nodejs	{
												testTask	{
																environment("key",	"value")
												}
								}
				}
}								

Karma
configuration
The Kotlin Multiplatform Gradle plugin automatically generates a Karma configuration file at build time which includes your settings from the
kotlin.js.browser.testTask.useKarma {} block in your build.gradle(.kts). You can find the file at build/js/packages/projectName-test/karma.conf.js. To make
adjustments to the configuration used by Karma, place your additional configuration files inside a directory called karma.config.d in the root of your project. All .js
configuration files in this directory will be picked up and are automatically merged into the generated karma.conf.js at build time.

All Karma configuration abilities are well described in Karma's documentation.

webpack
bundling
For browser targets, the Kotlin/JS plugin uses the widely known webpack module bundler.

webpack
version
The Kotlin Multiplatform plugin uses webpack 5.

If you have projects created with plugin versions earlier than 1.5.0, you can temporarily switch back to webpack 4 used in these versions by adding the following line
to the project's gradle.properties:

kotlin.js.webpack.major.version=4

webpack
task
The most common webpack adjustments can be made directly via the kotlin.js.browser.webpackTask {} configuration block in the Gradle build file:

outputFileName - the name of the webpacked output file. It will be generated in <projectDir>/build/dist/<targetName> after an execution of a webpack task. The
default value is the project name.

output.libraryTarget - the module system for the webpacked output. Learn more about available module systems for Kotlin/JS projects. The default value is umd.

webpackTask	{
				outputFileName	=	"mycustomfilename.js"
				output.libraryTarget	=	"commonjs2"
}

You can also configure common webpack settings to use in bundling, running, and testing tasks in the commonWebpackConfig {} block.

webpack
configuration
file
The Kotlin Multiplatform Gradle plugin automatically generates a standard webpack configuration file at the build time. It is located in
build/js/packages/projectName/webpack.config.js.

If you want to make further adjustments to the webpack configuration, place your additional configuration files inside a directory called webpack.config.d in the root

754

https://karma-runner.github.io/5.0/config/configuration-file.html
https://webpack.js.org/

of your project. When building your project, all .js configuration files will automatically be merged into the build/js/packages/projectName/webpack.config.js file. For
example, To add a new webpack loader, add the following to a .js file inside the webpack.config.d directory:

config.module.rules.push({
				test:	/\.extension$/,
				loader:	'loader-name'
});

All webpack configuration capabilities are well described in its documentation.

Building
executables
For building executable JavaScript artifacts through webpack, the Kotlin Multiplatform Gradle plugin contains the browserDevelopmentWebpack and
browserProductionWebpack Gradle tasks.

browserDevelopmentWebpack creates development artifacts, which are larger in size, but take little time to create. As such, use the
browserDevelopmentWebpack tasks during active development.

browserProductionWebpack applies dead code elimination to the generated artifacts and minifies the resulting JavaScript file, which takes more time, but
generates executables that are smaller in size. As such, use the browserProductionWebpack task when preparing your project for production use.

Execute either of these tasks to obtain the respective artifacts for development or production. The generated files will be available in build/dist unless specified
otherwise.

./gradlew	browserProductionWebpack

Note that these tasks will only be available if your target is configured to generate executable files (via binaries.executable()).

CSS
The Kotlin Multiplatform Gradle plugin also provides support for webpack's CSS and style loaders. While all options can be changed by directly modifying the
webpack configuration files that are used to build your project, the most commonly used settings are available directly from the build.gradle(.kts) file.

To turn on CSS support in your project, set the cssSupport.enabled option in the Gradle build file in the commonWebpackConfig {} block. This configuration is also
enabled by default when creating a new project using the wizard.

Kotlin

browser	{
				commonWebpackConfig	{
								cssSupport	{
												enabled.set(true)
								}
				}
}

Groovy

browser	{
				commonWebpackConfig	{
								cssSupport	{
												it.enabled.set(true)
								}
				}
}

Alternatively, you can add CSS support independently for webpackTask {}, runTask {}, and testTask {}:

In this case, the configuration object is the config global object. You need to modify it in your script.

755

https://webpack.js.org/loaders/
https://webpack.js.org/concepts/configuration/
https://webpack.js.org/loaders/css-loader/
https://webpack.js.org/loaders/style-loader/

Kotlin

browser	{
				webpackTask	{
								cssSupport	{
												enabled.set(true)
								}
				}
				runTask	{
								cssSupport	{
												enabled.set(true)
								}
				}
				testTask	{
								useKarma	{
												//	...
												webpackConfig.cssSupport	{
																enabled.set(true)
												}
								}
				}
}

Groovy

browser	{
				webpackTask	{
								cssSupport	{
												it.enabled.set(true)
								}
				}
				runTask	{
								cssSupport	{
												it.enabled.set(true)
								}
				}
				testTask	{
								useKarma	{
												//	...
												webpackConfig.cssSupport	{
																it.enabled.set(true)
												}
								}
				}
}

Activating CSS support in your project helps prevent common errors that occur when trying to use style sheets from an unconfigured project, such as Module parse
failed: Unexpected character '@' (14:0).

You can use cssSupport.mode to specify how encountered CSS should be handled. The following values are available:

"inline" (default): styles are added to the global <style> tag.

"extract": styles are extracted into a separate file. They can then be included from an HTML page.

"import": styles are processed as strings. This can be useful if you need access to the CSS from your code (such as val styles = require("main.css")).

To use different modes for the same project, use cssSupport.rules. Here, you can specify a list of KotlinWebpackCssRules, each of which defines a mode, as well
as include and exclude patterns.

Node.js
For Kotlin/JS projects targeting Node.js, the plugin automatically downloads and installs the Node.js environment on the host. You can also use an existing Node.js
instance if you have it.

Use
pre-installed
Node.js
If Node.js is already installed on the host where you build Kotlin/JS projects, you can configure the Kotlin Multiplatform Gradle plugin to use it instead of installing
its own Node.js instance.

756

https://webpack.js.org/configuration/module/#ruleinclude
https://webpack.js.org/configuration/module/#ruleexclude

To use the pre-installed Node.js instance, add the following lines to build.gradle(.kts):

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootExtension>().download	=	false
				//	"true"	for	default	behavior
}
	

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.nodejs.NodeJsRootExtension).download	=	false
}

Yarn
To download and install your declared dependencies at build time, the plugin manages its own instance of the Yarn package manager. It works out of the box
without additional configuration, but you can tune it or use Yarn already installed on your host.

Additional
Yarn
features:
.yarnrc
To configure additional Yarn features, place a .yarnrc file in the root of your project. At build time, it gets picked up automatically.

For example, to use a custom registry for npm packages, add the following line to a file called .yarnrc in the project root:

registry	"http://my.registry/api/npm/"

To learn more about .yarnrc, visit the official Yarn documentation.

Use
pre-installed
Yarn
If Yarn is already installed on the host where you build Kotlin/JS projects, you can configure the Kotlin Multiplatform Gradle plugin to use it instead of installing its
own Yarn instance.

To use the pre-installed Yarn instance, add the following lines to build.gradle(.kts):

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().download	=	false
				//	"true"	for	default	behavior
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).download	=	false
}
	

Version
locking
via
kotlin-js-store

The kotlin-js-store directory in the project root is automatically generated by the Kotlin Multiplatform Gradle plugin to hold the yarn.lock file, which is necessary for
version locking. The lockfile is entirely managed by the Yarn plugin and gets updated during the execution of the kotlinNpmInstall Gradle task.

Version locking via kotlin-js-store is available since Kotlin 1.6.10.

757

https://yarnpkg.com/lang/en/
https://classic.yarnpkg.com/en/docs/yarnrc/

To follow a recommended practice, commit kotlin-js-store and its contents to your version control system. It ensures that your application is being built with the
exact same dependency tree on all machines.

If needed, you can change both directory and lockfile names in build.gradle(.kts):

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().lockFileDirectory	=
								project.rootDir.resolve("my-kotlin-js-store")
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().lockFileName	=	"my-yarn.lock"
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).lockFileDirectory	=
								file("my-kotlin-js-store")
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).lockFileName	=	'my-yarn.lock'
}

To learn more about yarn.lock, visit the official Yarn documentation.

Reporting
that
yarn.lock
has
been
updated
Kotlin/JS provides Gradle settings that could notify you if the yarn.lock file has been updated. You can use these settings when you want to be notified if yarn.lock
has been changed silently during the CI build process:

YarnLockMismatchReport, which specifies how changes to the yarn.lock file are reported. You can use one of the following values:

FAIL fails the corresponding Gradle task. This is the default.

WARNING writes the information about changes in the warning log.

NONE disables reporting.

reportNewYarnLock, which reports about the recently created yarn.lock file explicitly. By default, this option is disabled: it's a common practice to generate a
new yarn.lock file at the first start. You can use this option to ensure that the file has been committed to your repository.

yarnLockAutoReplace, which replaces yarn.lock automatically every time the Gradle task is run.

To use these options, update build.gradle(.kts) as follows:

Kotlin

import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnLockMismatchReport
import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin::class.java)	{
				rootProject.the<YarnRootExtension>().yarnLockMismatchReport	=
								YarnLockMismatchReport.WARNING	//	NONE	|	FAIL
				rootProject.the<YarnRootExtension>().reportNewYarnLock	=	false	//	true
				rootProject.the<YarnRootExtension>().yarnLockAutoReplace	=	false	//	true
}

Groovy

import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnLockMismatchReport
import	org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).yarnLockMismatchReport	=
								YarnLockMismatchReport.WARNING	//	NONE	|	FAIL

Changing the name of the lockfile may cause dependency inspection tools to no longer pick up the file.

758

https://classic.yarnpkg.com/blog/2016/11/24/lockfiles-for-all/
https://classic.yarnpkg.com/lang/en/docs/yarn-lock/

				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).reportNewYarnLock	=	false	//	
true
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).yarnLockAutoReplace	=	false	//	
true
}

Installing
npm
dependencies
with
--ignore-scripts
by
default

To reduce the likelihood of executing malicious code from compromised npm packages, the Kotlin Multiplatform Gradle plugin prevents the execution of lifecycle
scripts during the installation of npm dependencies by default.

You can explicitly enable lifecycle scripts execution by adding the following lines to build.gradle(.kts):

Kotlin

rootProject.plugins.withType<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin>	{	
				rootProject.the<org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension>().ignoreScripts	=	false
}

Groovy

rootProject.plugins.withType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnPlugin)	{
				rootProject.extensions.getByType(org.jetbrains.kotlin.gradle.targets.js.yarn.YarnRootExtension).ignoreScripts	=	false
}

Distribution
target
directory
By default, the results of a Kotlin/JS project build reside in the /build/dist/<targetName>/<binaryName> directory within the project root.

To set another location for project distribution files, add the distribution {} block inside browser {} in the build script and assign a value to the directory property.
Once you run a project build task, Gradle will save the output bundle in this location together with project resources.

Kotlin

kotlin	{
				js	{
								browser	{
												distribution	{
																directory	=	File("$projectDir/output/")
												}
								}
								binaries.executable()
								//	...
				}
}

Groovy

kotlin	{
				js	{
								browser	{
												distribution	{
																directory	=	file("$projectDir/output/")
												}
								}
								binaries.executable()

Installing npm dependencies with --ignore-scripts by default is available since Kotlin 1.6.10.

Prior to Kotlin 1.9.0, the default distribution target directory was /build/distributions.

759

https://docs.npmjs.com/cli/v8/using-npm/scripts#life-cycle-scripts

								//	...
				}
}

Module
name
To adjust the name for the JavaScript module (which is generated in build/js/packages/myModuleName), including the corresponding .js and .d.ts files, use the
moduleName option:

js	{
				moduleName	=	"myModuleName"
}

Note that this does not affect the webpacked output in build/dist.

package.json
customization
The package.json file holds the metadata of a JavaScript package. Popular package registries such as npm require all published packages to have such a file. They
use it to track and manage package publications.

The Kotlin Multiplatform Gradle plugin automatically generates package.json for Kotlin/JS projects during build time. By default, the file contains essential data:
name, version, license, dependencies, and some other package attributes.

Aside from basic package attributes, package.json can define how a JavaScript project should behave, for example, identifying scripts that are available to run.

You can add custom entries to the project's package.json via the Gradle DSL. To add custom fields to your package.json, use the customField() function in the
compilations packageJson block:

kotlin	{
				js	{
								compilations["main"].packageJson	{
												customField("hello",	mapOf("one"	to	1,	"two"	to	2))
								}
				}
}

When you build the project, this code adds the following block to the package.json file:

"hello":	{
				"one":	1,
				"two":	2
}

Learn more about writing package.json files for npm registry in the npm docs.

Troubleshooting
When building a Kotlin/JS project using Kotlin 1.3.xx, you may encounter a Gradle error if one of your dependencies (or any transitive dependency) was built using
Kotlin 1.4 or higher: Could not determine the dependencies of task ':client:jsTestPackageJson'. / Cannot choose between the following variants. This is a known
problem, a workaround is provided here.

Run
Kotlin/JS
Since Kotlin/JS projects are managed with the Kotlin Multiplatform Gradle plugin, you can run your project using the appropriate tasks. If you're starting with a blank
project, ensure that you have some sample code to execute. Create the file src/jsMain/kotlin/App.kt and fill it with a small "Hello, World"-type code snippet:

fun	main()	{
				console.log("Hello,	Kotlin/JS!")
}

760

https://docs.npmjs.com/cli/v6/configuring-npm/package-json
https://youtrack.jetbrains.com/issue/KT-40226

Depending on the target platform, some platform-specific extra setup might be required to run your code for the first time.

Run
the
Node.js
target
When targeting Node.js with Kotlin/JS, you can simply execute the jsRun Gradle task. This can be done for example via the command line, using the Gradle
wrapper:

./gradlew	jsRun

If you're using IntelliJ IDEA, you can find the jsRun action in the Gradle tool window:

Gradle Run task in IntelliJ IDEA

On first start, the kotlin.multiplatform Gradle plugin will download all required dependencies to get you up and running. After the build is completed, the program is
executed, and you can see the logging output in the terminal:

761

Executing the JS target in a Kotlin Multiplatform project in IntelliJ IDEA

Run
the
browser
target
When targeting the browser, your project is required to have an HTML page. This page will be served by the development server while you are working on your
application, and should embed your compiled Kotlin/JS file. Create and fill an HTML file /src/jsMain/resources/index.html:

<!DOCTYPE	html>
<html	lang="en">
<head>
				<meta	charset="UTF-8">
				<title>JS	Client</title>
</head>
<body>
<script	src="js-tutorial.js"></script>
</body>
</html>

By default, the name of your project's generated artifact (which is created through webpack) that needs to be referenced is your project name (in this case, js-
tutorial). If you've named your project followAlong, make sure to embed followAlong.js instead of js-tutorial.js

After making these adjustments, start the integrated development server. You can do this from the command line via the Gradle wrapper:

./gradlew	jsRun

When working from IntelliJ IDEA, you can find the jsRun action in the Gradle tool window.

After the project has been built, the embedded webpack-dev-server will start running, and will open a (seemingly empty) browser window pointing to the HTML file
you specified previously. To validate that your program is running correctly, open the developer tools of your browser (for example by right-clicking and choosing
the Inspect action). Inside the developer tools, navigate to the console, where you can see the results of the executed JavaScript code:

762

Console output in browser developer tools

With this setup, you can recompile your project after each code change to see your changes. Kotlin/JS also supports a more convenient way of automatically
rebuilding the application while you are developing it. To find out how to set up this continuous mode, check out the corresponding tutorial.

Development
server
and
continuous
compilation
Instead of manually compiling and executing a Kotlin/JS project every time you want to see the changes you made, you can use the continuous compilation mode.
Instead of using the regular run command, invoke the Gradle wrapper in continuous mode:

./gradlew	run	--continuous

If you are working in IntelliJ IDEA, you can pass the same flag via the run configuration. After running the Gradle run task for the first time from the IDE, IntelliJ IDEA
automatically generates a run configuration for it, which you can edit:

Editing run configurations in IntelliJ IDEA

763

Enabling continuous mode via the Run/Debug Configurations dialog is as easy as adding the --continuous flag to the arguments for the run configuration:

Adding the continuous flag to a run configuration in IntelliJ IDEA

When executing this run configuration, you can note that the Gradle process continues watching for changes to the program:

Gradle waiting for changes

764

Once a change has been detected, the program will be recompiled automatically. If you still have the page open in the browser, the development server will trigger
an automatic reload of the page, and the changes will become visible. This is thanks to the integrated webpack-dev-server that is managed by the Kotlin
Multiplatform Gradle plugin.

Debug
Kotlin/JS
code
JavaScript source maps provide mappings between the minified code produced by bundlers or minifiers and the actual source code a developer works with. This
way, the source maps enable support for debugging the code during its execution.

The Kotlin Multiplatform Gradle plugin automatically generates source maps for the project builds, making them available without any additional configuration.

Debug
in
browser
Most modern browsers provide tools that allow inspecting the page content and debugging the code that executes on it. Refer to your browser's documentation for
more details.

To debug Kotlin/JS in the browser:

1. Run the project by calling one of the available run Gradle tasks, for example, browserDevelopmentRun or jsBrowserDevelopmentRun in a multiplatform project.
Learn more about running Kotlin/JS.

2. Navigate to the page in the browser and launch its developer tools (for example, by right-clicking and selecting the Inspect action). Learn how to find the
developer tools in popular browsers.

3. If your program is logging information to the console, navigate to the Console tab to see this output. Depending on your browser, these logs can reference the
Kotlin source files and lines they come from:

Chrome DevTools console

4. Click the file reference on the right to navigate to the corresponding line of code. Alternatively, you can manually switch to the Sources tab and find the file you
need in the file tree. Navigating to the Kotlin file shows you the regular Kotlin code (as opposed to minified JavaScript):

765

https://balsamiq.com/support/faqs/browserconsole/

Debugging in Chrome DevTools

You can now start debugging the program. Set a breakpoint by clicking on one of the line numbers. The developer tools even support setting breakpoints within a
statement. As with regular JavaScript code, any set breakpoints will persist across page reloads. This also makes it possible to debug Kotlin's main() method which
is executed when the script is loaded for the first time.

Debug
in
the
IDE
IntelliJ IDEA Ultimate provides a powerful set of tools for debugging code during development.

For debugging Kotlin/JS in IntelliJ IDEA, you'll need a JavaScript Debug configuration. To add such a debug configuration:

1. Go to Run | Edit Configurations.

2. Click + and select JavaScript Debug.

766

https://www.jetbrains.com/idea/

3. Specify the configuration Name and provide the URL on which the project runs (http://localhost:8080 by default).

JavaScript debug configuration

4. Save the configuration.

Learn more about setting up JavaScript debug configurations.

Now you're ready to debug your project!

1. Run the project by calling one of the available run Gradle tasks, for example, browserDevelopmentRun or jsBrowserDevelopmentRun in a multiplatform project.
Learn more about running Kotlin/JS.

2. Start the debugging session by running the JavaScript debug configuration you've created previously:

767

https://www.jetbrains.com/help/idea/configuring-javascript-debugger.html

JavaScript debug configuration

3. You can see the console output of your program in the Debug window in IntelliJ IDEA. The output items reference the Kotlin source files and lines they come
from:

JavaScript debug output in the IDE

768

4. Click the file reference on the right to navigate to the corresponding line of code.

You can now start debugging the program using the whole set of tools that the IDE offers: breakpoints, stepping, expression evaluation, and more. Learn more
about debugging in IntelliJ IDEA.

Debug
in
Node.js
If your project targets Node.js, you can debug it in this runtime.

To debug a Kotlin/JS application targeting Node.js:

1. Build the project by running the build Gradle task.

2. Find the resulting .js file for Node.js in the build/js/packages/your-module/kotlin/ directory inside your project's directory.

3. Debug it in Node.js as described in the Node.js Debugging Guide.

What's
next?
Now that you know how to start debug sessions with your Kotlin/JS project, learn to make efficient use of the debugging tools:

Learn how to debug JavaScript in Google Chrome

Get familiar with IntelliJ IDEA JavaScript debugger

Learn how to debug in Node.js.

If
you
run
into
any
problems
If you face any issues with debugging Kotlin/JS, please report them to our issue tracker, YouTrack

Run
tests
in
Kotlin/JS
The Kotlin Multiplatform Gradle plugin lets you run tests through a variety of test runners that can be specified via the Gradle configuration.

When you create a multiplatform project, the Project Wizard automatically adds test dependencies to all the source sets. If you created your project without it, you
can add the dependencies manually to make test annotations and functionality available for the JavaScript target:

Kotlin

//	build.gradle.kts

kotlin	{
				sourceSets	{
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))	//	This	brings	all	the	platform	dependencies	automatically
												}
								}
				}
}

Groovy

//	build.gradle

kotlin	{
				sourceSets	{

Because of the limitations of the current JavaScript debugger in IntelliJ IDEA, you may need to rerun the JavaScript debug to make the execution stop on
breakpoints.

769

https://www.jetbrains.com/help/idea/debugging-javascript-in-chrome.html
https://nodejs.org/en/docs/guides/debugging-getting-started/#jetbrains-webstorm-2017-1-and-other-jetbrains-ides
https://developer.chrome.com/docs/devtools/javascript/
https://www.jetbrains.com/help/idea/debugging-javascript-in-chrome.html
https://nodejs.org/en/docs/guides/debugging-getting-started/
https://kotl.in/issue

								commonTest	{
												dependencies	{
																implementation	kotlin("test")	//	This	brings	all	the	platform	dependencies	automatically
												}
								}
				}
}

You can tune how tests are executed in Kotlin/JS by adjusting the settings available in the testTask block in the Gradle build script. For example, using the Karma
test runner together with a headless instance of Chrome and an instance of Firefox looks like this:

kotlin	{
				js	{
								browser	{
												testTask	{
																useKarma	{
																				useChromeHeadless()
																				useFirefox()
																}
												}
								}
				}
}

For a detailed description of the available functionality, check out the Kotlin/JS reference on configuring the test task.

Please note that by default, no browsers are bundled with the plugin. This means that you'll have to ensure they're available on the target system.

To check that tests are executed properly, add a file src/jsTest/kotlin/AppTest.kt and fill it with this content:

import	kotlin.test.Test
import	kotlin.test.assertEquals

class	AppTest	{
				@Test
				fun	thingsShouldWork()	{
								assertEquals(listOf(1,2,3).reversed(),	listOf(3,2,1))
				}

				@Test
				fun	thingsShouldBreak()	{
								assertEquals(listOf(1,2,3).reversed(),	listOf(1,2,3))
				}
}

To run the tests in the browser, execute the jsBrowserTest task via IntelliJ IDEA, or use the gutter icons to execute all or individual tests:

Gradle browserTest task

Alternatively, if you want to run the tests via the command line, use the Gradle wrapper:

./gradlew	jsBrowserTest

770

After running the tests from IntelliJ IDEA, the Run tool window will show the test results. You can click failed tests to see their stack trace, and navigate to the
corresponding test implementation via a double click.

Test results in IntelliJ IDEA

After each test run, regardless of how you executed the test, you can find a properly formatted test report from Gradle in
build/reports/tests/jsBrowserTest/index.html. Open this file in a browser to see another overview of the test results:

771

Gradle test summary

If you are using the set of example tests shown in the snippet above, one test passes, and one test breaks, which gives the resulting total of 50% successful tests.
To get more information about individual test cases, you can navigate via the provided hyperlinks:

772

Stacktrace of failed test in the Gradle summary

Kotlin/JS
dead
code
elimination
The Kotlin Multiplatform Gradle plugin includes a dead code elimination (DCE) tool. Dead code elimination is often also called tree shaking. It reduces the size or the
resulting JavaScript code by removing unused properties, functions, and classes.

Unused declarations can appear in cases like:

A function is inlined and never gets called directly (which happens always except for a few situations).

A module uses a shared library. Without DCE, parts of the library that you don't use are still included in the resulting bundle. For example, the Kotlin standard
library contains functions for manipulating lists, arrays, char sequences, adapters for DOM, and so on. All of this functionality would require about 1.3 MB as a
JavaScript file. A simple "Hello, world" application only requires console routines, which is only few kilobytes for the entire file.

The Kotlin Multiplatform Gradle plugin handles DCE automatically when you build a production bundle, for example by using the browserProductionWebpack task.
Development bundling tasks (like browserDevelopmentWebpack) don't include DCE.

Exclude
declarations
from
DCE
Sometimes you may need to keep a function or a class in the resulting JavaScript code even if you don't use it in your module, for example, if you're going to use it
in the client JavaScript code.

To keep certain declarations from elimination, add the dceTask block to your Gradle build script and list the declarations as arguments of the keep function. An
argument must be the declaration's fully qualified name with the module name as a prefix: moduleName.dot.separated.package.name.declarationName

773

https://wikipedia.org/wiki/Dead_code_elimination

kotlin	{
				js	{
								browser	{
												dceTask	{
																keep("myKotlinJSModule.org.example.getName",	"myKotlinJSModule.org.example.User")
												}
												binaries.executable()
								}
				}
}

If you want to keep a whole package or module from elimination, you can use its fully qualified name as it appears in the generated JavaScript code.

Disable
DCE
To turn off DCE completely, use the devMode option in the dceTask:

kotlin	{
				js	{
								browser	{
												dceTask	{
																dceOptions.devMode	=	true
												}
								}
								binaries.executable()
				}
}

Kotlin/JS
IR
compiler
The Kotlin/JS IR compiler backend is the main focus of innovation around Kotlin/JS, and paves the way forward for the technology.

Rather than directly generating JavaScript code from Kotlin source code, the Kotlin/JS IR compiler backend leverages a new approach. Kotlin source code is first
transformed into a Kotlin intermediate representation (IR), which is subsequently compiled into JavaScript. For Kotlin/JS, this enables aggressive optimizations, and
allows improvements on pain points that were present in the previous compiler, such as generated code size (through dead code elimination), and JavaScript and
TypeScript ecosystem interoperability, to name some examples.

The IR compiler backend is available starting with Kotlin 1.4.0 through the Kotlin Multiplatform Gradle plugin. To enable it in your project, pass a compiler type to
the js function in your Gradle build script:

kotlin	{
				js(IR)	{	//	or:	LEGACY,	BOTH
								//	...
								binaries.executable()	//	not	applicable	to	BOTH,	see	details	below
				}
}

IR uses the new IR compiler backend for Kotlin/JS.

LEGACY uses the old compiler backend.

BOTH compiles your project with the new IR compiler as well as the default compiler backend. Use this mode for authoring libraries compatible with both
backends.

Unless specified otherwise, the names of functions and modules can be mangled in the generated JavaScript code. To keep such functions from
elimination, use the mangled names in the keep arguments as they appear in the generated JavaScript code.

Keeping whole packages or modules from elimination can prevent DCE from removing many unused declarations. Because of this, it is preferable to
select individual declarations which should be excluded from DCE one by one.

774

The compiler type can also be set in the gradle.properties file, with the key kotlin.js.compiler=ir. This behaviour is overwritten by any settings in the build.gradle(.kts),
however.

Lazy
initialization
of
top-level
properties
For better application startup performance, the Kotlin/JS IR compiler initializes top-level properties lazily. This way, the application loads without initializing all the
top-level properties used in its code. It initializes only the ones needed at startup; other properties receive their values later when the code that uses them actually
runs.

val	a	=	run	{	
				val	result	=	//	intensive	computations
				println(result)
				result	
}	//	value	is	computed	upon	the	first	usage

If for some reason you need to initialize a property eagerly (upon the application start), mark it with the @EagerInitialization annotation.

Incremental
compilation
for
development
binaries
The JS IR compiler provides the incremental compilation mode for development binaries that speeds up the development process. In this mode, the compiler
caches the results of compileDevelopmentExecutableKotlinJs Gradle task on the module level. It uses the cached compilation results for unchanged source files
during subsequent compilations, making them complete faster, especially with small changes.

Incremental compilation is enabled by default. To disable incremental compilation for development binaries, add the following line to the project's gradle.properties
or local.properties:

kotlin.incremental.js.ir=false	//	true	by	default

Output
.js
files:
one
per
module
or
one
for
the
whole
project
As a compilation result, the JS IR compiler outputs separate .js files for each module of a project. Alternatively, you can compile the whole project into a single .js
file by adding the following line to gradle.properties:

kotlin.js.ir.output.granularity=whole-program	//	'per-module'	is	the	default

Ignoring
compilation
errors

Kotlin/JS IR compiler provides a new compilation mode unavailable in the default backend – ignoring compilation errors. In this mode, you can try out your
application even while its code contains errors. For example, when you're doing a complex refactoring or working on a part of the system that is completely
unrelated to a compilation error in another part.

With this new compiler mode, the compiler ignores all broken code. Thus, you can run the application and try its parts that don't use the broken code. If you try to
run the code that was broken during compilation, you'll get a runtime exception.

Choose between two tolerance policies for ignoring compilation errors in your code:

The old compiler backend has been deprecated since Kotlin 1.8.0. Starting with Kotlin 1.9.0, using compiler types LEGACY or BOTH leads to an error.

The clean build in the incremental compilation mode is usually slower because of the need to create and populate the caches.

Ignore compilation errors mode is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below), and you should use
it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

775

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/-eager-initialization/
https://youtrack.jetbrains.com/issues/KT

SEMANTIC. The compiler will accept code that is syntactically correct but doesn't make sense semantically. For example, assigning a number to a string
variable (type mismatch).

SYNTAX. The compiler will accept any code, even if it contains syntax errors. Regardless of what you write, the compiler will still try to generate a runnable
executable.

As an experimental feature, ignoring compilation errors requires an opt-in. To enable this mode, add the -Xerror-tolerance-policy={SEMANTIC|SYNTAX} compiler
option:

kotlin	{
				js(IR)	{
								compilations.all	{
												compileTaskProvider.configure	{
																compilerOptions.freeCompilerArgs.add("-Xerror-tolerance-policy=SYNTAX")
												}
								}
				}
}

Minification
of
member
names
in
production
The Kotlin/JS IR compiler uses its internal information about the relationships of your Kotlin classes and functions to apply more efficient minification, shortening the
names of functions, properties, and classes. This reduces the size of resulting bundled applications.

This type of minification is automatically applied when you build your Kotlin/JS application in production mode, and enabled by default. To disable member name
minification, use the -Xir-minimized-member-names compiler option:

kotlin	{
				js(IR)	{
								compilations.all	{
												compileTaskProvider.configure	{
																compilerOptions.freeCompilerArgs.add("-Xir-minimized-member-names=false")
												}
								}
				}
}

Preview:
generation
of
TypeScript
declaration
files
(d.ts)

The Kotlin/JS IR compiler is capable of generating TypeScript definitions from your Kotlin code. These definitions can be used by JavaScript tools and IDEs when
working on hybrid apps to provide autocompletion, support static analyzers, and make it easier to include Kotlin code in JavaScript and TypeScript projects.

If your project produces executable files (binaries.executable()), the Kotlin/JS IR compiler collects any top-level declarations marked with @JsExport and
automatically generates TypeScript definitions in a .d.ts file.

If you want to generate TypeScript definitions, you have to explicitly configure this in your Gradle build file. Add generateTypeScriptDefinitions() to your
build.gradle.kts file in the js section. For example:

kotlin	{
			js	{
							binaries.executable()
							browser	{
							}
							generateTypeScriptDefinitions()
			}
}

The definitions can be found in build/js/packages/<package_name>/kotlin alongside the corresponding un-webpacked JavaScript code.

The generation of TypeScript declaration files (d.ts) is Experimental. It may be dropped or changed at any time. Opt-in is required (see the details below),
and you should use it only for evaluation purposes. We would appreciate your feedback on it in YouTrack.

776

https://youtrack.jetbrains.com/issues?q=%2523%257BKJS:%20d.ts%20generation%257D

Current
limitations
of
the
IR
compiler
A major change with the new IR compiler backend is the absence of binary compatibility with the default backend. A library created with the new IR compiler uses a
klib format and can't be used from the default backend. In the meantime, a library created with the old compiler is a jar with js files, which can't be used from the IR
backend.

If you want to use the IR compiler backend for your project, you need to update all Kotlin dependencies to versions that support this new backend. Libraries
published by JetBrains for Kotlin 1.4+ targeting Kotlin/JS already contain all artifacts required for usage with the new IR compiler backend.

If you are a library author looking to provide compatibility with the current compiler backend as well as the new IR compiler backend, additionally check out the
section about authoring libraries for the IR compiler section.

The IR compiler backend also has some discrepancies in comparison to the default backend. When trying out the new backend, it's good to be mindful of these
possible pitfalls.

Some libraries that rely on specific characteristics of the default backend, such as kotlin-wrappers, can display some problems. You can follow the investigation
and progress on YouTrack.

The IR backend does not make Kotlin declarations available to JavaScript by default at all. To make Kotlin declarations visible to JavaScript, they must be
annotated with @JsExport.

Migrating
existing
projects
to
the
IR
compiler
Due to significant differences between the two Kotlin/JS compilers, making your Kotlin/JS code work with the IR compiler may require some adjustments. Learn
how to migrate existing Kotlin/JS projects to the IR compiler in the Kotlin/JS IR compiler migration guide.

Authoring
libraries
for
the
IR
compiler
with
backwards
compatibility
If you're a library maintainer who is looking to provide compatibility with the default backend as well as the new IR compiler backend, a setting for the compiler
selection is available that allows you to create artifacts for both backends, allowing you to keep compatibility for your existing users while providing support for the
next generation of Kotlin compiler. This so-called both-mode can be turned on using the kotlin.js.compiler=both setting in your gradle.properties file, or can be set
as one of the project-specific options inside your js block inside the build.gradle(.kts) file:

kotlin	{
				js(BOTH)	{
								//	...
				}
}

When in both mode, the IR compiler backend and default compiler backend are both used when building a library from your sources (hence the name). This means
that both klib files with Kotlin IR as well as jar files for the default compiler will be generated. When published under the same Maven coordinate, Gradle will
automatically choose the right artifact depending on the use case – js for the old compiler, klib for the new one. This enables you to compile and publish your library
for projects that are using either of the two compiler backends.

Migrating
Kotlin/JS
projects
to
the
IR
compiler
We replaced the old Kotlin/JS compiler with the IR-based compiler in order to unify Kotlin's behavior on all platforms and to make it possible to implement new JS-
specific optimizations, among other reasons. You can learn more about the internal differences between the two compilers in the blog post Migrating our Kotlin/JS
app to the new IR compiler by Sebastian Aigner.

Due to the significant differences between the compilers, switching your Kotlin/JS project from the old backend to the new one may require adjusting your code. On
this page, we've compiled a list of known migration issues along with suggested solutions.

Note that this guide may change over time as we fix issues and find new ones. Please help us keep it complete – report any issues you encounter when switching
to the IR compiler by submitting them to our issue tracker YouTrack or filling out this form.

Install the Kotlin/JS Inspection pack plugin to get valuable tips on how to fix some of the issues that occur during migration.

777

https://youtrack.jetbrains.com/issue/KT-40525
https://dev.to/kotlin/migrating-our-kotlin-js-app-to-the-new-ir-compiler-3o6i
https://plugins.jetbrains.com/plugin/17183-kotlin-js-inspection-pack/
https://kotl.in/issue
https://surveys.jetbrains.com/s3/ir-be-migration-issue

Convert
JS-
and
React-related
classes
and
interfaces
to
external
interfaces
Issue: Using Kotlin interfaces and classes (including data classes) that derive from pure JS classes, such as React's State and Props, can cause a
ClassCastException. Such exceptions appear because the compiler attempts to work with instances of these classes as if they were Kotlin objects, when they
actually come from JS.

Solution: convert all classes and interfaces that derive from pure JS classes to external interfaces:

//	Replace	this
interface	AppState	:	State	{	}
interface	AppProps	:	Props	{	}
data	class	CustomComponentState(var	name:	String)	:	State

//	With	this
external	interface	AppState	:	State	{	}
external	interface	AppProps	:	Props	{	}
external	interface	CustomComponentState	:	State	{
			var	name:	String
}

In IntelliJ IDEA, you can use these structural search and replace templates to automatically mark interfaces as external:

Template for State

Template for Props

Convert
properties
of
external
interfaces
to
var
Issue: properties of external interfaces in Kotlin/JS code can't be read-only (val) properties because their values can be assigned only after the object is created with
js() or jso() (a helper function from kotlin-wrappers):

import	kotlinx.js.jso

val	myState	=	jso<CustomComponentState>()
myState.name	=	"name"

Solution: convert all properties of external interfaces to var:

//	Replace	this
external	interface	CustomComponentState	:	State	{
			val	name:	String
}

//	With	this
external	interface	CustomComponentState	:	State	{
			var	name:	String
}

Convert
functions
with
receivers
in
external
interfaces
to
regular
functions
Issue: external declarations can't contain functions with receivers, such as extension functions or properties with corresponding functional types.

Solution: convert such functions and properties to regular functions by adding the receiver object as an argument:

//	Replace	this
external	interface	ButtonProps	:	Props	{
			var	inside:	StyledDOMBuilder<BUTTON>.()	->	Unit
}

external	interface	ButtonProps	:	Props	{
			var	inside:	(StyledDOMBuilder<BUTTON>)	->	Unit
}

778

https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://gist.github.com/SebastianAigner/62119536f24597e630acfdbd14001b98
https://gist.github.com/SebastianAigner/a47a77f5e519fc74185c077ba12624f9
https://github.com/JetBrains/kotlin-wrappers

Create
plain
JS
objects
for
interoperability
Issue: properties of a Kotlin object that implements an external interface are not enumerable. This means that they are not visible for operations that iterate over the
object's properties, for example:

for (var name in obj)

console.log(obj)

JSON.stringify(obj)

Although they are still accessible by the name: obj.myProperty

external	interface	AppProps	{	var	name:	String	}
data	class	AppPropsImpl(override	var	name:	String)	:	AppProps
fun	main()	{
			val	jsApp	=	js("{name:	'App1'}")	as	AppProps	//	plain	JS	object
			println("Kotlin	sees:	${jsApp.name}")	//	"App1"
			println("JSON.stringify	sees:"	+	JSON.stringify(jsApp))	//	{"name":"App1"}	-	OK

			val	ktApp	=	AppPropsImpl("App2")	//	Kotlin	object
			println("Kotlin	sees:	${ktApp.name}")	//	"App2"
			//	JSON	sees	only	the	backing	field,	not	the	property
			println("JSON.stringify	sees:"	+	JSON.stringify(ktApp))	//	{"_name_3":"App2"}
}

Solution 1: create plain JavaScript objects with js() or jso() (a helper function from kotlin-wrappers):

external	interface	AppProps	{	var	name:	String	}
data	class	AppPropsImpl(override	var	name:	String)	:	AppProps

//	Replace	this
val	ktApp	=	AppPropsImpl("App1")	//	Kotlin	object

//	With	this
val	jsApp	=	js("{name:	'App1'}")	as	AppProps	//	or	jso	{}

Solution 2: create objects with kotlin.js.json():

//	or	with	this
val	jsonApp	=	kotlin.js.json(Pair("name",	"App1"))	as	AppProps

Replace
toString()
calls
on
function
references
with
.name
Issue: in the IR backend, calling toString() on function references doesn't produce unique values.

Solution: use the name property instead of toString().

Explicitly
specify
binaries.executable()
in
the
build
script
Issue: the compiler doesn't produce executable .js files.

This may happen because the default compiler produces JavaScript executables by default while the IR compiler needs an explicit instruction to do this. Learn
more in the Kotlin/JS project setup instruction.

Solution: add the line binaries.executable() to the project's build.gradle(.kts).

kotlin	{
				js(IR)	{
								browser	{
								}
								binaries.executable()
				}
}

779

https://github.com/JetBrains/kotlin-wrappers

Additional
troubleshooting
tips
when
working
with
the
Kotlin/JS
IR
compiler
These hints may help you when troubleshooting problems in your projects using the Kotlin/JS IR compiler.

Make
boolean
properties
nullable
in
external
interfaces
Issue: when you call toString on a Boolean from an external interface, you're getting an error like Uncaught TypeError: Cannot read properties of undefined (reading
'toString'). JavaScript treats the null or undefined values of a boolean variable as false. If you rely on calling toString on a Boolean that may be null or undefined (for
example when your code is called from JavaScript code you have no control over), be aware of this:

external	interface	SomeExternal	{
				var	visible:	Boolean
}

fun	main()	{
				val	empty:	SomeExternal	=	js("{}")
				println(empty.visible.toString())	//	Uncaught	TypeError:	Cannot	read	properties	of	undefined	(reading	'toString')
}

Solution: you can make your Boolean properties of external interfaces nullable (Boolean?):

//	Replace	this
external	interface	SomeExternal	{
				var	visible:	Boolean
}

//	With	this
external	interface	SomeExternal	{
				var	visible:	Boolean?
}

Browser
and
DOM
API
The Kotlin/JS standard library lets you access browser-specific functionality using the kotlinx.browser package, which includes typical top-level objects such as
document and window. The standard library provides typesafe wrappers for the functionality exposed by these objects wherever possible. As a fallback, the
dynamic type is used to provide interaction with functions that do not map well into the Kotlin type system.

Interaction
with
the
DOM
For interaction with the Document Object Model (DOM), you can use the variable document. For example, you can set the background color of our website through
this object:

document.bgColor	=	"FFAA12"	

The document object also provides you a way to retrieve a specific element by ID, name, class name, tag name and so on. All returned elements are of type
Element?. To access their properties, you need to cast them to their appropriate type. For example, assume that you have an HTML page with an email <input>
field:

<body>
				<input	type="text"	name="email"	id="email"/>

				<script	type="text/javascript"	src="tutorial.js"></script>
</body>

Note that your script is included at the bottom of the body tag. This ensures that the DOM is fully available before the script is loaded.

With this setup, you can access elements of the DOM. To access the properties of the input field, invoke getElementById and cast it to HTMLInputElement. You can
then safely access its properties, such as value:

780

val	email	=	document.getElementById("email")	as	HTMLInputElement
email.value	=	"hadi@jetbrains.com"

Much like you reference this input element, you can access other elements on the page, casting them to the appropriate types.

To see how to create and structure elements in the DOM in a concise way, check out the Typesafe HTML DSL.

Use
JavaScript
code
from
Kotlin
Kotlin was first designed for easy interoperation with the Java platform: it sees Java classes as Kotlin classes, and Java sees Kotlin classes as Java classes.

However, JavaScript is a dynamically typed language, which means it does not check types at compile time. You can freely talk to JavaScript from Kotlin via
dynamic types. If you want to use the full power of the Kotlin type system, you can create external declarations for JavaScript libraries which will be understood by
the Kotlin compiler and the surrounding tooling.

Inline
JavaScript
You can inline some JavaScript code into your Kotlin code using the js() function. For example:

fun	jsTypeOf(o:	Any):	String	{
				return	js("typeof	o")
}

Because the parameter of js is parsed at compile time and translated to JavaScript code "as-is", it is required to be a string constant. So, the following code is
incorrect:

fun	jsTypeOf(o:	Any):	String	{
				return	js(getTypeof()	+	"	o")	//	error	reported	here
}
fun	getTypeof()	=	"typeof"

Note that invoking js() returns a result of type dynamic, which provides no type safety at the compile time.

external
modifier
To tell Kotlin that a certain declaration is written in pure JavaScript, you should mark it with the external modifier. When the compiler sees such a declaration, it
assumes that the implementation for the corresponding class, function or property is provided externally (by the developer or via an npm dependency), and
therefore does not try to generate any JavaScript code from the declaration. This is also why external declarations can't have a body. For example:

external	fun	alert(message:	Any?):	Unit

external	class	Node	{
				val	firstChild:	Node

				fun	append(child:	Node):	Node

				fun	removeChild(child:	Node):	Node

				//	etc
}

external	val	window:	Window

Note that the external modifier is inherited by nested declarations. This is why in the example Node class, there is no external modifier before member functions and
properties.

The external modifier is only allowed on package-level declarations. You can't declare an external member of a non-external class.

Declare
(static)
members
of
a
class
In JavaScript you can define members either on a prototype or a class itself:

781

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/js.html

function	MyClass()	{	...	}
MyClass.sharedMember	=	function()	{	/*	implementation	*/	};
MyClass.prototype.ownMember	=	function()	{	/*	implementation	*/	};

There is no such syntax in Kotlin. However, in Kotlin we have companion objects. Kotlin treats companion objects of external classes in a special way: instead of
expecting an object, it assumes members of companion objects to be members of the class itself. MyClass from the example above can be described as follows:

external	class	MyClass	{
				companion	object	{
								fun	sharedMember()
				}

				fun	ownMember()
}

Declare
optional
parameters
If you are writing an external declaration for a JavaScript function which has an optional parameter, use definedExternally. This delegates the generation of the
default values to the JavaScript function itself:

external	fun	myFunWithOptionalArgs(
				x:	Int,
				y:	String	=	definedExternally,
				z:	String	=	definedExternally
)

With this external declaration, you can call myFunWithOptionalArgs with one required argument and two optional arguments, where the default values are
calculated by the JavaScript implementation of myFunWithOptionalArgs.

Extend
JavaScript
classes
You can easily extend JavaScript classes as if they were Kotlin classes. Just define an external open class and extend it by a non-external class. For example:

open	external	class	Foo	{
				open	fun	run()
				fun	stop()
}

class	Bar:	Foo()	{
				override	fun	run()	{
								window.alert("Running!")
				}

				fun	restart()	{
								window.alert("Restarting")
				}
}

There are some limitations:

When a function of an external base class is overloaded by signature, you can't override it in a derived class.

You can't override a function with default arguments.

Non-external classes can't be extended by external classes.

external
interfaces
JavaScript does not have the concept of interfaces. When a function expects its parameter to support two methods foo and bar, you would just pass in an object
that actually has these methods.

You can use interfaces to express this concept in statically typed Kotlin:

external	interface	HasFooAndBar	{
				fun	foo()

				fun	bar()
}

782

external	fun	myFunction(p:	HasFooAndBar)

A typical use case for external interfaces is to describe settings objects. For example:

external	interface	JQueryAjaxSettings	{
				var	async:	Boolean

				var	cache:	Boolean

				var	complete:	(JQueryXHR,	String)	->	Unit

				//	etc
}

fun	JQueryAjaxSettings():	JQueryAjaxSettings	=	js("{}")

external	class	JQuery	{
				companion	object	{
								fun	get(settings:	JQueryAjaxSettings):	JQueryXHR
				}
}

fun	sendQuery()	{
				JQuery.get(JQueryAjaxSettings().apply	{
								complete	=	{	(xhr,	data)	->
												window.alert("Request	complete")
								}
				})
}

External interfaces have some restrictions:

They can't be used on the right-hand side of is checks.

They can't be passed as reified type arguments.

They can't be used in class literal expressions (such as I::class).

as casts to external interfaces always succeed. Casting to external interfaces produces the "Unchecked cast to external interface" compile time warning. The
warning can be suppressed with the @Suppress("UNCHECKED_CAST_TO_EXTERNAL_INTERFACE") annotation.

IntelliJ IDEA can also automatically generate the @Suppress annotation. Open the intentions menu via the light bulb icon or Alt-Enter, and click the small arrow
next to the "Unchecked cast to external interface" inspection. Here, you can select the suppression scope, and your IDE will add the annotation to your file
accordingly.

Casts
In addition to the "unsafe" cast operator as, which throws a ClassCastException in case a cast is not possible, Kotlin/JS also provides unsafeCast<T>(). When using
unsafeCast, no type checking is done at all during runtime. For example, consider the following two methods:

fun	usingUnsafeCast(s:	Any)	=	s.unsafeCast<String>()
fun	usingAsOperator(s:	Any)	=	s	as	String

They will be compiled accordingly:

function	usingUnsafeCast(s)	{
				return	s;
}

function	usingAsOperator(s)	{
				var	tmp$;
				return	typeof	(tmp$	=	s)	===	'string'	?	tmp$:	throwCCE();
}

Dynamic
type

783

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/unsafe-cast.html

Being a statically typed language, Kotlin still has to interoperate with untyped or loosely typed environments, such as the JavaScript ecosystem. To facilitate these
use cases, the dynamic type is available in the language:

val	dyn:	dynamic	=	...

The dynamic type basically turns off Kotlin's type checker:

A value of the dynamic type can be assigned to any variable or passed anywhere as a parameter.

Any value can be assigned to a variable of the dynamic type or passed to a function that takes dynamic as a parameter.

null-checks are disabled for the dynamic type values.

The most peculiar feature of dynamic is that we are allowed to call any property or function with any parameters on a dynamic variable:

dyn.whatever(1,	"foo",	dyn)	//	'whatever'	is	not	defined	anywhere
dyn.whatever(*arrayOf(1,	2,	3))

On the JavaScript platform this code will be compiled "as is": dyn.whatever(1) in Kotlin becomes dyn.whatever(1) in the generated JavaScript code.

When calling functions written in Kotlin on values of dynamic type, keep in mind the name mangling performed by the Kotlin to JavaScript compiler. You may need
to use the @JsName annotation to assign well-defined names to the functions that you need to call.

A dynamic call always returns dynamic as a result, so you can chain such calls freely:

dyn.foo().bar.baz()

When you pass a lambda to a dynamic call, all of its parameters by default have the type dynamic:

dyn.foo	{
				x	->	x.bar()	//	x	is	dynamic
}

Expressions using values of dynamic type are translated to JavaScript "as is", and do not use the Kotlin operator conventions. The following operators are
supported:

binary: +, -, *, /, %, >, < >=, <=, ==, !=, ===, !==, &&, ||

unary

prefix: -, +, !

prefix and postfix: ++, --

assignments: +=, -=, *=, /=, %=

indexed access:

read: d[a], more than one argument is an error

write: d[a1] = a2, more than one argument in [] is an error

in, !in and .. operations with values of type dynamic are forbidden.

For a more technical description, see the spec document.

Use
dependencies
from
npm
In Kotlin/JS projects, all dependencies can be managed through the Gradle plugin. This includes Kotlin/Multiplatform libraries such as kotlinx.coroutines,
kotlinx.serialization, or ktor-client.

For depending on JavaScript packages from npm, the Gradle DSL exposes an npm function that lets you specify packages you want to import from npm. Let's
consider the import of an NPM package called is-sorted.

The dynamic type is not supported in code targeting the JVM.

784

https://github.com/JetBrains/kotlin/blob/master/spec-docs/dynamic-types.md
https://www.npmjs.com/
https://www.npmjs.com/package/is-sorted

The corresponding part in the Gradle build file looks as follows:

dependencies	{
				//	...
				implementation(npm("is-sorted",	"1.0.5"))
}

Because JavaScript modules are usually dynamically typed and Kotlin is a statically typed language, you need to provide a kind of adapter. In Kotlin, such adapters
are called external declarations. For the is-sorted package which offers only one function, this declaration is small to write. Inside the source folder, create a new file
called is-sorted.kt, and fill it with these contents:

@JsModule("is-sorted")
@JsNonModule
external	fun	<T>	sorted(a:	Array<T>):	Boolean

Please note that if you're using CommonJS as a target, the @JsModule and @JsNonModule annotations need to be adjusted accordingly.

This JavaScript function can now be used just like a regular Kotlin function. Because we provided type information in the header file (as opposed to simply defining
parameter and return type to be dynamic), proper compiler support and type-checking is also available.

console.log("Hello,	Kotlin/JS!")
console.log(sorted(arrayOf(1,2,3)))
console.log(sorted(arrayOf(3,1,2)))

Running these three lines either in the browser or Node.js, the output shows that the call to sorted was properly mapped to the function exported by the is-sorted
package:

Hello,	Kotlin/JS!
true
false

Because the JavaScript ecosystem has multiple ways of exposing functions in a package (for example through named or default exports), other npm packages
might need a slightly altered structure for their external declarations.

To learn more about how to write declarations, please refer to Calling JavaScript from Kotlin.

Use
Kotlin
code
from
JavaScript
Depending on the selected JavaScript Module system, the Kotlin/JS compiler generates different output. But in general, the Kotlin compiler generates normal
JavaScript classes, functions and properties, which you can freely use from JavaScript code. There are some subtle things you should remember, though.

Isolating
declarations
in
a
separate
JavaScript
object
in
plain
mode
If you have explicitly set your module kind to be plain, Kotlin creates an object that contains all Kotlin declarations from the current module. This is done to prevent
spoiling the global object. This means that for a module myModule, all declarations are available to JavaScript via the myModule object. For example:

fun	foo()	=	"Hello"

Can be called from JavaScript like this:

alert(myModule.foo());

This is not applicable when you compile your Kotlin module to JavaScript modules like UMD (which is the default setting for both browser and nodejs targets),
CommonJS or AMD. In this case, your declarations will be exposed in the format specified by your chosen JavaScript module system. When using UMD or
CommonJS, for example, your call site could look like this:

alert(require('myModule').foo());

Check the article on JavaScript Modules for more information on the topic of JavaScript module systems.

785

Package
structure
Kotlin exposes its package structure to JavaScript, so unless you define your declarations in the root package, you have to use fully qualified names in JavaScript.
For example:

package	my.qualified.packagename

fun	foo()	=	"Hello"

When using UMD or CommonJS, for example, your callsite could look like this:

alert(require('myModule').my.qualified.packagename.foo())

Or, in the case of using plain as a module system setting:

alert(myModule.my.qualified.packagename.foo());

@JsName
annotation
In some cases (for example, to support overloads), the Kotlin compiler mangles the names of generated functions and attributes in JavaScript code. To control the
generated names, you can use the @JsName annotation:

//	Module	'kjs'
class	Person(val	name:	String)	{
				fun	hello()	{
								println("Hello	$name!")
				}

				@JsName("helloWithGreeting")
				fun	hello(greeting:	String)	{
								println("$greeting	$name!")
				}
}

Now you can use this class from JavaScript in the following way:

//	If	necessary,	import	'kjs'	according	to	chosen	module	system
var	person	=	new	kjs.Person("Dmitry");			//	refers	to	module	'kjs'
person.hello();																										//	prints	"Hello	Dmitry!"
person.helloWithGreeting("Servus");						//	prints	"Servus	Dmitry!"

If we didn't specify the @JsName annotation, the name of the corresponding function would contain a suffix calculated from the function signature, for example
hello_61zpoe$.

Note that there are some cases in which the Kotlin compiler does not apply mangling:

external declarations are not mangled.

Any overridden functions in non-external classes inheriting from external classes are not mangled.

The parameter of @JsName is required to be a constant string literal which is a valid identifier. The compiler will report an error on any attempt to pass non-identifier
string to @JsName. The following example produces a compile-time error:

@JsName("new	C()")			//	error	here
external	fun	newC()

@JsExport
annotation

By applying the @JsExport annotation to a top-level declaration (like a class or function), you make the Kotlin declaration available from JavaScript. The annotation

The @JsExport annotation is currently marked as experimental. Its design may change in future versions.

786

exports all nested declarations with the name given in Kotlin. It can also be applied on file-level using @file:JsExport.

To resolve ambiguities in exports (like overloads for functions with the same name), you can use the @JsExport annotation together with @JsName to specify the
names for the generated and exported functions.

The @JsExport annotation is available in the current default compiler backend and the new IR compiler backend. If you are targeting the IR compiler backend, you
must use the @JsExport annotation to make your functions visible from Kotlin in the first place.

For multiplatform projects, @JsExport is available in common code as well. It only has an effect when compiling for the JavaScript target, and allows you to also
export Kotlin declarations that are not platform specific.

Kotlin
types
in
JavaScript
Kotlin numeric types, except for kotlin.Long are mapped to JavaScript Number.

kotlin.Char is mapped to JavaScript Number representing character code.

Kotlin can't distinguish between numeric types at run time (except for kotlin.Long), so the following code works:

fun	f()	{
				val	x:	Int	=	23
				val	y:	Any	=	x
				println(y	as	Float)
}

Kotlin preserves overflow semantics for kotlin.Int, kotlin.Byte, kotlin.Short, kotlin.Char and kotlin.Long.

kotlin.Long is not mapped to any JavaScript object, as there is no 64-bit integer number type in JavaScript. It is emulated by a Kotlin class.

kotlin.String is mapped to JavaScript String.

kotlin.Any is mapped to JavaScript Object (new Object(), {}, and so on).

kotlin.Array is mapped to JavaScript Array.

Kotlin collections (List, Set, Map, and so on) are not mapped to any specific JavaScript type.

kotlin.Throwable is mapped to JavaScript Error.

Kotlin preserves lazy object initialization in JavaScript.

Kotlin does not implement lazy initialization of top-level properties in JavaScript.

Primitive
arrays
Primitive array translation utilizes JavaScript TypedArray:

kotlin.ByteArray, -.ShortArray, -.IntArray, -.FloatArray, and -.DoubleArray are mapped to JavaScript Int8Array, Int16Array, Int32Array, Float32Array, and
Float64Array correspondingly.

kotlin.BooleanArray is mapped to JavaScript Int8Array with a property $type$ == "BooleanArray".

kotlin.CharArray is mapped to JavaScript UInt16Array with a property $type$ == "CharArray".

kotlin.LongArray is mapped to JavaScript Array of kotlin.Long with a property $type$ == "LongArray".

JavaScript
modules
You can compile your Kotlin projects to JavaScript modules for various popular module systems. We currently support the following configurations for JavaScript
modules:

Unified Module Definitions (UMD), which is compatible with both AMD and CommonJS. UMD modules are also able to be executed without being imported or
when no module system is present. This is the default option for the browser and nodejs targets.

Asynchronous Module Definitions (AMD), which is in particular used by the RequireJS library.

787

https://github.com/umdjs/umd
https://github.com/amdjs/amdjs-api/wiki/AMD
https://requirejs.org/

CommonJS, widely used by Node.js/npm (require function and module.exports object)

Plain. Don't compile for any module system. You can access a module by its name in the global scope.

Browser
targets
If you're targeting the browser and want to use a different module system than UMD, you can specify the desired module type in the webpackTask configuration
block. For example, to switch to CommonJS, use:

kotlin	{
				js	{
								browser	{
												webpackTask	{
																output.libraryTarget	=	"commonjs2"
												}
								}
								binaries.executable()
				}
}

Webpack provides two different "flavors" of CommonJS, commonjs and commonjs2, which affect the way your declarations are made available. While in most
cases, you probably want commonjs2, which adds the module.exports syntax to the generated library, you can also opt for the "pure" commonjs option, which
implements the CommonJS specification exactly. To learn more about the difference between commonjs and commonjs2, check here.

JavaScript
libraries
and
Node.js
files
If you are creating a library that will be consumed from JavaScript or a Node.js file, and want to use a different module system, the instructions are slightly different.

Choose
the
target
module
system
To select module kind, set the moduleKind compiler option in the Gradle build script.

Kotlin

tasks.named<KotlinJsCompile>("compileKotlinJs").configure	{
				compilerOptions.moduleKind.set(org.jetbrains.kotlin.gradle.dsl.JsModuleKind.MODULE_COMMONJS)
}

Groovy

compileKotlinJs.compilerOptions.moduleKind	=	org.jetbrains.kotlin.gradle.dsl.JsModuleKind.MODULE_COMMONJS

Available values are: umd (default), commonjs, amd, plain.

In the Kotlin Gradle DSL, there is also a shortcut for setting the CommonJS module kind:

kotlin	{
				js	{
									useCommonJs()
									//	...
				}
}

@JsModule
annotation

This is different from adjusting webpackTask.output.libraryTarget. The library target changes the output generated by webpack (after your code has
already been compiled). compilerOptions.moduleKind changes the output generated by the Kotlin compiler.

788

http://wiki.commonjs.org/wiki/Modules/1.1
https://github.com/webpack/webpack/issues/1114

To tell Kotlin that an external class, package, function or property is a JavaScript module, you can use @JsModule annotation. Consider you have the following
CommonJS module called "hello":

module.exports.sayHello	=	function(name)	{	alert("Hello,	"	+	name);	}

You should declare it like this in Kotlin:

@JsModule("hello")
external	fun	sayHello(name:	String)

Apply
@JsModule
to
packages
Some JavaScript libraries export packages (namespaces) instead of functions and classes. In terms of JavaScript, it's an object that has members that are classes,
functions and properties. Importing these packages as Kotlin objects often looks unnatural. The compiler can map imported JavaScript packages to Kotlin
packages, using the following notation:

@file:JsModule("extModule")
package	ext.jspackage.name

external	fun	foo()

external	class	C

where the corresponding JavaScript module is declared like this:

module.exports	=	{
				foo:		{	/*	some	code	here	*/	},
				C:		{	/*	some	code	here	*/	}
}

Files marked with @file:JsModule annotation can't declare non-external members. The example below produces a compile-time error:

@file:JsModule("extModule")
package	ext.jspackage.name

external	fun	foo()

fun	bar()	=	"!"	+	foo()	+	"!"	//	error	here

Import
deeper
package
hierarchies
In the previous example the JavaScript module exports a single package. However, some JavaScript libraries export multiple packages from within a module. This
case is also supported by Kotlin, though you have to declare a new .kt file for each package you import.

For example, let's make the example a bit more complicated:

module.exports	=	{
				mylib:	{
								pkg1:	{
												foo:	function()	{	/*	some	code	here	*/	},
												bar:	function()	{	/*	some	code	here	*/	}
								},
								pkg2:	{
												baz:	function()	{	/*	some	code	here	*/	}
								}
				}
}

To import this module in Kotlin, you have to write two Kotlin source files:

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg1")
package	extlib.pkg1

external	fun	foo()

789

external	fun	bar()

and

@file:JsModule("extModule")
@file:JsQualifier("mylib.pkg2")
package	extlib.pkg2

external	fun	baz()

@JsNonModule
annotation
When a declaration is marked as @JsModule, you can't use it from Kotlin code when you don't compile it to a JavaScript module. Usually, developers distribute
their libraries both as JavaScript modules and downloadable .js files that you can copy to your project's static resources and include via a <script> tag. To tell Kotlin
that it's okay to use a @JsModule declaration from a non-module environment, add the @JsNonModule annotation. For example, consider the following JavaScript
code:

function	topLevelSayHello(name)	{	alert("Hello,	"	+	name);	}
if	(module	&&	module.exports)	{
				module.exports	=	topLevelSayHello;
}

You could describe it from Kotlin as follows:

@JsModule("hello")
@JsNonModule
@JsName("topLevelSayHello")
external	fun	sayHello(name:	String)

Module
system
used
by
the
Kotlin
Standard
Library
Kotlin is distributed with the Kotlin/JS standard library as a single file, which is itself compiled as an UMD module, so you can use it with any module system
described above. While for most use cases of Kotlin/JS, it is recommended to use a Gradle dependency on kotlin-stdlib-js, it is also available on NPM as the kotlin
package.

Kotlin/JS
reflection
Kotlin/JS provides a limited support for the Kotlin reflection API. The only supported parts of the API are:

class references (::class).

KType and typeof() function.

Class
references
The ::class syntax returns a reference to the class of an instance, or the class corresponding to the given type. In Kotlin/JS, the value of a ::class expression is a
stripped-down KClass implementation that supports only:

simpleName and isInstance() members.

cast() and safeCast() extension functions.

In addition to that, you can use KClass.js to access the JsClass instance corresponding to the class. The JsClass instance itself is a reference to the constructor
function. This can be used to interoperate with JS functions that expect a reference to a constructor.

KType
and
typeOf()
The typeof() function constructs an instance of KType for a given type. The KType API is fully supported in Kotlin/JS except for Java-specific parts.

790

https://www.npmjs.com/package/kotlin
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-type/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/type-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/simple-name.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-class/is-instance.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/cast.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/safe-cast.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/js.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.js/-js-class/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/type-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-type/

Example
Here is an example of the reflection usage in Kotlin/JS.

open	class	Shape
class	Rectangle	:	Shape()

inline	fun	<reified	T>	accessReifiedTypeArg()	=
				println(typeOf<T>().toString())

fun	main()	{
				val	s	=	Shape()
				val	r	=	Rectangle()

				println(r::class.simpleName)	//	Prints	"Rectangle"
				println(Shape::class.simpleName)	//	Prints	"Shape"
				println(Shape::class.js.name)	//	Prints	"Shape"

				println(Shape::class.isInstance(r))	//	Prints	"true"
				println(Rectangle::class.isInstance(s))	//	Prints	"false"
				val	rShape	=	Shape::class.cast(r)	//	Casts	a	Rectangle	"r"	to	Shape

				accessReifiedTypeArg<Rectangle>()	//	Accesses	the	type	via	typeOf().	Prints	"Rectangle"
}

Typesafe
HTML
DSL
The kotlinx.html library provides the ability to generate DOM elements using statically typed HTML builders (and besides JavaScript, it is even available on the JVM
target!) To use the library, include the corresponding repository and dependency to our build.gradle.kts file:

repositories	{
				//	...
				mavenCentral()
}

dependencies	{
				implementation(kotlin("stdlib-js"))
				implementation("org.jetbrains.kotlinx:kotlinx-html-js:0.8.0")
				//	...
}

Once the dependency is included, you can access the different interfaces provided to generate the DOM. To render a headline, some text, and a link, the following
snippet would be sufficient, for example:

import	kotlinx.browser.*
import	kotlinx.html.*
import	kotlinx.html.dom.*

fun	main()	{
				document.body!!.append.div	{
								h1	{
												+"Welcome	to	Kotlin/JS!"
								}
								p	{
												+"Fancy	joining	this	year's	"
												a("https://kotlinconf.com/")	{
																+"KotlinConf"
												}
												+"?"
								}
				}
}

When running this example in the browser, the DOM will be assembled in a straightforward way. This is easily confirmed by checking the Elements of the website
using the developer tools of our browser:

791

https://www.github.com/kotlin/kotlinx.html

Rendering a website from kotlinx.html

To learn more about the kotlinx.html library, check out the GitHub Wiki, where you can find more information about how to create elements without adding them to
the DOM, binding to events like onClick, and examples on how to apply CSS classes to your HTML elements, to name just a few.

Build
a
web
application
with
React
and
Kotlin/JS
—
tutorial
This tutorial will teach you how to build a browser application with Kotlin/JS and the React framework. You will:

Complete common tasks associated with building a typical React application.

Explore how Kotlin's DSLs can be used to help express concepts concisely and uniformly without sacrificing readability, allowing you to write a full-fledged
application completely in Kotlin.

Learn how to use ready-made npm components, use external libraries, and publish the final application.

The output will be a KotlinConf Explorer web app dedicated to the KotlinConf event, with links to conference talks. Users will be able to watch all the talks on one
page and mark them as seen or unseen.

The tutorial assumes you have prior knowledge of Kotlin and basic knowledge of HTML and CSS. Understanding the basic concepts behind React may help you
understand some sample code, but it is not strictly required.

Before
you
start
1. Download and install the latest version of IntelliJ IDEA.

2. Clone the project template and open it in IntelliJ IDEA. The template includes a basic Kotlin Multiplatform Gradle project with all required configurations and
dependencies

Dependencies and tasks in the build.gradle.kts file:

dependencies	{
				//	React,	React	DOM	+	Wrappers
				implementation(enforcedPlatform("org.jetbrains.kotlin-wrappers:kotlin-wrappers-bom:1.0.0-pre.430"))
				implementation("org.jetbrains.kotlin-wrappers:kotlin-react")
				implementation("org.jetbrains.kotlin-wrappers:kotlin-react-dom")

				//	Kotlin	React	Emotion	(CSS)

You can get the final application here.

792

https://github.com/Kotlin/kotlinx.html/wiki/Getting-started
https://github.com/Kotlin/kotlinx.html/wiki/DOM-trees
https://github.com/Kotlin/kotlinx.html/wiki/Events
https://github.com/Kotlin/kotlinx.html/wiki/Elements-CSS-classes
https://reactjs.org/
https://kotlinconf.com/
https://github.com/kotlin-hands-on/web-app-react-kotlin-js-gradle/tree/finished
https://www.jetbrains.com/idea/download/index.html
https://github.com/kotlin-hands-on/web-app-react-kotlin-js-gradle

				implementation("org.jetbrains.kotlin-wrappers:kotlin-emotion")

				//	Video	Player
				implementation(npm("react-player",	"2.12.0"))

				//	Share	Buttons
				implementation(npm("react-share",	"4.4.1"))

				//	Coroutines	&	serialization
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4")
				implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.5.0")
}

An HTML template page in src/jsMain/resources/index.html for inserting JavaScript code that you'll be using in this tutorial:

<!doctype	html>
<html	lang="en">
<head>
				<meta	charset="UTF-8">
				<title>Hello,	Kotlin/JS!</title>
</head>
<body>
				<div	id="root"></div>
				<script	src="confexplorer.js"></script>
</body>
</html>

Kotlin/JS projects are automatically bundled with all of your code and its dependencies into a single JavaScript file with the same name as the project,
confexplorer.js, when you build them. As a typical JavaScript convention, the content of the body (including the root div) is loaded first to ensure that the browser
loads all page elements before the scripts.

A code snippet in src/jsMain/kotlin/Main.kt:

import	kotlinx.browser.document

fun	main()	{
				document.bgColor	=	"red"
}

Run
the
development
server
By default, the Kotlin Multiplatform Gradle plugin comes with support for an embedded webpack-dev-server, allowing you to run the application from the IDE
without manually setting up any servers.

To test that the program successfully runs in the browser, start the development server by invoking the run or browserDevelopmentRun task (available in the other
or kotlin browser directory) from the Gradle tool window inside IntelliJ IDEA:

Gradle tasks list

To run the program from the Terminal, use ./gradlew run instead.

When the project is compiled and bundled, a blank red page will appear in a browser window:

793

https://faqs.skillcrush.com/article/176-where-should-js-script-tags-be-linked-in-html-documents

Blank red page

Enable
hot
reload
/
continuous
mode
Configure continuous compilation mode so you don't have to manually compile and execute your project every time you make changes. Make sure to stop all
running development server instances before proceeding.

1. Edit the run configuration that IntelliJ IDEA automatically generates after running the Gradle run task for the first time:

Edit a run configuration

2. In the Run/Debug Configurations dialog, add the --continuous option to the arguments for the run configuration:

794

Enable continuous mode

After applying the changes, you can use the Run button inside IntelliJ IDEA to start the development server back up. To run the continuous Gradle builds from
the Terminal, use ./gradlew run --continuous instead.

3. To test this feature, change the color of the page to blue in the Main.kt file while the Gradle task is running:

document.bgColor	=	"blue"

The project then recompiles, and after a reload the browser page will be the new color.

You can keep the development server running in continuous mode during the development process. It will automatically rebuild and reload the page when you make
changes.

Create
a
web
app
draft

Add
the
first
static
page
with
React
To make your app display a simple message, replace the code in the Main.kt file with the following:

import	kotlinx.browser.document
import	react.*
import	emotion.react.css
import	csstype.Position
import	csstype.px
import	react.dom.html.ReactHTML.h1
import	react.dom.html.ReactHTML.h3
import	react.dom.html.ReactHTML.div
import	react.dom.html.ReactHTML.p
import	react.dom.html.ReactHTML.img
import	react.dom.client.createRoot

You can find this state of the project on the master branch here.

795

https://github.com/kotlin-hands-on/web-app-react-kotlin-js-gradle/tree/master

import	kotlinx.serialization.Serializable

fun	main()	{
				val	container	=	document.getElementById("root")	?:	error("Couldn't	find	root	container!")
				createRoot(container).render(Fragment.create	{
								h1	{
												+"Hello,	React+Kotlin/JS!"
								}
				})
}

The render() function instructs kotlin-react-dom to render the first HTML element inside a fragment to the root element. This element is a container defined in
src/jsMain/resources/index.html, which was included in the template.

The content is an <h1> header and uses a typesafe DSL to render HTML.

h1 is a function that takes a lambda parameter. When you add the + sign in front of a string literal, the unaryPlus() function is actually invoked using operator
overloading. It appends the string to the enclosed HTML element.

When the project recompiles, the browser displays this HTML page:

An HTML page example

Convert
HTML
to
Kotlin's
typesafe
HTML
DSL
The Kotlin wrappers for React come with a domain-specific language (DSL) that makes it possible to write HTML in pure Kotlin code. In this way, it's similar to JSX
from JavaScript. However, with this markup being Kotlin, you get all the benefits of a statically typed language, such as autocomplete or type checking.

Compare the classic HTML code for your future web app and its typesafe variant in Kotlin:

HTML

<h1>KotlinConf	Explorer</h1>
<div>
				<h3>Videos	to	watch</h3>
				<p>John	Doe:	Building	and	breaking	things</p>
				<p>Jane	Smith:	The	development	process</p>
				<p>Matt	Miller:	The	Web	7.0</p>
				<h3>Videos	watched</h3>
				<p>Tom	Jerry:	Mouseless	development</p>
</div>
<div>
				<h3>John	Doe:	Building	and	breaking	things</h3>
				
</div>

Kotlin

h1	{
				+"KotlinConf	Explorer"
}
div	{
				h3	{
								+"Videos	to	watch"
				}
				p	{
								+	"John	Doe:	Building	and	breaking	things"
				}
				p	{
								+"Jane	Smith:	The	development	process"
				}
				p	{

796

https://github.com/JetBrains/kotlin-wrappers/tree/master/kotlin-react-dom
https://reactjs.org/docs/fragments.html
https://github.com/JetBrains/kotlin-wrappers/blob/master/kotlin-react/README.md
https://reactjs.org/docs/introducing-jsx.html

								+"Matt	Miller:	The	Web	7.0"
				}
				h3	{
								+"Videos	watched"
				}
				p	{
								+"Tom	Jerry:	Mouseless	development"
				}
}
div	{
				h3	{
								+"John	Doe:	Building	and	breaking	things"
				}
				img	{
							src	=	"https://via.placeholder.com/640x360.png?text=Video+Player+Placeholder"
				}
}

Copy the Kotlin code and update the Fragment.create() function call inside the main() function, replacing the previous h1 tag.

Wait for the browser to reload. The page should now look like this:

797

The web app draft

Add
videos
using
Kotlin
constructs
in
markup
There are some advantages to writing HTML in Kotlin using this DSL. You can manipulate your app using regular Kotlin constructs, like loops, conditions,
collections, and string interpolation.

You can now replace the hardcoded list of videos with a list of Kotlin objects:

1. In Main.kt, create a Video data class to keep all video attributes in one place:

data	class	Video(
				val	id:	Int,
				val	title:	String,

798

				val	speaker:	String,
				val	videoUrl:	String
)

2. Fill up the two lists, for unwatched videos and watched videos, respectively. Add these declarations at file-level in Main.kt:

val	unwatchedVideos	=	listOf(
				Video(1,	"Opening	Keynote",	"Andrey	Breslav",	"https://youtu.be/PsaFVLr8t4E"),
				Video(2,	"Dissecting	the	stdlib",	"Huyen	Tue	Dao",	"https://youtu.be/Fzt_9I733Yg"),
				Video(3,	"Kotlin	and	Spring	Boot",	"Nicolas	Frankel",	"https://youtu.be/pSiZVAeReeg")
)

val	watchedVideos	=	listOf(
				Video(4,	"Creating	Internal	DSLs	in	Kotlin",	"Venkat	Subramaniam",	"https://youtu.be/JzTeAM8N1-o")
)

3. To use these videos on the page, write a Kotlin for loop to iterate over the collection of unwatched Video objects. Replace the three p tags under "Videos to
watch" with the following snippet:

for	(video	in	unwatchedVideos)	{
				p	{
								+"${video.speaker}:	${video.title}"
				}
}

4. Apply the same process to modify the code for the single tag following "Videos watched" as well:

for	(video	in	watchedVideos)	{
				p	{
								+"${video.speaker}:	${video.title}"
				}
}

Wait for the browser to reload. The layout should stay the same as before. You can add some more videos to the list to make sure that the loop is working.

Add
styles
with
typesafe
CSS
The kotlin-emotion wrapper for the Emotion library makes it possible to specify CSS attributes – even dynamic ones – right alongside HTML with JavaScript.
Conceptually, that makes it similar to CSS-in-JS – but for Kotlin. The benefit of using a DSL is that you can use Kotlin code constructs to express formatting rules.

The template project for this tutorial already includes the dependency needed to use kotlin-emotion:

dependencies	{
				//	...
				//	Kotlin	React	Emotion	(CSS)	(chapter	3)
				implementation("org.jetbrains.kotlin-wrappers:kotlin-emotion")
				//	...
}

With kotlin-emotion, you can specify a css block inside HTML elements div and h3, where you can define the styles.

To move the video player to the top right-hand corner of the page, use CSS and adjust the code for the video player (the last div in the snippet):

div	{
				css	{
								position	=	Position.absolute
								top	=	10.px
								right	=	10.px
				}
				h3	{
								+"John	Doe:	Building	and	breaking	things"
				}
				img	{
								src	=	"https://via.placeholder.com/640x360.png?text=Video+Player+Placeholder"
				}
}

Feel free to experiment with some other styles. For example, you could change the fontFamily or add some color to your UI.

799

https://github.com/JetBrains/kotlin-wrappers/blob/master/kotlin-emotion/
https://emotion.sh/docs/introduction
https://reactjs.org/docs/faq-styling.html#what-is-css-in-js

Design
app
components
The basic building blocks in React are called components. Components themselves can also be composed of other, smaller components. By combining
components, you build your application. If you structure components to be generic and reusable, you'll be able to use them in multiple parts of the app without
duplicating code or logic.

The content of the render() function generally describes a basic component. The current layout of your application looks like this:

Current layout

If you decompose your application into individual components, you'll end up with a more structured layout in which each component handles its responsibilities:

Structured layout with components

Components encapsulate a particular functionality. Using components shortens source code and makes it easier to read and understand.

Add
the
main
component
To start creating the application's structure, first explicitly specify App, the main component for rendering to the rootelement:

1. Create a new App.kt file in the src/jsMain/kotlin folder.

2. Inside this file, add the following snippet and move the typesafe HTML from Main.kt into it:

800

https://reactjs.org/docs/components-and-props.html

import	kotlinx.coroutines.async
import	react.*
import	react.dom.*
import	kotlinx.browser.window
import	kotlinx.coroutines.*
import	kotlinx.serialization.decodeFromString
import	kotlinx.serialization.json.Json
import	emotion.react.css
import	csstype.Position
import	csstype.px
import	react.dom.html.ReactHTML.h1
import	react.dom.html.ReactHTML.h3
import	react.dom.html.ReactHTML.div
import	react.dom.html.ReactHTML.p
import	react.dom.html.ReactHTML.img

val	App	=	FC<Props>	{
				//	typesafe	HTML	goes	here,	starting	with	the	first	h1	tag!
}

The FC function creates a function component.

3. In the Main.kt file, update the main() function as follows:

fun	main()	{
				val	container	=	document.getElementById("root")	?:	error("Couldn't	find	root	container!")
				createRoot(container).render(App.create())
}

Now the program creates an instance of the App component and renders it to the specified container.

For more information about React concepts, see the documentation and guides.

Extract
a
list
component
Since the watchedVideos and unwatchedVideos lists each contain a list of videos, it makes sense to create a single reusable component, and only adjust the
content displayed in the lists.

The VideoList component follows the same pattern as the App component. It uses the FC builder function, and contains the code from the unwatchedVideos list.

1. Create a new VideoList.kt file in the src/jsMain/kotlin folder and add the following code:

import	kotlinx.browser.window
import	react.*
import	react.dom.*
import	react.dom.html.ReactHTML.p

val	VideoList	=	FC<Props>	{
				for	(video	in	unwatchedVideos)	{
								p	{
												+"${video.speaker}:	${video.title}"
								}
				}
}

2. In App.kt, use the VideoList component by invoking it without parameters:

//	.	.	.

div	{
				h3	{
								+"Videos	to	watch"
				}
				VideoList()

				h3	{
								+"Videos	watched"
				}
				VideoList()
}

//	.	.	.

801

https://reactjs.org/docs/components-and-props.html#function-and-class-components
https://reactjs.org/docs/hello-world.html#how-to-read-this-guide

For now, the App component has no control over the content that is shown by the VideoList component. It's hard-coded, so you see the same list twice.

Add
props
to
pass
data
between
components
Since you're going to reuse the VideoList component, you'll need to be able to fill it with different content. You can add the ability to pass the list of items as an
attribute to the component. In React, these attributes are called props. When the props of a component are changed in React, the framework automatically re-
renders the component.

For VideoList, you'll need a prop containing the list of videos to be shown. Define an interface that holds all the props which can be passed to a VideoList
component:

1. Add the following definition to the VideoList.kt file:

external	interface	VideoListProps	:	Props	{
				var	videos:	List<Video>
}

The external modifier tells the compiler that the interface's implementation is provided externally, so it doesn't try to generate JavaScript code from the
declaration.

2. Adjust the class definition of VideoList to make use of the props that are passed into the FC block as a parameter:

val	VideoList	=	FC<VideoListProps>	{	props	->
				for	(video	in	props.videos)	{
								p	{
												key	=	video.id.toString()
												+"${video.speaker}:	${video.title}"
								}
				}
}

The key attribute helps the React renderer figure out what to do when the value of props.videos changes. It uses the key to determine which parts of a list need
to be refreshed and which ones stay the same. You can find more information about lists and keys in the React guide.

3. In the App component, make sure that the child components are instantiated with the proper attributes. In App.kt, replace the two loops underneath the h3
elements with an invocation of VideoList together with the attributes for unwatchedVideos and watchedVideos. In the Kotlin DSL, you assign them inside a block
belonging to the VideoList component:

h3	{
				+"Videos	to	watch"
}
VideoList	{
				videos	=	unwatchedVideos
}
h3	{
				+"Videos	watched"
}
VideoList	{
				videos	=	watchedVideos
}

After a reload, the browser will show that the lists now render correctly.

Make
the
list
interactive
First, add an alert message that pops up when users click on a list entry. In VideoList.kt, add an onClick handler function that triggers an alert with the current
video:

//	.	.	.

p	{
				key	=	video.id.toString()
				onClick	=	{
								window.alert("Clicked	$video!")
				}
				+"${video.speaker}:	${video.title}"
}

//	.	.	.

802

https://reactjs.org/docs/lists-and-keys.html

If you click on one of the list items in the browser window, you'll get information about the video in an alert window like this:

Browser alert window

Add
state
to
keep
values
Instead of just alerting the user, you can add some functionality for highlighting the selected video with a ▶ triangle. To do that, introduce some state specific to this
component.

State is one of the core concepts in React. In modern React (which uses the so-called Hooks API), state is expressed using the useState hook.

1. Add the following code to the top of the VideoList declaration:

val	VideoList	=	FC<VideoListProps>	{	props	->
				var	selectedVideo:	Video?	by	useState(null)

//	.	.	.

The VideoList functional component keeps state (a value that is independent of the current function invocation). State is nullable, and has the Video? type. Its
default value is null.

The useState() function from React instructs the framework to keep track of state across multiple invocations of the function. For example, even though you
specify a default value, React makes sure that the default value is only assigned in the beginning. When state changes, the component will re-render based
on the new state.

The by keyword indicates that useState() acts as a delegated property. Like with any other variable, you read and write values. The implementation behind
useState() takes care of the machinery required to make state work.

To learn more about the State Hook, check out the React documentation.

2. Change the onClick handler and the text in the VideoList component to look as follows:

val	VideoList	=	FC<VideoListProps>	{	props	->
				var	selectedVideo:	Video?	by	useState(null)
				for	(video	in	props.videos)	{
								p	{
												key	=	video.id.toString()
												onClick	=	{
																selectedVideo	=	video
												}
												if	(video	==	selectedVideo)	{
																+"▶	"
												}
												+"${video.speaker}:	${video.title}"
								}

Defining an onClick function directly as lambda is concise and very useful for prototyping. However, due to the way equality currently works in Kotlin/JS,
performance-wise it's not the most optimized way to pass click handlers. If you want to optimize rendering performance, consider storing your functions
in a variable and passing them.

803

https://youtrack.jetbrains.com/issue/KT-15101
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html

				}
}

When the user clicks a video, its value is assigned to the selectedVideo variable.

When the selected list entry is rendered, the triangle is prepended.

You can find more details about state management in the React FAQ.

Check the browser and click an item in the list to make sure that everything is working correctly.

Compose
components
Currently, the two video lists work on their own, meaning that each list keeps track of a selected video. Users can select two videos, one in the unwatched list and
one in watched, even though there's only one player:

Two videos are selected in both lists simultaneously

A list can't keep track of which video is selected both inside itself, and inside a sibling list. The reason is that the selected video is part not of the list state, but of
the application state. This means you need to lift state out of the individual components.

Lift
state
React makes sure that props can only be passed from a parent component to its children. This prevents components from being hard-wired together.

If a component wants to change state of a sibling component, it needs to do so via its parent. At that point, state also no longer belongs to any of the child
components but to the overarching parent component.

The process of migrating state from components to their parents is called lifting state. For your app, add currentVideo as state to the App component:

1. In App.kt, add the following to the top of the definition of the App component:

val	App	=	FC<Props>	{
				var	currentVideo:	Video?	by	useState(null)

				//	.	.	.
}

The VideoList component no longer needs to keep track of state. It will receive the current video as a prop instead.

2. Remove the useState() call in VideoList.kt.

3. Prepare the VideoList component to receive the selected video as a prop. To do so, expand the VideoListProps interface to contain the selectedVideo:

804

https://reactjs.org/docs/faq-state.html

external	interface	VideoListProps	:	Props	{
				var	videos:	List<Video>
				var	selectedVideo:	Video?
}

4. Change the condition of the triangle so that it uses props instead of state:

if	(video	==	props.selectedVideo)	{
				+"▶	"
}

Pass
handlers
At the moment, there's no way to assign a value to a prop, so the onClick function won't work the way it is currently set up. To change state of a parent component,
you need to lift state again.

In React, state always flows from parent to child. So, to change the application state from one of the child components, you need to move the logic for handling
user interaction to the parent component and then pass the logic in as a prop. Remember that in Kotlin, variables can have the type of a function.

1. Expand the VideoListProps interface again so that it contains a variable onSelectVideo, which is a function that takes a Video and returns Unit:

external	interface	VideoListProps	:	Props	{
				//	...
				var	onSelectVideo:	(Video)	->	Unit
}

2. In the VideoList component, use the new prop in the onClick handler:

onClick	=	{
				props.onSelectVideo(video)
}

You can now delete the selectedVideo variable from the VideoList component.

3. Go back to the App component and pass selectedVideo and a handler for onSelectVideo for each of the two video lists:

VideoList	{
				videos	=	unwatchedVideos	//	and	watchedVideos	respectively
				selectedVideo	=	currentVideo
				onSelectVideo	=	{	video	->
								currentVideo	=	video
				}
}

4. Repeat the previous step for the watched videos list.

Switch back to your browser and make sure that when selecting a video the selection jumps between the two lists without duplication.

Add
more
components

Extract
the
video
player
component
You can now create another self-contained component, a video player, which is currently a placeholder image. Your video player needs to know the talk title, the
author of the talk, and the link to the video. This information is already contained in each Video object, so you can pass it as a prop and access its attributes.

1. Create a new VideoPlayer.kt file and add the following implementation for the VideoPlayer component:

import	csstype.*
import	react.*
import	emotion.react.css
import	react.dom.html.ReactHTML.button
import	react.dom.html.ReactHTML.div
import	react.dom.html.ReactHTML.h3
import	react.dom.html.ReactHTML.img

805

external	interface	VideoPlayerProps	:	Props	{
				var	video:	Video
}

val	VideoPlayer	=	FC<VideoPlayerProps>	{	props	->
				div	{
								css	{
												position	=	Position.absolute
												top	=	10.px
												right	=	10.px
								}
								h3	{
												+"${props.video.speaker}:	${props.video.title}"
								}
								img	{
												src	=	"https://via.placeholder.com/640x360.png?text=Video+Player+Placeholder"														
								}
				}
}

2. Because the VideoPlayerProps interface specifies that the VideoPlayer component takes a non-nullable Video, make sure to handle this in the App component
accordingly.

In App.kt, replace the previous div snippet for the video player with the following:

currentVideo?.let	{	curr	->
				VideoPlayer	{
								video	=	curr
				}
}

The let scope function ensures that the VideoPlayer component is only added when state.currentVideo is not null.

Now clicking an entry in the list will bring up the video player and populate it with the information from the clicked entry.

Add
a
button
and
wire
it
To make it possible for users to mark a video as watched or unwatched and to move it between the two lists, add a button to the VideoPlayer component.

Since this button will move videos between two different lists, the logic handling state change needs to be lifted out of the VideoPlayer and passed in from the
parent as a prop. The button should look different based on whether the video has been watched or not. This is also information you need to pass as a prop.

1. Expand the VideoPlayerProps interface in VideoPlayer.kt to include properties for those two cases:

external	interface	VideoPlayerProps	:	Props	{
				var	video:	Video
				var	onWatchedButtonPressed:	(Video)	->	Unit
				var	unwatchedVideo:	Boolean
}

2. You can now add the button to the actual component. Copy the following snippet into the body of the VideoPlayer component, between the h3 and img tags:

button	{
				css	{
								display	=	Display.block
								backgroundColor	=	if	(props.unwatchedVideo)	NamedColor.lightgreen	else	NamedColor.red
				}
				onClick	=	{
								props.onWatchedButtonPressed(props.video)
				}
				if	(props.unwatchedVideo)	{
								+"Mark	as	watched"
				}	else	{
								+"Mark	as	unwatched"
				}
}

With the help of Kotlin CSS DSL that make it possible to change styles dynamically, you can change the color of the button using a basic Kotlin if expression.

Move
video
lists
to
the
application
state

806

Now it's time to adjust the VideoPlayer usage site in the App component. When the button is clicked, a video should be moved from the unwatched list to the
watched list or vice versa. Since these lists can now actually change, move them into the application state:

1. In App.kt, add the following properties with useState() calls to the top of the App component:

val	App	=	FC<Props>	{
				var	currentVideo:	Video?	by	useState(null)
				var	unwatchedVideos:	List<Video>	by	useState(listOf(
								Video(1,	"Opening	Keynote",	"Andrey	Breslav",	"https://youtu.be/PsaFVLr8t4E"),
								Video(2,	"Dissecting	the	stdlib",	"Huyen	Tue	Dao",	"https://youtu.be/Fzt_9I733Yg"),
								Video(3,	"Kotlin	and	Spring	Boot",	"Nicolas	Frankel",	"https://youtu.be/pSiZVAeReeg")
))
				var	watchedVideos:	List<Video>	by	useState(listOf(
								Video(4,	"Creating	Internal	DSLs	in	Kotlin",	"Venkat	Subramaniam",	"https://youtu.be/JzTeAM8N1-o")
))

				//	.	.	.
}

2. Since all the demo data is included in the default values for watchedVideos and unwatchedVideos directly, you no longer need the file-level declarations. In
Main.kt, delete the declarations for watchedVideos and unwatchedVideos.

3. Change the call-site for VideoPlayer in the App component that belongs to the video player to look like this:

VideoPlayer	{
				video	=	curr
				unwatchedVideo	=	curr	in	unwatchedVideos
				onWatchedButtonPressed	=	{
								if	(video	in	unwatchedVideos)	{
												unwatchedVideos	=	unwatchedVideos	-	video
												watchedVideos	=	watchedVideos	+	video
								}	else	{
												watchedVideos	=	watchedVideos	-	video
												unwatchedVideos	=	unwatchedVideos	+	video
								}
				}
}

Go back to the browser, select a video, and press the button a few times. The video will jump between the two lists.

Use
packages
from
npm
To make the app usable, you still need a video player that actually plays videos and some buttons to help people share the content.

React has a rich ecosystem with a lot of pre-made components you can use instead of building this functionality yourself.

Add
the
video
player
component
To replace the placeholder video component with an actual YouTube player, use the react-player package from npm. It can play videos and allows you to control
the appearance of the player.

For the component documentation and the API description, see its README in GitHub.

1. Check the build.gradle.kts file. The react-player package should be already included:

dependencies	{
				//	...
				//	Video	Player
				implementation(npm("react-player",	"2.12.0"))
				//	...
}

As you can see, npm dependencies can be added to a Kotlin/JS project by using the npm() function in the dependencies block of the build file. The Gradle plugin
then takes care of downloading and installing these dependencies for you. To do so, it uses its own bundled installation of the yarn package manager.

2. To use the JavaScript package from inside the React application, it's necessary to tell the Kotlin compiler what to expect by providing it with external
declarations.

Create a new ReactYouTube.kt file and add the following content:

807

https://www.npmjs.com/package/react-player
https://yarnpkg.com/

@file:JsModule("react-player")
@file:JsNonModule

import	react.*

@JsName("default")
external	val	ReactPlayer:	ComponentClass<dynamic>

When the compiler sees an external declaration like ReactPlayer, it assumes that the implementation for the corresponding class is provided by the dependency
and doesn't generate code for it.

The last two lines are equivalent to a JavaScript import like require("react-player").default;. They tell the compiler that it's certain that a component will conform
to ComponentClass<dynamic> at runtime.

However, in this configuration, the generic type for the props accepted by ReactPlayer is set to dynamic. That means the compiler will accept any code, at the risk
of breaking things at runtime.

A better alternative is to create an external interface that specifies what kind of properties belong to the props for this external component. You can learn about the
props' interface in the README for the component. In this case, use the url and controls props:

1. Adjust the content of ReactYouTube.kt by replacing dynamic with an external interface:

@file:JsModule("react-player")
@file:JsNonModule

import	react.*

@JsName("default")
external	val	ReactPlayer:	ComponentClass<ReactPlayerProps>

external	interface	ReactPlayerProps	:	Props	{
				var	url:	String
				var	controls:	Boolean
}

2. You can now use the new ReactPlayer to replace the gray placeholder rectangle in the VideoPlayer component. In VideoPlayer.kt, replace the img tag with the
following snippet:

ReactPlayer	{
				url	=	props.video.videoUrl
				controls	=	true
}

Add
social
share
buttons
An easy way to share the application's content is to have social share buttons for messengers and email. You can use an off-the-shelf React component for this as
well, for example, react-share:

1. Check the build.gradle.kts file. This npm library should already be included:

dependencies	{
				//	...
				//	Share	Buttons
				implementation(npm("react-share",	"4.4.1"))
				//	...
}

2. To use react-share from Kotlin, you'll need to write more basic external declarations. The examples on GitHub show that a share button consists of two React
components: EmailShareButton and EmailIcon, for example. Different types of share buttons and icons all have the same kind of interface. You'll create the
external declarations for each component the same way you already did for the video player.

Add the following code to a new ReactShare.kt file:

@file:JsModule("react-share")
@file:JsNonModule

import	react.ComponentClass
import	react.Props

808

https://www.npmjs.com/package/react-player
https://github.com/nygardk/react-share/blob/master/README.md
https://github.com/nygardk/react-share/blob/master/demo/Demo.tsx#L61

@JsName("EmailIcon")
external	val	EmailIcon:	ComponentClass<IconProps>

@JsName("EmailShareButton")
external	val	EmailShareButton:	ComponentClass<ShareButtonProps>

@JsName("TelegramIcon")
external	val	TelegramIcon:	ComponentClass<IconProps>

@JsName("TelegramShareButton")
external	val	TelegramShareButton:	ComponentClass<ShareButtonProps>

external	interface	ShareButtonProps	:	Props	{
				var	url:	String
}

external	interface	IconProps	:	Props	{
				var	size:	Int
				var	round:	Boolean
}

3. Add new components into the user interface of the application. In VideoPlayer.kt, add two share buttons in a div right above the usage of ReactPlayer:

//	.	.	.

div	{
				css	{
									position	=	Position.absolute
									top	=	10.px
									right	=	10.px
					}
				EmailShareButton	{
								url	=	props.video.videoUrl
								EmailIcon	{
												size	=	32
												round	=	true
								}
				}
				TelegramShareButton	{
								url	=	props.video.videoUrl
								TelegramIcon	{
												size	=	32
												round	=	true
								}
				}
}

//	.	.	.

You can now check your browser and see whether the buttons actually work. When clicking on the button, a share window should appear with the URL of the video.
If the buttons don't show up or work, you may need to disable your ad and social media blocker.

809

Share window

Feel free to repeat this step with share buttons for other social networks available in react-share.

Use
an
external
REST
API
You can now replace the hard-coded demo data with some real data from a REST API in the app.

For this tutorial, there's a small API. It offers only a single endpoint, videos, and takes a numeric parameter to access an element from the list. If you visit the API
with your browser, you will see that the objects returned from the API have the same structure as Video objects.

Use
JS
functionality
from
Kotlin
Browsers already come with a large variety of Web APIs. You can also use them from Kotlin/JS, since it includes wrappers for these APIs out of the box. One
example is the fetch API, which is used for making HTTP requests.

The first potential issue is that browser APIs like fetch() use callbacks to perform non-blocking operations. When multiple callbacks are supposed to run one after
the other, they need to be nested. Naturally, the code gets heavily indented, with more and more pieces of functionality stacked inside each other, which makes it
harder to read.

To overcome this, you can use Kotlin's coroutines, a better approach for such functionality.

The second issue arises from the dynamically typed nature of JavaScript. There are no guarantees about the type of data returned from the external API. To solve
this, you can use the kotlinx.serialization library.

Check the build.gradle.kts file. The relevant snippet should already exist:

dependencies	{
				//	.	.	.

				//	Coroutines	&	serialization
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.4")
}

810

https://github.com/nygardk/react-share/blob/master/README.md#features
https://my-json-server.typicode.com/kotlin-hands-on/kotlinconf-json/videos/1
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Glossary/Callback_function

Add
serialization
When you call an external API, you get back JSON-formatted text that still needs to be turned into a Kotlin object that can be worked with.

kotlinx.serialization is a library that makes it possible to write these types of conversions from JSON strings to Kotlin objects.

1. Check the build.gradle.kts file. The corresponding snippet should already exist:

plugins	{
				//	.	.	.
				kotlin("plugin.serialization")	version	"1.9.20"
}

dependencies	{
				//	.	.	.

				//	Serialization
				implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.5.0")
}

2. As preparation for fetching the first video, it's necessary to tell the serialization library about the Video class. In Main.kt, add the @Serializable annotation to its
definition:

@Serializable
data	class	Video(
				val	id:	Int,
				val	title:	String,
				val	speaker:	String,
				val	videoUrl:	String
)

Fetch
videos
To fetch a video from the API, add the following function in App.kt (or a new file):

suspend	fun	fetchVideo(id:	Int):	Video	{
				val	response	=	window
								.fetch("https://my-json-server.typicode.com/kotlin-hands-on/kotlinconf-json/videos/$id")
								.await()
								.text()
								.await()
				return	Json.decodeFromString(response)
}

Suspending function fetch() fetches a video with a given id from the API. This response may take a while, so you await() the result. Next, text(), which uses a
callback, reads the body from the response. Then you await() its completion.

Before returning the value of the function, you pass it to Json.decodeFromString, a function from kotlinx.coroutines. It converts the JSON text you received from
the request into a Kotlin object with the appropriate fields.

The window.fetch function call returns a Promise object. You normally would have to define a callback handler that gets invoked once the Promise is resolved
and a result is available. However, with coroutines, you can await() those promises. Whenever a function like await() is called, the method stops (suspends) its
execution. Its execution continues once the Promise can be resolved.

To give users a selection of videos, define the fetchVideos() function, which will fetch 25 videos from the same API as above. To run all the requests concurrently,
use the async functionality provided by Kotlin's coroutines:

1. Add the following implementation to your App.kt:

suspend	fun	fetchVideos():	List<Video>	=	coroutineScope	{
				(1..25).map	{	id	->
								async	{
												fetchVideo(id)
								}
				}.awaitAll()
}

Following the principle of structured concurrency, the implementation is wrapped in a coroutineScope. You can then start 25 asynchronous tasks (one per

811

https://github.com/Kotlin/kotlinx.serialization
https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/docs/coroutines-basics.html#structured-concurrency

request) and wait for all of them to complete.

2. You can now add data to your application. Add the definition for a mainScope, and change your App component so it starts with the following snippet. Don't
forget to replace demo values with emptyLists instances as well:

val	mainScope	=	MainScope()

val	App	=	FC<Props>	{
				var	currentVideo:	Video?	by	useState(null)
				var	unwatchedVideos:	List<Video>	by	useState(emptyList())
				var	watchedVideos:	List<Video>	by	useState(emptyList())

				useEffectOnce	{
								mainScope.launch	{
												unwatchedVideos	=	fetchVideos()
								}
				}

//	.	.	.

The MainScope() is a part of Kotlin's structured concurrency model and creates the scope for asynchronous tasks to run in.

useEffectOnce is another React hook (specifically, a simplified version of the useEffect hook). It indicates that the component performs a side effect. It doesn't
just render itself but also communicates over the network.

Check your browser. The application should show actual data:

Fetched data from API

When you load the page:

The code of the App component will be invoked. This starts the code in the useEffectOnce block.

The App component is rendered with empty lists for the watched and unwatched videos.

When the API requests finish, the useEffectOnce block assigns it to the App component's state. This triggers a re-render.

The code of the App component will be invoked again, but the useEffectOnce block will not run for a second time.

812

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-main-scope.html
https://reactjs.org/docs/hooks-effect.html

If you want to get an in-depth understanding of how coroutines work, check out this tutorial on coroutines.

Deploy
to
production
and
the
cloud
It's time to get the application published to the cloud and make it accessible to other people.

Package
a
production
build
To package all assets in production mode, run the build task in Gradle via the tool window in IntelliJ IDEA or by running ./gradlew build. This generates an optimized
project build, applying various improvements such as DCE (dead code elimination).

Once the build has finished, you can find all the files needed for deployment in /build/dist. They include the JavaScript files, HTML files, and other resources
required to run the application. You can put them on a static HTTP server, serve them using GitHub Pages, or host them on a cloud provider of your choice.

Deploy
to
Heroku
Heroku makes it quite simple to spin up an application that is reachable under its own domain. Their free tier should be sufficient for development purposes.

1. Create an account.

2. Install and authenticate the CLI client.

3. Create a Git repository and attach a Heroku app by running the following commands in the Terminal while in the project root:

git	init
heroku	create
git	add	.
git	commit	-m	"initial	commit"

4. Unlike a regular JVM application that would run on Heroku (one written with Ktor or Spring Boot, for example), your app generates static HTML pages and
JavaScript files that need to be served accordingly. You can adjust the required buildpacks to serve the program properly:

heroku	buildpacks:set	heroku/gradle
heroku	buildpacks:add	https://github.com/heroku/heroku-buildpack-static.git

5. To allow the heroku/gradle buildpack to run properly, a stage task needs to be in the build.gradle.kts file. This task is equivalent to the build task, and the
corresponding alias is already included at the bottom of the file:

//	Heroku	Deployment
tasks.register("stage")	{
				dependsOn("build")
}

6. Add a new static.json file to the project root to configure the buildpack-static.

7. Add the root property inside the file:

{
				"root":	"build/distributions"
}

8. You can now trigger a deployment, for example, by running the following command:

git	add	-A
git	commit	-m	"add	stage	task	and	static	content	root	configuration"
git	push	heroku	master

If the deployment is successful, you will see the URL people can use to reach the application on the internet.

If you're pushing from a non-main branch, adjust the command to push to the main remote, for example, git push heroku feature-branch:main.

813

https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli

Web app deployment to production

What's
next

Add
more
features
You can use the resulting app as a jumping-off point to explore more advanced topics in the realm of React, Kotlin/JS, and more.

Search. You can add a search field to filter the list of talks – by title or by author, for example. Learn about how HTML form elements work in React.

Persistence. Currently, the application loses track of the viewer's watch list every time the page gets reloaded. Consider building your own backend, using one
of the web frameworks available for Kotlin (such as Ktor). Alternatively, look into ways to store information on the client.

Complex APIs. Lots of datasets and APIs are available. You can pull all sorts of data into your application. For example, you can build a visualizer for cat photos
or a royalty-free stock photo API.

Improve
the
style:
responsiveness
and
grids
The application design is still very simple and won't look great on mobile devices or in narrow windows. Explore more of the CSS DSL to make the app more
accessible.

Join
the
community
and
get
help
The best way to report problems and get help is the kotlin-wrappers issue tracker. If you can't find a ticket for your issue, feel free to file a new one. You can also
join the official Kotlin Slack. There are channels for #javascript and #react.

Learn
more
about
coroutines
If you're interested in finding out more about how you can write concurrent code, check out the tutorial on coroutines.

Learn
more
about
React

You can find this state of the project on the finished branch here.

814

https://github.com/kotlin-hands-on/web-app-react-kotlin-js-gradle/tree/finished
https://reactjs.org/docs/forms.html
https://ktor.io/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://thecatapi.com/
https://unsplash.com/developers
https://github.com/JetBrains/kotlin-wrappers/issues
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up

Now that you know the basic React concepts and how they translate to Kotlin, you can convert some other concepts outlined in React's documentation into Kotlin.

Get
started
with
Kotlin
custom
scripting
–
tutorial

Kotlin scripting is the technology that enables executing Kotlin code as scripts without prior compilation or packaging into executables.

For an overview of Kotlin scripting with examples, check out the talk Implementing the Gradle Kotlin DSL by Rodrigo Oliveira from KotlinConf'19.

In this tutorial, you'll create a Kotlin scripting project that executes arbitrary Kotlin code with Maven dependencies. You'll be able to execute scripts like this:

@file:Repository("https://maven.pkg.jetbrains.space/public/p/kotlinx-html/maven")
@file:DependsOn("org.jetbrains.kotlinx:kotlinx-html-jvm:0.7.3")

import	kotlinx.html.*
import	kotlinx.html.stream.*
import	kotlinx.html.attributes.*

val	addressee	=	"World"

print(
				createHTML().html	{
								body	{
												h1	{	+"Hello,	$addressee!"	}
								}
				}
)

The specified Maven dependency (kotlinx-html-jvm for this example) will be resolved from the specified Maven repository or local cache during execution and used
for the rest of the script.

Project
structure
A minimal Kotlin custom scripting project contains two parts:

Script definition – a set of parameters and configurations that define how this script type should be recognized, handled, compiled, and executed.

Scripting host – an application or component that handles script compilation and execution – actually running scripts of this type.

With all of this in mind, it's best to split the project into two modules.

Before
you
start
Download and install the latest version of IntelliJ IDEA.

Create
a
project
1. In IntelliJ IDEA, select File | New | Project.

2. In the panel on the left, select New Project.

3. Name the new project and change its location if necessary.

4. From the Language list, select Kotlin.

5. Select the Gradle build system.

Kotlin scripting is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We appreciate your feedback on it in
YouTrack.

Select the Create Git repository checkbox to place the new project under version control. You will be able to do it later at any time.

815

https://react.dev/learn
https://kotl.in/issue
https://kotlinconf.com/2019/talks/video/2019/126701/
https://www.jetbrains.com/idea/download/index.html

6. From the JDK list, select the JDK that you want to use in your project.

If the JDK is installed on your computer, but not defined in the IDE, select Add JDK and specify the path to the JDK home directory.

If you don't have the necessary JDK on your computer, select Download JDK.

7. Select the Kotlin or Gradle language for the Gradle DSL.

8. Click Create.

Create a root project for custom Kotlin scripting

Add
scripting
modules
Now you have an empty Kotlin/JVM Gradle project. Add the required modules, script definition and scripting host:

1. In IntelliJ IDEA, select File | New | Module.

2. In the panel on the left, select New Module. This module will be the script definition.

3. Name the new module and change its location if necessary.

4. From the Language list, select Java.

5. Select the Gradle build system and Kotlin for the Gradle DSL if you want to write the build script in Kotlin.

6. As a module's parent, select the root module.

816

https://www.oracle.com/java/technologies/downloads/

7. Click Create.

Create script definition module

8. In the module's build.gradle(.kts) file, remove the version of the Kotlin Gradle plugin. It is already in the root project's build script.

9. Repeat previous steps one more time to create a module for the scripting host.

The project should have the following structure:

817

Custom scripting project structure

You can find an example of such a project and more Kotlin scripting examples in the kotlin-script-examples GitHub repository.

Create
a
script
definition
First, define the script type: what developers can write in scripts of this type and how it will be handled. In this tutorial, this includes support for the @Repository and
@DependsOn annotations in the scripts.

1. In the script definition module, add the dependencies on the Kotlin scripting components in the dependencies block of build.gradle(.kts). These dependencies
provide the APIs you will need for the script definition:

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlin:kotlin-scripting-common")
				implementation("org.jetbrains.kotlin:kotlin-scripting-jvm")
				implementation("org.jetbrains.kotlin:kotlin-scripting-dependencies")
				implementation("org.jetbrains.kotlin:kotlin-scripting-dependencies-maven")
				//	coroutines	dependency	is	required	for	this	particular	definition
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")	
}

Groovy

dependencies	{
				implementation	'org.jetbrains.kotlin:kotlin-scripting-common'
				implementation	'org.jetbrains.kotlin:kotlin-scripting-jvm'
				implementation	'org.jetbrains.kotlin:kotlin-scripting-dependencies'
				implementation	'org.jetbrains.kotlin:kotlin-scripting-dependencies-maven'
				//	coroutines	dependency	is	required	for	this	particular	definition
				implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core-jvm:1.7.3'

}

818

https://github.com/Kotlin/kotlin-script-examples/tree/master/jvm/basic/jvm-maven-deps

2. Create the src/main/kotlin/ directory in the module and add a Kotlin source file, for example, scriptDef.kt.

3. In scriptDef.kt, create a class. It will be a superclass for scripts of this type, so declare it abstract or open.

//	abstract	(or	open)	superclass	for	scripts	of	this	type
abstract	class	ScriptWithMavenDeps

This class will also serve as a reference to the script definition later.

4. To make the class a script definition, mark it with the @KotlinScript annotation. Pass two parameters to the annotation:

fileExtension – a string ending with .kts that defines a file extension for scripts of this type.

compilationConfiguration – a Kotlin class that extends ScriptCompilationConfiguration and defines the compilation specifics for this script definition. You'll
create it in the next step.

//	@KotlinScript	annotation	marks	a	script	definition	class
@KotlinScript(
				//	File	extension	for	the	script	type
				fileExtension	=	"scriptwithdeps.kts",
				//	Compilation	configuration	for	the	script	type
				compilationConfiguration	=	ScriptWithMavenDepsConfiguration::class
)
abstract	class	ScriptWithMavenDeps

object	ScriptWithMavenDepsConfiguration:	ScriptCompilationConfiguration()

5. Define the script compilation configuration as shown below.

object	ScriptWithMavenDepsConfiguration	:	ScriptCompilationConfiguration(
				{
								//	Implicit	imports	for	all	scripts	of	this	type
								defaultImports(DependsOn::class,	Repository::class)
								jvm	{
												//	Extract	the	whole	classpath	from	context	classloader	and	use	it	as	dependencies
												dependenciesFromCurrentContext(wholeClasspath	=	true)	
								}
								//	Callbacks
								refineConfiguration	{
												//	Process	specified	annotations	with	the	provided	handler
												onAnnotations(DependsOn::class,	Repository::class,	handler	=	::configureMavenDepsOnAnnotations)
								}
				}
)

The configureMavenDepsOnAnnotations function is as follows:

//	Handler	that	reconfigures	the	compilation	on	the	fly
fun	configureMavenDepsOnAnnotations(context:	ScriptConfigurationRefinementContext):	
ResultWithDiagnostics<ScriptCompilationConfiguration>	{
				val	annotations	=	context.collectedData?.get(ScriptCollectedData.collectedAnnotations)?.takeIf	{	it.isNotEmpty()	}
								?:	return	context.compilationConfiguration.asSuccess()
				return	runBlocking	{
								resolver.resolveFromScriptSourceAnnotations(annotations)
				}.onSuccess	{
								context.compilationConfiguration.with	{	
												dependencies.append(JvmDependency(it))
								}.asSuccess()
				}
}

private	val	resolver	=	CompoundDependenciesResolver(FileSystemDependenciesResolver(),	MavenDependenciesResolver())

You can find the full code here.

In this tutorial, we provide only the working code without explaining Kotlin scripting API. You can find the same code with a detailed explanation on
GitHub.

819

https://github.com/Kotlin/kotlin-script-examples/blob/master/jvm/basic/jvm-maven-deps/script/src/main/kotlin/org/jetbrains/kotlin/script/examples/jvm/resolve/maven/scriptDef.kt
https://github.com/Kotlin/kotlin-script-examples/blob/master/jvm/basic/jvm-maven-deps/script/src/main/kotlin/org/jetbrains/kotlin/script/examples/jvm/resolve/maven/scriptDef.kt

Create
a
scripting
host
The next step is creating the scripting host – the component that handles the script execution.

1. In the scripting host module, add the dependencies in the dependencies block of build.gradle(.kts):

Kotlin scripting components that provide the APIs you need for the scripting host

The script definition module you created previously

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlin:kotlin-scripting-common")
				implementation("org.jetbrains.kotlin:kotlin-scripting-jvm")
				implementation("org.jetbrains.kotlin:kotlin-scripting-jvm-host")
				implementation(project(":script-definition"))	//	the	script	definition	module
}

Groovy

dependencies	{
				implementation	'org.jetbrains.kotlin:kotlin-scripting-common'
				implementation	'org.jetbrains.kotlin:kotlin-scripting-jvm'
				implementation	'org.jetbrains.kotlin:kotlin-scripting-jvm-host'
				implementation	project(':script-definition')	//	the	script	definition	module
}

2. Create the src/main/kotlin/ directory in the module and add a Kotlin source file, for example, host.kt.

3. Define the main function for the application. In its body, check that it has one argument – the path to the script file – and execute the script. You'll define the
script execution in a separate function evalFile in the next step. Declare it empty for now.

main can look like this:

fun	main(vararg	args:	String)	{
				if	(args.size	!=	1)	{
								println("usage:	<app>	<script	file>")
				}	else	{
								val	scriptFile	=	File(args[0])
								println("Executing	script	$scriptFile")
								evalFile(scriptFile)
				}
}

4. Define the script evaluation function. This is where you'll use the script definition. Obtain it by calling createJvmCompilationConfigurationFromTemplate with the
script definition class as a type parameter. Then call BasicJvmScriptingHost().eval, passing it the script code and its compilation configuration. eval returns an
instance of ResultWithDiagnostics, so set it as your function's return type.

fun	evalFile(scriptFile:	File):	ResultWithDiagnostics<EvaluationResult>	{
				val	compilationConfiguration	=	createJvmCompilationConfigurationFromTemplate<ScriptWithMavenDeps>()
				return	BasicJvmScriptingHost().eval(scriptFile.toScriptSource(),	compilationConfiguration,	null)
}

5. Adjust the main function to print information about the script execution:

fun	main(vararg	args:	String)	{
				if	(args.size	!=	1)	{
								println("usage:	<app>	<script	file>")
				}	else	{
								val	scriptFile	=	File(args[0])
								println("Executing	script	$scriptFile")
								val	res	=	evalFile(scriptFile)
								res.reports.forEach	{
												if	(it.severity	>	ScriptDiagnostic.Severity.DEBUG)	{
																println("	:	${it.message}"	+	if	(it.exception	==	null)	""	else	":	${it.exception}")
												}
								}

820

				}
}

You can find the full code here

Run
scripts
To check how your scripting host works, prepare a script to execute and a run configuration.

1. Create the file html.scriptwithdeps.kts with the following content in the project root directory:

@file:Repository("https://maven.pkg.jetbrains.space/public/p/kotlinx-html/maven")
@file:DependsOn("org.jetbrains.kotlinx:kotlinx-html-jvm:0.7.3")

import	kotlinx.html.*;	import	kotlinx.html.stream.*;	import	kotlinx.html.attributes.*

val	addressee	=	"World"

print(
				createHTML().html	{
								body	{
												h1	{	+"Hello,	$addressee!"	}
								}
				}
)

It uses functions from the kotlinx-html-jvm library which is referenced in the @DependsOn annotation argument.

2. Create a run configuration that starts the scripting host and executes this file:

1. Open host.kt and navigate to the main function. It has a Run gutter icon on the left.

2. Right-click the gutter icon and select Modify Run Configuration.

3. In the Create Run Configuration dialog, add the script file name to Program arguments and click OK.

Scripting host run configuration

3. Run the created configuration.

821

https://github.com/Kotlin/kotlin-script-examples/blob/master/jvm/basic/jvm-maven-deps/host/src/main/kotlin/org/jetbrains/kotlin/script/examples/jvm/resolve/maven/host/host.kt

You'll see how the script is executed, resolving the dependency on kotlinx-html-jvm in the specified repository and printing the results of calling its functions:

<html>
		<body>
				<h1>Hello,	World!</h1>
		</body>
</html>

Resolving dependencies may take some time on the first run. Subsequent runs will complete much faster because they use downloaded dependencies from the
local Maven repository.

What's
next?
Once you've created a simple Kotlin scripting project, find more information on this topic:

Read the Kotlin scripting KEEP

Browse more Kotlin scripting examples

Watch the talk Implementing the Gradle Kotlin DSL by Rodrigo Oliveira

Collections
overview
The Kotlin Standard Library provides a comprehensive set of tools for managing collections – groups of a variable number of items (possibly zero) that are
significant to the problem being solved and are commonly operated on.

Collections are a common concept for most programming languages, so if you're familiar with, for example, Java or Python collections, you can skip this
introduction and proceed to the detailed sections.

A collection usually contains a number of objects of the same type (and its subtypes). Objects in a collection are called elements or items. For example, all the
students in a department form a collection that can be used to calculate their average age.

The following collection types are relevant for Kotlin:

List is an ordered collection with access to elements by indices – integer numbers that reflect their position. Elements can occur more than once in a list. An
example of a list is a telephone number: it's a group of digits, their order is important, and they can repeat.

Set is a collection of unique elements. It reflects the mathematical abstraction of set: a group of objects without repetitions. Generally, the order of set elements
has no significance. For example, the numbers on lottery tickets form a set: they are unique, and their order is not important.

Map (or dictionary) is a set of key-value pairs. Keys are unique, and each of them maps to exactly one value. The values can be duplicates. Maps are useful for
storing logical connections between objects, for example, an employee's ID and their position.

Kotlin lets you manipulate collections independently of the exact type of objects stored in them. In other words, you add a String to a list of Strings the same way
as you would do with Ints or a user-defined class. So, the Kotlin Standard Library offers generic interfaces, classes, and functions for creating, populating, and
managing collections of any type.

The collection interfaces and related functions are located in the kotlin.collections package. Let's get an overview of its contents.

Collection
types
The Kotlin Standard Library provides implementations for basic collection types: sets, lists, and maps. A pair of interfaces represent each collection type:

A read-only interface that provides operations for accessing collection elements.

A mutable interface that extends the corresponding read-only interface with write operations: adding, removing, and updating its elements.

Note that a mutable collection doesn't have to be assigned to a var. Write operations with a mutable collection are still possible even if it is assigned to a val. The
benefit of assigning mutable collections to val is that you protect the reference to the mutable collection from modification. Over time, as your code grows and
becomes more complex, it becomes even more important to prevent unintentional modification to references. Use val as much as possible for safer and more

Arrays are not a type of collection. For more information, see Arrays.

822

https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md
https://github.com/Kotlin/kotlin-script-examples
https://kotlinconf.com/2019/talks/video/2019/126701/

robust code. If you try to reassign a val collection, you get a compilation error:

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")
				numbers.add("five")			//	this	is	OK
				println(numbers)
				//numbers	=	mutableListOf("six",	"seven")						//	compilation	error
//sampleEnd

}

The read-only collection types are covariant. This means that, if a Rectangle class inherits from Shape, you can use a List<Rectangle> anywhere the List<Shape> is
required. In other words, the collection types have the same subtyping relationship as the element types. Maps are covariant on the value type, but not on the key
type.

In turn, mutable collections aren't covariant; otherwise, this would lead to runtime failures. If MutableList<Rectangle> was a subtype of MutableList<Shape>, you
could insert other Shape inheritors (for example, Circle) into it, thus violating its Rectangle type argument.

Below is a diagram of the Kotlin collection interfaces:

Collection interfaces hierarchy

Let's walk through the interfaces and their implementations. To learn about Collection, read the section below. To learn about List, Set, and Map, you can either
read the corresponding sections or watch a video by Sebastian Aigner, Kotlin Developer Advocate:

823

Watch video online.

Collection
Collection<T> is the root of the collection hierarchy. This interface represents the common behavior of a read-only collection: retrieving size, checking item
membership, and so on. Collection inherits from the Iterable<T> interface that defines the operations for iterating elements. You can use Collection as a parameter
of a function that applies to different collection types. For more specific cases, use the Collection's inheritors: List and Set.

fun	printAll(strings:	Collection<String>)	{
				for(s	in	strings)	print("$s	")
				println()
}
				
fun	main()	{
				val	stringList	=	listOf("one",	"two",	"one")
				printAll(stringList)
				
				val	stringSet	=	setOf("one",	"two",	"three")
				printAll(stringSet)
}

MutableCollection<T> is a Collection with write operations, such as add and remove.

fun	List<String>.getShortWordsTo(shortWords:	MutableList<String>,	maxLength:	Int)	{
				this.filterTo(shortWords)	{	it.length	<=	maxLength	}
				//	throwing	away	the	articles
				val	articles	=	setOf("a",	"A",	"an",	"An",	"the",	"The")
				shortWords	-=	articles
}

fun	main()	{
				val	words	=	"A	long	time	ago	in	a	galaxy	far	far	away".split("	")
				val	shortWords	=	mutableListOf<String>()
				words.getShortWordsTo(shortWords,	3)
				println(shortWords)
}

List
List<T> stores elements in a specified order and provides indexed access to them. Indices start from zero – the index of the first element – and go to lastIndex
which is the (list.size - 1).

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println("Number	of	elements:	${numbers.size}")
				println("Third	element:	${numbers.get(2)}")
				println("Fourth	element:	${numbers[3]}")
				println("Index	of	element	\"two\"	${numbers.indexOf("two")}")
//sampleEnd
}

Gif

824

https://youtube.com/v/F8jj7e-_jFA
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-collection/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-set/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-collection/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html

List elements (including nulls) can duplicate: a list can contain any number of equal objects or occurrences of a single object. Two lists are considered equal if they
have the same sizes and structurally equal elements at the same positions.

data	class	Person(var	name:	String,	var	age:	Int)

fun	main()	{
//sampleStart
				val	bob	=	Person("Bob",	31)
				val	people	=	listOf(Person("Adam",	20),	bob,	bob)
				val	people2	=	listOf(Person("Adam",	20),	Person("Bob",	31),	bob)
				println(people	==	people2)
				bob.age	=	32
				println(people	==	people2)
//sampleEnd
}

MutableList<T> is a List with list-specific write operations, for example, to add or remove an element at a specific position.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4)
				numbers.add(5)
				numbers.removeAt(1)
				numbers[0]	=	0
				numbers.shuffle()
				println(numbers)
//sampleEnd
}

As you see, in some aspects lists are very similar to arrays. However, there is one important difference: an array's size is defined upon initialization and is never
changed; in turn, a list doesn't have a predefined size; a list's size can be changed as a result of write operations: adding, updating, or removing elements.

In Kotlin, the default implementation of MutableList is ArrayList which you can think of as a resizable array.

Set
Set<T> stores unique elements; their order is generally undefined. null elements are unique as well: a Set can contain only one null. Two sets are equal if they have
the same size, and for each element of a set there is an equal element in the other set.

fun	main()	{
//sampleStart
				val	numbers	=	setOf(1,	2,	3,	4)
				println("Number	of	elements:	${numbers.size}")
				if	(numbers.contains(1))	println("1	is	in	the	set")

				val	numbersBackwards	=	setOf(4,	3,	2,	1)
				println("The	sets	are	equal:	${numbers	==	numbersBackwards}")
//sampleEnd
}

MutableSet is a Set with write operations from MutableCollection.

The default implementation of MutableSet – LinkedHashSet – preserves the order of elements insertion. Hence, the functions that rely on the order, such as first() or
last(), return predictable results on such sets.

fun	main()	{
//sampleStart
				val	numbers	=	setOf(1,	2,	3,	4)		//	LinkedHashSet	is	the	default	implementation
				val	numbersBackwards	=	setOf(4,	3,	2,	1)
				
				println(numbers.first()	==	numbersBackwards.first())
				println(numbers.first()	==	numbersBackwards.last())
//sampleEnd
}

An alternative implementation – HashSet – says nothing about the elements order, so calling such functions on it returns unpredictable results. However, HashSet
requires less memory to store the same number of elements.

825

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-array-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-set/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-set/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-linked-hash-set/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-hash-set/index.html

Map
Map<K, V> is not an inheritor of the Collection interface; however, it's a Kotlin collection type as well. A Map stores key-value pairs (or entries); keys are unique, but
different keys can be paired with equal values. The Map interface provides specific functions, such as access to value by key, searching keys and values, and so on.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key4"	to	1)
				
				println("All	keys:	${numbersMap.keys}")
				println("All	values:	${numbersMap.values}")
				if	("key2"	in	numbersMap)	println("Value	by	key	\"key2\":	${numbersMap["key2"]}")				
				if	(1	in	numbersMap.values)	println("The	value	1	is	in	the	map")
				if	(numbersMap.containsValue(1))	println("The	value	1	is	in	the	map")	//	same	as	previous
//sampleEnd
}

Two maps containing the equal pairs are equal regardless of the pair order.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key4"	to	1)				
				val	anotherMap	=	mapOf("key2"	to	2,	"key1"	to	1,	"key4"	to	1,	"key3"	to	3)
				
				println("The	maps	are	equal:	${numbersMap	==	anotherMap}")
//sampleEnd
}

MutableMap is a Map with map write operations, for example, you can add a new key-value pair or update the value associated with the given key.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2)
				numbersMap.put("three",	3)
				numbersMap["one"]	=	11

				println(numbersMap)
//sampleEnd
}

The default implementation of MutableMap – LinkedHashMap – preserves the order of elements insertion when iterating the map. In turn, an alternative
implementation – HashMap – says nothing about the elements order.

ArrayDeque
ArrayDeque<T> is an implementation of a double-ended queue, which allows you to add or remove elements both at the beginning or end of the queue. As such,
ArrayDeque also fills the role of both a Stack and Queue data structure in Kotlin. Behind the scenes, ArrayDeque is realized using a resizable array that
automatically adjusts in size when required:

fun	main()	{
				val	deque	=	ArrayDeque(listOf(1,	2,	3))

				deque.addFirst(0)
				deque.addLast(4)
				println(deque)	//	[0,	1,	2,	3,	4]

				println(deque.first())	//	0
				println(deque.last())	//	4

				deque.removeFirst()
				deque.removeLast()
				println(deque)	//	[1,	2,	3]
}

Constructing
collections

Construct
from
elements

826

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-linked-hash-map/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-hash-map/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-array-deque/

The most common way to create a collection is with the standard library functions listOf<T>(), setOf<T>(), mutableListOf<T>(), mutableSetOf<T>(). If you provide a
comma-separated list of collection elements as arguments, the compiler detects the element type automatically. When creating empty collections, specify the type
explicitly.

val	numbersSet	=	setOf("one",	"two",	"three",	"four")
val	emptySet	=	mutableSetOf<String>()

The same is available for maps with the functions mapOf() and mutableMapOf(). The map's keys and values are passed as Pair objects (usually created with to infix
function).

val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key4"	to	1)

Note that the to notation creates a short-living Pair object, so it's recommended that you use it only if performance isn't critical. To avoid excessive memory usage,
use alternative ways. For example, you can create a mutable map and populate it using the write operations. The apply() function can help to keep the initialization
fluent here.

val	numbersMap	=	mutableMapOf<String,	String>().apply	{	this["one"]	=	"1";	this["two"]	=	"2"	}

Create
with
collection
builder
functions
Another way of creating a collection is to call a builder function – buildList(), buildSet(), or buildMap(). They create a new, mutable collection of the corresponding
type, populate it using write operations, and return a read-only collection with the same elements:

val	map	=	buildMap	{	//	this	is	MutableMap<String,	Int>,	types	of	key	and	value	are	inferred	from	the	`put()`	calls	below
				put("a",	1)
				put("b",	0)
				put("c",	4)
}

println(map)	//	{a=1,	b=0,	c=4}

Empty
collections
There are also functions for creating collections without any elements: emptyList(), emptySet(), and emptyMap(). When creating empty collections, you should
specify the type of elements that the collection will hold.

val	empty	=	emptyList<String>()

Initializer
functions
for
lists
For lists, there is a constructor-like function that takes the list size and the initializer function that defines the element value based on its index.

fun	main()	{
//sampleStart
				val	doubled	=	List(3,	{	it	*	2	})		//	or	MutableList	if	you	want	to	change	its	content	later
				println(doubled)
//sampleEnd
}

Concrete
type
constructors
To create a concrete type collection, such as an ArrayList or LinkedList, you can use the available constructors for these types. Similar constructors are available for
implementations of Set and Map.

val	linkedList	=	LinkedList<String>(listOf("one",	"two",	"three"))
val	presizedSet	=	HashSet<Int>(32)

827

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/list-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/set-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-list-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-set-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/mutable-map-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-set.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/build-map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/empty-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/empty-set.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/empty-map.html

Copy
To create a collection with the same elements as an existing collection, you can use copying functions. Collection copying functions from the standard library create
shallow copy collections with references to the same elements. Thus, a change made to a collection element reflects in all its copies.

Collection copying functions, such as toList(), toMutableList(), toSet() and others, create a snapshot of a collection at a specific moment. Their result is a new
collection of the same elements. If you add or remove elements from the original collection, this won't affect the copies. Copies may be changed independently of
the source as well.

class	Person(var	name:	String)
fun	main()	{
//sampleStart
				val	alice	=	Person("Alice")
				val	sourceList	=	mutableListOf(alice,	Person("Bob"))
				val	copyList	=	sourceList.toList()
				sourceList.add(Person("Charles"))
				alice.name	=	"Alicia"
				println("First	item's	name	is:	${sourceList[0].name}	in	source	and	${copyList[0].name}	in	copy")
				println("List	size	is:	${sourceList.size}	in	source	and	${copyList.size}	in	copy")
//sampleEnd
}

These functions can also be used for converting collections to other types, for example, build a set from a list or vice versa.

fun	main()	{
//sampleStart
				val	sourceList	=	mutableListOf(1,	2,	3)				
				val	copySet	=	sourceList.toMutableSet()
				copySet.add(3)
				copySet.add(4)				
				println(copySet)
//sampleEnd
}

Alternatively, you can create new references to the same collection instance. New references are created when you initialize a collection variable with an existing
collection. So, when the collection instance is altered through a reference, the changes are reflected in all its references.

fun	main()	{
//sampleStart
				val	sourceList	=	mutableListOf(1,	2,	3)
				val	referenceList	=	sourceList
				referenceList.add(4)
				println("Source	size:	${sourceList.size}")
//sampleEnd
}

Collection initialization can be used for restricting mutability. For example, if you create a List reference to a MutableList, the compiler will produce errors if you try
to modify the collection through this reference.

fun	main()	{
//sampleStart	
				val	sourceList	=	mutableListOf(1,	2,	3)
				val	referenceList:	List<Int>	=	sourceList
				//referenceList.add(4)												//compilation	error
				sourceList.add(4)
				println(referenceList)	//	shows	the	current	state	of	sourceList
//sampleEnd
}

Invoke
functions
on
other
collections
Collections can be created as a result of various operations on other collections. For example, filtering a list creates a new list of elements that match the filter:

fun	main()	{
//sampleStart	
				val	numbers	=	listOf("one",	"two",	"three",	"four")		
				val	longerThan3	=	numbers.filter	{	it.length	>	3	}
				println(longerThan3)
//sampleEnd

828

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-mutable-list.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/to-set.html

}

Mapping produces a list from a transformation's results:

fun	main()	{
//sampleStart	
				val	numbers	=	setOf(1,	2,	3)
				println(numbers.map	{	it	*	3	})
				println(numbers.mapIndexed	{	idx,	value	->	value	*	idx	})
//sampleEnd
}

Association produces maps:

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.associateWith	{	it.length	})
//sampleEnd
}

For more information about operations on collections in Kotlin, see Collection operations overview.

Iterators
For traversing collection elements, the Kotlin standard library supports the commonly used mechanism of iterators – objects that provide access to the elements
sequentially without exposing the underlying structure of the collection. Iterators are useful when you need to process all the elements of a collection one-by-one,
for example, print values or make similar updates to them.

Iterators can be obtained for inheritors of the Iterable<T> interface, including Set and List, by calling the iterator() function.

Once you obtain an iterator, it points to the first element of a collection; calling the next() function returns this element and moves the iterator position to the
following element if it exists.

Once the iterator passes through the last element, it can no longer be used for retrieving elements; neither can it be reset to any previous position. To iterate through
the collection again, create a new iterator.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	numbersIterator	=	numbers.iterator()
				while	(numbersIterator.hasNext())	{
								println(numbersIterator.next())
				}
//sampleEnd
}

Another way to go through an Iterable collection is the well-known for loop. When using for on a collection, you obtain the iterator implicitly. So, the following code is
equivalent to the example above:

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				for	(item	in	numbers)	{
								println(item)
				}
//sampleEnd
}

Finally, there is a useful forEach() function that lets you automatically iterate a collection and execute the given code for each element. So, the same example would
look like this:

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				numbers.forEach	{
								println(it)

829

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/iterator.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterator/next.html

				}
//sampleEnd
}

List
iterators
For lists, there is a special iterator implementation: ListIterator. It supports iterating lists in both directions: forwards and backwards.

Backward iteration is implemented by the functions hasPrevious() and previous(). Additionally, the ListIterator provides information about the element indices with
the functions nextIndex() and previousIndex().

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	listIterator	=	numbers.listIterator()
				while	(listIterator.hasNext())	listIterator.next()
				println("Iterating	backwards:")
				while	(listIterator.hasPrevious())	{
								print("Index:	${listIterator.previousIndex()}")
								println(",	value:	${listIterator.previous()}")
				}
//sampleEnd
}

Having the ability to iterate in both directions, means the ListIterator can still be used after it reaches the last element.

Mutable
iterators
For iterating mutable collections, there is MutableIterator that extends Iterator with the element removal function remove(). So, you can remove elements from a
collection while iterating it.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")	
				val	mutableIterator	=	numbers.iterator()
				
				mutableIterator.next()
				mutableIterator.remove()				
				println("After	removal:	$numbers")
//sampleEnd
}

In addition to removing elements, the MutableListIterator can also insert and replace elements while iterating the list.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"four",	"four")	
				val	mutableListIterator	=	numbers.listIterator()
				
				mutableListIterator.next()
				mutableListIterator.add("two")
				mutableListIterator.next()
				mutableListIterator.set("three")			
				println(numbers)
//sampleEnd
}

Ranges
and
progressions
Kotlin lets you easily create ranges of values using the .rangeTo() and .rangeUntil() functions from the kotlin.ranges package.

To create:

a closed-ended range, call the .rangeTo() function with the .. operator.

an open-ended range, call the .rangeUntil() function with the ..< operator.

830

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list-iterator/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list-iterator/has-previous.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list-iterator/previous.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list-iterator/next-index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list-iterator/previous-index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-iterator/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-iterator/remove.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list-iterator/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/range-to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/range-until.html

For example:

fun	main()	{
//sampleStart
				//	Closed-ended	range
				println(4	in	1..4)
				//	true
				
				//	Open-ended	range
				println(4	in	1..<4)
				//	false
//sampleEnd
}

Ranges are particularly useful for iterating over for loops:

fun	main()	{
//sampleStart
				for	(i	in	1..4)	print(i)
				//	1234
//sampleEnd
}

To iterate numbers in reverse order, use the downTo function instead of ...

fun	main()	{
//sampleStart
				for	(i	in	4	downTo	1)	print(i)
				//	4321
//sampleEnd
}

It is also possible to iterate over numbers with an arbitrary step (not necessarily 1). This is done via the step function.

fun	main()	{
//sampleStart
				for	(i	in	0..8	step	2)	print(i)
				println()
				//	02468
				for	(i	in	0..<8	step	2)	print(i)
				println()
				//	0246
				for	(i	in	8	downTo	0	step	2)	print(i)
				//	86420
//sampleEnd
}

Progression
The ranges of integral types, such as Int, Long, and Char, can be treated as arithmetic progressions. In Kotlin, these progressions are defined by special types:
IntProgression, LongProgression, and CharProgression.

Progressions have three essential properties: the first element, the last element, and a non-zero step. The first element is first, subsequent elements are the previous
element plus a step. Iteration over a progression with a positive step is equivalent to an indexed for loop in Java/JavaScript.

for	(int	i	=	first;	i	<=	last;	i	+=	step)	{
		//	...
}

When you create a progression implicitly by iterating a range, this progression's first and last elements are the range's endpoints, and the step is 1.

fun	main()	{
//sampleStart
				for	(i	in	1..10)	print(i)
				//	12345678910
//sampleEnd
}

831

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/down-to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/step.html
https://en.wikipedia.org/wiki/Arithmetic_progression
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/-int-progression/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/-long-progression/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/-char-progression/index.html

To define a custom progression step, use the step function on a range.

fun	main()	{
//sampleStart
				for	(i	in	1..8	step	2)	print(i)
				//	1357
//sampleEnd
}

The last element of the progression is calculated this way:

For a positive step: the maximum value not greater than the end value such that (last - first) % step == 0.

For a negative step: the minimum value not less than the end value such that (last - first) % step == 0.

Thus, the last element is not always the same as the specified end value.

fun	main()	{
//sampleStart
				for	(i	in	1..9	step	3)	print(i)	//	the	last	element	is	7
				//	147
//sampleEnd
}

Progressions implement Iterable<N>, where N is Int, Long, or Char respectively, so you can use them in various collection functions like map, filter, and other.

fun	main()	{
//sampleStart
				println((1..10).filter	{	it	%	2	==	0	})
				//	[2,	4,	6,	8,	10]
//sampleEnd
}

Sequences
Along with collections, the Kotlin standard library contains another type – sequences (Sequence<T>). Unlike collections, sequences don't contain elements, they
produce them while iterating. Sequences offer the same functions as Iterable but implement another approach to multi-step collection processing.

When the processing of an Iterable includes multiple steps, they are executed eagerly: each processing step completes and returns its result – an intermediate
collection. The following step executes on this collection. In turn, multi-step processing of sequences is executed lazily when possible: actual computing happens
only when the result of the whole processing chain is requested.

The order of operations execution is different as well: Sequence performs all the processing steps one-by-one for every single element. In turn, Iterable completes
each step for the whole collection and then proceeds to the next step.

So, the sequences let you avoid building results of intermediate steps, therefore improving the performance of the whole collection processing chain. However, the
lazy nature of sequences adds some overhead which may be significant when processing smaller collections or doing simpler computations. Hence, you should
consider both Sequence and Iterable and decide which one is better for your case.

Construct

From
elements
To create a sequence, call the sequenceOf() function listing the elements as its arguments.

val	numbersSequence	=	sequenceOf("four",	"three",	"two",	"one")

From
an
Iterable
If you already have an Iterable object (such as a List or a Set), you can create a sequence from it by calling asSequence().

val	numbers	=	listOf("one",	"two",	"three",	"four")

832

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/-sequence/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-iterable/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/sequence-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/as-sequence.html

val	numbersSequence	=	numbers.asSequence()

From
a
function
One more way to create a sequence is by building it with a function that calculates its elements. To build a sequence based on a function, call generateSequence()
with this function as an argument. Optionally, you can specify the first element as an explicit value or a result of a function call. The sequence generation stops
when the provided function returns null. So, the sequence in the example below is infinite.

fun	main()	{
//sampleStart
				val	oddNumbers	=	generateSequence(1)	{	it	+	2	}	//	`it`	is	the	previous	element
				println(oddNumbers.take(5).toList())
				//println(oddNumbers.count())					//	error:	the	sequence	is	infinite
//sampleEnd
}

To create a finite sequence with generateSequence(), provide a function that returns null after the last element you need.

fun	main()	{
//sampleStart
				val	oddNumbersLessThan10	=	generateSequence(1)	{	if	(it	<	8)	it	+	2	else	null	}
				println(oddNumbersLessThan10.count())
//sampleEnd
}

From
chunks
Finally, there is a function that lets you produce sequence elements one by one or by chunks of arbitrary sizes – the sequence() function. This function takes a
lambda expression containing calls of yield() and yieldAll() functions. They return an element to the sequence consumer and suspend the execution of sequence()
until the next element is requested by the consumer. yield() takes a single element as an argument; yieldAll() can take an Iterable object, an Iterator, or another
Sequence. A Sequence argument of yieldAll() can be infinite. However, such a call must be the last: all subsequent calls will never be executed.

fun	main()	{
//sampleStart
				val	oddNumbers	=	sequence	{
								yield(1)
								yieldAll(listOf(3,	5))
								yieldAll(generateSequence(7)	{	it	+	2	})
				}
				println(oddNumbers.take(5).toList())
//sampleEnd
}

Sequence
operations
The sequence operations can be classified into the following groups regarding their state requirements:

Stateless operations require no state and process each element independently, for example, map() or filter(). Stateless operations can also require a small
constant amount of state to process an element, for example, take() or drop().

Stateful operations require a significant amount of state, usually proportional to the number of elements in a sequence.

If a sequence operation returns another sequence, which is produced lazily, it's called intermediate. Otherwise, the operation is terminal. Examples of terminal
operations are toList() or sum(). Sequence elements can be retrieved only with terminal operations.

Sequences can be iterated multiple times; however some sequence implementations might constrain themselves to be iterated only once. That is mentioned
specifically in their documentation.

Sequence
processing
example
Let's take a look at the difference between Iterable and Sequence with an example.

833

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/generate-sequence.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/sequence.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/-sequence-scope/yield.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/-sequence-scope/yield-all.html

Iterable
Assume that you have a list of words. The code below filters the words longer than three characters and prints the lengths of first four such words.

fun	main()	{				
//sampleStart
				val	words	=	"The	quick	brown	fox	jumps	over	the	lazy	dog".split("	")
				val	lengthsList	=	words.filter	{	println("filter:	$it");	it.length	>	3	}
								.map	{	println("length:	${it.length}");	it.length	}
								.take(4)

				println("Lengths	of	first	4	words	longer	than	3	chars:")
				println(lengthsList)
//sampleEnd
}

When you run this code, you'll see that the filter() and map() functions are executed in the same order as they appear in the code. First, you see filter: for all
elements, then length: for the elements left after filtering, and then the output of the two last lines.

This is how the list processing goes:

List processing

Sequence
Now let's write the same with sequences:

fun	main()	{
//sampleStart
				val	words	=	"The	quick	brown	fox	jumps	over	the	lazy	dog".split("	")
				//convert	the	List	to	a	Sequence
				val	wordsSequence	=	words.asSequence()

				val	lengthsSequence	=	wordsSequence.filter	{	println("filter:	$it");	it.length	>	3	}
								.map	{	println("length:	${it.length}");	it.length	}
								.take(4)

				println("Lengths	of	first	4	words	longer	than	3	chars")
				//	terminal	operation:	obtaining	the	result	as	a	List
				println(lengthsSequence.toList())
//sampleEnd
}

The output of this code shows that the filter() and map() functions are called only when building the result list. So, you first see the line of text "Lengths of.." and then
the sequence processing starts. Note that for elements left after filtering, the map executes before filtering the next element. When the result size reaches 4, the
processing stops because it's the largest possible size that take(4) can return.

The sequence processing goes like this:

834

Sequences processing

In this example, the sequence processing takes 18 steps instead of 23 steps for doing the same with lists.

Collection
operations
overview
The Kotlin standard library offers a broad variety of functions for performing operations on collections. This includes simple operations, such as getting or adding
elements, as well as more complex ones including search, sorting, filtering, transformations, and so on.

Extension
and
member
functions
Collection operations are declared in the standard library in two ways: member functions of collection interfaces and extension functions.

Member functions define operations that are essential for a collection type. For example, Collection contains the function isEmpty() for checking its emptiness; List
contains get() for index access to elements, and so on.

When you create your own implementations of collection interfaces, you must implement their member functions. To make the creation of new implementations
easier, use the skeletal implementations of collection interfaces from the standard library: AbstractCollection, AbstractList, AbstractSet, AbstractMap, and their
mutable counterparts.

Other collection operations are declared as extension functions. These are filtering, transformation, ordering, and other collection processing functions.

Common
operations
Common operations are available for both read-only and mutable collections. Common operations fall into these groups:

Transformations

Filtering

plus and minus operators

Grouping

Retrieving collection parts

Retrieving single elements

Ordering

Aggregate operations

835

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-collection/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-collection/is-empty.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/get.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-collection/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-set/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-map/index.html

Operations described on these pages return their results without affecting the original collection. For example, a filtering operation produces a new collection that
contains all the elements matching the filtering predicate. Results of such operations should be either stored in variables, or used in some other way, for example,
passed in other functions.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")		
				numbers.filter	{	it.length	>	3	}		//	nothing	happens	with	`numbers`,	result	is	lost
				println("numbers	are	still	$numbers")
				val	longerThan3	=	numbers.filter	{	it.length	>	3	}	//	result	is	stored	in	`longerThan3`
				println("numbers	longer	than	3	chars	are	$longerThan3")
//sampleEnd
}

For certain collection operations, there is an option to specify the destination object. Destination is a mutable collection to which the function appends its resulting
items instead of returning them in a new object. For performing operations with destinations, there are separate functions with the To postfix in their names, for
example, filterTo() instead of filter() or associateTo() instead of associate(). These functions take the destination collection as an additional parameter.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	filterResults	=	mutableListOf<String>()		//destination	object
				numbers.filterTo(filterResults)	{	it.length	>	3	}
				numbers.filterIndexedTo(filterResults)	{	index,	_	->	index	==	0	}
				println(filterResults)	//	contains	results	of	both	operations
//sampleEnd
}

For convenience, these functions return the destination collection back, so you can create it right in the corresponding argument of the function call:

fun	main()	{
				val	numbers	=	listOf("one",	"two",	"three",	"four")
//sampleStart
				//	filter	numbers	right	into	a	new	hash	set,	
				//	thus	eliminating	duplicates	in	the	result
				val	result	=	numbers.mapTo(HashSet())	{	it.length	}
				println("distinct	item	lengths	are	$result")
//sampleEnd
}

Functions with destination are available for filtering, association, grouping, flattening, and other operations. For the complete list of destination operations see the
Kotlin collections reference.

Write
operations
For mutable collections, there are also write operations that change the collection state. Such operations include adding, removing, and updating elements. Write
operations are listed in the Write operations and corresponding sections of List-specific operations and Map specific operations.

For certain operations, there are pairs of functions for performing the same operation: one applies the operation in-place and the other returns the result as a
separate collection. For example, sort() sorts a mutable collection in-place, so its state changes; sorted() creates a new collection that contains the same elements
in the sorted order.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")
				val	sortedNumbers	=	numbers.sorted()
				println(numbers	==	sortedNumbers)		//	false
				numbers.sort()
				println(numbers	==	sortedNumbers)		//	true
//sampleEnd
}

Collection
transformation
operations
The Kotlin standard library provides a set of extension functions for collection transformations. These functions build new collections from existing ones based on

836

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/associate-to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/associate.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sort.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted.html

the transformation rules provided. In this page, we'll give an overview of the available collection transformation functions.

Map
The mapping transformation creates a collection from the results of a function on the elements of another collection. The basic mapping function is map(). It applies
the given lambda function to each subsequent element and returns the list of the lambda results. The order of results is the same as the original order of elements.
To apply a transformation that additionally uses the element index as an argument, use mapIndexed().

fun	main()	{
//sampleStart
				val	numbers	=	setOf(1,	2,	3)
				println(numbers.map	{	it	*	3	})
				println(numbers.mapIndexed	{	idx,	value	->	value	*	idx	})
//sampleEnd
}

If the transformation produces null on certain elements, you can filter out the nulls from the result collection by calling the mapNotNull() function instead of map(), or
mapIndexedNotNull() instead of mapIndexed().

fun	main()	{
//sampleStart
				val	numbers	=	setOf(1,	2,	3)
				println(numbers.mapNotNull	{	if	(it	==	2)	null	else	it	*	3	})
				println(numbers.mapIndexedNotNull	{	idx,	value	->	if	(idx	==	0)	null	else	value	*	idx	})
//sampleEnd
}

When transforming maps, you have two options: transform keys leaving values unchanged and vice versa. To apply a given transformation to keys, use mapKeys();
in turn, mapValues() transforms values. Both functions use the transformations that take a map entry as an argument, so you can operate both its key and value.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key11"	to	11)
				println(numbersMap.mapKeys	{	it.key.uppercase()	})
				println(numbersMap.mapValues	{	it.value	+	it.key.length	})
//sampleEnd
}

Zip
Zipping transformation is building pairs from elements with the same positions in both collections. In the Kotlin standard library, this is done by the zip() extension
function.

When called on a collection or an array with another collection (or array) as an argument, zip() returns the List of Pair objects. The elements of the receiver collection
are the first elements in these pairs.

If the collections have different sizes, the result of the zip() is the smaller size; the last elements of the larger collection are not included in the result.

zip() can also be called in the infix form a zip b.

fun	main()	{
//sampleStart
				val	colors	=	listOf("red",	"brown",	"grey")
				val	animals	=	listOf("fox",	"bear",	"wolf")
				println(colors	zip	animals)

				val	twoAnimals	=	listOf("fox",	"bear")
				println(colors.zip(twoAnimals))
//sampleEnd
}

You can also call zip() with a transformation function that takes two parameters: the receiver element and the argument element. In this case, the result List contains
the return values of the transformation function called on pairs of the receiver and the argument elements with the same positions.

fun	main()	{
//sampleStart

837

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-not-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-indexed-not-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-keys.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map-values.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/zip.html

				val	colors	=	listOf("red",	"brown",	"grey")
				val	animals	=	listOf("fox",	"bear",	"wolf")
				
				println(colors.zip(animals)	{	color,	animal	->	"The	${animal.replaceFirstChar	{	it.uppercase()	}}	is	$color"})
//sampleEnd
}

When you have a List of Pairs, you can do the reverse transformation – unzipping – that builds two lists from these pairs:

The first list contains the first elements of each Pair in the original list.

The second list contains the second elements.

To unzip a list of pairs, call unzip().

fun	main()	{
//sampleStart
				val	numberPairs	=	listOf("one"	to	1,	"two"	to	2,	"three"	to	3,	"four"	to	4)
				println(numberPairs.unzip())
//sampleEnd
}

Associate
Association transformations allow building maps from the collection elements and certain values associated with them. In different association types, the elements
can be either keys or values in the association map.

The basic association function associateWith() creates a Map in which the elements of the original collection are keys, and values are produced from them by the
given transformation function. If two elements are equal, only the last one remains in the map.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.associateWith	{	it.length	})
//sampleEnd
}

For building maps with collection elements as values, there is the function associateBy(). It takes a function that returns a key based on an element's value. If two
elements' keys are equal, only the last one remains in the map.

associateBy() can also be called with a value transformation function.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")

				println(numbers.associateBy	{	it.first().uppercaseChar()	})
				println(numbers.associateBy(keySelector	=	{	it.first().uppercaseChar()	},	valueTransform	=	{	it.length	}))
//sampleEnd
}

Another way to build maps in which both keys and values are somehow produced from collection elements is the function associate(). It takes a lambda function
that returns a Pair: the key and the value of the corresponding map entry.

Note that associate() produces short-living Pair objects which may affect the performance. Thus, associate() should be used when the performance isn't critical or
it's more preferable than other options.

An example of the latter is when a key and the corresponding value are produced from an element together.

fun	main()	{
data	class	FullName	(val	firstName:	String,	val	lastName:	String)

fun	parseFullName(fullName:	String):	FullName	{
				val	nameParts	=	fullName.split("	")
				if	(nameParts.size	==	2)	{
								return	FullName(nameParts[0],	nameParts[1])
				}	else	throw	Exception("Wrong	name	format")
}

838

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/unzip.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/associate-with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/associate-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/associate.html

//sampleStart
				val	names	=	listOf("Alice	Adams",	"Brian	Brown",	"Clara	Campbell")
				println(names.associate	{	name	->	parseFullName(name).let	{	it.lastName	to	it.firstName	}	})		
//sampleEnd
}

Here we call a transform function on an element first, and then build a pair from the properties of that function's result.

Flatten
If you operate nested collections, you may find the standard library functions that provide flat access to nested collection elements useful.

The first function is flatten(). You can call it on a collection of collections, for example, a List of Sets. The function returns a single List of all the elements of the
nested collections.

fun	main()	{
//sampleStart
				val	numberSets	=	listOf(setOf(1,	2,	3),	setOf(4,	5,	6),	setOf(1,	2))
				println(numberSets.flatten())
//sampleEnd
}

Another function – flatMap() provides a flexible way to process nested collections. It takes a function that maps a collection element to another collection. As a
result, flatMap() returns a single list of its return values on all the elements. So, flatMap() behaves as a subsequent call of map() (with a collection as a mapping
result) and flatten().

data	class	StringContainer(val	values:	List<String>)

fun	main()	{
//sampleStart
				val	containers	=	listOf(
								StringContainer(listOf("one",	"two",	"three")),
								StringContainer(listOf("four",	"five",	"six")),
								StringContainer(listOf("seven",	"eight"))
)
				println(containers.flatMap	{	it.values	})
//sampleEnd
}

String
representation
If you need to retrieve the collection content in a readable format, use functions that transform the collections to strings: joinToString() and joinTo().

joinToString() builds a single String from the collection elements based on the provided arguments. joinTo() does the same but appends the result to the given
Appendable object.

When called with the default arguments, the functions return the result similar to calling toString() on the collection: a String of elements' string representations
separated by commas with spaces.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				
				println(numbers)									
				println(numbers.joinToString())
				
				val	listString	=	StringBuffer("The	list	of	numbers:	")
				numbers.joinTo(listString)
				println(listString)
//sampleEnd
}

To build a custom string representation, you can specify its parameters in function arguments separator, prefix, and postfix. The resulting string will start with the
prefix and end with the postfix. The separator will come after each element except the last.

fun	main()	{
//sampleStart

839

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/flatten.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/flat-map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/join-to-string.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/join-to.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.text/-appendable/index.html

				val	numbers	=	listOf("one",	"two",	"three",	"four")				
				println(numbers.joinToString(separator	=	"	|	",	prefix	=	"start:	",	postfix	=	":	end"))
//sampleEnd
}

For bigger collections, you may want to specify the limit – a number of elements that will be included into result. If the collection size exceeds the limit, all the other
elements will be replaced with a single value of the truncated argument.

fun	main()	{
//sampleStart
				val	numbers	=	(1..100).toList()
				println(numbers.joinToString(limit	=	10,	truncated	=	"<...>"))
//sampleEnd
}

Finally, to customize the representation of elements themselves, provide the transform function.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.joinToString	{	"Element:	${it.uppercase()}"})
//sampleEnd
}

Filtering
collections
Filtering is one of the most popular tasks in collection processing. In Kotlin, filtering conditions are defined by predicates – lambda functions that take a collection
element and return a boolean value: true means that the given element matches the predicate, false means the opposite.

The standard library contains a group of extension functions that let you filter collections in a single call. These functions leave the original collection unchanged, so
they are available for both mutable and read-only collections. To operate the filtering result, you should assign it to a variable or chain the functions after filtering.

Filter
by
predicate
The basic filtering function is filter(). When called with a predicate, filter() returns the collection elements that match it. For both List and Set, the resulting collection
is a List, for Map it's a Map as well.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")		
				val	longerThan3	=	numbers.filter	{	it.length	>	3	}
				println(longerThan3)

				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key11"	to	11)
				val	filteredMap	=	numbersMap.filter	{	(key,	value)	->	key.endsWith("1")	&&	value	>	10}
				println(filteredMap)
//sampleEnd
}

The predicates in filter() can only check the values of the elements. If you want to use element positions in the filter, use filterIndexed(). It takes a predicate with two
arguments: the index and the value of an element.

To filter collections by negative conditions, use filterNot(). It returns a list of elements for which the predicate yields false.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				
				val	filteredIdx	=	numbers.filterIndexed	{	index,	s	->	(index	!=	0)	&&	(s.length	<	5)		}
				val	filteredNot	=	numbers.filterNot	{	it.length	<=	3	}

				println(filteredIdx)
				println(filteredNot)
//sampleEnd
}

840

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-not.html

There are also functions that narrow the element type by filtering elements of a given type:

filterIsInstance() returns collection elements of a given type. Being called on a List<Any>, filterIsInstance<T>() returns a List<T>, thus allowing you to call
functions of the T type on its items.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(null,	1,	"two",	3.0,	"four")
				println("All	String	elements	in	upper	case:")
				numbers.filterIsInstance<String>().forEach	{
								println(it.uppercase())
				}
//sampleEnd
}

filterNotNull() returns all non-nullable elements. Being called on a List<T?>, filterNotNull() returns a List<T: Any>, thus allowing you to treat the elements as non-
nullable objects.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(null,	"one",	"two",	null)
				numbers.filterNotNull().forEach	{
								println(it.length)			//	length	is	unavailable	for	nullable	Strings
				}
//sampleEnd
}

Partition
Another filtering function – partition() – filters a collection by a predicate and keeps the elements that don't match it in a separate list. So, you have a Pair of Lists as
a return value: the first list containing elements that match the predicate and the second one containing everything else from the original collection.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	(match,	rest)	=	numbers.partition	{	it.length	>	3	}

				println(match)
				println(rest)
//sampleEnd
}

Test
predicates
Finally, there are functions that simply test a predicate against collection elements:

any() returns true if at least one element matches the given predicate.

none() returns true if none of the elements match the given predicate.

all() returns true if all elements match the given predicate. Note that all() returns true when called with any valid predicate on an empty collection. Such behavior is
known in logic as vacuous truth.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")

				println(numbers.any	{	it.endsWith("e")	})
				println(numbers.none	{	it.endsWith("a")	})
				println(numbers.all	{	it.endsWith("e")	})

				println(emptyList<Int>().all	{	it	>	5	})			//	vacuous	truth
//sampleEnd
}

any() and none() can also be used without a predicate: in this case they just check the collection emptiness. any() returns true if there are elements and false if there
aren't; none() does the opposite.

841

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-is-instance.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-not-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/partition.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/any.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/none.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/all.html
https://en.wikipedia.org/wiki/Vacuous_truth

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	empty	=	emptyList<String>()

				println(numbers.any())
				println(empty.any())
				
				println(numbers.none())
				println(empty.none())
//sampleEnd
}

Plus
and
minus
operators
In Kotlin, plus (+) and minus (-) operators are defined for collections. They take a collection as the first operand; the second operand can be either an element or
another collection. The return value is a new read-only collection:

The result of plus contains the elements from the original collection and from the second operand.

The result of minus contains the elements of the original collection except the elements from the second operand. If it's an element, minus removes its first
occurrence; if it's a collection, all occurrences of its elements are removed.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")

				val	plusList	=	numbers	+	"five"
				val	minusList	=	numbers	-	listOf("three",	"four")
				println(plusList)
				println(minusList)
//sampleEnd
}

For the details on plus and minus operators for maps, see Map specific operations. The augmented assignment operators plusAssign (+=) and minusAssign (-=) are
also defined for collections. However, for read-only collections, they actually use the plus or minus operators and try to assign the result to the same variable. Thus,
they are available only on var read-only collections. For mutable collections, they modify the collection if it's a val. For more details see Collection write operations.

Grouping
The Kotlin standard library provides extension functions for grouping collection elements. The basic function groupBy() takes a lambda function and returns a Map.
In this map, each key is the lambda result and the corresponding value is the List of elements on which this result is returned. This function can be used, for
example, to group a list of Strings by their first letter.

You can also call groupBy() with a second lambda argument – a value transformation function. In the result map of groupBy() with two lambdas, the keys produced
by keySelector function are mapped to the results of the value transformation function instead of the original elements.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five")

				println(numbers.groupBy	{	it.first().uppercase()	})
				println(numbers.groupBy(keySelector	=	{	it.first()	},	valueTransform	=	{	it.uppercase()	}))
//sampleEnd
}

If you want to group elements and then apply an operation to all groups at one time, use the function groupingBy(). It returns an instance of the Grouping type. The
Grouping instance lets you apply operations to all groups in a lazy manner: the groups are actually built right before the operation execution.

Namely, Grouping supports the following operations:

eachCount() counts the elements in each group.

fold() and reduce() perform fold and reduce operations on each group as a separate collection and return the results.

aggregate() applies a given operation subsequently to all the elements in each group and returns the result. This is the generic way to perform any operations on
a Grouping. Use it to implement custom operations when fold or reduce are not enough.

842

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/group-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/grouping-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-grouping/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/each-count.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fold.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/aggregate.html

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.groupingBy	{	it.first()	}.eachCount())
//sampleEnd
}

Retrieve
collection
parts
The Kotlin standard library contains extension functions for retrieving parts of a collection. These functions provide a variety of ways to select elements for the result
collection: listing their positions explicitly, specifying the result size, and others.

Slice
slice() returns a list of the collection elements with given indices. The indices may be passed either as a range or as a collection of integer values.

fun	main()	{
//sampleStart				
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")				
				println(numbers.slice(1..3))
				println(numbers.slice(0..4	step	2))
				println(numbers.slice(setOf(3,	5,	0)))				
//sampleEnd
}

Take
and
drop
To get the specified number of elements starting from the first, use the take() function. For getting the last elements, use takeLast(). When called with a number
larger than the collection size, both functions return the whole collection.

To take all the elements except a given number of first or last elements, call the drop() and dropLast() functions respectively.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.take(3))
				println(numbers.takeLast(3))
				println(numbers.drop(1))
				println(numbers.dropLast(5))
//sampleEnd
}

You can also use predicates to define the number of elements for taking or dropping. There are four functions similar to the ones described above:

takeWhile() is take() with a predicate: it takes the elements up to but excluding the first one not matching the predicate. If the first collection element doesn't
match the predicate, the result is empty.

takeLastWhile() is similar to takeLast(): it takes the range of elements matching the predicate from the end of the collection. The first element of the range is the
element next to the last element not matching the predicate. If the last collection element doesn't match the predicate, the result is empty;

dropWhile() is the opposite to takeWhile() with the same predicate: it returns the elements from the first one not matching the predicate to the end.

dropLastWhile() is the opposite to takeLastWhile() with the same predicate: it returns the elements from the beginning to the last one not matching the predicate.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.takeWhile	{	!it.startsWith('f')	})
				println(numbers.takeLastWhile	{	it	!=	"three"	})
				println(numbers.dropWhile	{	it.length	==	3	})
				println(numbers.dropLastWhile	{	it.contains('i')	})
//sampleEnd
}

843

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/slice.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/take.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/take-last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/drop.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/drop-last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/take-while.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/take-last-while.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/drop-while.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/drop-last-while.html

Chunked
To break a collection into parts of a given size, use the chunked() function. chunked() takes a single argument – the size of the chunk – and returns a List of Lists of
the given size. The first chunk starts from the first element and contains the size elements, the second chunk holds the next size elements, and so on. The last chunk
may have a smaller size.

fun	main()	{
//sampleStart
				val	numbers	=	(0..13).toList()
				println(numbers.chunked(3))
//sampleEnd
}

You can also apply a transformation for the returned chunks right away. To do this, provide the transformation as a lambda function when calling chunked(). The
lambda argument is a chunk of the collection. When chunked() is called with a transformation, the chunks are short-living Lists that should be consumed right in
that lambda.

fun	main()	{
//sampleStart
				val	numbers	=	(0..13).toList()	
				println(numbers.chunked(3)	{	it.sum()	})		//	`it`	is	a	chunk	of	the	original	collection
//sampleEnd
}

Windowed
You can retrieve all possible ranges of the collection elements of a given size. The function for getting them is called windowed(): it returns a list of element ranges
that you would see if you were looking at the collection through a sliding window of the given size. Unlike chunked(), windowed() returns element ranges (windows)
starting from each collection element. All the windows are returned as elements of a single List.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five")				
				println(numbers.windowed(3))
//sampleEnd
}

windowed() provides more flexibility with optional parameters:

step defines a distance between first elements of two adjacent windows. By default the value is 1, so the result contains windows starting from all elements. If
you increase the step to 2, you will receive only windows starting from odd elements: first, third, and so on.

partialWindows includes windows of smaller sizes that start from the elements at the end of the collection. For example, if you request windows of three
elements, you can't build them for the last two elements. Enabling partialWindows in this case includes two more lists of sizes 2 and 1.

Finally, you can apply a transformation to the returned ranges right away. To do this, provide the transformation as a lambda function when calling windowed().

fun	main()	{
//sampleStart
				val	numbers	=	(1..10).toList()
				println(numbers.windowed(3,	step	=	2,	partialWindows	=	true))
				println(numbers.windowed(3)	{	it.sum()	})
//sampleEnd
}

To build two-element windows, there is a separate function - zipWithNext(). It creates pairs of adjacent elements of the receiver collection. Note that zipWithNext()
doesn't break the collection into pairs; it creates a Pair for each element except the last one, so its result on [1, 2, 3, 4] is [[1, 2], [2, 3], [3, 4]], not [[1, 2], [3, 4]].
zipWithNext() can be called with a transformation function as well; it should take two elements of the receiver collection as arguments.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five")				
				println(numbers.zipWithNext())
				println(numbers.zipWithNext()	{	s1,	s2	->	s1.length	>	s2.length})
//sampleEnd
}

844

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/chunked.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/windowed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/zip-with-next.html

Retrieve
single
elements
Kotlin collections provide a set of functions for retrieving single elements from collections. Functions described on this page apply to both lists and sets.

As the definition of list says, a list is an ordered collection. Hence, every element of a list has its position that you can use for referring. In addition to functions
described on this page, lists offer a wider set of ways to retrieve and search for elements by indices. For more details, see List-specific operations.

In turn, set is not an ordered collection by definition. However, the Kotlin Set stores elements in certain orders. These can be the order of insertion (in
LinkedHashSet), natural sorting order (in SortedSet), or another order. The order of a set of elements can also be unknown. In such cases, the elements are still
ordered somehow, so the functions that rely on the element positions still return their results. However, such results are unpredictable to the caller unless they know
the specific implementation of Set used.

Retrieve
by
position
For retrieving an element at a specific position, there is the function elementAt(). Call it with the integer number as an argument, and you'll receive the collection
element at the given position. The first element has the position 0, and the last one is (size - 1).

elementAt() is useful for collections that do not provide indexed access, or are not statically known to provide one. In case of List, it's more idiomatic to use indexed
access operator (get() or []).

fun	main()	{
//sampleStart
				val	numbers	=	linkedSetOf("one",	"two",	"three",	"four",	"five")
				println(numbers.elementAt(3))				

				val	numbersSortedSet	=	sortedSetOf("one",	"two",	"three",	"four")
				println(numbersSortedSet.elementAt(0))	//	elements	are	stored	in	the	ascending	order
//sampleEnd
}

There are also useful aliases for retrieving the first and the last element of the collection: first() and last().

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five")
				println(numbers.first())				
				println(numbers.last())				
//sampleEnd
}

To avoid exceptions when retrieving element with non-existing positions, use safe variations of elementAt():

elementAtOrNull() returns null when the specified position is out of the collection bounds.

elementAtOrElse() additionally takes a lambda function that maps an Int argument to an instance of the collection element type. When called with an out-of-
bounds position, the elementAtOrElse() returns the result of the lambda on the given value.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five")
				println(numbers.elementAtOrNull(5))
				println(numbers.elementAtOrElse(5)	{	index	->	"The	value	for	index	$index	is	undefined"})
//sampleEnd
}

Retrieve
by
condition
Functions first() and last() also let you search a collection for elements matching a given predicate. When you call first() with a predicate that tests a collection
element, you'll receive the first element on which the predicate yields true. In turn, last() with a predicate returns the last element matching it.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.first	{	it.length	>	3	})
				println(numbers.last	{	it.startsWith("f")	})

845

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/element-at.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/element-at-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/element-at-or-else.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last.html

//sampleEnd
}

If no elements match the predicate, both functions throw exceptions. To avoid them, use firstOrNull() and lastOrNull() instead: they return null if no matching
elements are found.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.firstOrNull	{	it.length	>	6	})
//sampleEnd
}

Use the aliases if their names suit your situation better:

find() instead of firstOrNull()

findLast() instead of lastOrNull()

fun	main()	{
//sampleStart
				val	numbers	=	listOf(1,	2,	3,	4)
				println(numbers.find	{	it	%	2	==	0	})
				println(numbers.findLast	{	it	%	2	==	0	})
//sampleEnd
}

Retrieve
with
selector
If you need to map the collection before retrieving the element, there is a function firstNotNullOf(). It combines 2 actions:

Maps the collection with the selector function

Returns the first non-null value in the result

firstNotNullOf() throws the NoSuchElementException if the resulting collection doesn't have a non-nullable element. Use the counterpart firstNotNullOfOrNull() to
return null in this case.

fun	main()	{
//sampleStart
				val	list	=	listOf<Any>(0,	"true",	false)
				//	Converts	each	element	to	string	and	returns	the	first	one	that	has	required	length
				val	longEnough	=	list.firstNotNullOf	{	item	->	item.toString().takeIf	{	it.length	>=	4	}	}
				println(longEnough)
//sampleEnd
}

Random
element
If you need to retrieve an arbitrary element of a collection, call the random() function. You can call it without arguments or with a Random object as a source of the
randomness.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(1,	2,	3,	4)
				println(numbers.random())
//sampleEnd
}

On empty collections, random() throws an exception. To receive null instead, use randomOrNull()

Check
element
existence
To check the presence of an element in a collection, use the contains() function. It returns true if there is a collection element that equals() the function argument.

846

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/find.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/find-last.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-not-null-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/first-not-null-of-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/random.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.random/-random/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/random-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/contains.html

You can call contains() in the operator form with the in keyword.

To check the presence of multiple instances together at once, call containsAll() with a collection of these instances as an argument.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.contains("four"))
				println("zero"	in	numbers)
				
				println(numbers.containsAll(listOf("four",	"two")))
				println(numbers.containsAll(listOf("one",	"zero")))
//sampleEnd
}

Additionally, you can check if the collection contains any elements by calling isEmpty() or isNotEmpty().

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four",	"five",	"six")
				println(numbers.isEmpty())
				println(numbers.isNotEmpty())
				
				val	empty	=	emptyList<String>()
				println(empty.isEmpty())
				println(empty.isNotEmpty())
//sampleEnd
}

Ordering
The order of elements is an important aspect of certain collection types. For example, two lists of the same elements are not equal if their elements are ordered
differently.

In Kotlin, the orders of objects can be defined in several ways.

First, there is natural order. It is defined for implementations of the Comparable interface. Natural order is used for sorting them when no other order is specified.

Most built-in types are comparable:

Numeric types use the traditional numerical order: 1 is greater than 0; -3.4f is greater than -5f, and so on.

Char and String use the lexicographical order: b is greater than a; world is greater than hello.

To define a natural order for a user-defined type, make the type an implementer of Comparable. This requires implementing the compareTo() function. compareTo()
must take another object of the same type as an argument and return an integer value showing which object is greater:

Positive values show that the receiver object is greater.

Negative values show that it's less than the argument.

Zero shows that the objects are equal.

Below is a class for ordering versions that consist of the major and the minor part.

class	Version(val	major:	Int,	val	minor:	Int):	Comparable<Version>	{
				override	fun	compareTo(other:	Version):	Int	=	when	{
								this.major	!=	other.major	->	this.major	compareTo	other.major	//	compareTo()	in	the	infix	form	
								this.minor	!=	other.minor	->	this.minor	compareTo	other.minor
								else	->	0
				}
}

fun	main()	{				
				println(Version(1,	2)	>	Version(1,	3))
				println(Version(2,	0)	>	Version(1,	5))
}

Custom orders let you sort instances of any type in a way you like. Particularly, you can define an order for non-comparable objects or define an order other than
natural for a comparable type. To define a custom order for a type, create a Comparator for it. Comparator contains the compare() function: it takes two instances

847

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/contains-all.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/is-empty.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/is-not-empty.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-comparable/index.html
https://en.wikipedia.org/wiki/Lexicographical_order
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-comparator/index.html

of a class and returns the integer result of the comparison between them. The result is interpreted in the same way as the result of a compareTo() as is described
above.

fun	main()	{
//sampleStart
				val	lengthComparator	=	Comparator	{	str1:	String,	str2:	String	->	str1.length	-	str2.length	}
				println(listOf("aaa",	"bb",	"c").sortedWith(lengthComparator))
//sampleEnd
}

Having the lengthComparator, you are able to arrange strings by their length instead of the default lexicographical order.

A shorter way to define a Comparator is the compareBy() function from the standard library. compareBy() takes a lambda function that produces a Comparable
value from an instance and defines the custom order as the natural order of the produced values.

With compareBy(), the length comparator from the example above looks like this:

fun	main()	{
//sampleStart				
				println(listOf("aaa",	"bb",	"c").sortedWith(compareBy	{	it.length	}))
//sampleEnd
}

The Kotlin collections package provides functions for sorting collections in natural, custom, and even random orders. On this page, we'll describe sorting functions
that apply to read-only collections. These functions return their result as a new collection containing the elements of the original collection in the requested order. To
learn about functions for sorting mutable collections in place, see the List-specific operations.

Natural
order
The basic functions sorted() and sortedDescending() return elements of a collection sorted into ascending and descending sequence according to their natural
order. These functions apply to collections of Comparable elements.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")

				println("Sorted	ascending:	${numbers.sorted()}")
				println("Sorted	descending:	${numbers.sortedDescending()}")
//sampleEnd
}

Custom
orders
For sorting in custom orders or sorting non-comparable objects, there are the functions sortedBy() and sortedByDescending(). They take a selector function that
maps collection elements to Comparable values and sort the collection in natural order of that values.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")

				val	sortedNumbers	=	numbers.sortedBy	{	it.length	}
				println("Sorted	by	length	ascending:	$sortedNumbers")
				val	sortedByLast	=	numbers.sortedByDescending	{	it.last()	}
				println("Sorted	by	the	last	letter	descending:	$sortedByLast")
//sampleEnd
}

To define a custom order for the collection sorting, you can provide your own Comparator. To do this, call the sortedWith() function passing in your Comparator.
With this function, sorting strings by their length looks like this:

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println("Sorted	by	length	ascending:	${numbers.sortedWith(compareBy	{	it.length	})}")
//sampleEnd
}

848

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.comparisons/compare-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted-descending.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted-by-descending.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sorted-with.html

Reverse
order
You can retrieve the collection in the reversed order using the reversed() function.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				println(numbers.reversed())
//sampleEnd
}

reversed() returns a new collection with the copies of the elements. So, if you change the original collection later, this won't affect the previously obtained results of
reversed().

Another reversing function - asReversed()

returns a reversed view of the same collection instance, so it may be more lightweight and preferable than reversed() if the original list is not going to change.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	reversedNumbers	=	numbers.asReversed()
				println(reversedNumbers)
//sampleEnd
}

If the original list is mutable, all its changes reflect in its reversed views and vice versa.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")
				val	reversedNumbers	=	numbers.asReversed()
				println(reversedNumbers)
				numbers.add("five")
				println(reversedNumbers)
//sampleEnd
}

However, if the mutability of the list is unknown or the source is not a list at all, reversed() is more preferable since its result is a copy that won't change in the future.

Random
order
Finally, there is a function that returns a new List containing the collection elements in a random order - shuffled(). You can call it without arguments or with a
Random object.

fun	main()	{
//sampleStart
					val	numbers	=	listOf("one",	"two",	"three",	"four")
					println(numbers.shuffled())
//sampleEnd
}

Aggregate
operations
Kotlin collections contain functions for commonly used aggregate operations – operations that return a single value based on the collection content. Most of them
are well known and work the same way as they do in other languages:

minOrNull() and maxOrNull() return the smallest and the largest element respectively. On empty collections, they return null.

average() returns the average value of elements in the collection of numbers.

sum() returns the sum of elements in the collection of numbers.

849

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reversed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/as-reversed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/shuffled.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.random/-random/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/average.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sum.html

count() returns the number of elements in a collection.

fun	main()	{
				val	numbers	=	listOf(6,	42,	10,	4)

				println("Count:	${numbers.count()}")
				println("Max:	${numbers.maxOrNull()}")
				println("Min:	${numbers.minOrNull()}")
				println("Average:	${numbers.average()}")
				println("Sum:	${numbers.sum()}")
}

There are also functions for retrieving the smallest and the largest elements by certain selector function or custom Comparator:

maxByOrNull() and minByOrNull() take a selector function and return the element for which it returns the largest or the smallest value.

maxWithOrNull() and minWithOrNull() take a Comparator object and return the largest or smallest element according to that Comparator.

maxOfOrNull() and minOfOrNull() take a selector function and return the largest or the smallest return value of the selector itself.

maxOfWithOrNull() and minOfWithOrNull() take a Comparator object and return the largest or smallest selector return value according to that Comparator.

These functions return null on empty collections. There are also alternatives – maxOf, minOf, maxOfWith, and minOfWith – which do the same as their counterparts
but throw a NoSuchElementException on empty collections.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(5,	42,	10,	4)
				val	min3Remainder	=	numbers.minByOrNull	{	it	%	3	}
				println(min3Remainder)

				val	strings	=	listOf("one",	"two",	"three",	"four")
				val	longestString	=	strings.maxWithOrNull(compareBy	{	it.length	})
				println(longestString)
//sampleEnd
}

Besides regular sum(), there is an advanced summation function sumOf() that takes a selector function and returns the sum of its application to all collection
elements. Selector can return different numeric types: Int, Long, Double, UInt, and ULong (also BigInteger and BigDecimal on the JVM).

fun	main()	{
//sampleStart
				val	numbers	=	listOf(5,	42,	10,	4)
				println(numbers.sumOf	{	it	*	2	})
				println(numbers.sumOf	{	it.toDouble()	/	2	})
//sampleEnd
}

Fold
and
reduce
For more specific cases, there are the functions reduce() and fold() that apply the provided operation to the collection elements sequentially and return the
accumulated result. The operation takes two arguments: the previously accumulated value and the collection element.

The difference between the two functions is that fold() takes an initial value and uses it as the accumulated value on the first step, whereas the first step of reduce()
uses the first and the second elements as operation arguments on the first step.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(5,	2,	10,	4)

				val	simpleSum	=	numbers.reduce	{	sum,	element	->	sum	+	element	}
				println(simpleSum)
				val	sumDoubled	=	numbers.fold(0)	{	sum,	element	->	sum	+	element	*	2	}
				println(sumDoubled)

				//incorrect:	the	first	element	isn't	doubled	in	the	result
				//val	sumDoubledReduce	=	numbers.reduce	{	sum,	element	->	sum	+	element	*	2	}	
				//println(sumDoubledReduce)
//sampleEnd
}

850

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/count.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-comparator/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-by-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-by-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-with-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-with-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-of-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-of-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-of-with-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-of-with-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/max-of-with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/min-of-with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sum-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fold.html

The example above shows the difference: fold() is used for calculating the sum of doubled elements. If you pass the same function to reduce(), it will return another
result because it uses the list's first and second elements as arguments on the first step, so the first element won't be doubled.

To apply a function to elements in the reverse order, use functions reduceRight() and foldRight(). They work in a way similar to fold() and reduce() but start from the
last element and then continue to previous. Note that when folding or reducing right, the operation arguments change their order: first goes the element, and then
the accumulated value.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(5,	2,	10,	4)
				val	sumDoubledRight	=	numbers.foldRight(0)	{	element,	sum	->	sum	+	element	*	2	}
				println(sumDoubledRight)
//sampleEnd
}

You can also apply operations that take element indices as parameters. For this purpose, use functions reduceIndexed() and foldIndexed() passing element index as
the first argument of the operation.

Finally, there are functions that apply such operations to collection elements from right to left - reduceRightIndexed() and foldRightIndexed().

fun	main()	{
//sampleStart
				val	numbers	=	listOf(5,	2,	10,	4)
				val	sumEven	=	numbers.foldIndexed(0)	{	idx,	sum,	element	->	if	(idx	%	2	==	0)	sum	+	element	else	sum	}
				println(sumEven)

				val	sumEvenRight	=	numbers.foldRightIndexed(0)	{	idx,	element,	sum	->	if	(idx	%	2	==	0)	sum	+	element	else	sum	}
				println(sumEvenRight)
//sampleEnd
}

All reduce operations throw an exception on empty collections. To receive null instead, use their *OrNull() counterparts:

reduceOrNull()

reduceRightOrNull()

reduceIndexedOrNull()

reduceRightIndexedOrNull()

For cases where you want to save intermediate accumulator values, there are functions runningFold() (or its synonym scan()) and runningReduce().

fun	main()	{
//sampleStart
				val	numbers	=	listOf(0,	1,	2,	3,	4,	5)
				val	runningReduceSum	=	numbers.runningReduce	{	sum,	item	->	sum	+	item	}
				val	runningFoldSum	=	numbers.runningFold(10)	{	sum,	item	->	sum	+	item	}
//sampleEnd
				val	transform	=	{	index:	Int,	element:	Int	->	"N	=	${index	+	1}:	$element"	}
				println(runningReduceSum.mapIndexed(transform).joinToString("\n",	"Sum	of	first	N	elements	with	runningReduce:\n"))
				println(runningFoldSum.mapIndexed(transform).joinToString("\n",	"Sum	of	first	N	elements	with	runningFold:\n"))
}

If you need an index in the operation parameter, use runningFoldIndexed() or runningReduceIndexed().

Collection
write
operations
Mutable collections support operations for changing the collection contents, for example, adding or removing elements. On this page, we'll describe write
operations available for all implementations of MutableCollection. For more specific operations available for List and Map, see List-specific Operations and Map
Specific Operations respectively.

Adding
elements
To add a single element to a list or a set, use the add() function. The specified object is appended to the end of the collection.

851

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-right.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fold-right.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fold-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-right-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fold-right-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-right-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-indexed-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce-right-indexed-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/running-fold.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/scan.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/running-reduce.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/running-fold-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/running-reduce-indexed.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/add.html

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4)
				numbers.add(5)
				println(numbers)
//sampleEnd
}

addAll() adds every element of the argument object to a list or a set. The argument can be an Iterable, a Sequence, or an Array. The types of the receiver and the
argument may be different, for example, you can add all items from a Set to a List.

When called on lists, addAll() adds new elements in the same order as they go in the argument. You can also call addAll() specifying an element position as the first
argument. The first element of the argument collection will be inserted at this position. Other elements of the argument collection will follow it, shifting the receiver
elements to the end.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	5,	6)
				numbers.addAll(arrayOf(7,	8))
				println(numbers)
				numbers.addAll(2,	setOf(3,	4))
				println(numbers)
//sampleEnd
}

You can also add elements using the in-place version of the plus operator - plusAssign (+=) When applied to a mutable collection, += appends the second operand
(an element or another collection) to the end of the collection.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two")
				numbers	+=	"three"
				println(numbers)
				numbers	+=	listOf("four",	"five")				
				println(numbers)
//sampleEnd
}

Removing
elements
To remove an element from a mutable collection, use the remove() function. remove() accepts the element value and removes one occurrence of this value.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4,	3)
				numbers.remove(3)																				//	removes	the	first	`3`
				println(numbers)
				numbers.remove(5)																				//	removes	nothing
				println(numbers)
//sampleEnd
}

For removing multiple elements at once, there are the following functions :

removeAll() removes all elements that are present in the argument collection. Alternatively, you can call it with a predicate as an argument; in this case the
function removes all elements for which the predicate yields true.

retainAll() is the opposite of removeAll(): it removes all elements except the ones from the argument collection. When used with a predicate, it leaves only
elements that match it.

clear() removes all elements from a list and leaves it empty.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4)
				println(numbers)
				numbers.retainAll	{	it	>=	3	}
				println(numbers)
				numbers.clear()

852

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/add-all.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/remove.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/remove-all.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/retain-all.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/clear.html

				println(numbers)

				val	numbersSet	=	mutableSetOf("one",	"two",	"three",	"four")
				numbersSet.removeAll(setOf("one",	"two"))
				println(numbersSet)
//sampleEnd
}

Another way to remove elements from a collection is with the minusAssign (-=) operator – the in-place version of minus. The second argument can be a single
instance of the element type or another collection. With a single element on the right-hand side, -= removes the first occurrence of it. In turn, if it's a collection, all
occurrences of its elements are removed. For example, if a list contains duplicate elements, they are removed at once. The second operand can contain elements
that are not present in the collection. Such elements don't affect the operation execution.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"three",	"four")
				numbers	-=	"three"
				println(numbers)
				numbers	-=	listOf("four",	"five")				
				//numbers	-=	listOf("four")				//	does	the	same	as	above
				println(numbers)				
//sampleEnd
}

Updating
elements
Lists and maps also provide operations for updating elements. They are described in List-specific Operations and Map Specific Operations. For sets, updating
doesn't make sense since it's actually removing an element and adding another one.

List-specific
operations
List is the most popular type of built-in collection in Kotlin. Index access to the elements of lists provides a powerful set of operations for lists.

Retrieve
elements
by
index
Lists support all common operations for element retrieval: elementAt(), first(), last(), and others listed in Retrieve single elements. What is specific for lists is index
access to the elements, so the simplest way to read an element is retrieving it by index. That is done with the get() function with the index passed in the argument or
the shorthand [index] syntax.

If the list size is less than the specified index, an exception is thrown. There are two other functions that help you avoid such exceptions:

getOrElse() lets you provide the function for calculating the default value to return if the index isn't present in the collection.

getOrNull() returns null as the default value.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(1,	2,	3,	4)
				println(numbers.get(0))
				println(numbers[0])
				//numbers.get(5)																									//	exception!
				println(numbers.getOrNull(5))													//	null
				println(numbers.getOrElse(5,	{it}))								//	5
//sampleEnd
}

Retrieve
list
parts
In addition to common operations for Retrieving Collection Parts, lists provide the subList() function that returns a view of the specified elements range as a list.
Thus, if an element of the original collection changes, it also changes in the previously created sublists and vice versa.

fun	main()	{

853

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/get.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/get-or-else.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/get-or-null.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/sub-list.html

//sampleStart
				val	numbers	=	(0..13).toList()
				println(numbers.subList(3,	6))
//sampleEnd
}

Find
element
positions

Linear
search
In any lists, you can find the position of an element using the functions indexOf() and lastIndexOf(). They return the first and the last position of an element equal to
the given argument in the list. If there are no such elements, both functions return -1.

fun	main()	{
//sampleStart
				val	numbers	=	listOf(1,	2,	3,	4,	2,	5)
				println(numbers.indexOf(2))
				println(numbers.lastIndexOf(2))
//sampleEnd
}

There is also a pair of functions that take a predicate and search for elements matching it:

indexOfFirst() returns the index of the first element matching the predicate or -1 if there are no such elements.

indexOfLast() returns the index of the last element matching the predicate or -1 if there are no such elements.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4)
				println(numbers.indexOfFirst	{	it	>	2})
				println(numbers.indexOfLast	{	it	%	2	==	1})
//sampleEnd
}

Binary
search
in
sorted
lists
There is one more way to search elements in lists – binary search. It works significantly faster than other built-in search functions but requires the list to be sorted in
ascending order according to a certain ordering: natural or another one provided in the function parameter. Otherwise, the result is undefined.

To search an element in a sorted list, call the binarySearch() function passing the value as an argument. If such an element exists, the function returns its index;
otherwise, it returns (-insertionPoint - 1) where insertionPoint is the index where this element should be inserted so that the list remains sorted. If there is more than
one element with the given value, the search can return any of their indices.

You can also specify an index range to search in: in this case, the function searches only between two provided indices.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")
				numbers.sort()
				println(numbers)
				println(numbers.binarySearch("two"))		//	3
				println(numbers.binarySearch("z"))	//	-5
				println(numbers.binarySearch("two",	0,	2))		//	-3
//sampleEnd
}

Comparator binary search
When list elements aren't Comparable, you should provide a Comparator to use in the binary search. The list must be sorted in ascending order according to this
Comparator. Let's have a look at an example:

data	class	Product(val	name:	String,	val	price:	Double)

fun	main()	{
//sampleStart
				val	productList	=	listOf(

854

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/last-index-of.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index-of-first.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index-of-last.html
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/binary-search.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-comparator.html

								Product("WebStorm",	49.0),
								Product("AppCode",	99.0),
								Product("DotTrace",	129.0),
								Product("ReSharper",	149.0))

				println(productList.binarySearch(Product("AppCode",	99.0),	compareBy<Product>	{	it.price	}.thenBy	{	it.name	}))
//sampleEnd
}

Here's a list of Product instances that aren't Comparable and a Comparator that defines the order: product p1 precedes product p2 if p1's price is less than p2's
price. So, having a list sorted ascending according to this order, we use binarySearch() to find the index of the specified Product.

Custom comparators are also handy when a list uses an order different from natural one, for example, a case-insensitive order for String elements.

fun	main()	{
//sampleStart
				val	colors	=	listOf("Blue",	"green",	"ORANGE",	"Red",	"yellow")
				println(colors.binarySearch("RED",	String.CASE_INSENSITIVE_ORDER))	//	3
//sampleEnd
}

Comparison binary search
Binary search with comparison function lets you find elements without providing explicit search values. Instead, it takes a comparison function mapping elements to
Int values and searches for the element where the function returns zero. The list must be sorted in the ascending order according to the provided function; in other
words, the return values of comparison must grow from one list element to the next one.

import	kotlin.math.sign
//sampleStart
data	class	Product(val	name:	String,	val	price:	Double)

fun	priceComparison(product:	Product,	price:	Double)	=	sign(product.price	-	price).toInt()

fun	main()	{
				val	productList	=	listOf(
								Product("WebStorm",	49.0),
								Product("AppCode",	99.0),
								Product("DotTrace",	129.0),
								Product("ReSharper",	149.0))

				println(productList.binarySearch	{	priceComparison(it,	99.0)	})
}
//sampleEnd

Both comparator and comparison binary search can be performed for list ranges as well.

List
write
operations
In addition to the collection modification operations described in Collection write operations, mutable lists support specific write operations. Such operations use
the index to access elements to broaden the list modification capabilities.

Add
To add elements to a specific position in a list, use add() and addAll() providing the position for element insertion as an additional argument. All elements that come
after the position shift to the right.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"five",	"six")
				numbers.add(1,	"two")
				numbers.addAll(2,	listOf("three",	"four"))
				println(numbers)
//sampleEnd
}

Update
Lists also offer a function to replace an element at a given position - set() and its operator form []. set() doesn't change the indexes of other elements.

855

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/add.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/add-all.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/set.html

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"five",	"three")
				numbers[1]	=		"two"
				println(numbers)
//sampleEnd
}

fill() simply replaces all the collection elements with the specified value.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4)
				numbers.fill(3)
				println(numbers)
//sampleEnd
}

Remove
To remove an element at a specific position from a list, use the removeAt() function providing the position as an argument. All indices of elements that come after
the element being removed will decrease by one.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf(1,	2,	3,	4,	3)				
				numbers.removeAt(1)
				println(numbers)
//sampleEnd
}

Sort
In Collection Ordering, we describe operations that retrieve collection elements in specific orders. For mutable lists, the standard library offers similar extension
functions that perform the same ordering operations in place. When you apply such an operation to a list instance, it changes the order of elements in that exact
instance.

The in-place sorting functions have similar names to the functions that apply to read-only lists, but without the ed/d suffix:

sort* instead of sorted* in the names of all sorting functions: sort(), sortDescending(), sortBy(), and so on.

shuffle() instead of shuffled().

reverse() instead of reversed().

asReversed() called on a mutable list returns another mutable list which is a reversed view of the original list. Changes in that view are reflected in the original list.
The following example shows sorting functions for mutable lists:

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four")

				numbers.sort()
				println("Sort	into	ascending:	$numbers")
				numbers.sortDescending()
				println("Sort	into	descending:	$numbers")

				numbers.sortBy	{	it.length	}
				println("Sort	into	ascending	by	length:	$numbers")
				numbers.sortByDescending	{	it.last()	}
				println("Sort	into	descending	by	the	last	letter:	$numbers")
				
				numbers.sortWith(compareBy<String>	{	it.length	}.thenBy	{	it	})
				println("Sort	by	Comparator:	$numbers")

				numbers.shuffle()
				println("Shuffle:	$numbers")

				numbers.reverse()
				println("Reverse:	$numbers")
//sampleEnd

856

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/fill.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/remove-at.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sort.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sort-descending.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/sort-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/shuffle.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reverse.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/as-reversed.html

}

Set-specific
operations
The Kotlin collections package contains extension functions for popular operations on sets: finding intersections, merging, or subtracting collections from each
other.

To merge two collections into one, use the union() function. It can be used in the infix form a union b. Note that for ordered collections the order of the operands is
important. In the resulting collection, the elements of the first operand go before the elements of the second:

fun	main()	{
//sampleStart
				val	numbers	=	setOf("one",	"two",	"three")

				//	output	according	to	the	order
				println(numbers	union	setOf("four",	"five"))
				//	[one,	two,	three,	four,	five]
				println(setOf("four",	"five")	union	numbers)
				//	[four,	five,	one,	two,	three]
//sampleEnd
}

To find an intersection between two collections (elements present in both of them), use the intersect() function. To find collection elements not present in another
collection, use the subtract() function. Both these functions can be called in the infix form as well, for example, a intersect b:

fun	main()	{
//sampleStart
				val	numbers	=	setOf("one",	"two",	"three")

				//	same	output
				println(numbers	intersect	setOf("two",	"one"))
				//	[one,	two]
				println(numbers	subtract	setOf("three",	"four"))
				//	[one,	two]
				println(numbers	subtract	setOf("four",	"three"))
				//	[one,	two]
//sampleEnd
}

To find the elements present in either one of the two collections but not in their intersection, you can also use the union() function. For this operation (known as
symmetric difference), calculate the differences between the two collections and merge the results:

fun	main()	{
//sampleStart
				val	numbers	=	setOf("one",	"two",	"three")
				val	numbers2	=	setOf("three",	"four")

				//	merge	differences	
				println((numbers	-	numbers2)	union	(numbers2	-	numbers))
				//	[one,	two,	four]
//sampleEnd
}

You can also apply union(), intersect(), and subtract() functions to lists. However, their result is always a Set. In this result, all the duplicate elements are merged into
one and the index access is not available:

fun	main()	{
//sampleStart
				val	list1	=	listOf(1,	1,	2,	3,	5,	8,	-1)
				val	list2	=	listOf(1,	1,	2,	2,	3,	5)

				//	result	of	intersecting	two	lists	is	a	Set
				println(list1	intersect	list2)
				//[1,	2,	3,	5]

				//	equal	elements	are	merged	into	one
				println(list1	union	list2)
				//	[1,	2,	3,	5,	8,	-1]
//sampleEnd
}

857

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/union.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/intersect.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/subtract.html

Map-specific
operations
In maps, types of both keys and values are user-defined. Key-based access to map entries enables various map-specific processing capabilities from getting a
value by key to separate filtering of keys and values. On this page, we provide descriptions of the map processing functions from the standard library.

Retrieve
keys
and
values
For retrieving a value from a map, you must provide its key as an argument of the get() function. The shorthand [key] syntax is also supported. If the given key is not
found, it returns null. There is also the function getValue() which has slightly different behavior: it throws an exception if the key is not found in the map. Additionally,
you have two more options to handle the key absence:

getOrElse() works the same way as for lists: the values for non-existent keys are returned from the given lambda function.

getOrDefault() returns the specified default value if the key is not found.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				println(numbersMap.get("one"))
				println(numbersMap["one"])
				println(numbersMap.getOrDefault("four",	10))
				println(numbersMap["five"])															//	null
				//numbersMap.getValue("six")						//	exception!
//sampleEnd
}

To perform operations on all keys or all values of a map, you can retrieve them from the properties keys and values accordingly. keys is a set of all map keys and
values is a collection of all map values.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				println(numbersMap.keys)
				println(numbersMap.values)
//sampleEnd
}

Filter
You can filter maps with the filter() function as well as other collections. When calling filter() on a map, pass to it a predicate with a Pair as an argument. This
enables you to use both the key and the value in the filtering predicate.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key11"	to	11)
				val	filteredMap	=	numbersMap.filter	{	(key,	value)	->	key.endsWith("1")	&&	value	>	10}
				println(filteredMap)
//sampleEnd
}

There are also two specific ways for filtering maps: by keys and by values. For each way, there is a function: filterKeys() and filterValues(). Both return a new map of
entries which match the given predicate. The predicate for filterKeys() checks only the element keys, the one for filterValues() checks only values.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("key1"	to	1,	"key2"	to	2,	"key3"	to	3,	"key11"	to	11)
				val	filteredKeysMap	=	numbersMap.filterKeys	{	it.endsWith("1")	}
				val	filteredValuesMap	=	numbersMap.filterValues	{	it	<	10	}

				println(filteredKeysMap)
				println(filteredValuesMap)
//sampleEnd
}

858

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/get.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/get-value.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/get-or-else.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/get-or-default.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-keys.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter-values.html

Plus
and
minus
operators
Due to the key access to elements, plus (+) and minus (-) operators work for maps differently than for other collections. plus returns a Map that contains elements of
its both operands: a Map on the left and a Pair or another Map on the right. When the right-hand side operand contains entries with keys present in the left-hand
side Map, the result map contains the entries from the right side.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				println(numbersMap	+	Pair("four",	4))
				println(numbersMap	+	Pair("one",	10))
				println(numbersMap	+	mapOf("five"	to	5,	"one"	to	11))
//sampleEnd
}

minus creates a Map from entries of a Map on the left except those with keys from the right-hand side operand. So, the right-hand side operand can be either a
single key or a collection of keys: list, set, and so on.

fun	main()	{
//sampleStart
				val	numbersMap	=	mapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				println(numbersMap	-	"one")
				println(numbersMap	-	listOf("two",	"four"))
//sampleEnd
}

For details on using plusAssign (+=) and minusAssign (-=) operators on mutable maps, see Map write operations below.

Map
write
operations
Mutable maps offer map-specific write operations. These operations let you change the map content using the key-based access to the values.

There are certain rules that define write operations on maps:

Values can be updated. In turn, keys never change: once you add an entry, its key is constant.

For each key, there is always a single value associated with it. You can add and remove whole entries.

Below are descriptions of the standard library functions for write operations available on mutable maps.

Add
and
update
entries
To add a new key-value pair to a mutable map, use put(). When a new entry is put into a LinkedHashMap (the default map implementation), it is added so that it
comes last when iterating the map. In sorted maps, the positions of new elements are defined by the order of their keys.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2)
				numbersMap.put("three",	3)
				println(numbersMap)
//sampleEnd
}

To add multiple entries at a time, use putAll(). Its argument can be a Map or a group of Pairs: Iterable, Sequence, or Array.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				numbersMap.putAll(setOf("four"	to	4,	"five"	to	5))
				println(numbersMap)
//sampleEnd
}

Both put() and putAll() overwrite the values if the given keys already exist in the map. Thus, you can use them to update values of map entries.

fun	main()	{
//sampleStart

859

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/put.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/put-all.html

				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2)
				val	previousValue	=	numbersMap.put("one",	11)
				println("value	associated	with	'one',	before:	$previousValue,	after:	${numbersMap["one"]}")
				println(numbersMap)
//sampleEnd
}

You can also add new entries to maps using the shorthand operator form. There are two ways:

plusAssign (+=) operator.

the [] operator alias for set().

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2)
				numbersMap["three"]	=	3					//	calls	numbersMap.put("three",	3)
				numbersMap	+=	mapOf("four"	to	4,	"five"	to	5)
				println(numbersMap)
//sampleEnd
}

When called with the key present in the map, operators overwrite the values of the corresponding entries.

Remove
entries
To remove an entry from a mutable map, use the remove() function. When calling remove(), you can pass either a key or a whole key-value-pair. If you specify both
the key and value, the element with this key will be removed only if its value matches the second argument.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				numbersMap.remove("one")
				println(numbersMap)
				numbersMap.remove("three",	4)												//doesn't	remove	anything
				println(numbersMap)
//sampleEnd
}

You can also remove entries from a mutable map by their keys or values. To do this, call remove() on the map's keys or values providing the key or the value of an
entry. When called on values, remove() removes only the first entry with the given value.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2,	"three"	to	3,	"threeAgain"	to	3)
				numbersMap.keys.remove("one")
				println(numbersMap)
				numbersMap.values.remove(3)
				println(numbersMap)
//sampleEnd
}

The minusAssign (-=) operator is also available for mutable maps.

fun	main()	{
//sampleStart
				val	numbersMap	=	mutableMapOf("one"	to	1,	"two"	to	2,	"three"	to	3)
				numbersMap	-=	"two"
				println(numbersMap)
				numbersMap	-=	"five"													//doesn't	remove	anything
				println(numbersMap)
//sampleEnd
}

Opt-in
requirements
The Kotlin standard library provides a mechanism for requiring and giving explicit consent for using certain elements of APIs. This mechanism lets library developers
inform users of their APIs about specific conditions that require opt-in, for example, if an API is in the experimental state and is likely to change in the future.

860

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/plus-assign.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/remove.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/minus-assign.html

To prevent potential issues, the compiler warns users of such APIs about these conditions and requires them to opt in before using the API.

Opt
in
to
using
API
If a library author marks a declaration from a library's API as requiring opt-in, you should give an explicit consent for using it in your code. There are several ways to
opt in to such APIs, all applicable without technical limitations. You are free to choose the way that you find best for your situation.

Propagating
opt-in
When you use an API in the code intended for third-party use (a library), you can propagate its opt-in requirement to your API as well. To do this, annotate your
declaration with the opt-in requirement annotation of the API used in its body. This enables you to use API elements that require opt-in.

//	Library	code
@RequiresOptIn(message	=	"This	API	is	experimental.	It	may	be	changed	in	the	future	without	notice.")
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS,	AnnotationTarget.FUNCTION)
annotation	class	MyDateTime	//	Opt-in	requirement	annotation

@MyDateTime																												
class	DateProvider	//	A	class	requiring	opt-in

//	Client	code
fun	getYear():	Int	{		
				val	dateProvider:	DateProvider	//	Error:	DateProvider	requires	opt-in
				//	...
}

@MyDateTime
fun	getDate():	Date	{		
				val	dateProvider:	DateProvider	//	OK:	the	function	requires	opt-in	as	well
				//	...
}

fun	displayDate()	{
				println(getDate())	//	Error:	getDate()	requires	opt-in
}

As you can see in this example, the annotated function appears to be a part of the @MyDateTime API. So, such an opt-in propagates the opt-in requirement to the
client code; its clients will see the same warning message and be required to consent as well.

Implicit usages of APIs that require opt-in also require opt-in. If an API element doesn't have an opt-in requirement annotation but its signature includes a type
declared as requiring opt-in, its usage will still raise a warning. See the example below.

//	Client	code
fun	getDate(dateProvider:	DateProvider):	Date	{	//	Error:	DateProvider	requires	opt-in
				//	...
}

fun	displayDate()	{
				println(getDate())	//	Warning:	the	signature	of	getDate()	contains	DateProvider,	which	requires	opt-in
}

To use multiple APIs that require opt-in, mark the declaration with all their opt-in requirement annotations.

Non-propagating
opt-in
In modules that don't expose their own API, such as applications, you can opt in to using APIs without propagating the opt-in requirement to your code. In this
case, mark your declaration with @OptIn passing the opt-in requirement annotation as its argument:

//	Library	code
@RequiresOptIn(message	=	"This	API	is	experimental.	It	may	be	changed	in	the	future	without	notice.")
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS,	AnnotationTarget.FUNCTION)
annotation	class	MyDateTime	//	Opt-in	requirement	annotation

@MyDateTime																												
class	DateProvider	//	A	class	requiring	opt-in

861

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-opt-in/

//	Client	code
@OptIn(MyDateTime::class)
fun	getDate():	Date	{	//	Uses	DateProvider;	doesn't	propagate	the	opt-in	requirement
				val	dateProvider:	DateProvider
				//	...
}

fun	displayDate()	{
				println(getDate())	//	OK:	opt-in	is	not	required
}

When somebody calls the function getDate(), they won't be informed about the opt-in requirements for APIs used in its body.

Note that if @OptIn applies to the declaration whose signature contains a type declared as requiring opt-in, the opt-in will still propagate:

//	Client	code
@OptIn(MyDateTime::class)
fun	getDate(dateProvider:	DateProvider):	Date	{	//	Has	DateProvider	as	a	part	of	a	signature;	propagates	the	opt-in	requirement
				//	...
}

fun	displayDate()	{
				println(getDate())	//	Warning:	getDate()	requires	opt-in
}

To use an API that requires opt-in in all functions and classes in a file, add the file-level annotation @file:OptIn to the top of the file before the package specification
and imports.

//	Client	code
@file:OptIn(MyDateTime::class)

Module-wide
opt-in

If you don't want to annotate every usage of APIs that require opt-in, you can opt in to them for your whole module. To opt in to using an API in a module, compile
it with the argument -opt-in, specifying the fully qualified name of the opt-in requirement annotation of the API you use: -opt-in=org.mylibrary.OptInAnnotation.
Compiling with this argument has the same effect as if every declaration in the module had the annotation@OptIn(OptInAnnotation::class).

If you build your module with Gradle, you can add arguments like this:

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named<KotlinCompilationTask<*>>("compileKotlin").configure	{
				compilerOptions.freeCompilerArgs.add("-opt-in=org.mylibrary.OptInAnnotation")
}

Groovy

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named('compileKotlin',	KotlinCompilationTask)	{
				compilerOptions	{
								freeCompilerArgs.add("-opt-in=org.mylibrary.OptInAnnotation")
				}
}

If your Gradle module is a multiplatform module, use the optIn method:

The -opt-in compiler option is available since Kotlin 1.6.0. For earlier Kotlin versions, use -Xopt-in.

862

Kotlin

sourceSets	{
				all	{
								languageSettings.optIn("org.mylibrary.OptInAnnotation")
				}
}

Groovy

sourceSets	{
				all	{
								languageSettings	{
												optIn('org.mylibrary.OptInAnnotation')
								}
				}
}

For Maven, it would be:

<build>
				<plugins>
								<plugin>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-plugin</artifactId>
												<version>${kotlin.version}</version>
												<executions>...</executions>
												<configuration>
																<args>
																				<arg>-opt-in=org.mylibrary.OptInAnnotation</arg>																				
																</args>
												</configuration>
								</plugin>
				</plugins>
</build>

To opt in to multiple APIs on the module level, add one of the described arguments for each opt-in requirement marker used in your module.

Require
opt-in
for
API

Create
opt-in
requirement
annotations
If you want to require explicit consent to using your module's API, create an annotation class to use as an opt-in requirement annotation. This class must be
annotated with @RequiresOptIn:

@RequiresOptIn
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS,	AnnotationTarget.FUNCTION)
annotation	class	MyDateTime

Opt-in requirement annotations must meet several requirements:

BINARY or RUNTIME retention

No EXPRESSION, FILE, TYPE, or TYPE_PARAMETER among targets

No parameters.

An opt-in requirement can have one of two severity levels:

RequiresOptIn.Level.ERROR. Opt-in is mandatory. Otherwise, the code that uses marked API won't compile. Default level.

RequiresOptIn.Level.WARNING. Opt-in is not mandatory, but advisable. Without it, the compiler raises a warning.

To set the desired level, specify the level parameter of the @RequiresOptIn annotation.

Additionally, you can provide a message to inform API users about special condition of using the API. The compiler will show it to users that use the API without

863

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-requires-opt-in/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-retention/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.annotation/-target/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-requires-opt-in/-level/

opt-in.

@RequiresOptIn(level	=	RequiresOptIn.Level.WARNING,	message	=	"This	API	is	experimental.	It	can	be	incompatibly	changed	in	the	
future.")
@Retention(AnnotationRetention.BINARY)
@Target(AnnotationTarget.CLASS,	AnnotationTarget.FUNCTION)
annotation	class	ExperimentalDateTime

If you publish multiple independent features that require opt-in, declare an annotation for each. This makes the use of API safer for your clients: they can use only
the features that they explicitly accept. This also lets you remove the opt-in requirements from the features independently.

Mark
API
elements
To require an opt-in to using an API element, annotate its declaration with an opt-in requirement annotation:

@MyDateTime
class	DateProvider

@MyDateTime
fun	getTime():	Time	{}

Note that for some language elements, an opt-in requirement annotation is not applicable:

You cannot annotate a backing field or a getter of a property, just the property itself.

You cannot annotate a local variable or a value parameter.

Opt-in
requirements
for
pre-stable
APIs
If you use opt-in requirements for features that are not stable yet, carefully handle the API graduation to avoid breaking the client code.

Once your pre-stable API graduates and is released in a stable state, remove its opt-in requirement annotations from declarations. The clients will be able to use
them without restriction. However, you should leave the annotation classes in modules so that the existing client code remains compatible.

To let the API users update their modules accordingly (remove the annotations from their code and recompile), mark the annotations as @Deprecated and provide
the explanation in the deprecation message.

@Deprecated("This	opt-in	requirement	is	not	used	anymore.	Remove	its	usages	from	your	code.")
@RequiresOptIn
annotation	class	ExperimentalDateTime

Scope
functions
The Kotlin standard library contains several functions whose sole purpose is to execute a block of code within the context of an object. When you call such a
function on an object with a lambda expression provided, it forms a temporary scope. In this scope, you can access the object without its name. Such functions are
called scope functions. There are five of them: let, run, with, apply, and also.

Basically, these functions all perform the same action: execute a block of code on an object. What's different is how this object becomes available inside the block
and what the result of the whole expression is.

Here's a typical example of how to use a scope function:

data	class	Person(var	name:	String,	var	age:	Int,	var	city:	String)	{
				fun	moveTo(newCity:	String)	{	city	=	newCity	}
				fun	incrementAge()	{	age++	}
}

fun	main()	{
//sampleStart
				Person("Alice",	20,	"Amsterdam").let	{
								println(it)
								it.moveTo("London")
								it.incrementAge()
								println(it)
				}

864

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-deprecated/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/let.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/run.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/also.html

//sampleEnd
}

If you write the same without let, you'll have to introduce a new variable and repeat its name whenever you use it.

data	class	Person(var	name:	String,	var	age:	Int,	var	city:	String)	{
				fun	moveTo(newCity:	String)	{	city	=	newCity	}
				fun	incrementAge()	{	age++	}
}

fun	main()	{
//sampleStart
				val	alice	=	Person("Alice",	20,	"Amsterdam")
				println(alice)
				alice.moveTo("London")
				alice.incrementAge()
				println(alice)
//sampleEnd
}

Scope functions don't introduce any new technical capabilities, but they can make your code more concise and readable.

Due to the many similarities between scope functions, choosing the right one for your use case can be tricky. The choice mainly depends on your intent and the
consistency of use in your project. Below, we provide detailed descriptions of the differences between scope functions and their conventions.

Function
selection
To help you choose the right scope function for your purpose, we provide this table that summarizes the key differences between them.

Function Object reference Return value Is extension function

let it Lambda result Yes

run this Lambda result Yes

run - Lambda result No: called without the context object

with this Lambda result No: takes the context object as an argument.

apply this Context object Yes

also it Context object Yes

Detailed information about these functions is provided in the dedicated sections below.

Here is a short guide for choosing scope functions depending on the intended purpose:

Executing a lambda on non-nullable objects: let

Introducing an expression as a variable in local scope: let

Object configuration: apply

Object configuration and computing the result: run

Running statements where an expression is required: non-extension run

Additional effects: also

Grouping function calls on an object: with

865

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/let.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/run.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/run.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/with.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/also.html

The use cases of different scope functions overlap, so you can choose which functions to use based on the specific conventions used in your project or team.

Although scope functions can make your code more concise, avoid overusing them: it can make your code hard to read and lead to errors. We also recommend
that you avoid nesting scope functions and be careful when chaining them because it's easy to get confused about the current context object and value of this or it.

Distinctions
Because scope functions are similar in nature, it's important to understand the differences between them. There are two main differences between each scope
function:

The way they refer to the context object.

Their return value.

Context
object:
this
or
it
Inside the lambda passed to a scope function, the context object is available by a short reference instead of its actual name. Each scope function uses one of two
ways to reference the context object: as a lambda receiver (this) or as a lambda argument (it). Both provide the same capabilities, so we describe the pros and cons
of each for different use cases and provide recommendations for their use.

fun	main()	{
				val	str	=	"Hello"
				//	this
				str.run	{
								println("The	string's	length:	$length")
								//println("The	string's	length:	${this.length}")	//	does	the	same
				}

				//	it
				str.let	{
								println("The	string's	length	is	${it.length}")
				}
}

this
run, with, and apply reference the context object as a lambda receiver - by keyword this. Hence, in their lambdas, the object is available as it would be in ordinary
class functions.

In most cases, you can omit this when accessing the members of the receiver object, making the code shorter. On the other hand, if this is omitted, it can be hard
to distinguish between the receiver members and external objects or functions. So having the context object as a receiver (this) is recommended for lambdas that
mainly operate on the object's members by calling its functions or assigning values to properties.

data	class	Person(var	name:	String,	var	age:	Int	=	0,	var	city:	String	=	"")

fun	main()	{
//sampleStart
				val	adam	=	Person("Adam").apply	{	
								age	=	20																							//	same	as	this.age	=	20
								city	=	"London"
				}
				println(adam)
//sampleEnd
}

it
In turn, let and also reference the context object as a lambda argument. If the argument name is not specified, the object is accessed by the implicit default name it.
it is shorter than this and expressions with it are usually easier to read.

However, when calling the object's functions or properties, you don't have the object available implicitly like this. Hence, accessing the context object via it is better
when the object is mostly used as an argument in function calls. it is also better if you use multiple variables in the code block.

import	kotlin.random.Random

fun	writeToLog(message:	String)	{
				println("INFO:	$message")

866

}

fun	main()	{
//sampleStart
				fun	getRandomInt():	Int	{
								return	Random.nextInt(100).also	{
												writeToLog("getRandomInt()	generated	value	$it")
								}
				}
				
				val	i	=	getRandomInt()
				println(i)
//sampleEnd
}

The example below demonstrates referencing the context object as a lambda argument with argument name: value.

import	kotlin.random.Random

fun	writeToLog(message:	String)	{
				println("INFO:	$message")
}

fun	main()	{
//sampleStart
				fun	getRandomInt():	Int	{
								return	Random.nextInt(100).also	{	value	->
												writeToLog("getRandomInt()	generated	value	$value")
								}
				}
				
				val	i	=	getRandomInt()
				println(i)
//sampleEnd
}

Return
value
Scope functions differ by the result they return:

apply and also return the context object.

let, run, and with return the lambda result.

You should consider carefully what return value you want based on what you want to do next in your code. This helps you to choose the best scope function to use.

Context object
The return value of apply and also is the context object itself. Hence, they can be included into call chains as side steps: you can continue chaining function calls on
the same object, one after another.

fun	main()	{
//sampleStart
				val	numberList	=	mutableListOf<Double>()
				numberList.also	{	println("Populating	the	list")	}
								.apply	{
												add(2.71)
												add(3.14)
												add(1.0)
								}
								.also	{	println("Sorting	the	list")	}
								.sort()
//sampleEnd
				println(numberList)
}

They also can be used in return statements of functions returning the context object.

import	kotlin.random.Random

fun	writeToLog(message:	String)	{
				println("INFO:	$message")
}

867

fun	main()	{
//sampleStart
				fun	getRandomInt():	Int	{
								return	Random.nextInt(100).also	{
												writeToLog("getRandomInt()	generated	value	$it")
								}
				}
				
				val	i	=	getRandomInt()
//sampleEnd
}

Lambda result
let, run, and with return the lambda result. So you can use them when assigning the result to a variable, chaining operations on the result, and so on.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three")
				val	countEndsWithE	=	numbers.run	{	
								add("four")
								add("five")
								count	{	it.endsWith("e")	}
				}
				println("There	are	$countEndsWithE	elements	that	end	with	e.")
//sampleEnd
}

Additionally, you can ignore the return value and use a scope function to create a temporary scope for local variables.

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three")
				with(numbers)	{
								val	firstItem	=	first()
								val	lastItem	=	last()								
								println("First	item:	$firstItem,	last	item:	$lastItem")
				}
//sampleEnd
}

Functions
To help you choose the right scope function for your use case, we describe them in detail and provide recommendations for use. Technically, scope functions are
interchangeable in many cases, so the examples show conventions for using them.

let

The context object is available as an argument (it).

The return value is the lambda result.

let can be used to invoke one or more functions on results of call chains. For example, the following code prints the results of two operations on a collection:

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four",	"five")
				val	resultList	=	numbers.map	{	it.length	}.filter	{	it	>	3	}
				println(resultList)				
//sampleEnd
}

With let, you can rewrite the above example so that you're not assigning the result of the list operations to a variable:

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four",	"five")
				numbers.map	{	it.length	}.filter	{	it	>	3	}.let	{	
								println(it)

868

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/let.html

								//	and	more	function	calls	if	needed
				}	
//sampleEnd
}

If the code block passed to let contains a single function with it as an argument, you can use the method reference (::) instead of the lambda argument:

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three",	"four",	"five")
				numbers.map	{	it.length	}.filter	{	it	>	3	}.let(::println)
//sampleEnd
}

let is often used to execute a code block containing non-null values. To perform actions on a non-null object, use the safe call operator ?. on it and call let with the
actions in its lambda.

fun	processNonNullString(str:	String)	{}

fun	main()	{
//sampleStart
				val	str:	String?	=	"Hello"			
				//processNonNullString(str)							//	compilation	error:	str	can	be	null
				val	length	=	str?.let	{	
								println("let()	called	on	$it")								
								processNonNullString(it)						//	OK:	'it'	is	not	null	inside	'?.let	{	}'
								it.length
				}
//sampleEnd
}

You can also use let to introduce local variables with a limited scope to make your code easier to read. To define a new variable for the context object, provide its
name as the lambda argument so that it can be used instead of the default it.

fun	main()	{
//sampleStart
				val	numbers	=	listOf("one",	"two",	"three",	"four")
				val	modifiedFirstItem	=	numbers.first().let	{	firstItem	->
								println("The	first	item	of	the	list	is	'$firstItem'")
								if	(firstItem.length	>=	5)	firstItem	else	"!"	+	firstItem	+	"!"
				}.uppercase()
				println("First	item	after	modifications:	'$modifiedFirstItem'")
//sampleEnd
}

with

The context object is available as a receiver (this).

The return value is the lambda result.

As with is not an extension function: the context object is passed as an argument, but inside the lambda, it's available as a receiver (this).

We recommend using with for calling functions on the context object when you don't need to use the returned result. In code, with can be read as "with this object,
do the following."

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three")
				with(numbers)	{
								println("'with'	is	called	with	argument	$this")
								println("It	contains	$size	elements")
				}
//sampleEnd
}

You can also use with to introduce a helper object whose properties or functions are used for calculating a value.

fun	main()	{

869

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/with.html

//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three")
				val	firstAndLast	=	with(numbers)	{
								"The	first	element	is	${first()},"	+
								"	the	last	element	is	${last()}"
				}
				println(firstAndLast)
//sampleEnd
}

run

The context object is available as a receiver (this).

The return value is the lambda result.

run does the same as with but it is implemented as an extension function. So like let, you can call it on the context object using dot notation.

run is useful when your lambda both initializes objects and computes the return value.

class	MultiportService(var	url:	String,	var	port:	Int)	{
				fun	prepareRequest():	String	=	"Default	request"
				fun	query(request:	String):	String	=	"Result	for	query	'$request'"
}

fun	main()	{
//sampleStart
				val	service	=	MultiportService("https://example.kotlinlang.org",	80)

				val	result	=	service.run	{
								port	=	8080
								query(prepareRequest()	+	"	to	port	$port")
				}
				
				//	the	same	code	written	with	let()	function:
				val	letResult	=	service.let	{
								it.port	=	8080
								it.query(it.prepareRequest()	+	"	to	port	${it.port}")
				}
//sampleEnd
				println(result)
				println(letResult)
}

You can also invoke run as a non-extension function. The non-extension variant of run has no context object, but it still returns the lambda result. Non-extension run
lets you execute a block of several statements where an expression is required. In code, non-extension run can be read as "run the code block and compute the
result."

fun	main()	{
//sampleStart
				val	hexNumberRegex	=	run	{
								val	digits	=	"0-9"
								val	hexDigits	=	"A-Fa-f"
								val	sign	=	"+-"
								
								Regex("[$sign]?[$digits$hexDigits]+")
				}
				
				for	(match	in	hexNumberRegex.findAll("+123	-FFFF	!%*&	88	XYZ"))	{
								println(match.value)
				}
//sampleEnd
}

apply

The context object is available as a receiver (this).

The return value is the object itself.

As apply returns the context object itself, we recommend that you use it for code blocks that don't return a value and that mainly operate on the members of the

870

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/run.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/apply.html

receiver object. The most common use case for apply is for object configuration. Such calls can be read as "apply the following assignments to the object."

data	class	Person(var	name:	String,	var	age:	Int	=	0,	var	city:	String	=	"")

fun	main()	{
//sampleStart
				val	adam	=	Person("Adam").apply	{
								age	=	32
								city	=	"London"								
				}
				println(adam)
//sampleEnd
}

Another use case for apply is to include apply in multiple call chains for more complex processing.

also

The context object is available as an argument (it).

The return value is the object itself.

also is useful for performing some actions that take the context object as an argument. Use also for actions that need a reference to the object rather than its
properties and functions, or when you don't want to shadow the this reference from an outer scope.

When you see also in code, you can read it as "and also do the following with the object."

fun	main()	{
//sampleStart
				val	numbers	=	mutableListOf("one",	"two",	"three")
				numbers
								.also	{	println("The	list	elements	before	adding	new	one:	$it")	}
								.add("four")
//sampleEnd
}

takeIf
and
takeUnless
In addition to scope functions, the standard library contains the functions takeIf and takeUnless. These functions let you embed checks of an object's state in call
chains.

When called on an object along with a predicate, takeIf returns this object if it satisfies the given predicate. Otherwise, it returns null. So, takeIf is a filtering function
for a single object.

takeUnless has the opposite logic of takeIf. When called on an object along with a predicate, takeUnless returns null if it satisfies the given predicate. Otherwise, it
returns the object.

When using takeIf or takeUnless, the object is available as a lambda argument (it).

import	kotlin.random.*

fun	main()	{
//sampleStart
				val	number	=	Random.nextInt(100)

				val	evenOrNull	=	number.takeIf	{	it	%	2	==	0	}
				val	oddOrNull	=	number.takeUnless	{	it	%	2	==	0	}
				println("even:	$evenOrNull,	odd:	$oddOrNull")
//sampleEnd
}

fun	main()	{
//sampleStart

When chaining other functions after takeIf and takeUnless, don't forget to perform a null check or use a safe call (?.) because their return value is nullable.

871

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/also.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/take-if.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/take-unless.html

				val	str	=	"Hello"
				val	caps	=	str.takeIf	{	it.isNotEmpty()	}?.uppercase()
			//val	caps	=	str.takeIf	{	it.isNotEmpty()	}.uppercase()	//compilation	error
				println(caps)
//sampleEnd
}

takeIf and takeUnless are especially useful in combination with scope functions. For example, you can chain takeIf and takeUnless with let to run a code block on
objects that match the given predicate. To do this, call takeIf on the object and then call let with a safe call (?). For objects that don't match the predicate, takeIf
returns null and let isn't invoked.

fun	main()	{
//sampleStart
				fun	displaySubstringPosition(input:	String,	sub:	String)	{
								input.indexOf(sub).takeIf	{	it	>=	0	}?.let	{
												println("The	substring	$sub	is	found	in	$input.")
												println("Its	start	position	is	$it.")
								}
				}

				displaySubstringPosition("010000011",	"11")
				displaySubstringPosition("010000011",	"12")
//sampleEnd
}

For comparison, below is an example of how the same function can be written without using takeIf or scope functions:

fun	main()	{
//sampleStart
				fun	displaySubstringPosition(input:	String,	sub:	String)	{
								val	index	=	input.indexOf(sub)
								if	(index	>=	0)	{
												println("The	substring	$sub	is	found	in	$input.")
												println("Its	start	position	is	$index.")
								}
				}

				displaySubstringPosition("010000011",	"11")
				displaySubstringPosition("010000011",	"12")
//sampleEnd
}

Time
measurement
The Kotlin standard library gives you the tools to calculate and measure time in different units. Accurate time measurement is important for activities like:

Managing threads or processes

Collecting statistics

Detecting timeouts

Debugging

By default, time is measured using a monotonic time source, but other time sources can be configured. For more information, see Create time source.

Calculate
duration
To represent an amount of time, the standard library has the Duration class. A Duration can be expressed in the following units from the DurationUnit enum class:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

MINUTES

872

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration-unit/

HOURS

DAYS

A Duration can be positive, negative, zero, positive infinity, or negative infinity.

Create
duration
To create a Duration, use the extension properties available for Int, Long, and Double types: nanoseconds, microseconds, milliseconds, seconds, minutes, hours,
and days.

For example:

import	kotlin.time.*
import	kotlin.time.Duration.Companion.nanoseconds
import	kotlin.time.Duration.Companion.milliseconds
import	kotlin.time.Duration.Companion.seconds
import	kotlin.time.Duration.Companion.minutes
import	kotlin.time.Duration.Companion.days

fun	main()	{
//sampleStart
				val	fiveHundredMilliseconds:	Duration	=	500.milliseconds
				val	zeroSeconds:	Duration	=	0.seconds
				val	tenMinutes:	Duration	=	10.minutes
				val	negativeNanosecond:	Duration	=	(-1).nanoseconds
				val	infiniteDays:	Duration	=	Double.POSITIVE_INFINITY.days
				val	negativeInfiniteDays:	Duration	=	Double.NEGATIVE_INFINITY.days

				println(fiveHundredMilliseconds)	//	500ms
				println(zeroSeconds)													//	0s
				println(tenMinutes)														//	10m
				println(negativeNanosecond)						//	-1ns
				println(infiniteDays)												//	Infinity
				println(negativeInfiniteDays)				//	-Infinity
//sampleEnd
}

You can also perform basic arithmetic with Duration objects:

import	kotlin.time.*
import	kotlin.time.Duration.Companion.seconds

fun	main()	{
//sampleStart
				val	fiveSeconds:	Duration	=	5.seconds
				val	thirtySeconds:	Duration	=	30.seconds

				println(fiveSeconds	+	thirtySeconds)
				//	35s
				println(thirtySeconds	-	fiveSeconds)
				//	25s
				println(fiveSeconds	*	2)
				//	10s
				println(thirtySeconds	/	2)
				//	15s
				println(thirtySeconds	/	fiveSeconds)
				//	6.0
				println(-thirtySeconds)
				//	-30s
				println((-thirtySeconds).absoluteValue)
				//	30s
//sampleEnd
}

Get
string
representation
It can be useful to have a string representation of a Duration so that you can print, serialize, transfer, or store it.

Days refer to periods of 24 hours. They are not calendar days.

873

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/#companion-object-properties

To get a string representation, use the .toString() function. By default, the time is reported using each unit that is present. For example: 1h 0m 45.677s or -(6d 5h 5m
28.284s)

To configure the output, use the .toString() function with your desired DurationUnit and number of decimal places as function parameters:

import	kotlin.time.Duration
import	kotlin.time.Duration.Companion.milliseconds
import	kotlin.time.DurationUnit

fun	main()	{
//sampleStart
				//	Print	in	seconds	with	2	decimal	places
				println(5887.milliseconds.toString(DurationUnit.SECONDS,	2))
				//	5.89s
//sampleEnd
}

To get an ISO-8601-compatible string, use the toIsoString() function:

import	kotlin.time.Duration.Companion.seconds

fun	main()	{
//sampleStart
				println(86420.seconds.toIsoString())	//	PT24H0M20S
//sampleEnd
}

Convert
duration
To convert your Duration into a different DurationUnit, use the following properties:

inWholeNanoseconds

inWholeMicroseconds

inWholeSeconds

inWholeMinutes

inWholeHours

inWholeDays

For example:

import	kotlin.time.Duration
import	kotlin.time.Duration.Companion.minutes

fun	main()	{
//sampleStart
				val	thirtyMinutes:	Duration	=	30.minutes
				println(thirtyMinutes.inWholeSeconds)
				//	1800
//sampleEnd
}

Alternatively, you can use your desired DurationUnit as a function parameter in the following extension functions:

.toInt()

.toDouble()

.toLong()

For example:

import	kotlin.time.Duration.Companion.seconds
import	kotlin.time.DurationUnit

fun	main()	{
//sampleStart

874

https://en.wikipedia.org/wiki/ISO_8601
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-iso-string.html

				println(270.seconds.toDouble(DurationUnit.MINUTES))
				//	4.5
//sampleEnd
}

Compare
duration
To check if Duration objects are equal, use the equality operator (==):

import	kotlin.time.Duration
import	kotlin.time.Duration.Companion.hours
import	kotlin.time.Duration.Companion.minutes

fun	main()	{
//sampleStart
				val	thirtyMinutes:	Duration	=	30.minutes
				val	halfHour:	Duration	=	0.5.hours
				println(thirtyMinutes	==	halfHour)
				//	true
//sampleEnd
}

To compare Duration objects, use the comparison operators (<, >):

import	kotlin.time.Duration.Companion.microseconds
import	kotlin.time.Duration.Companion.nanoseconds

fun	main()	{
//sampleStart
				println(3000.microseconds	<	25000.nanoseconds)
				//	false
//sampleEnd
}

Break
duration
into
components
To break down a Duration into its time components and perform a further action, use the overload of the toComponents() function. Add your desired action as a
function or lambda expression as a function parameter.

For example:

import	kotlin.time.Duration
import	kotlin.time.Duration.Companion.minutes

fun	main()	{
//sampleStart
				val	thirtyMinutes:	Duration	=	30.minutes
				println(thirtyMinutes.toComponents	{	hours,	minutes,	_,	_	->	"${hours}h:${minutes}m"	})
				//	0h:30m
//sampleEnd
}

In this example, the lambda expression has hours and minutes as function parameters with underscores (_) for the unused seconds and nanoseconds parameters.
The expression returns a concatenated string using string templates to get the desired output format of hours and minutes.

Measure
time
To track the passage of time, the standard library provides tools so that you can easily:

Measure the time taken to execute some code with your desired time unit.

Mark a moment in time.

Compare and subtract two moments in time.

Check how much time has passed since a specific moment in time.

Check whether the current time has passed a specific moment in time.

875

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-duration/to-components.html

Measure
code
execution
time
To measure the time taken to execute a block of code, use the measureTime inline function:

import	kotlin.time.measureTime

fun	main()	{
//sampleStart
				val	timeTaken	=	measureTime	{
								Thread.sleep(100)
				}
				println(timeTaken)	//	e.g.	103	ms
//sampleEnd
}

To measure the time taken to execute a block of code and return the value of the block of code, use inline function measureTimedValue.

For example:

import	kotlin.time.measureTimedValue

fun	main()	{
//sampleStart
				val	(value,	timeTaken)	=	measureTimedValue	{
								Thread.sleep(100)
								42
				}
				println(value)					//	42
				println(timeTaken)	//	e.g.	103	ms
//sampleEnd
}

By default, both functions use a monotonic time source.

Mark
moments
in
time
To mark a specific moment in time, use the TimeSource interface and the markNow() function to create a TimeMark:

import	kotlin.time.*

fun	main()	{
			val	timeSource	=	TimeSource.Monotonic
			val	mark	=	timeSource.markNow()
}

Measure
differences
in
time
To measure differences between TimeMark objects from the same time source, use the subtraction operator (-).

To compare TimeMark objects from the same time source, use the comparison operators (<, >).

For example:

import	kotlin.time.*

fun	main()	{
//sampleStart
			val	timeSource	=	TimeSource.Monotonic
			val	mark1	=	timeSource.markNow()
			Thread.sleep(500)	//	Sleep	0.5	seconds.
			val	mark2	=	timeSource.markNow()

			repeat(4)	{	n	->
							val	mark3	=	timeSource.markNow()
							val	elapsed1	=	mark3	-	mark1
							val	elapsed2	=	mark3	-	mark2

							println("Measurement	1.${n	+	1}:	elapsed1=$elapsed1,	elapsed2=$elapsed2,	diff=${elapsed1	-	elapsed2}")
			}
			
			println(mark2	>	mark1)	//	This	is	true,	as	mark2	was	captured	later	than	mark1.
			//	true
//sampleEnd

876

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/measure-time.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/measure-time.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-source/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-source/mark-now.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/

}

To check if a deadline has passed or a timeout has been reached, use the hasPassedNow() and hasNotPassedNow() extension functions:

import	kotlin.time.*
import	kotlin.time.Duration.Companion.seconds

fun	main()	{
//sampleStart
			val	timeSource	=	TimeSource.Monotonic
			val	mark1	=	timeSource.markNow()
			val	fiveSeconds:	Duration	=	5.seconds
			val	mark2	=	mark1	+	fiveSeconds

			//	It	hasn't	been	5	seconds	yet
			println(mark2.hasPassedNow())
			//	false
		
			//	Wait	six	seconds
			Thread.sleep(6000)
			println(mark2.hasPassedNow())
			//	true

//sampleEnd
}

Time
sources
By default, time is measured using a monotonic time source. Monotonic time sources only move forward and are not affected by variations like timezones. An
alternative to monotonic time is elapsed real time which is also known as wall-clock time. Elapsed real time is measured relative to another point in time.

Default
time
sources
per
platform
This table explains the default source of monotonic time for each platform:

Platform Source

Kotlin/JVM System.nanoTime()

Kotlin/JS (Node.js) process.hrtime()

Kotlin/JS (browser) window.performance.now() or Date.now()

Kotlin/Native std::chrono::high_resolution_clock or std::chrono::steady_clock

Create
time
source
There are some cases where you might want to use a different time source. For example in Android, System.nanoTime() only counts time while the device is active.
It loses track of time when the device enters deep sleep. To keep track of time while the device is in deep sleep, you can create a time source that uses
SystemClock.elapsedRealtimeNanos():

object	RealtimeMonotonicTimeSource	:	AbstractLongTimeSource(DurationUnit.NANOSECONDS)	{
				override	fun	read():	Long	=	SystemClock.elapsedRealtimeNanos()
}

Then you can use your time source to make time measurements:

fun	main()	{
				val	elapsed:	Duration	=	RealtimeMonotonicTimeSource.measureTime	{
								Thread.sleep(100)

877

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/has-passed-now.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/-time-mark/has-not-passed-now.html
https://developer.android.com/reference/android/os/SystemClock#elapsedRealtimeNanos()

				}
				println(elapsed)	//	e.g.	103	ms
}

For more information about the kotlin.time package, see our standard library API reference.

Coroutines
guide
Kotlin provides only minimal low-level APIs in its standard library to enable other libraries to utilize coroutines. Unlike many other languages with similar capabilities,
async and await are not keywords in Kotlin and are not even part of its standard library. Moreover, Kotlin's concept of suspending function provides a safer and less
error-prone abstraction for asynchronous operations than futures and promises.

kotlinx.coroutines is a rich library for coroutines developed by JetBrains. It contains a number of high-level coroutine-enabled primitives that this guide covers,
including launch, async, and others.

This is a guide about the core features of kotlinx.coroutines with a series of examples, divided up into different topics.

In order to use coroutines as well as follow the examples in this guide, you need to add a dependency on the kotlinx-coroutines-core module as explained in the
project README.

Table
of
contents
Coroutines basics

Hands-on: Intro to coroutines and channels

Cancellation and timeouts

Composing suspending functions

Coroutine context and dispatchers

Asynchronous Flow

Channels

Coroutine exceptions handling

Shared mutable state and concurrency

Select expression (experimental)

Tutorial: Debug coroutines using IntelliJ IDEA

Tutorial: Debug Kotlin Flow using IntelliJ IDEA

Additional
references
Guide to UI programming with coroutines

Coroutines design document (KEEP)

Full kotlinx.coroutines API reference

Best practices for coroutines in Android

Additional Android resources for Kotlin coroutines and flow

Coroutines
basics
This section covers basic coroutine concepts.

878

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/
https://github.com/Kotlin/kotlinx.coroutines/blob/master/README.md#using-in-your-projects
https://play.kotlinlang.org/hands-on/Introduction%20to%20Coroutines%20and%20Channels
https://github.com/Kotlin/kotlinx.coroutines/blob/master/ui/coroutines-guide-ui.md
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md
https://kotlinlang.org/api/kotlinx.coroutines/
https://developer.android.com/kotlin/coroutines/coroutines-best-practices
https://developer.android.com/kotlin/coroutines/additional-resources

Your
first
coroutine
A coroutine is an instance of a suspendable computation. It is conceptually similar to a thread, in the sense that it takes a block of code to run that works
concurrently with the rest of the code. However, a coroutine is not bound to any particular thread. It may suspend its execution in one thread and resume in another
one.

Coroutines can be thought of as light-weight threads, but there is a number of important differences that make their real-life usage very different from threads.

Run the following code to get to your first working coroutine:

import	kotlinx.coroutines.*

//sampleStart
fun	main()	=	runBlocking	{	//	this:	CoroutineScope
				launch	{	//	launch	a	new	coroutine	and	continue
								delay(1000L)	//	non-blocking	delay	for	1	second	(default	time	unit	is	ms)
								println("World!")	//	print	after	delay
				}
				println("Hello")	//	main	coroutine	continues	while	a	previous	one	is	delayed
}
//sampleEnd

You will see the following result:

Hello
World!

Let's dissect what this code does.

launch is a coroutine builder. It launches a new coroutine concurrently with the rest of the code, which continues to work independently. That's why Hello has been
printed first.

delay is a special suspending function. It suspends the coroutine for a specific time. Suspending a coroutine does not block the underlying thread, but allows other
coroutines to run and use the underlying thread for their code.

runBlocking is also a coroutine builder that bridges the non-coroutine world of a regular fun main() and the code with coroutines inside of runBlocking { ... } curly
braces. This is highlighted in an IDE by this: CoroutineScope hint right after the runBlocking opening curly brace.

If you remove or forget runBlocking in this code, you'll get an error on the launch call, since launch is declared only on the CoroutineScope:

Unresolved	reference:	launch

The name of runBlocking means that the thread that runs it (in this case — the main thread) gets blocked for the duration of the call, until all the coroutines inside
runBlocking { ... } complete their execution. You will often see runBlocking used like that at the very top-level of the application and quite rarely inside the real code,
as threads are expensive resources and blocking them is inefficient and is often not desired.

Structured
concurrency
Coroutines follow a principle of structured concurrency which means that new coroutines can only be launched in a specific CoroutineScope which delimits the
lifetime of the coroutine. The above example shows that runBlocking establishes the corresponding scope and that is why the previous example waits until World! is
printed after a second's delay and only then exits.

In a real application, you will be launching a lot of coroutines. Structured concurrency ensures that they are not lost and do not leak. An outer scope cannot
complete until all its children coroutines complete. Structured concurrency also ensures that any errors in the code are properly reported and are never lost.

Extract
function
refactoring
Let's extract the block of code inside launch { ... } into a separate function. When you perform "Extract function" refactoring on this code, you get a new function
with the suspend modifier. This is your first suspending function. Suspending functions can be used inside coroutines just like regular functions, but their additional
feature is that they can, in turn, use other suspending functions (like delay in this example) to suspend execution of a coroutine.

You can get the full code here.

879

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html

import	kotlinx.coroutines.*

//sampleStart
fun	main()	=	runBlocking	{	//	this:	CoroutineScope
				launch	{	doWorld()	}
				println("Hello")
}

//	this	is	your	first	suspending	function
suspend	fun	doWorld()	{
				delay(1000L)
				println("World!")
}
//sampleEnd

Scope
builder
In addition to the coroutine scope provided by different builders, it is possible to declare your own scope using the coroutineScope builder. It creates a coroutine
scope and does not complete until all launched children complete.

runBlocking and coroutineScope builders may look similar because they both wait for their body and all its children to complete. The main difference is that the
runBlocking method blocks the current thread for waiting, while coroutineScope just suspends, releasing the underlying thread for other usages. Because of that
difference, runBlocking is a regular function and coroutineScope is a suspending function.

You can use coroutineScope from any suspending function. For example, you can move the concurrent printing of Hello and World into a suspend fun doWorld()
function:

import	kotlinx.coroutines.*

//sampleStart
fun	main()	=	runBlocking	{
				doWorld()
}

suspend	fun	doWorld()	=	coroutineScope	{		//	this:	CoroutineScope
				launch	{
								delay(1000L)
								println("World!")
				}
				println("Hello")
}
//sampleEnd

This code also prints:

Hello
World!

Scope
builder
and
concurrency
A coroutineScope builder can be used inside any suspending function to perform multiple concurrent operations. Let's launch two concurrent coroutines inside a
doWorld suspending function:

import	kotlinx.coroutines.*

//sampleStart
//	Sequentially	executes	doWorld	followed	by	"Done"
fun	main()	=	runBlocking	{
				doWorld()

You can get the full code here.

You can get the full code here.

880

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-03.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html

				println("Done")
}

//	Concurrently	executes	both	sections
suspend	fun	doWorld()	=	coroutineScope	{	//	this:	CoroutineScope
				launch	{
								delay(2000L)
								println("World	2")
				}
				launch	{
								delay(1000L)
								println("World	1")
				}
				println("Hello")
}
//sampleEnd

Both pieces of code inside launch { ... } blocks execute concurrently, with World 1 printed first, after a second from start, and World 2 printed next, after two
seconds from start. A coroutineScope in doWorld completes only after both are complete, so doWorld returns and allows Done string to be printed only after that:

Hello
World	1
World	2
Done

An
explicit
job
A launch coroutine builder returns a Job object that is a handle to the launched coroutine and can be used to explicitly wait for its completion. For example, you can
wait for completion of the child coroutine and then print "Done" string:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch	{	//	launch	a	new	coroutine	and	keep	a	reference	to	its	Job
								delay(1000L)
								println("World!")
				}
				println("Hello")
				job.join()	//	wait	until	child	coroutine	completes
				println("Done")	
//sampleEnd				
}

This code produces:

Hello
World!
Done

Coroutines
are
light-weight
Coroutines are less resource-intensive than JVM threads. Code that exhausts the JVM's available memory when using threads can be expressed using coroutines
without hitting resource limits. For example, the following code launches 50,000 distinct coroutines that each waits 5 seconds and then prints a period ('.') while
consuming very little memory:

import	kotlinx.coroutines.*

You can get the full code here.

You can get the full code here.

881

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-05.kt

fun	main()	=	runBlocking	{
				repeat(50_000)	{	//	launch	a	lot	of	coroutines
								launch	{
												delay(5000L)
												print(".")
								}
				}
}

If you write the same program using threads (remove runBlocking, replace launch with thread, and replace delay with Thread.sleep), it will consume a lot of memory.
Depending on your operating system, JDK version, and its settings, it will either throw an out-of-memory error or start threads slowly so that there are never too
many concurrently running threads.

Coroutines
and
channels
−
tutorial
In this tutorial, you'll learn how to use coroutines in IntelliJ IDEA to perform network requests without blocking the underlying thread or callbacks.

You'll learn:

Why and how to use suspending functions to perform network requests.

How to send requests concurrently using coroutines.

How to share information between different coroutines using channels.

For network requests, you'll need the Retrofit library, but the approach shown in this tutorial works similarly for any other libraries that support coroutines.

Before
you
start
1. Download and install the latest version of IntelliJ IDEA.

2. Clone the project template by choosing Get from VCS on the Welcome screen or selecting File | New | Project from Version Control.

You can also clone it from the command line:

git	clone	https://github.com/kotlin-hands-on/intro-coroutines

Generate
a
GitHub
developer
token
You'll be using the GitHub API in your project. To get access, provide your GitHub account name and either a password or a token. If you have two-factor
authentication enabled, a token will be enough.

Generate a new GitHub token to use the GitHub API with your account:

1. Specify the name of your token, for example, coroutines-tutorial:

You can get the full code here.

No prior knowledge of coroutines is required, but you're expected to be familiar with basic Kotlin syntax.

You can find solutions for all of the tasks on the solutions branch of the project's repository.

882

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-basic-06.kt
https://square.github.io/retrofit/
http://github.com/kotlin-hands-on/intro-coroutines
https://www.jetbrains.com/idea/download/index.html
http://github.com/kotlin-hands-on/intro-coroutines
https://github.com/settings/tokens/new

Generate a new GitHub token

2. Do not select any scopes. Click Generate token at the bottom of the page.

3. Copy the generated token.

Run
the
code
The program loads the contributors for all of the repositories under the given organization (named “kotlin” by default). Later you'll add logic to sort the users by the
number of their contributions.

1. Open the src/contributors/main.kt file and run the main() function. You'll see the following window:

883

First window

If the font is too small, adjust it by changing the value of setDefaultFontSize(18f) in the main() function.

2. Provide your GitHub username and token (or password) in the corresponding fields.

3. Make sure that the BLOCKING option is selected in the Variant dropdown menu.

4. Click Load contributors. The UI should freeze for some time and then show the list of contributors.

5. Open the program output to ensure the data has been loaded. The list of contributors is logged after each successful request.

There are different ways of implementing this logic: by using blocking requests or callbacks. You'll compare these solutions with one that uses coroutines and see
how channels can be used to share information between different coroutines.

Blocking
requests
You will use the Retrofit library to perform HTTP requests to GitHub. It allows requesting the list of repositories under the given organization and the list of
contributors for each repository:

interface	GitHubService	{
				@GET("orgs/{org}/repos?per_page=100")

884

https://square.github.io/retrofit/

				fun	getOrgReposCall(
								@Path("org")	org:	String
):	Call<List<Repo>>

				@GET("repos/{owner}/{repo}/contributors?per_page=100")
				fun	getRepoContributorsCall(
								@Path("owner")	owner:	String,
								@Path("repo")	repo:	String
):	Call<List<User>>
}

This API is used by the loadContributorsBlocking() function to fetch the list of contributors for the given organization.

1. Open src/tasks/Request1Blocking.kt to see its implementation:

fun	loadContributorsBlocking(service:	GitHubService,	req:	RequestData):	List<User>	{
				val	repos	=	service
								.getOrgReposCall(req.org)			//	#1
								.execute()																		//	#2
								.also	{	logRepos(req,	it)	}	//	#3
								.body()	?:	emptyList()						//	#4

				return	repos.flatMap	{	repo	->
								service
												.getRepoContributorsCall(req.org,	repo.name)	//	#1
												.execute()																																			//	#2
												.also	{	logUsers(repo,	it)	}																	//	#3
												.bodyList()																																		//	#4
				}.aggregate()
}

At first, you get a list of the repositories under the given organization and store it in the repos list. Then for each repository, the list of contributors is
requested, and all of the lists are merged into one final list of contributors.

getOrgReposCall() and getRepoContributorsCall() both return an instance of the *Call class (#1). At this point, no request is sent.

*Call.execute() is then invoked to perform the request (#2). execute() is a synchronous call that blocks the underlying thread.

When you get the response, the result is logged by calling the specific logRepos() and logUsers() functions (#3). If the HTTP response contains an error, this
error will be logged here.

Finally, get the response's body, which contains the data you need. For this tutorial, you'll use an empty list as a result in case there is an error, and you'll log
the corresponding error (#4).

2. To avoid repeating .body() ?: emptyList(), an extension function bodyList() is declared:

fun	<T>	Response<List<T>>.bodyList():	List<T>	{
				return	body()	?:	emptyList()
}

3. Run the program again and take a look at the system output in IntelliJ IDEA. It should have something like this:

1770	[AWT-EventQueue-0]	INFO		Contributors	-	kotlin:	loaded	40	repos
2025	[AWT-EventQueue-0]	INFO		Contributors	-	kotlin-examples:	loaded	23	contributors
2229	[AWT-EventQueue-0]	INFO		Contributors	-	kotlin-koans:	loaded	45	contributors
...

The first item on each line is the number of milliseconds that have passed since the program started, then the thread name in square brackets. You can see
from which thread the loading request is called.

The final item on each line is the actual message: how many repositories or contributors were loaded.

This log output demonstrates that all of the results were logged from the main thread. When you run the code with a BLOCKING option, the window freezes and
doesn't react to input until the loading is finished. All of the requests are executed from the same thread as the one called loadContributorsBlocking() is from,
which is the main UI thread (in Swing, it's an AWT event dispatching thread). This main thread becomes blocked, and that's why the UI is frozen:

885

The blocked main thread

After the list of contributors has loaded, the result is updated.

4. In src/contributors/Contributors.kt, find the loadContributors() function responsible for choosing how the contributors are loaded and look at how
loadContributorsBlocking() is called:

when	(getSelectedVariant())	{
				BLOCKING	->	{	//	Blocking	UI	thread
								val	users	=	loadContributorsBlocking(service,	req)
								updateResults(users,	startTime)
				}
}

The updateResults() call goes right after the loadContributorsBlocking() call.

updateResults() updates the UI, so it must always be called from the UI thread.

Since loadContributorsBlocking() is also called from the UI thread, the UI thread becomes blocked and the UI is frozen.

Task
1
The first task helps you familiarize yourself with the task domain. Currently, each contributor's name is repeated several times, once for every project they have
taken part in. Implement the aggregate() function combining the users so that each contributor is added only once. The User.contributions property should contain
the total number of contributions of the given user to all the projects. The resulting list should be sorted in descending order according to the number of
contributions.

Open src/tasks/Aggregation.kt and implement the List<User>.aggregate() function. Users should be sorted by the total number of their contributions.

The corresponding test file test/tasks/AggregationKtTest.kt shows an example of the expected result.

After implementing this task, the resulting list for the "kotlin" organization should be similar to the following:

You can jump between the source code and the test class automatically by using the IntelliJ IDEA shortcut Ctrl+Shift+T / ⇧ ⌘ T.

886

https://www.jetbrains.com/help/idea/create-tests.html#test-code-navigation

The list for the "kotlin" organization

Solution for task 1
1. To group users by login, use groupBy(), which returns a map from a login to all occurrences of the user with this login in different repositories.

2. For each map entry, count the total number of contributions for each user and create a new instance of the User class by the given name and total of
contributions.

3. Sort the resulting list in descending order:

fun	List<User>.aggregate():	List<User>	=
				groupBy	{	it.login	}
								.map	{	(login,	group)	->	User(login,	group.sumOf	{	it.contributions	})	}
								.sortedByDescending	{	it.contributions	}

An alternative solution is to use the groupingBy() function instead of groupBy().

Callbacks
The previous solution works, but it blocks the thread and therefore freezes the UI. A traditional approach that avoids this is to use callbacks.

887

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/group-by.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/grouping-by.html

Instead of calling the code that should be invoked right after the operation is completed, you can extract it into a separate callback, often a lambda, and pass that
lambda to the caller in order for it to be called later.

To make the UI responsive, you can either move the whole computation to a separate thread or switch to the Retrofit API which uses callbacks instead of blocking
calls.

Use
a
background
thread
1. Open src/tasks/Request2Background.kt and see its implementation. First, the whole computation is moved to a different thread. The thread() function starts a

new thread:

thread	{
				loadContributorsBlocking(service,	req)
}

Now that all of the loading has been moved to a separate thread, the main thread is free and can be occupied by other tasks:

The freed main thread

2. The signature of the loadContributorsBackground() function changes. It takes an updateResults() callback as the last argument to call it after all the loading
completes:

fun	loadContributorsBackground(
				service:	GitHubService,	req:	RequestData,
				updateResults:	(List<User>)	->	Unit
)

3. Now when the loadContributorsBackground() is called, the updateResults() call goes in the callback, not immediately afterward as it did before:

loadContributorsBackground(service,	req)	{	users	->
				SwingUtilities.invokeLater	{
								updateResults(users,	startTime)
				}
}

By calling SwingUtilities.invokeLater, you ensure that the updateResults() call, which updates the results, happens on the main UI thread (AWT event dispatching
thread).

However, if you try to load the contributors via the BACKGROUND option, you can see that the list is updated but nothing changes.

Task
2
Fix the loadContributorsBackground() function in src/tasks/Request2Background.kt so that the resulting list is shown in the UI.

Solution for task 2
If you try to load the contributors, you can see in the log that the contributors are loaded but the result isn't displayed. To fix this, call updateResults() on the
resulting list of users:

thread	{
				updateResults(loadContributorsBlocking(service,	req))
}

Make sure to call the logic passed in the callback explicitly. Otherwise, nothing will happen.

888

Use
the
Retrofit
callback
API
In the previous solution, the whole loading logic is moved to the background thread, but that still isn't the best use of resources. All of the loading requests go
sequentially and the thread is blocked while waiting for the loading result, while it could have been occupied by other tasks. Specifically, the thread could start
loading another request to receive the entire result earlier.

Handling the data for each repository should then be divided into two parts: loading and processing the resulting response. The second processing part should be
extracted into a callback.

The loading for each repository can then be started before the result for the previous repository is received (and the corresponding callback is called):

Using callback API

The Retrofit callback API can help achieve this. The Call.enqueue() function starts an HTTP request and takes a callback as an argument. In this callback, you need
to specify what needs to be done after each request.

Open src/tasks/Request3Callbacks.kt and see the implementation of loadContributorsCallbacks() that uses this API:

fun	loadContributorsCallbacks(
				service:	GitHubService,	req:	RequestData,
				updateResults:	(List<User>)	->	Unit
)	{
				service.getOrgReposCall(req.org).onResponse	{	responseRepos	->		//	#1
								logRepos(req,	responseRepos)
								val	repos	=	responseRepos.bodyList()

								val	allUsers	=	mutableListOf<User>()
								for	(repo	in	repos)	{
												service.getRepoContributorsCall(req.org,	repo.name)
																.onResponse	{	responseUsers	->		//	#2
																				logUsers(repo,	responseUsers)
																				val	users	=	responseUsers.bodyList()
																				allUsers	+=	users
																}
												}
								}
								//	TODO:	Why	doesn't	this	code	work?	How	to	fix	that?
								updateResults(allUsers.aggregate())
				}

For convenience, this code fragment uses the onResponse() extension function declared in the same file. It takes a lambda as an argument rather than an object
expression.

The logic for handling the responses is extracted into callbacks: the corresponding lambdas start at lines #1 and #2.

However, the provided solution doesn't work. If you run the program and load contributors by choosing the CALLBACKS option, you'll see that nothing is shown.
However, the tests that immediately return the result pass.

Think about why the given code doesn't work as expected and try to fix it, or see the solutions below.

Task
3
(optional)
Rewrite the code in the src/tasks/Request3Callbacks.kt file so that the loaded list of contributors is shown.

The first attempted solution for task 3
In the current solution, many requests are started concurrently, which decreases the total loading time. However, the result isn't loaded. This is because the
updateResults() callback is called right after all of the loading requests are started, before the allUsers list has been filled with the data.

You could try to fix this with a change like the following:

889

val	allUsers	=	mutableListOf<User>()
for	((index,	repo)	in	repos.withIndex())	{			//	#1
				service.getRepoContributorsCall(req.org,	repo.name)
								.onResponse	{	responseUsers	->
												logUsers(repo,	responseUsers)
												val	users	=	responseUsers.bodyList()
												allUsers	+=	users
												if	(index	==	repos.lastIndex)	{				//	#2
																updateResults(allUsers.aggregate())
												}
								}
}

First, you iterate over the list of repos with an index (#1).

Then, from each callback, you check whether it's the last iteration (#2).

And if that's the case, the result is updated.

However, this code also fails to achieve our objective. Try to find the answer yourself, or see the solution below.

The second attempted solution for task 3
Since the loading requests are started concurrently, there's no guarantee that the result for the last one comes last. The results can come in any order.

Thus, if you compare the current index with the lastIndex as a condition for completion, you risk losing the results for some repos.

If the request that processes the last repo returns faster than some prior requests (which is likely to happen), all of the results for requests that take more time will
be lost.

One way to fix this is to introduce an index and check whether all of the repositories have already been processed:

val	allUsers	=	Collections.synchronizedList(mutableListOf<User>())
val	numberOfProcessed	=	AtomicInteger()
for	(repo	in	repos)	{
				service.getRepoContributorsCall(req.org,	repo.name)
								.onResponse	{	responseUsers	->
												logUsers(repo,	responseUsers)
												val	users	=	responseUsers.bodyList()
												allUsers	+=	users
												if	(numberOfProcessed.incrementAndGet()	==	repos.size)	{
																updateResults(allUsers.aggregate())
												}
								}
}

This code uses a synchronized version of the list and AtomicInteger() because, in general, there's no guarantee that different callbacks that process
getRepoContributors() requests will always be called from the same thread.

The third attempted solution for task 3
An even better solution is to use the CountDownLatch class. It stores a counter initialized with the number of repositories. This counter is decremented after
processing each repository. It then waits until the latch is counted down to zero before updating the results:

val	countDownLatch	=	CountDownLatch(repos.size)
for	(repo	in	repos)	{
				service.getRepoContributorsCall(req.org,	repo.name)
								.onResponse	{	responseUsers	->
												//	processing	repository
												countDownLatch.countDown()
								}
}
countDownLatch.await()
updateResults(allUsers.aggregate())

The result is then updated from the main thread. This is more direct than delegating the logic to the child threads.

After reviewing these three attempts at a solution, you can see that writing correct code with callbacks is non-trivial and error-prone, especially when several
underlying threads and synchronization occur.

890

Suspending
functions
You can implement the same logic using suspending functions. Instead of returning Call<List<Repo>>, define the API call as a suspending function as follows:

interface	GitHubService	{
				@GET("orgs/{org}/repos?per_page=100")
				suspend	fun	getOrgRepos(
								@Path("org")	org:	String
):	List<Repo>
}

getOrgRepos() is defined as a suspend function. When you use a suspending function to perform a request, the underlying thread isn't blocked. More details
about how this works will come in later sections.

getOrgRepos() returns the result directly instead of returning a Call. If the result is unsuccessful, an exception is thrown.

Alternatively, Retrofit allows returning the result wrapped in Response. In this case, the result body is provided, and it is possible to check for errors manually. This
tutorial uses the versions that return Response.

In src/contributors/GitHubService.kt, add the following declarations to the GitHubService interface:

interface	GitHubService	{
				//	getOrgReposCall	&	getRepoContributorsCall	declarations

				@GET("orgs/{org}/repos?per_page=100")
				suspend	fun	getOrgRepos(
								@Path("org")	org:	String
):	Response<List<Repo>>

				@GET("repos/{owner}/{repo}/contributors?per_page=100")
				suspend	fun	getRepoContributors(
								@Path("owner")	owner:	String,
								@Path("repo")	repo:	String
):	Response<List<User>>
}

Task
4
Your task is to change the code of the function that loads contributors to make use of two new suspending functions, getOrgRepos() and getRepoContributors().
The new loadContributorsSuspend() function is marked as suspend to use the new API.

1. Copy the implementation of loadContributorsBlocking() that is defined in src/tasks/Request1Blocking.kt into the loadContributorsSuspend() that is defined in
src/tasks/Request4Suspend.kt.

2. Modify the code so that the new suspending functions are used instead of the ones that return Calls.

3. Run the program by choosing the SUSPEND option and ensure that the UI is still responsive while the GitHub requests are performed.

Solution for task 4
Replace .getOrgReposCall(req.org).execute() with .getOrgRepos(req.org) and repeat the same replacement for the second "contributors" request:

suspend	fun	loadContributorsSuspend(service:	GitHubService,	req:	RequestData):	List<User>	{
				val	repos	=	service
								.getOrgRepos(req.org)
								.also	{	logRepos(req,	it)	}
								.bodyList()

As an additional exercise, you can implement the same logic using a reactive approach with the RxJava library. All of the necessary dependencies and
solutions for using RxJava can be found in a separate rx branch. It is also possible to complete this tutorial and implement or check the proposed Rx
versions for a proper comparison.

Suspending functions can't be called everywhere. Calling a suspending function from loadContributorsBlocking() will result in an error with the message
"Suspend function 'getOrgRepos' should be called only from a coroutine or another suspend function".

891

				return	repos.flatMap	{	repo	->
								service.getRepoContributors(req.org,	repo.name)
												.also	{	logUsers(repo,	it)	}
												.bodyList()
				}.aggregate()
}

loadContributorsSuspend() should be defined as a suspend function.

You no longer need to call execute, which returned the Response before, because now the API functions return the Response directly. Note that this detail is
specific to the Retrofit library. With other libraries, the API will be different, but the concept is the same.

Coroutines
The code with suspending functions looks similar to the "blocking" version. The major difference from the blocking version is that instead of blocking the thread, the
coroutine is suspended:

block	->	suspend
thread	->	coroutine

Starting
a
new
coroutine
If you look at how loadContributorsSuspend() is used in src/contributors/Contributors.kt, you can see that it's called inside launch. launch is a library function that
takes a lambda as an argument:

launch	{
				val	users	=	loadContributorsSuspend(req)
				updateResults(users,	startTime)
}

Here launch starts a new computation that is responsible for loading the data and showing the results. The computation is suspendable – when performing network
requests, it is suspended and releases the underlying thread. When the network request returns the result, the computation is resumed.

Such a suspendable computation is called a coroutine. So, in this case, launch starts a new coroutine responsible for loading data and showing the results.

Coroutines run on top of threads and can be suspended. When a coroutine is suspended, the corresponding computation is paused, removed from the thread, and
stored in memory. Meanwhile, the thread is free to be occupied by other tasks:

Suspending coroutines

When the computation is ready to be continued, it is returned to a thread (not necessarily the same one).

Coroutines are often called lightweight threads because you can run code on coroutines, similar to how you run code on threads. The operations that
were blocking before (and had to be avoided) can now suspend the coroutine instead.

892

In the loadContributorsSuspend() example, each "contributors" request now waits for the result using the suspension mechanism. First, the new request is sent.
Then, while waiting for the response, the whole "load contributors" coroutine that was started by the launch function is suspended.

The coroutine resumes only after the corresponding response is received:

Suspending request

While the response is waiting to be received, the thread is free to be occupied by other tasks. The UI stays responsive, despite all the requests taking place on the
main UI thread:

1. Run the program using the SUSPEND option. The log confirms that all of the requests are sent to the main UI thread:

2538	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	kotlin:	loaded	30	repos
2729	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	ts2kt:	loaded	11	contributors
3029	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	kotlin-koans:	loaded	45	contributors
...
11252	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	kotlin-coroutines-workshop:	loaded	1	contributors

2. The log can show you which coroutine the corresponding code is running on. To enable it, open Run | Edit configurations and add the -
Dkotlinx.coroutines.debug VM option:

893

Edit run configuration

The coroutine name will be attached to the thread name while main() is run with this option. You can also modify the template for running all of the Kotlin files
and enable this option by default.

Now all of the code runs on one coroutine, the "load contributors" coroutine mentioned above, denoted as @coroutine#1. While waiting for the result, you shouldn't
reuse the thread for sending other requests because the code is written sequentially. The new request is sent only when the previous result is received.

Suspending functions treat the thread fairly and don't block it for "waiting". However, this doesn't yet bring any concurrency into the picture.

Concurrency
Kotlin coroutines are much less resource-intensive than threads. Each time you want to start a new computation asynchronously, you can create a new coroutine
instead.

To start a new coroutine, use one of the main coroutine builders: launch, async, or runBlocking. Different libraries can define additional coroutine builders.

async starts a new coroutine and returns a Deferred object. Deferred represents a concept known by other names such as Future or Promise. It stores a
computation, but it defers the moment you get the final result; it promises the result sometime in the future.

The main difference between async and launch is that launch is used to start a computation that isn't expected to return a specific result. launch returns a Job that
represents the coroutine. It is possible to wait until it completes by calling Job.join().

Deferred is a generic type that extends Job. An async call can return a Deferred<Int> or a Deferred<CustomType>, depending on what the lambda returns (the last
expression inside the lambda is the result).

To get the result of a coroutine, you can call await() on the Deferred instance. While waiting for the result, the coroutine that this await() is called from is suspended:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
				val	deferred:	Deferred<Int>	=	async	{
								loadData()
				}
				println("waiting...")
				println(deferred.await())
}

suspend	fun	loadData():	Int	{
				println("loading...")
				delay(1000L)
				println("loaded!")
				return	42
}

runBlocking is used as a bridge between regular and suspending functions, or between the blocking and non-blocking worlds. It works as an adaptor for starting
the top-level main coroutine. It is intended primarily to be used in main() functions and tests.

If there is a list of deferred objects, you can call awaitAll() to await the results of all of them:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
				val	deferreds:	List<Deferred<Int>>	=	(1..3).map	{
								async	{
												delay(1000L	*	it)
												println("Loading	$it")
												it
								}
				}
				val	sum	=	deferreds.awaitAll().sum()
				println("$sum")
}

When each "contributors" request is started in a new coroutine, all of the requests are started asynchronously. A new request can be sent before the result for the

Watch this video for a better understanding of coroutines.

894

https://www.youtube.com/watch?v=zEZc5AmHQhk

previous one is received:

Concurrent coroutines

The total loading time is approximately the same as in the CALLBACKS version, but it doesn't need any callbacks. What's more, async explicitly emphasizes which
parts run concurrently in the code.

Task
5
In the Request5Concurrent.kt file, implement a loadContributorsConcurrent() function by using the previous loadContributorsSuspend() function.

Tip for task 5
You can only start a new coroutine inside a coroutine scope. Copy the content from loadContributorsSuspend() to the coroutineScope call so that you can call
async functions there:

suspend	fun	loadContributorsConcurrent(
				service:	GitHubService,
				req:	RequestData
):	List<User>	=	coroutineScope	{
				//	...
}

Base your solution on the following scheme:

val	deferreds:	List<Deferred<List<User>>>	=	repos.map	{	repo	->
				async	{
								//	load	contributors	for	each	repo
				}
}
deferreds.awaitAll()	//	List<List<User>>

Solution for task 5
Wrap each "contributors" request with async to create as many coroutines as there are repositories. async returns Deferred<List<User>>. This is not an issue
because creating new coroutines is not very resource-intensive, so you can create as many as you need.

1. You can no longer use flatMap because the map result is now a list of Deferred objects, not a list of lists. awaitAll() returns List<List<User>>, so call
flatten().aggregate() to get the result:

suspend	fun	loadContributorsConcurrent(
				service:	GitHubService,	
				req:	RequestData
):	List<User>	=	coroutineScope	{
				val	repos	=	service
								.getOrgRepos(req.org)
								.also	{	logRepos(req,	it)	}
								.bodyList()

				val	deferreds:	List<Deferred<List<User>>>	=	repos.map	{	repo	->
								async	{
												service.getRepoContributors(req.org,	repo.name)
																.also	{	logUsers(repo,	it)	}
																.bodyList()
								}
				}
				deferreds.awaitAll().flatten().aggregate()

895

}

2. Run the code and check the log. All of the coroutines still run on the main UI thread because multithreading hasn't been employed yet, but you can already see
the benefits of running coroutines concurrently.

3. To change this code to run "contributors" coroutines on different threads from the common thread pool, specify Dispatchers.Default as the context argument for
the async function:

async(Dispatchers.Default)	{	}

CoroutineDispatcher determines what thread or threads the corresponding coroutine should be run on. If you don't specify one as an argument, async will
use the dispatcher from the outer scope.

Dispatchers.Default represents a shared pool of threads on the JVM. This pool provides a means for parallel execution. It consists of as many threads as
there are CPU cores available, but it will still have two threads if there's only one core.

4. Modify the code in the loadContributorsConcurrent() function to start new coroutines on different threads from the common thread pool. Also, add additional
logging before sending the request:

async(Dispatchers.Default)	{
				log("starting	loading	for	${repo.name}")
				service.getRepoContributors(req.org,	repo.name)
								.also	{	logUsers(repo,	it)	}
								.bodyList()
}

5. Run the program once again. In the log, you can see that each coroutine can be started on one thread from the thread pool and resumed on another:

1946	[DefaultDispatcher-worker-2	@coroutine#4]	INFO		Contributors	-	starting	loading	for	kotlin-koans
1946	[DefaultDispatcher-worker-3	@coroutine#5]	INFO		Contributors	-	starting	loading	for	dokka
1946	[DefaultDispatcher-worker-1	@coroutine#3]	INFO		Contributors	-	starting	loading	for	ts2kt
...
2178	[DefaultDispatcher-worker-1	@coroutine#4]	INFO		Contributors	-	kotlin-koans:	loaded	45	contributors
2569	[DefaultDispatcher-worker-1	@coroutine#5]	INFO		Contributors	-	dokka:	loaded	36	contributors
2821	[DefaultDispatcher-worker-2	@coroutine#3]	INFO		Contributors	-	ts2kt:	loaded	11	contributors

For instance, in this log excerpt, coroutine#4 is started on the worker-2 thread and continued on the worker-1 thread.

In src/contributors/Contributors.kt, check the implementation of the CONCURRENT option:

1. To run the coroutine only on the main UI thread, specify Dispatchers.Main as an argument:

launch(Dispatchers.Main)	{
				updateResults()
}

If the main thread is busy when you start a new coroutine on it, the coroutine becomes suspended and scheduled for execution on this thread. The coroutine
will only resume when the thread becomes free.

It's considered good practice to use the dispatcher from the outer scope rather than explicitly specifying it on each end-point. If you define
loadContributorsConcurrent() without passing Dispatchers.Default as an argument, you can call this function in any context: with a Default dispatcher, with
the main UI thread, or with a custom dispatcher.

As you'll see later, when calling loadContributorsConcurrent() from tests, you can call it in the context with TestDispatcher, which simplifies testing. That
makes this solution much more flexible.

2. To specify the dispatcher on the caller side, apply the following change to the project while letting loadContributorsConcurrent start coroutines in the inherited
context:

launch(Dispatchers.Default)	{
				val	users	=	loadContributorsConcurrent(service,	req)
				withContext(Dispatchers.Main)	{
								updateResults(users,	startTime)
				}
}

updateResults() should be called on the main UI thread, so you call it with the context of Dispatchers.Main.

896

withContext() calls the given code with the specified coroutine context, is suspended until it completes, and returns the result. An alternative but more verbose
way to express this would be to start a new coroutine and explicitly wait (by suspending) until it completes: launch(context) { ... }.join().

3. Run the code and ensure that the coroutines are executed on the threads from the thread pool.

Structured
concurrency
The coroutine scope is responsible for the structure and parent-child relationships between different coroutines. New coroutines usually need to be started
inside a scope.

The coroutine context stores additional technical information used to run a given coroutine, like the coroutine custom name, or the dispatcher specifying the
threads the coroutine should be scheduled on.

When launch, async, or runBlocking are used to start a new coroutine, they automatically create the corresponding scope. All of these functions take a lambda with
a receiver as an argument, and CoroutineScope is the implicit receiver type:

launch	{	/*	this:	CoroutineScope	*/	}

New coroutines can only be started inside a scope.

launch and async are declared as extensions to CoroutineScope, so an implicit or explicit receiver must always be passed when you call them.

The coroutine started by runBlocking is the only exception because runBlocking is defined as a top-level function. But because it blocks the current thread, it's
intended primarily to be used in main() functions and tests as a bridge function.

A new coroutine inside runBlocking, launch, or async is started automatically inside the scope:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{	/*	this:	CoroutineScope	*/
				launch	{	/*	...	*/	}
				//	the	same	as:			
				this.launch	{	/*	...	*/	}
}

When you call launch inside runBlocking, it's called as an extension to the implicit receiver of the CoroutineScope type. Alternatively, you could explicitly write
this.launch.

The nested coroutine (started by launch in this example) can be considered as a child of the outer coroutine (started by runBlocking). This "parent-child"
relationship works through scopes; the child coroutine is started from the scope corresponding to the parent coroutine.

It's possible to create a new scope without starting a new coroutine, by using the coroutineScope function. To start new coroutines in a structured way inside a
suspend function without access to the outer scope, you can create a new coroutine scope that automatically becomes a child of the outer scope that this suspend
function is called from. loadContributorsConcurrent()is a good example.

You can also start a new coroutine from the global scope using GlobalScope.async or GlobalScope.launch. This will create a top-level "independent" coroutine.

The mechanism behind the structure of the coroutines is called structured concurrency. It provides the following benefits over global scopes:

The scope is generally responsible for child coroutines, whose lifetime is attached to the lifetime of the scope.

The scope can automatically cancel child coroutines if something goes wrong or a user changes their mind and decides to revoke the operation.

The scope automatically waits for the completion of all child coroutines. Therefore, if the scope corresponds to a coroutine, the parent coroutine does not
complete until all the coroutines launched in its scope have completed.

When using GlobalScope.async, there is no structure that binds several coroutines to a smaller scope. Coroutines started from the global scope are all independent
– their lifetime is limited only by the lifetime of the whole application. It's possible to store a reference to the coroutine started from the global scope and wait for its
completion or cancel it explicitly, but that won't happen automatically as it would with structured concurrency.

Canceling
the
loading
of
contributors
Create two versions of the function that loads the list of contributors. Compare how both versions behave when you try to cancel the parent coroutine. The first
version will use coroutineScope to start all of the child coroutines, whereas the second will use GlobalScope.

1. In Request5Concurrent.kt, add a 3-second delay to the loadContributorsConcurrent() function:

897

suspend	fun	loadContributorsConcurrent(
				service:	GitHubService,	
				req:	RequestData
):	List<User>	=	coroutineScope	{
				//	...
				async	{
								log("starting	loading	for	${repo.name}")
								delay(3000)
								//	load	repo	contributors
				}
				//	...
}

The delay affects all of the coroutines that send requests, so that there's enough time to cancel the loading after the coroutines are started but before the
requests are sent.

2. Create the second version of the loading function: copy the implementation of loadContributorsConcurrent() to loadContributorsNotCancellable() in
Request5NotCancellable.kt and then remove the creation of a new coroutineScope.

3. The async calls now fail to resolve, so start them by using GlobalScope.async:

suspend	fun	loadContributorsNotCancellable(
				service:	GitHubService,
				req:	RequestData
):	List<User>	{			//	#1
				//	...
				GlobalScope.async	{			//	#2
								log("starting	loading	for	${repo.name}")
								//	load	repo	contributors
				}
				//	...
				return	deferreds.awaitAll().flatten().aggregate()		//	#3
}

The function now returns the result directly, not as the last expression inside the lambda (lines #1 and #3).

All of the "contributors" coroutines are started inside the GlobalScope, not as children of the coroutine scope (line #2).

4. Run the program and choose the CONCURRENT option to load the contributors.

5. Wait until all of the "contributors" coroutines are started, and then click Cancel. The log shows no new results, which means that all of the requests were indeed
canceled:

2896	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	kotlin:	loaded	40	repos
2901	[DefaultDispatcher-worker-2	@coroutine#4]	INFO		Contributors	-	starting	loading	for	kotlin-koans
...
2909	[DefaultDispatcher-worker-5	@coroutine#36]	INFO		Contributors	-	starting	loading	for	mpp-example
/*	click	on	'cancel'	*/
/*	no	requests	are	sent	*/

6. Repeat step 5, but this time choose the NOT_CANCELLABLE option:

2570	[AWT-EventQueue-0	@coroutine#1]	INFO		Contributors	-	kotlin:	loaded	30	repos
2579	[DefaultDispatcher-worker-1	@coroutine#4]	INFO		Contributors	-	starting	loading	for	kotlin-koans
...
2586	[DefaultDispatcher-worker-6	@coroutine#36]	INFO		Contributors	-	starting	loading	for	mpp-example
/*	click	on	'cancel'	*/
/*	but	all	the	requests	are	still	sent:	*/
6402	[DefaultDispatcher-worker-5	@coroutine#4]	INFO		Contributors	-	kotlin-koans:	loaded	45	contributors
...
9555	[DefaultDispatcher-worker-8	@coroutine#36]	INFO		Contributors	-	mpp-example:	loaded	8	contributors

In this case, no coroutines are canceled, and all the requests are still sent.

7. Check how the cancellation is triggered in the "contributors" program. When the Cancel button is clicked, the main "loading" coroutine is explicitly canceled and
the child coroutines are canceled automatically:

interface	Contributors	{

				fun	loadContributors()	{
								//	...

898

								when	(getSelectedVariant())	{
												CONCURRENT	->	{
																launch	{
																				val	users	=	loadContributorsConcurrent(service,	req)
																				updateResults(users,	startTime)
																}.setUpCancellation()						//	#1
												}
								}
				}

				private	fun	Job.setUpCancellation()	{
								val	loadingJob	=	this														//	#2

								//	cancel	the	loading	job	if	the	'cancel'	button	was	clicked:
								val	listener	=	ActionListener	{
												loadingJob.cancel()												//	#3
												updateLoadingStatus(CANCELED)
								}
								//	add	a	listener	to	the	'cancel'	button:
								addCancelListener(listener)

								//	update	the	status	and	remove	the	listener
								//	after	the	loading	job	is	completed
				}
}			

The launch function returns an instance of Job. Job stores a reference to the "loading coroutine", which loads all of the data and updates the results. You can call
the setUpCancellation() extension function on it (line #1), passing an instance of Job as a receiver.

Another way you could express this would be to explicitly write:

val	job	=	launch	{	}
job.setUpCancellation()

For readability, you could refer to the setUpCancellation() function receiver inside the function with the new loadingJob variable (line #2).

Then you could add a listener to the Cancel button so that when it's clicked, the loadingJob is canceled (line #3).

With structured concurrency, you only need to cancel the parent coroutine and this automatically propagates cancellation to all of the child coroutines.

Using
the
outer
scope's
context
When you start new coroutines inside the given scope, it's much easier to ensure that all of them run with the same context. It is also much easier to replace the
context if needed.

Now it's time to learn how using the dispatcher from the outer scope works. The new scope created by the coroutineScope or by the coroutine builders always
inherits the context from the outer scope. In this case, the outer scope is the scope the suspend loadContributorsConcurrent() function was called from:

launch(Dispatchers.Default)	{		//	outer	scope
				val	users	=	loadContributorsConcurrent(service,	req)
				//	...
}

All of the nested coroutines are automatically started with the inherited context. The dispatcher is a part of this context. That's why all of the coroutines started by
async are started with the context of the default dispatcher:

suspend	fun	loadContributorsConcurrent(
				service:	GitHubService,	req:	RequestData
):	List<User>	=	coroutineScope	{
				//	this	scope	inherits	the	context	from	the	outer	scope
				//	...
				async	{			//	nested	coroutine	started	with	the	inherited	context
								//	...
				}
				//	...
}

With structured concurrency, you can specify the major context elements (like dispatcher) once, when creating the top-level coroutine. All the nested coroutines
then inherit the context and modify it only if needed.

899

Showing
progress
Despite the information for some repositories being loaded rather quickly, the user only sees the resulting list after all of the data has been loaded. Until then, the
loader icon runs showing the progress, but there's no information about the current state or what contributors are already loaded.

You can show the intermediate results earlier and display all of the contributors after loading the data for each of the repositories:

Loading data

To implement this functionality, in the src/tasks/Request6Progress.kt, you'll need to pass the logic updating the UI as a callback, so that it's called on each
intermediate state:

suspend	fun	loadContributorsProgress(
				service:	GitHubService,
				req:	RequestData,
				updateResults:	suspend	(List<User>,	completed:	Boolean)	->	Unit
)	{
				//	loading	the	data
				//	calling	`updateResults()`	on	intermediate	states
}

On the call site in Contributors.kt, the callback is passed to update the results from the Main thread for the PROGRESS option:

launch(Dispatchers.Default)	{
				loadContributorsProgress(service,	req)	{	users,	completed	->
								withContext(Dispatchers.Main)	{
												updateResults(users,	startTime,	completed)
								}
				}
}

The updateResults() parameter is declared as suspend in loadContributorsProgress(). It's necessary to call withContext, which is a suspend function inside the
corresponding lambda argument.

updateResults() callback takes an additional Boolean parameter as an argument specifying whether the loading has completed and the results are final.

Task
6

When you write code with coroutines for UI applications, for example Android ones, it's a common practice to use CoroutineDispatchers.Main by default
for the top coroutine and then to explicitly put a different dispatcher when you need to run the code on a different thread.

900

In the Request6Progress.kt file, implement the loadContributorsProgress() function that shows the intermediate progress. Base it on the loadContributorsSuspend()
function from Request4Suspend.kt.

Use a simple version without concurrency; you'll add it later in the next section.

The intermediate list of contributors should be shown in an "aggregated" state, not just the list of users loaded for each repository.

The total number of contributions for each user should be increased when the data for each new repository is loaded.

Solution for task 6
To store the intermediate list of loaded contributors in the "aggregated" state, define an allUsers variable which stores the list of users, and then update it after
contributors for each new repository are loaded:

suspend	fun	loadContributorsProgress(
				service:	GitHubService,
				req:	RequestData,
				updateResults:	suspend	(List<User>,	completed:	Boolean)	->	Unit
)	{
				val	repos	=	service
								.getOrgRepos(req.org)
								.also	{	logRepos(req,	it)	}
								.bodyList()

				var	allUsers	=	emptyList<User>()
				for	((index,	repo)	in	repos.withIndex())	{
								val	users	=	service.getRepoContributors(req.org,	repo.name)
												.also	{	logUsers(repo,	it)	}
												.bodyList()

								allUsers	=	(allUsers	+	users).aggregate()
								updateResults(allUsers,	index	==	repos.lastIndex)
				}
}

Consecutive vs concurrent
An updateResults() callback is called after each request is completed:

Progress on requests

This code doesn't include concurrency. It's sequential, so you don't need synchronization.

The best option would be to send requests concurrently and update the intermediate results after getting the response for each repository:

901

Concurrent requests

To add concurrency, use channels.

Channels
Writing code with a shared mutable state is quite difficult and error-prone (like in the solution using callbacks). A simpler way is to share information by
communication rather than by using a common mutable state. Coroutines can communicate with each other through channels.

Channels are communication primitives that allow data to be passed between coroutines. One coroutine can send some information to a channel, while another can
receive that information from it:

Using channels

A coroutine that sends (produces) information is often called a producer, and a coroutine that receives (consumes) information is called a consumer. One or multiple
coroutines can send information to the same channel, and one or multiple coroutines can receive data from it:

Using channels with many coroutines

When many coroutines receive information from the same channel, each element is handled only once by one of the consumers. Once an element is handled, it is
immediately removed from the channel.

You can think of a channel as similar to a collection of elements, or more precisely, a queue, in which elements are added to one end and received from the other.
However, there's an important difference: unlike collections, even in their synchronized versions, a channel can suspend send()and receive() operations. This
happens when the channel is empty or full. The channel can be full if the channel size has an upper bound.

Channel is represented by three different interfaces: SendChannel, ReceiveChannel, and Channel, with the latter extending the first two. You usually create a
channel and give it to producers as a SendChannel instance so that only they can send information to the channel. You give a channel to consumers as a

902

ReceiveChannel instance so that only they can receive from it. Both send and receive methods are declared as suspend:

interface	SendChannel<in	E>	{
				suspend	fun	send(element:	E)
				fun	close():	Boolean
}

interface	ReceiveChannel<out	E>	{
				suspend	fun	receive():	E
}

interface	Channel<E>	:	SendChannel<E>,	ReceiveChannel<E>

The producer can close a channel to indicate that no more elements are coming.

Several types of channels are defined in the library. They differ in how many elements they can internally store and whether the send() call can be suspended or not.
For all of the channel types, the receive() call behaves similarly: it receives an element if the channel is not empty; otherwise, it is suspended.

Unlimited channel
An unlimited channel is the closest analog to a queue: producers can send elements to this channel and it will keep growing indefinitely. The send() call will never be
suspended. If the program runs out of memory, you'll get an OutOfMemoryException. The difference between an unlimited channel and a queue is that when a
consumer tries to receive from an empty channel, it becomes suspended until some new elements are sent.

Unlimited channel

Buffered channel
The size of a buffered channel is constrained by the specified number. Producers can send elements to this channel until the size limit is reached. All of the
elements are internally stored. When the channel is full, the next `send` call on it is suspended until more free space becomes available.

Buffered channel

Rendezvous channel
The "Rendezvous" channel is a channel without a buffer, the same as a buffered channel with zero size. One of the functions (send() or receive()) is always
suspended until the other is called.

If the send() function is called and there's no suspended receive call ready to process the element, then send() is suspended. Similarly, if the receive function is
called and the channel is empty or, in other words, there's no suspended send() call ready to send the element, the receive() call is suspended.

The "rendezvous" name ("a meeting at an agreed time and place") refers to the fact that send() and receive() should "meet on time".

Rendezvous channel

Conflated channel
A new element sent to the conflated channel will overwrite the previously sent element, so the receiver will always get only the latest element. The send() call is
never suspended.

903

Conflated channel

When you create a channel, specify its type or the buffer size (if you need a buffered one):

val	rendezvousChannel	=	Channel<String>()
val	bufferedChannel	=	Channel<String>(10)
val	conflatedChannel	=	Channel<String>(CONFLATED)
val	unlimitedChannel	=	Channel<String>(UNLIMITED)

By default, a "Rendezvous" channel is created.

In the following task, you'll create a "Rendezvous" channel, two producer coroutines, and a consumer coroutine:

import	kotlinx.coroutines.channels.Channel
import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
				val	channel	=	Channel<String>()
				launch	{
								channel.send("A1")
								channel.send("A2")
								log("A	done")
				}
				launch	{
								channel.send("B1")
								log("B	done")
				}
				launch	{
								repeat(3)	{
												val	x	=	channel.receive()
												log(x)
								}
				}
}

fun	log(message:	Any?)	{
				println("[${Thread.currentThread().name}]	$message")
}

Task
7
In src/tasks/Request7Channels.kt, implement the function loadContributorsChannels() that requests all of the GitHub contributors concurrently and shows
intermediate progress at the same time.

Use the previous functions, loadContributorsConcurrent() from Request5Concurrent.kt and loadContributorsProgress() from Request6Progress.kt.

Tip for task 7
Different coroutines that concurrently receive contributor lists for different repositories can send all of the received results to the same channel:

val	channel	=	Channel<List<User>>()
for	(repo	in	repos)	{
				launch	{
								val	users	=	TODO()
								//	...
								channel.send(users)
				}
}

Watch this video for a better understanding of channels.

904

https://www.youtube.com/watch?v=HpWQUoVURWQ

Then the elements from this channel can be received one by one and processed:

repeat(repos.size)	{
				val	users	=	channel.receive()
				//	...
}

Since the receive() calls are sequential, no additional synchronization is needed.

Solution for task 7
As with the loadContributorsProgress() function, you can create an allUsers variable to store the intermediate states of the "all contributors" list. Each new list
received from the channel is added to the list of all users. You aggregate the result and update the state using the updateResults callback:

suspend	fun	loadContributorsChannels(
				service:	GitHubService,
				req:	RequestData,
				updateResults:	suspend	(List<User>,	completed:	Boolean)	->	Unit
)	=	coroutineScope	{

				val	repos	=	service
								.getOrgRepos(req.org)
								.also	{	logRepos(req,	it)	}
								.bodyList()

				val	channel	=	Channel<List<User>>()
				for	(repo	in	repos)	{
								launch	{
												val	users	=	service.getRepoContributors(req.org,	repo.name)
																.also	{	logUsers(repo,	it)	}
																.bodyList()
												channel.send(users)
								}
				}
				var	allUsers	=	emptyList<User>()
				repeat(repos.size)	{
								val	users	=	channel.receive()
								allUsers	=	(allUsers	+	users).aggregate()
								updateResults(allUsers,	it	==	repos.lastIndex)
				}
}

Results for different repositories are added to the channel as soon as they are ready. At first, when all of the requests are sent, and no data is received, the
receive() call is suspended. In this case, the whole "load contributors" coroutine is suspended.

Then, when the list of users is sent to the channel, the "load contributors" coroutine resumes, the receive() call returns this list, and the results are immediately
updated.

You can now run the program and choose the CHANNELS option to load the contributors and see the result.

Although neither coroutines nor channels completely remove the complexity that comes with concurrency, they make life easier when you need to understand
what's going on.

Testing
coroutines
Let's now test all solutions to check that the solution with concurrent coroutines is faster than the solution with the suspend functions, and check that the solution
with channels is faster than the simple "progress" one.

In the following task, you'll compare the total running time of the solutions. You'll mock a GitHub service and make this service return results after the given
timeouts:

repos	request	-	returns	an	answer	within	1000	ms	delay
repo-1	-	1000	ms	delay
repo-2	-	1200	ms	delay
repo-3	-	800	ms	delay

The sequential solution with the suspend functions should take around 4000 ms (4000 = 1000 + (1000 + 1200 + 800)). The concurrent solution should take around
2200 ms (2200 = 1000 + max(1000, 1200, 800)).

905

For the solutions that show progress, you can also check the intermediate results with timestamps.

The corresponding test data is defined in test/contributors/testData.kt, and the files Request4SuspendKtTest, Request7ChannelsKtTest, and so on contain the
straightforward tests that use mock service calls.

However, there are two problems here:

These tests take too long to run. Each test takes around 2 to 4 seconds, and you need to wait for the results each time. It's not very efficient.

You can't rely on the exact time the solution runs because it still takes additional time to prepare and run the code. You could add a constant, but then the time
would differ from machine to machine. The mock service delays should be higher than this constant so you can see a difference. If the constant is 0.5 sec,
making the delays 0.1 sec won't be enough.

A better way would be to use special frameworks to test the timing while running the same code several times (which increases the total time even more), but that is
complicated to learn and set up.

To solve these problems and make sure that solutions with provided test delays behave as expected, one faster than the other, use virtual time with a special test
dispatcher. This dispatcher keeps track of the virtual time passed from the start and runs everything immediately in real time. When you run coroutines on this
dispatcher, the delay will return immediately and advance the virtual time.

Tests that use this mechanism run fast, but you can still check what happens at different moments in virtual time. The total running time drastically decreases:

Comparison for total running time

To use virtual time, replace the runBlocking invocation with a runTest. runTest takes an extension lambda to TestScope as an argument. When you call delay in a
suspend function inside this special scope, delay will increase the virtual time instead of delaying in real time:

@Test
fun	testDelayInSuspend()	=	runTest	{
				val	realStartTime	=	System.currentTimeMillis()	
				val	virtualStartTime	=	currentTime
								
				foo()
				println("${System.currentTimeMillis()	-	realStartTime}	ms")	//	~	6	ms
				println("${currentTime	-	virtualStartTime}	ms")													//	1000	ms
}

suspend	fun	foo()	{
				delay(1000)				//	auto-advances	without	delay
				println("foo")	//	executes	eagerly	when	foo()	is	called
}

You can check the current virtual time using the currentTime property of TestScope.

The actual running time in this example is several milliseconds, whereas virtual time equals the delay argument, which is 1000 milliseconds.

To get the full effect of "virtual" delay in child coroutines, start all of the child coroutines with TestDispatcher. Otherwise, it won't work. This dispatcher is
automatically inherited from the other TestScope, unless you provide a different dispatcher:

@Test
fun	testDelayInLaunch()	=	runTest	{
				val	realStartTime	=	System.currentTimeMillis()
				val	virtualStartTime	=	currentTime

				bar()

				println("${System.currentTimeMillis()	-	realStartTime}	ms")	//	~	11	ms
				println("${currentTime	-	virtualStartTime}	ms")													//	1000	ms
}

suspend	fun	bar()	=	coroutineScope	{
				launch	{
								delay(1000)				//	auto-advances	without	delay

906

								println("bar")	//	executes	eagerly	when	bar()	is	called
				}
}

If launch is called with the context of Dispatchers.Default in the example above, the test will fail. You'll get an exception saying that the job has not been completed
yet.

You can test the loadContributorsConcurrent() function this way only if it starts the child coroutines with the inherited context, without modifying it using the
Dispatchers.Default dispatcher.

You can specify the context elements like the dispatcher when calling a function rather than when defining it, which allows for more flexibility and easier testing.

By default, the compiler shows warnings if you use the experimental testing API. To suppress these warnings, annotate the test function or the whole class
containing the tests with @OptIn(ExperimentalCoroutinesApi::class). Add the compiler argument instructing the compiler that you're using the experimental API:

compileTestKotlin	{
				kotlinOptions	{
								freeCompilerArgs	+=	"-Xuse-experimental=kotlin.Experimental"
				}
}

In the project corresponding to this tutorial, the compiler argument has already been added to the Gradle script.

Task
8
Refactor the following tests in tests/tasks/ to use virtual time instead of real time:

Request4SuspendKtTest.kt

Request5ConcurrentKtTest.kt

Request6ProgressKtTest.kt

Request7ChannelsKtTest.kt

Compare the total running times before and after applying your refactoring.

Tip for task 8
1. Replace the runBlocking invocation with runTest, and replace System.currentTimeMillis() with currentTime:

@Test
fun	test()	=	runTest	{
				val	startTime	=	currentTime
				//	action
				val	totalTime	=	currentTime	-	startTime
				//	testing	result
}

2. Uncomment the assertions that check the exact virtual time.

3. Don't forget to add @UseExperimental(ExperimentalCoroutinesApi::class).

Solution for task 8
Here are the solutions for the concurrent and channels cases:

fun	testConcurrent()	=	runTest	{
				val	startTime	=	currentTime
				val	result	=	loadContributorsConcurrent(MockGithubService,	testRequestData)
				Assert.assertEquals("Wrong	result	for	'loadContributorsConcurrent'",	expectedConcurrentResults.users,	result)
				val	totalTime	=	currentTime	-	startTime

				Assert.assertEquals(
								"The	calls	run	concurrently,	so	the	total	virtual	time	should	be	2200	ms:	"	+

The testing API that supports virtual time is Experimental and may change in the future.

907

																"1000	for	repos	request	plus	max(1000,	1200,	800)	=	1200	for	concurrent	contributors	requests)",
								expectedConcurrentResults.timeFromStart,	totalTime
)
}

First, check that the results are available exactly at the expected virtual time, and then check the results themselves:

fun	testChannels()	=	runTest	{
				val	startTime	=	currentTime
				var	index	=	0
				loadContributorsChannels(MockGithubService,	testRequestData)	{	users,	_	->
								val	expected	=	concurrentProgressResults[index++]
								val	time	=	currentTime	-	startTime
								Assert.assertEquals(
												"Expected	intermediate	results	after	${expected.timeFromStart}	ms:",
												expected.timeFromStart,	time
)
								Assert.assertEquals("Wrong	intermediate	results	after	$time:",	expected.users,	users)
				}
}

The first intermediate result for the last version with channels becomes available sooner than the progress version, and you can see the difference in tests that use
virtual time.

What's
next
Check out the Asynchronous Programming with Kotlin workshop at KotlinConf.

Find out more about using virtual time and the experimental testing package.

Cancellation
and
timeouts
This section covers coroutine cancellation and timeouts.

Cancelling
coroutine
execution
In a long-running application you might need fine-grained control on your background coroutines. For example, a user might have closed the page that launched a
coroutine and now its result is no longer needed and its operation can be cancelled. The launch function returns a Job that can be used to cancel the running
coroutine:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch	{
								repeat(1000)	{	i	->
												println("job:	I'm	sleeping	$i	...")
												delay(500L)
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancel()	//	cancels	the	job
				job.join()	//	waits	for	job's	completion	
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

The tests for the remaining "suspend" and "progress" tasks are very similar – you can find them in the project's solutions branch.

You can get the full code here.

908

https://kotlinconf.com/workshops/
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-test/
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-01.kt

It produces the following output:

job:	I'm	sleeping	0	...
job:	I'm	sleeping	1	...
job:	I'm	sleeping	2	...
main:	I'm	tired	of	waiting!
main:	Now	I	can	quit.

As soon as main invokes job.cancel, we don't see any output from the other coroutine because it was cancelled. There is also a Job extension function
cancelAndJoin that combines cancel and join invocations.

Cancellation
is
cooperative
Coroutine cancellation is cooperative. A coroutine code has to cooperate to be cancellable. All the suspending functions in kotlinx.coroutines are cancellable. They
check for cancellation of coroutine and throw CancellationException when cancelled. However, if a coroutine is working in a computation and does not check for
cancellation, then it cannot be cancelled, like the following example shows:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	startTime	=	System.currentTimeMillis()
				val	job	=	launch(Dispatchers.Default)	{
								var	nextPrintTime	=	startTime
								var	i	=	0
								while	(i	<	5)	{	//	computation	loop,	just	wastes	CPU
												//	print	a	message	twice	a	second
												if	(System.currentTimeMillis()	>=	nextPrintTime)	{
																println("job:	I'm	sleeping	${i++}	...")
																nextPrintTime	+=	500L
												}
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancelAndJoin()	//	cancels	the	job	and	waits	for	its	completion
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

Run it to see that it continues to print "I'm sleeping" even after cancellation until the job completes by itself after five iterations.

The same problem can be observed by catching a CancellationException and not rethrowing it:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch(Dispatchers.Default)	{
								repeat(5)	{	i	->
												try	{
																//	print	a	message	twice	a	second
																println("job:	I'm	sleeping	$i	...")
																delay(500)
												}	catch	(e:	Exception)	{
																//	log	the	exception
																println(e)
												}
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancelAndJoin()	//	cancels	the	job	and	waits	for	its	completion
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

You can get the full code here.

909

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel-and-join.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html

While catching Exception is an anti-pattern, this issue may surface in more subtle ways, like when using the runCatching function, which does not rethrow
CancellationException.

Making
computation
code
cancellable
There are two approaches to making computation code cancellable. The first one is to periodically invoke a suspending function that checks for cancellation. There
is a yield function that is a good choice for that purpose. The other one is to explicitly check the cancellation status. Let us try the latter approach.

Replace while (i < 5) in the previous example with while (isActive) and rerun it.

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	startTime	=	System.currentTimeMillis()
				val	job	=	launch(Dispatchers.Default)	{
								var	nextPrintTime	=	startTime
								var	i	=	0
								while	(isActive)	{	//	cancellable	computation	loop
												//	print	a	message	twice	a	second
												if	(System.currentTimeMillis()	>=	nextPrintTime)	{
																println("job:	I'm	sleeping	${i++}	...")
																nextPrintTime	+=	500L
												}
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancelAndJoin()	//	cancels	the	job	and	waits	for	its	completion
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

As you can see, now this loop is cancelled. isActive is an extension property available inside the coroutine via the CoroutineScope object.

Closing
resources
with
finally
Cancellable suspending functions throw CancellationException on cancellation, which can be handled in the usual way. For example, the try {...} finally {...}
expression and Kotlin's use function execute their finalization actions normally when a coroutine is cancelled:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch	{
								try	{
												repeat(1000)	{	i	->
																println("job:	I'm	sleeping	$i	...")
																delay(500L)
												}
								}	finally	{
												println("job:	I'm	running	finally")
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancelAndJoin()	//	cancels	the	job	and	waits	for	its	completion
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

You can get the full code here.

You can get the full code here.

910

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-03.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/run-catching.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/yield.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/is-active.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html

Both join and cancelAndJoin wait for all finalization actions to complete, so the example above produces the following output:

job:	I'm	sleeping	0	...
job:	I'm	sleeping	1	...
job:	I'm	sleeping	2	...
main:	I'm	tired	of	waiting!
job:	I'm	running	finally
main:	Now	I	can	quit.

Run
non-cancellable
block
Any attempt to use a suspending function in the finally block of the previous example causes CancellationException, because the coroutine running this code is
cancelled. Usually, this is not a problem, since all well-behaving closing operations (closing a file, cancelling a job, or closing any kind of a communication channel)
are usually non-blocking and do not involve any suspending functions. However, in the rare case when you need to suspend in a cancelled coroutine you can wrap
the corresponding code in withContext(NonCancellable) {...} using withContext function and NonCancellable context as the following example shows:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch	{
								try	{
												repeat(1000)	{	i	->
																println("job:	I'm	sleeping	$i	...")
																delay(500L)
												}
								}	finally	{
												withContext(NonCancellable)	{
																println("job:	I'm	running	finally")
																delay(1000L)
																println("job:	And	I've	just	delayed	for	1	sec	because	I'm	non-cancellable")
												}
								}
				}
				delay(1300L)	//	delay	a	bit
				println("main:	I'm	tired	of	waiting!")
				job.cancelAndJoin()	//	cancels	the	job	and	waits	for	its	completion
				println("main:	Now	I	can	quit.")
//sampleEnd				
}

Timeout
The most obvious practical reason to cancel execution of a coroutine is because its execution time has exceeded some timeout. While you can manually track the
reference to the corresponding Job and launch a separate coroutine to cancel the tracked one after delay, there is a ready to use withTimeout function that does it.
Look at the following example:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				withTimeout(1300L)	{
								repeat(1000)	{	i	->
												println("I'm	sleeping	$i	...")
												delay(500L)
								}
				}
//sampleEnd
}

You can get the full code here.

You can get the full code here.

911

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-05.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel-and-join.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-non-cancellable/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-06.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html

It produces the following output:

I'm	sleeping	0	...
I'm	sleeping	1	...
I'm	sleeping	2	...
Exception	in	thread	"main"	kotlinx.coroutines.TimeoutCancellationException:	Timed	out	waiting	for	1300	ms

The TimeoutCancellationException that is thrown by withTimeout is a subclass of CancellationException. We have not seen its stack trace printed on the console
before. That is because inside a cancelled coroutine CancellationException is considered to be a normal reason for coroutine completion. However, in this example
we have used withTimeout right inside the main function.

Since cancellation is just an exception, all resources are closed in the usual way. You can wrap the code with timeout in a try {...} catch (e:
TimeoutCancellationException) {...} block if you need to do some additional action specifically on any kind of timeout or use the withTimeoutOrNull function that is
similar to withTimeout but returns null on timeout instead of throwing an exception:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	result	=	withTimeoutOrNull(1300L)	{
								repeat(1000)	{	i	->
												println("I'm	sleeping	$i	...")
												delay(500L)
								}
								"Done"	//	will	get	cancelled	before	it	produces	this	result
				}
				println("Result	is	$result")
//sampleEnd
}

There is no longer an exception when running this code:

I'm	sleeping	0	...
I'm	sleeping	1	...
I'm	sleeping	2	...
Result	is	null

Asynchronous
timeout
and
resources
The timeout event in withTimeout is asynchronous with respect to the code running in its block and may happen at any time, even right before the return from inside
of the timeout block. Keep this in mind if you open or acquire some resource inside the block that needs closing or release outside of the block.

For example, here we imitate a closeable resource with the Resource class that simply keeps track of how many times it was created by incrementing the acquired
counter and decrementing the counter in its close function. Now let us create a lot of coroutines, each of which creates a Resource at the end of the withTimeout
block and releases the resource outside the block. We add a small delay so that it is more likely that the timeout occurs right when the withTimeout block is already
finished, which will cause a resource leak.

import	kotlinx.coroutines.*

//sampleStart
var	acquired	=	0

class	Resource	{
				init	{	acquired++	}	//	Acquire	the	resource
				fun	close()	{	acquired--	}	//	Release	the	resource
}

fun	main()	{
				runBlocking	{
								repeat(10_000)	{	//	Launch	10K	coroutines

You can get the full code here.

You can get the full code here.

912

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-07.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout-or-null.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-08.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout.html

												launch	{	
																val	resource	=	withTimeout(60)	{	//	Timeout	of	60	ms
																				delay(50)	//	Delay	for	50	ms
																				Resource()	//	Acquire	a	resource	and	return	it	from	withTimeout	block					
																}
																resource.close()	//	Release	the	resource
												}
								}
				}
				//	Outside	of	runBlocking	all	coroutines	have	completed
				println(acquired)	//	Print	the	number	of	resources	still	acquired
}
//sampleEnd

If you run the above code, you'll see that it does not always print zero, though it may depend on the timings of your machine. You may need to tweak the timeout in
this example to actually see non-zero values.

To work around this problem you can store a reference to the resource in a variable instead of returning it from the withTimeout block.

import	kotlinx.coroutines.*

var	acquired	=	0

class	Resource	{
				init	{	acquired++	}	//	Acquire	the	resource
				fun	close()	{	acquired--	}	//	Release	the	resource
}

fun	main()	{
//sampleStart
				runBlocking	{
								repeat(10_000)	{	//	Launch	10K	coroutines
												launch	{	
																var	resource:	Resource?	=	null	//	Not	acquired	yet
																try	{
																				withTimeout(60)	{	//	Timeout	of	60	ms
																								delay(50)	//	Delay	for	50	ms
																								resource	=	Resource()	//	Store	a	resource	to	the	variable	if	acquired						
																				}
																				//	We	can	do	something	else	with	the	resource	here
																}	finally	{		
																				resource?.close()	//	Release	the	resource	if	it	was	acquired
																}
												}
								}
				}
				//	Outside	of	runBlocking	all	coroutines	have	completed
				println(acquired)	//	Print	the	number	of	resources	still	acquired
//sampleEnd
}

This example always prints zero. Resources do not leak.

Composing
suspending
functions
This section covers various approaches to composition of suspending functions.

You can get the full code here.

Note that incrementing and decrementing acquired counter here from 10K coroutines is completely thread-safe, since it always happens from the same
thread, the one used by runBlocking. More on that will be explained in the chapter on coroutine context.

You can get the full code here.

913

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-09.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-cancel-10.kt

Sequential
by
default
Assume that we have two suspending functions defined elsewhere that do something useful like some kind of remote service call or computation. We just pretend
they are useful, but actually each one just delays for a second for the purpose of this example:

suspend	fun	doSomethingUsefulOne():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

What do we do if we need them to be invoked sequentially — first doSomethingUsefulOne and then doSomethingUsefulTwo, and compute the sum of their results?
In practice, we do this if we use the result of the first function to make a decision on whether we need to invoke the second one or to decide on how to invoke it.

We use a normal sequential invocation, because the code in the coroutine, just like in the regular code, is sequential by default. The following example
demonstrates it by measuring the total time it takes to execute both suspending functions:

import	kotlinx.coroutines.*
import	kotlin.system.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	time	=	measureTimeMillis	{
								val	one	=	doSomethingUsefulOne()
								val	two	=	doSomethingUsefulTwo()
								println("The	answer	is	${one	+	two}")
				}
				println("Completed	in	$time	ms")
//sampleEnd				
}

suspend	fun	doSomethingUsefulOne():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

It produces something like this:

The	answer	is	42
Completed	in	2017	ms

Concurrent
using
async
What if there are no dependencies between invocations of doSomethingUsefulOne and doSomethingUsefulTwo and we want to get the answer faster, by doing
both concurrently? This is where async comes to help.

Conceptually, async is just like launch. It starts a separate coroutine which is a light-weight thread that works concurrently with all the other coroutines. The
difference is that launch returns a Job and does not carry any resulting value, while async returns a Deferred — a light-weight non-blocking future that represents a
promise to provide a result later. You can use .await() on a deferred value to get its eventual result, but Deferred is also a Job, so you can cancel it if needed.

import	kotlinx.coroutines.*
import	kotlin.system.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	time	=	measureTimeMillis	{

You can get the full code here.

914

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/index.html

								val	one	=	async	{	doSomethingUsefulOne()	}
								val	two	=	async	{	doSomethingUsefulTwo()	}
								println("The	answer	is	${one.await()	+	two.await()}")
				}
				println("Completed	in	$time	ms")
//sampleEnd				
}

suspend	fun	doSomethingUsefulOne():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

It produces something like this:

The	answer	is	42
Completed	in	1017	ms

This is twice as fast, because the two coroutines execute concurrently. Note that concurrency with coroutines is always explicit.

Lazily
started
async
Optionally, async can be made lazy by setting its start parameter to CoroutineStart.LAZY. In this mode it only starts the coroutine when its result is required by
await, or if its Job's start function is invoked. Run the following example:

import	kotlinx.coroutines.*
import	kotlin.system.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	time	=	measureTimeMillis	{
								val	one	=	async(start	=	CoroutineStart.LAZY)	{	doSomethingUsefulOne()	}
								val	two	=	async(start	=	CoroutineStart.LAZY)	{	doSomethingUsefulTwo()	}
								//	some	computation
								one.start()	//	start	the	first	one
								two.start()	//	start	the	second	one
								println("The	answer	is	${one.await()	+	two.await()}")
				}
				println("Completed	in	$time	ms")
//sampleEnd				
}

suspend	fun	doSomethingUsefulOne():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

It produces something like this:

The	answer	is	42
Completed	in	1017	ms

You can get the full code here.

You can get the full code here.

915

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-start/-l-a-z-y/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-03.kt

So, here the two coroutines are defined but not executed as in the previous example, but the control is given to the programmer on when exactly to start the
execution by calling start. We first start one, then start two, and then await for the individual coroutines to finish.

Note that if we just call await in println without first calling start on individual coroutines, this will lead to sequential behavior, since await starts the coroutine
execution and waits for its finish, which is not the intended use-case for laziness. The use-case for async(start = CoroutineStart.LAZY) is a replacement for the
standard lazy function in cases when computation of the value involves suspending functions.

Async-style
functions

We can define async-style functions that invoke doSomethingUsefulOne and doSomethingUsefulTwo asynchronously using the async coroutine builder using a
GlobalScope reference to opt-out of the structured concurrency. We name such functions with the "...Async" suffix to highlight the fact that they only start
asynchronous computation and one needs to use the resulting deferred value to get the result.

//	The	result	type	of	somethingUsefulOneAsync	is	Deferred<Int>
@OptIn(DelicateCoroutinesApi::class)
fun	somethingUsefulOneAsync()	=	GlobalScope.async	{
				doSomethingUsefulOne()
}

//	The	result	type	of	somethingUsefulTwoAsync	is	Deferred<Int>
@OptIn(DelicateCoroutinesApi::class)
fun	somethingUsefulTwoAsync()	=	GlobalScope.async	{
				doSomethingUsefulTwo()
}

Note that these xxxAsync functions are not suspending functions. They can be used from anywhere. However, their use always implies asynchronous (here
meaning concurrent) execution of their action with the invoking code.

The following example shows their use outside of coroutine:

import	kotlinx.coroutines.*
import	kotlin.system.*

//sampleStart
//	note	that	we	don't	have	`runBlocking`	to	the	right	of	`main`	in	this	example
fun	main()	{
				val	time	=	measureTimeMillis	{
								//	we	can	initiate	async	actions	outside	of	a	coroutine
								val	one	=	somethingUsefulOneAsync()
								val	two	=	somethingUsefulTwoAsync()
								//	but	waiting	for	a	result	must	involve	either	suspending	or	blocking.
								//	here	we	use	`runBlocking	{	...	}`	to	block	the	main	thread	while	waiting	for	the	result
								runBlocking	{
												println("The	answer	is	${one.await()	+	two.await()}")
								}
				}
				println("Completed	in	$time	ms")
}
//sampleEnd

@OptIn(DelicateCoroutinesApi::class)
fun	somethingUsefulOneAsync()	=	GlobalScope.async	{
				doSomethingUsefulOne()
}

@OptIn(DelicateCoroutinesApi::class)
fun	somethingUsefulTwoAsync()	=	GlobalScope.async	{
				doSomethingUsefulTwo()
}

suspend	fun	doSomethingUsefulOne():	Int	{

This programming style with async functions is provided here only for illustration, because it is a popular style in other programming languages. Using this
style with Kotlin coroutines is strongly discouraged for the reasons explained below.

GlobalScope is a delicate API that can backfire in non-trivial ways, one of which will be explained below, so you must explicitly opt-in into using
GlobalScope with @OptIn(DelicateCoroutinesApi::class).

916

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/start.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

Consider what happens if between the val one = somethingUsefulOneAsync() line and one.await() expression there is some logic error in the code, and the program
throws an exception, and the operation that was being performed by the program aborts. Normally, a global error-handler could catch this exception, log and report
the error for developers, but the program could otherwise continue doing other operations. However, here we have somethingUsefulOneAsync still running in the
background, even though the operation that initiated it was aborted. This problem does not happen with structured concurrency, as shown in the section below.

Structured
concurrency
with
async
Let us take the Concurrent using async example and extract a function that concurrently performs doSomethingUsefulOne and doSomethingUsefulTwo and returns
the sum of their results. Because the async coroutine builder is defined as an extension on CoroutineScope, we need to have it in the scope and that is what the
coroutineScope function provides:

suspend	fun	concurrentSum():	Int	=	coroutineScope	{
				val	one	=	async	{	doSomethingUsefulOne()	}
				val	two	=	async	{	doSomethingUsefulTwo()	}
				one.await()	+	two.await()
}

This way, if something goes wrong inside the code of the concurrentSum function, and it throws an exception, all the coroutines that were launched in its scope will
be cancelled.

import	kotlinx.coroutines.*
import	kotlin.system.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	time	=	measureTimeMillis	{
								println("The	answer	is	${concurrentSum()}")
				}
				println("Completed	in	$time	ms")
//sampleEnd				
}

suspend	fun	concurrentSum():	Int	=	coroutineScope	{
				val	one	=	async	{	doSomethingUsefulOne()	}
				val	two	=	async	{	doSomethingUsefulTwo()	}
				one.await()	+	two.await()
}

suspend	fun	doSomethingUsefulOne():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here
				return	13
}

suspend	fun	doSomethingUsefulTwo():	Int	{
				delay(1000L)	//	pretend	we	are	doing	something	useful	here,	too
				return	29
}

We still have concurrent execution of both operations, as evident from the output of the above main function:

The	answer	is	42
Completed	in	1017	ms

You can get the full code here.

You can get the full code here.

917

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-05.kt

Cancellation is always propagated through coroutines hierarchy:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
				try	{
								failedConcurrentSum()
				}	catch(e:	ArithmeticException)	{
								println("Computation	failed	with	ArithmeticException")
				}
}

suspend	fun	failedConcurrentSum():	Int	=	coroutineScope	{
				val	one	=	async<Int>	{	
								try	{
												delay(Long.MAX_VALUE)	//	Emulates	very	long	computation
												42
								}	finally	{
												println("First	child	was	cancelled")
								}
				}
				val	two	=	async<Int>	{	
								println("Second	child	throws	an	exception")
								throw	ArithmeticException()
				}
				one.await()	+	two.await()
}

Note how both the first async and the awaiting parent are cancelled on failure of one of the children (namely, two):

Second	child	throws	an	exception
First	child	was	cancelled
Computation	failed	with	ArithmeticException

Coroutine
context
and
dispatchers
Coroutines always execute in some context represented by a value of the CoroutineContext type, defined in the Kotlin standard library.

The coroutine context is a set of various elements. The main elements are the Job of the coroutine, which we've seen before, and its dispatcher, which is covered in
this section.

Dispatchers
and
threads
The coroutine context includes a coroutine dispatcher (see CoroutineDispatcher) that determines what thread or threads the corresponding coroutine uses for its
execution. The coroutine dispatcher can confine coroutine execution to a specific thread, dispatch it to a thread pool, or let it run unconfined.

All coroutine builders like launch and async accept an optional CoroutineContext parameter that can be used to explicitly specify the dispatcher for the new
coroutine and other context elements.

Try the following example:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				launch	{	//	context	of	the	parent,	main	runBlocking	coroutine
								println("main	runBlocking						:	I'm	working	in	thread	${Thread.currentThread().name}")
				}
				launch(Dispatchers.Unconfined)	{	//	not	confined	--	will	work	with	main	thread
								println("Unconfined												:	I'm	working	in	thread	${Thread.currentThread().name}")
				}
				launch(Dispatchers.Default)	{	//	will	get	dispatched	to	DefaultDispatcher	
								println("Default															:	I'm	working	in	thread	${Thread.currentThread().name}")

You can get the full code here.

918

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-compose-06.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.coroutines/-coroutine-context/
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.coroutines/-coroutine-context/

				}
				launch(newSingleThreadContext("MyOwnThread"))	{	//	will	get	its	own	new	thread
								println("newSingleThreadContext:	I'm	working	in	thread	${Thread.currentThread().name}")
				}
//sampleEnd				
}

It produces the following output (maybe in different order):

Unconfined												:	I'm	working	in	thread	main
Default															:	I'm	working	in	thread	DefaultDispatcher-worker-1
newSingleThreadContext:	I'm	working	in	thread	MyOwnThread
main	runBlocking						:	I'm	working	in	thread	main

When launch { ... } is used without parameters, it inherits the context (and thus dispatcher) from the CoroutineScope it is being launched from. In this case, it inherits
the context of the main runBlocking coroutine which runs in the main thread.

Dispatchers.Unconfined is a special dispatcher that also appears to run in the main thread, but it is, in fact, a different mechanism that is explained later.

The default dispatcher is used when no other dispatcher is explicitly specified in the scope. It is represented by Dispatchers.Default and uses a shared background
pool of threads.

newSingleThreadContext creates a thread for the coroutine to run. A dedicated thread is a very expensive resource. In a real application it must be either released,
when no longer needed, using the close function, or stored in a top-level variable and reused throughout the application.

Unconfined
vs
confined
dispatcher
The Dispatchers.Unconfined coroutine dispatcher starts a coroutine in the caller thread, but only until the first suspension point. After suspension it resumes the
coroutine in the thread that is fully determined by the suspending function that was invoked. The unconfined dispatcher is appropriate for coroutines which neither
consume CPU time nor update any shared data (like UI) confined to a specific thread.

On the other side, the dispatcher is inherited from the outer CoroutineScope by default. The default dispatcher for the runBlocking coroutine, in particular, is
confined to the invoker thread, so inheriting it has the effect of confining execution to this thread with predictable FIFO scheduling.

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				launch(Dispatchers.Unconfined)	{	//	not	confined	--	will	work	with	main	thread
								println("Unconfined						:	I'm	working	in	thread	${Thread.currentThread().name}")
								delay(500)
								println("Unconfined						:	After	delay	in	thread	${Thread.currentThread().name}")
				}
				launch	{	//	context	of	the	parent,	main	runBlocking	coroutine
								println("main	runBlocking:	I'm	working	in	thread	${Thread.currentThread().name}")
								delay(1000)
								println("main	runBlocking:	After	delay	in	thread	${Thread.currentThread().name}")
				}
//sampleEnd				
}

Produces the output:

Unconfined						:	I'm	working	in	thread	main
main	runBlocking:	I'm	working	in	thread	main
Unconfined						:	After	delay	in	thread	kotlinx.coroutines.DefaultExecutor
main	runBlocking:	After	delay	in	thread	main

So, the coroutine with the context inherited from runBlocking {...} continues to execute in the main thread, while the unconfined one resumes in the default executor

You can get the full code here.

You can get the full code here.

919

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-unconfined.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/new-single-thread-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-executor-coroutine-dispatcher/close.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-unconfined.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-02.kt

thread that the delay function is using.

Debugging
coroutines
and
threads
Coroutines can suspend on one thread and resume on another thread. Even with a single-threaded dispatcher it might be hard to figure out what the coroutine was
doing, where, and when if you don't have special tooling.

Debugging
with
IDEA
The Coroutine Debugger of the Kotlin plugin simplifies debugging coroutines in IntelliJ IDEA.

The Debug tool window contains the Coroutines tab. In this tab, you can find information about both currently running and suspended coroutines. The coroutines
are grouped by the dispatcher they are running on.

Debugging coroutines

With the coroutine debugger, you can:

Check the state of each coroutine.

See the values of local and captured variables for both running and suspended coroutines.

See a full coroutine creation stack, as well as a call stack inside the coroutine. The stack includes all frames with variable values, even those that would be lost
during standard debugging.

Get a full report that contains the state of each coroutine and its stack. To obtain it, right-click inside the Coroutines tab, and then click Get Coroutines Dump.

To start coroutine debugging, you just need to set breakpoints and run the application in debug mode.

Learn more about coroutines debugging in the tutorial.

Debugging
using
logging
Another approach to debugging applications with threads without Coroutine Debugger is to print the thread name in the log file on each log statement. This feature
is universally supported by logging frameworks. When using coroutines, the thread name alone does not give much of a context, so kotlinx.coroutines includes
debugging facilities to make it easier.

Run the following code with -Dkotlinx.coroutines.debug JVM option:

import	kotlinx.coroutines.*

fun	log(msg:	String)	=	println("[${Thread.currentThread().name}]	$msg")

The unconfined dispatcher is an advanced mechanism that can be helpful in certain corner cases where dispatching of a coroutine for its execution later
is not needed or produces undesirable side-effects, because some operation in a coroutine must be performed right away. The unconfined dispatcher
should not be used in general code.

Debugging works for versions 1.3.8 or later of kotlinx-coroutines-core.

920

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/docs/tutorials/coroutines/debug-coroutines-with-idea.html

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	a	=	async	{
								log("I'm	computing	a	piece	of	the	answer")
								6
				}
				val	b	=	async	{
								log("I'm	computing	another	piece	of	the	answer")
								7
				}
				log("The	answer	is	${a.await()	*	b.await()}")
//sampleEnd				
}

There are three coroutines. The main coroutine (#1) inside runBlocking and two coroutines computing the deferred values a (#2) and b (#3). They are all executing in
the context of runBlocking and are confined to the main thread. The output of this code is:

[main	@coroutine#2]	I'm	computing	a	piece	of	the	answer
[main	@coroutine#3]	I'm	computing	another	piece	of	the	answer
[main	@coroutine#1]	The	answer	is	42

The log function prints the name of the thread in square brackets, and you can see that it is the main thread with the identifier of the currently executing coroutine
appended to it. This identifier is consecutively assigned to all created coroutines when the debugging mode is on.

Jumping
between
threads
Run the following code with the -Dkotlinx.coroutines.debug JVM option (see debug):

import	kotlinx.coroutines.*

fun	log(msg:	String)	=	println("[${Thread.currentThread().name}]	$msg")

fun	main()	{
//sampleStart
				newSingleThreadContext("Ctx1").use	{	ctx1	->
								newSingleThreadContext("Ctx2").use	{	ctx2	->
												runBlocking(ctx1)	{
																log("Started	in	ctx1")
																withContext(ctx2)	{
																				log("Working	in	ctx2")
																}
																log("Back	to	ctx1")
												}
								}
				}
//sampleEnd
}

It demonstrates several new techniques. One is using runBlocking with an explicitly specified context, and the other one is using the withContext function to change
the context of a coroutine while still staying in the same coroutine, as you can see in the output below:

[Ctx1	@coroutine#1]	Started	in	ctx1
[Ctx2	@coroutine#1]	Working	in	ctx2
[Ctx1	@coroutine#1]	Back	to	ctx1

You can get the full code here.

Debugging mode is also turned on when JVM is run with -ea option. You can read more about debugging facilities in the documentation of the
DEBUG_PROPERTY_NAME property.

You can get the full code here.

921

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-03.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-d-e-b-u-g_-p-r-o-p-e-r-t-y_-n-a-m-e.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html

Note that this example also uses the use function from the Kotlin standard library to release threads created with newSingleThreadContext when they are no longer
needed.

Job
in
the
context
The coroutine's Job is part of its context, and can be retrieved from it using the coroutineContext[Job] expression:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				println("My	job	is	${coroutineContext[Job]}")
//sampleEnd				
}

In the debug mode, it outputs something like this:

My job is "coroutine#1":BlockingCoroutine{Active}@6d311334

Note that isActive in CoroutineScope is just a convenient shortcut for coroutineContext[Job]?.isActive == true.

Children
of
a
coroutine
When a coroutine is launched in the CoroutineScope of another coroutine, it inherits its context via CoroutineScope.coroutineContext and the Job of the new
coroutine becomes a child of the parent coroutine's job. When the parent coroutine is cancelled, all its children are recursively cancelled, too.

However, this parent-child relation can be explicitly overriden in one of two ways:

1. When a different scope is explicitly specified when launching a coroutine (for example, GlobalScope.launch), then it does not inherit a Job from the parent
scope.

2. When a different Job object is passed as the context for the new coroutine (as shown in the example below), then it overrides the Job of the parent scope.

In both cases, the launched coroutine is not tied to the scope it was launched from and operates independently.

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				//	launch	a	coroutine	to	process	some	kind	of	incoming	request
				val	request	=	launch	{
								//	it	spawns	two	other	jobs
								launch(Job())	{	
												println("job1:	I	run	in	my	own	Job	and	execute	independently!")
												delay(1000)
												println("job1:	I	am	not	affected	by	cancellation	of	the	request")
								}
								//	and	the	other	inherits	the	parent	context
								launch	{
												delay(100)
												println("job2:	I	am	a	child	of	the	request	coroutine")
												delay(1000)
												println("job2:	I	will	not	execute	this	line	if	my	parent	request	is	cancelled")
								}
				}
				delay(500)
				request.cancel()	//	cancel	processing	of	the	request
				println("main:	Who	has	survived	request	cancellation?")
				delay(1000)	//	delay	the	main	thread	for	a	second	to	see	what	happens
//sampleEnd
}

You can get the full code here.

You can get the full code here.

922

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/new-single-thread-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-05.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/is-active.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/coroutine-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-06.kt

The output of this code is:

job1:	I	run	in	my	own	Job	and	execute	independently!
job2:	I	am	a	child	of	the	request	coroutine
main:	Who	has	survived	request	cancellation?
job1:	I	am	not	affected	by	cancellation	of	the	request

Parental
responsibilities
A parent coroutine always waits for completion of all its children. A parent does not have to explicitly track all the children it launches, and it does not have to use
Job.join to wait for them at the end:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				//	launch	a	coroutine	to	process	some	kind	of	incoming	request
				val	request	=	launch	{
								repeat(3)	{	i	->	//	launch	a	few	children	jobs
												launch		{
																delay((i	+	1)	*	200L)	//	variable	delay	200ms,	400ms,	600ms
																println("Coroutine	$i	is	done")
												}
								}
								println("request:	I'm	done	and	I	don't	explicitly	join	my	children	that	are	still	active")
				}
				request.join()	//	wait	for	completion	of	the	request,	including	all	its	children
				println("Now	processing	of	the	request	is	complete")
//sampleEnd
}

The result is going to be:

request:	I'm	done	and	I	don't	explicitly	join	my	children	that	are	still	active
Coroutine	0	is	done
Coroutine	1	is	done
Coroutine	2	is	done
Now	processing	of	the	request	is	complete

Naming
coroutines
for
debugging
Automatically assigned ids are good when coroutines log often and you just need to correlate log records coming from the same coroutine. However, when a
coroutine is tied to the processing of a specific request or doing some specific background task, it is better to name it explicitly for debugging purposes. The
CoroutineName context element serves the same purpose as the thread name. It is included in the thread name that is executing this coroutine when the debugging
mode is turned on.

The following example demonstrates this concept:

import	kotlinx.coroutines.*

fun	log(msg:	String)	=	println("[${Thread.currentThread().name}]	$msg")

fun	main()	=	runBlocking(CoroutineName("main"))	{
//sampleStart
				log("Started	main	coroutine")
				//	run	two	background	value	computations
				val	v1	=	async(CoroutineName("v1coroutine"))	{
								delay(500)
								log("Computing	v1")
								252
				}
				val	v2	=	async(CoroutineName("v2coroutine"))	{
								delay(1000)
								log("Computing	v2")

You can get the full code here.

923

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-07.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-name/index.html

								6
				}
				log("The	answer	for	v1	/	v2	=	${v1.await()	/	v2.await()}")
//sampleEnd				
}

The output it produces with -Dkotlinx.coroutines.debug JVM option is similar to:

[main	@main#1]	Started	main	coroutine
[main	@v1coroutine#2]	Computing	v1
[main	@v2coroutine#3]	Computing	v2
[main	@main#1]	The	answer	for	v1	/	v2	=	42

Combining
context
elements
Sometimes we need to define multiple elements for a coroutine context. We can use the + operator for that. For example, we can launch a coroutine with an
explicitly specified dispatcher and an explicitly specified name at the same time:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				launch(Dispatchers.Default	+	CoroutineName("test"))	{
								println("I'm	working	in	thread	${Thread.currentThread().name}")
				}
//sampleEnd				
}

The output of this code with the -Dkotlinx.coroutines.debug JVM option is:

I'm	working	in	thread	DefaultDispatcher-worker-1	@test#2

Coroutine
scope
Let us put our knowledge about contexts, children and jobs together. Assume that our application has an object with a lifecycle, but that object is not a coroutine.
For example, we are writing an Android application and launch various coroutines in the context of an Android activity to perform asynchronous operations to fetch
and update data, do animations, etc. All of these coroutines must be cancelled when the activity is destroyed to avoid memory leaks. We, of course, can
manipulate contexts and jobs manually to tie the lifecycles of the activity and its coroutines, but kotlinx.coroutines provides an abstraction encapsulating that:
CoroutineScope. You should be already familiar with the coroutine scope as all coroutine builders are declared as extensions on it.

We manage the lifecycles of our coroutines by creating an instance of CoroutineScope tied to the lifecycle of our activity. A CoroutineScope instance can be
created by the CoroutineScope() or MainScope() factory functions. The former creates a general-purpose scope, while the latter creates a scope for UI applications
and uses Dispatchers.Main as the default dispatcher:

class	Activity	{
				private	val	mainScope	=	MainScope()
				
				fun	destroy()	{
								mainScope.cancel()
				}
				//	to	be	continued	...

Now, we can launch coroutines in the scope of this Activity using the defined scope. For the demo, we launch ten coroutines that delay for a different time:

				//	class	Activity	continues

You can get the full code here.

You can get the full code here.

924

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-08.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-09.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-main-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-main.html

				fun	doSomething()	{
								//	launch	ten	coroutines	for	a	demo,	each	working	for	a	different	time
								repeat(10)	{	i	->
												mainScope.launch	{
																delay((i	+	1)	*	200L)	//	variable	delay	200ms,	400ms,	...	etc
																println("Coroutine	$i	is	done")
												}
								}
				}
}	//	class	Activity	ends

In our main function we create the activity, call our test doSomething function, and destroy the activity after 500ms. This cancels all the coroutines that were
launched from doSomething. We can see that because after the destruction of the activity no more messages are printed, even if we wait a little longer.

import	kotlinx.coroutines.*

class	Activity	{
				private	val	mainScope	=	CoroutineScope(Dispatchers.Default)	//	use	Default	for	test	purposes
				
				fun	destroy()	{
								mainScope.cancel()
				}

				fun	doSomething()	{
								//	launch	ten	coroutines	for	a	demo,	each	working	for	a	different	time
								repeat(10)	{	i	->
												mainScope.launch	{
																delay((i	+	1)	*	200L)	//	variable	delay	200ms,	400ms,	...	etc
																println("Coroutine	$i	is	done")
												}
								}
				}
}	//	class	Activity	ends

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	activity	=	Activity()
				activity.doSomething()	//	run	test	function
				println("Launched	coroutines")
				delay(500L)	//	delay	for	half	a	second
				println("Destroying	activity!")
				activity.destroy()	//	cancels	all	coroutines
				delay(1000)	//	visually	confirm	that	they	don't	work
//sampleEnd				
}

The output of this example is:

Launched	coroutines
Coroutine	0	is	done
Coroutine	1	is	done
Destroying	activity!

As you can see, only the first two coroutines print a message and the others are cancelled by a single invocation of job.cancel() in Activity.destroy().

Thread-local
data
Sometimes it is convenient to have an ability to pass some thread-local data to or between coroutines. However, since they are not bound to any particular thread,
this will likely lead to boilerplate if done manually.

For ThreadLocal, the asContextElement extension function is here for the rescue. It creates an additional context element which keeps the value of the given
ThreadLocal and restores it every time the coroutine switches its context.

It is easy to demonstrate it in action:

You can get the full code here.

Note, that Android has first-party support for coroutine scope in all entities with the lifecycle. See the corresponding documentation.

925

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-10.kt
https://developer.android.com/topic/libraries/architecture/coroutines#lifecyclescope
https://docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/as-context-element.html

import	kotlinx.coroutines.*

val	threadLocal	=	ThreadLocal<String?>()	//	declare	thread-local	variable

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				threadLocal.set("main")
				println("Pre-main,	current	thread:	${Thread.currentThread()},	thread	local	value:	'${threadLocal.get()}'")
				val	job	=	launch(Dispatchers.Default	+	threadLocal.asContextElement(value	=	"launch"))	{
								println("Launch	start,	current	thread:	${Thread.currentThread()},	thread	local	value:	'${threadLocal.get()}'")
								yield()
								println("After	yield,	current	thread:	${Thread.currentThread()},	thread	local	value:	'${threadLocal.get()}'")
				}
				job.join()
				println("Post-main,	current	thread:	${Thread.currentThread()},	thread	local	value:	'${threadLocal.get()}'")
//sampleEnd				
}

In this example we launch a new coroutine in a background thread pool using Dispatchers.Default, so it works on a different thread from the thread pool, but it still
has the value of the thread local variable that we specified using threadLocal.asContextElement(value = "launch"), no matter which thread the coroutine is executed
on. Thus, the output (with debug) is:

Pre-main,	current	thread:	Thread[main	@coroutine#1,5,main],	thread	local	value:	'main'
Launch	start,	current	thread:	Thread[DefaultDispatcher-worker-1	@coroutine#2,5,main],	thread	local	value:	'launch'
After	yield,	current	thread:	Thread[DefaultDispatcher-worker-2	@coroutine#2,5,main],	thread	local	value:	'launch'
Post-main,	current	thread:	Thread[main	@coroutine#1,5,main],	thread	local	value:	'main'

It's easy to forget to set the corresponding context element. The thread-local variable accessed from the coroutine may then have an unexpected value, if the
thread running the coroutine is different. To avoid such situations, it is recommended to use the ensurePresent method and fail-fast on improper usages.

ThreadLocal has first-class support and can be used with any primitive kotlinx.coroutines provides. It has one key limitation, though: when a thread-local is
mutated, a new value is not propagated to the coroutine caller (because a context element cannot track all ThreadLocal object accesses), and the updated value is
lost on the next suspension. Use withContext to update the value of the thread-local in a coroutine, see asContextElement for more details.

Alternatively, a value can be stored in a mutable box like class Counter(var i: Int), which is, in turn, stored in a thread-local variable. However, in this case you are
fully responsible to synchronize potentially concurrent modifications to the variable in this mutable box.

For advanced usage, for example for integration with logging MDC, transactional contexts or any other libraries which internally use thread-locals for passing data,
see the documentation of the ThreadContextElement interface that should be implemented.

Asynchronous
Flow
A suspending function asynchronously returns a single value, but how can we return multiple asynchronously computed values? This is where Kotlin Flows come in.

Representing
multiple
values
Multiple values can be represented in Kotlin using collections. For example, we can have a simple function that returns a List of three numbers and then print them
all using forEach:

fun	simple():	List<Int>	=	listOf(1,	2,	3)
	
fun	main()	{
				simple().forEach	{	value	->	println(value)	}	
}

This code outputs:

You can get the full code here.

You can get the full code from here.

926

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-context-11.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/ensure-present.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/as-context-element.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-thread-context-element/index.html
https://kotlinlang.org/docs/reference/collections-overview.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/for-each.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-01.kt

1
2
3

Sequences
If we are computing the numbers with some CPU-consuming blocking code (each computation taking 100ms), then we can represent the numbers using a
Sequence:

fun	simple():	Sequence<Int>	=	sequence	{	//	sequence	builder
				for	(i	in	1..3)	{
								Thread.sleep(100)	//	pretend	we	are	computing	it
								yield(i)	//	yield	next	value
				}
}

fun	main()	{
				simple().forEach	{	value	->	println(value)	}	
}

This code outputs the same numbers, but it waits 100ms before printing each one.

Suspending
functions
However, this computation blocks the main thread that is running the code. When these values are computed by asynchronous code we can mark the simple
function with a suspend modifier, so that it can perform its work without blocking and return the result as a list:

import	kotlinx.coroutines.*																	
																											
//sampleStart
suspend	fun	simple():	List<Int>	{
				delay(1000)	//	pretend	we	are	doing	something	asynchronous	here
				return	listOf(1,	2,	3)
}

fun	main()	=	runBlocking<Unit>	{
				simple().forEach	{	value	->	println(value)	}	
}
//sampleEnd

This code prints the numbers after waiting for a second.

Flows
Using the List<Int> result type, means we can only return all the values at once. To represent the stream of values that are being computed asynchronously, we can
use a Flow<Int> type just like we would use a Sequence<Int> type for synchronously computed values:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart															
fun	simple():	Flow<Int>	=	flow	{	//	flow	builder
				for	(i	in	1..3)	{
								delay(100)	//	pretend	we	are	doing	something	useful	here
								emit(i)	//	emit	next	value
				}
}

fun	main()	=	runBlocking<Unit>	{
				//	Launch	a	concurrent	coroutine	to	check	if	the	main	thread	is	blocked

You can get the full code from here.

You can get the full code from here.

927

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-02.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-03.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow/index.html

				launch	{
								for	(k	in	1..3)	{
												println("I'm	not	blocked	$k")
												delay(100)
								}
				}
				//	Collect	the	flow
				simple().collect	{	value	->	println(value)	}	
}
//sampleEnd

This code waits 100ms before printing each number without blocking the main thread. This is verified by printing "I'm not blocked" every 100ms from a separate
coroutine that is running in the main thread:

I'm	not	blocked	1
1
I'm	not	blocked	2
2
I'm	not	blocked	3
3

Notice the following differences in the code with the Flow from the earlier examples:

A builder function of Flow type is called flow.

Code inside a flow { ... } builder block can suspend.

The simple function is no longer marked with a suspend modifier.

Values are emitted from the flow using an emit function.

Values are collected from the flow using a collect function.

Flows
are
cold
Flows are cold streams similar to sequences — the code inside a flow builder does not run until the flow is collected. This becomes clear in the following example:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart						
fun	simple():	Flow<Int>	=	flow	{	
				println("Flow	started")
				for	(i	in	1..3)	{
								delay(100)
								emit(i)
				}
}

fun	main()	=	runBlocking<Unit>	{
				println("Calling	simple	function...")
				val	flow	=	simple()
				println("Calling	collect...")
				flow.collect	{	value	->	println(value)	}	
				println("Calling	collect	again...")
				flow.collect	{	value	->	println(value)	}	
}
//sampleEnd

You can get the full code from here.

We can replace delay with Thread.sleep in the body of simple's flow { ... } and see that the main thread is blocked in this case.

You can get the full code from here.

928

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-05.kt

Which prints:

Calling	simple	function...
Calling	collect...
Flow	started
1
2
3
Calling	collect	again...
Flow	started
1
2
3

This is a key reason the simple function (which returns a flow) is not marked with suspend modifier. The simple() call itself returns quickly and does not wait for
anything. The flow starts afresh every time it is collected and that is why we see "Flow started" every time we call collect again.

Flow
cancellation
basics
Flows adhere to the general cooperative cancellation of coroutines. As usual, flow collection can be cancelled when the flow is suspended in a cancellable
suspending function (like delay). The following example shows how the flow gets cancelled on a timeout when running in a withTimeoutOrNull block and stops
executing its code:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart											
fun	simple():	Flow<Int>	=	flow	{	
				for	(i	in	1..3)	{
								delay(100)										
								println("Emitting	$i")
								emit(i)
				}
}

fun	main()	=	runBlocking<Unit>	{
				withTimeoutOrNull(250)	{	//	Timeout	after	250ms	
								simple().collect	{	value	->	println(value)	}	
				}
				println("Done")
}
//sampleEnd

Notice how only two numbers get emitted by the flow in the simple function, producing the following output:

Emitting	1
1
Emitting	2
2
Done

See Flow cancellation checks section for more details.

Flow
builders
The flow { ... } builder from the previous examples is the most basic one. There are other builders that allow flows to be declared:

The flowOf builder defines a flow that emits a fixed set of values.

Various collections and sequences can be converted to flows using the .asFlow() extension function.

For example, the snippet that prints the numbers 1 to 3 from a flow can be rewritten as follows:

You can get the full code from here.

929

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-timeout-or-null.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-06.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-of.html

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				//	Convert	an	integer	range	to	a	flow
				(1..3).asFlow().collect	{	value	->	println(value)	}
//sampleEnd	
}

Intermediate
flow
operators
Flows can be transformed using operators, in the same way as you would transform collections and sequences. Intermediate operators are applied to an upstream
flow and return a downstream flow. These operators are cold, just like flows are. A call to such an operator is not a suspending function itself. It works quickly,
returning the definition of a new transformed flow.

The basic operators have familiar names like map and filter. An important difference of these operators from sequences is that blocks of code inside these
operators can call suspending functions.

For example, a flow of incoming requests can be mapped to its results with a map operator, even when performing a request is a long-running operation that is
implemented by a suspending function:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart											
suspend	fun	performRequest(request:	Int):	String	{
				delay(1000)	//	imitate	long-running	asynchronous	work
				return	"response	$request"
}

fun	main()	=	runBlocking<Unit>	{
				(1..3).asFlow()	//	a	flow	of	requests
								.map	{	request	->	performRequest(request)	}
								.collect	{	response	->	println(response)	}
}
//sampleEnd

It produces the following three lines, each appearing one second after the previous:

response	1
response	2
response	3

Transform
operator
Among the flow transformation operators, the most general one is called transform. It can be used to imitate simple transformations like map and filter, as well as
implement more complex transformations. Using the transform operator, we can emit arbitrary values an arbitrary number of times.

For example, using transform we can emit a string before performing a long-running asynchronous request and follow it with a response:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

suspend	fun	performRequest(request:	Int):	String	{
				delay(1000)	//	imitate	long-running	asynchronous	work
				return	"response	$request"
}

fun	main()	=	runBlocking<Unit>	{

You can get the full code from here.

You can get the full code from here.

930

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-07.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/filter.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-08.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/transform.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/filter.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html

//sampleStart
				(1..3).asFlow()	//	a	flow	of	requests
								.transform	{	request	->
												emit("Making	request	$request")	
												emit(performRequest(request))	
								}
								.collect	{	response	->	println(response)	}
//sampleEnd
}

The output of this code is:

Making	request	1
response	1
Making	request	2
response	2
Making	request	3
response	3

Size-limiting
operators
Size-limiting intermediate operators like take cancel the execution of the flow when the corresponding limit is reached. Cancellation in coroutines is always
performed by throwing an exception, so that all the resource-management functions (like try { ... } finally { ... } blocks) operate normally in case of cancellation:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	numbers():	Flow<Int>	=	flow	{
				try	{																										
								emit(1)
								emit(2)	
								println("This	line	will	not	execute")
								emit(3)				
				}	finally	{
								println("Finally	in	numbers")
				}
}

fun	main()	=	runBlocking<Unit>	{
				numbers()	
								.take(2)	//	take	only	the	first	two
								.collect	{	value	->	println(value)	}
}												
//sampleEnd

The output of this code clearly shows that the execution of the flow { ... } body in the numbers() function stopped after emitting the second number:

1
2
Finally	in	numbers

Terminal
flow
operators
Terminal operators on flows are suspending functions that start a collection of the flow. The collect operator is the most basic one, but there are other terminal
operators, which can make it easier:

Conversion to various collections like toList and toSet.

Operators to get the first value and to ensure that a flow emits a single value.

You can get the full code from here.

You can get the full code from here.

931

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-09.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/take.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-10.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/to-list.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/to-set.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/first.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/single.html

Reducing a flow to a value with reduce and fold.

For example:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart									
				val	sum	=	(1..5).asFlow()
								.map	{	it	*	it	}	//	squares	of	numbers	from	1	to	5																											
								.reduce	{	a,	b	->	a	+	b	}	//	sum	them	(terminal	operator)
				println(sum)
//sampleEnd					
}

Prints a single number:

55

Flows
are
sequential
Each individual collection of a flow is performed sequentially unless special operators that operate on multiple flows are used. The collection works directly in the
coroutine that calls a terminal operator. No new coroutines are launched by default. Each emitted value is processed by all the intermediate operators from
upstream to downstream and is then delivered to the terminal operator after.

See the following example that filters the even integers and maps them to strings:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart									
				(1..5).asFlow()
								.filter	{
												println("Filter	$it")
												it	%	2	==	0														
								}														
								.map	{	
												println("Map	$it")
												"string	$it"
								}.collect	{	
												println("Collect	$it")
								}				
//sampleEnd																		
}

Producing:

Filter	1
Filter	2
Map	2
Collect	string	2
Filter	3
Filter	4
Map	4
Collect	string	4
Filter	5

You can get the full code from here.

You can get the full code from here.

932

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/reduce.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/fold.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-11.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-12.kt

Flow
context
Collection of a flow always happens in the context of the calling coroutine. For example, if there is a simple flow, then the following code runs in the context
specified by the author of this code, regardless of the implementation details of the simple flow:

withContext(context)	{
				simple().collect	{	value	->
								println(value)	//	run	in	the	specified	context	
				}
}

This property of a flow is called context preservation.

So, by default, code in the flow { ... } builder runs in the context that is provided by a collector of the corresponding flow. For example, consider the implementation
of a simple function that prints the thread it is called on and emits three numbers:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	log(msg:	String)	=	println("[${Thread.currentThread().name}]	$msg")
											
//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				log("Started	simple	flow")
				for	(i	in	1..3)	{
								emit(i)
				}
}		

fun	main()	=	runBlocking<Unit>	{
				simple().collect	{	value	->	log("Collected	$value")	}	
}												
//sampleEnd

Running this code produces:

[main	@coroutine#1]	Started	simple	flow
[main	@coroutine#1]	Collected	1
[main	@coroutine#1]	Collected	2
[main	@coroutine#1]	Collected	3

Since simple().collect is called from the main thread, the body of simple's flow is also called in the main thread. This is the perfect default for fast-running or
asynchronous code that does not care about the execution context and does not block the caller.

A
common
pitfall
when
using
withContext
However, the long-running CPU-consuming code might need to be executed in the context of Dispatchers.Default and UI-updating code might need to be executed
in the context of Dispatchers.Main. Usually, withContext is used to change the context in the code using Kotlin coroutines, but code in the flow { ... } builder has to
honor the context preservation property and is not allowed to emit from a different context.

Try running the following code:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
																						
//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				//	The	WRONG	way	to	change	context	for	CPU-consuming	code	in	flow	builder
				kotlinx.coroutines.withContext(Dispatchers.Default)	{
								for	(i	in	1..3)	{
												Thread.sleep(100)	//	pretend	we	are	computing	it	in	CPU-consuming	way
												emit(i)	//	emit	next	value
								}
				}
}

You can get the full code from here.

933

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-13.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-main.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html

fun	main()	=	runBlocking<Unit>	{
				simple().collect	{	value	->	println(value)	}	
}												
//sampleEnd

This code produces the following exception:

Exception	in	thread	"main"	java.lang.IllegalStateException:	Flow	invariant	is	violated:
		Flow	was	collected	in	[CoroutineId(1),	"coroutine#1":BlockingCoroutine{Active}@5511c7f8,	BlockingEventLoop@2eac3323],
		but	emission	happened	in	[CoroutineId(1),	"coroutine#1":DispatchedCoroutine{Active}@2dae0000,	Dispatchers.Default].
		Please	refer	to	'flow'	documentation	or	use	'flowOn'	instead
	at	...

flowOn
operator
The exception refers to the flowOn function that shall be used to change the context of the flow emission. The correct way to change the context of a flow is shown
in the example below, which also prints the names of the corresponding threads to show how it all works:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	log(msg:	String)	=	println("[${Thread.currentThread().name}]	$msg")
											
//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								Thread.sleep(100)	//	pretend	we	are	computing	it	in	CPU-consuming	way
								log("Emitting	$i")
								emit(i)	//	emit	next	value
				}
}.flowOn(Dispatchers.Default)	//	RIGHT	way	to	change	context	for	CPU-consuming	code	in	flow	builder

fun	main()	=	runBlocking<Unit>	{
				simple().collect	{	value	->
								log("Collected	$value")	
				}	
}												
//sampleEnd

Notice how flow { ... } works in the background thread, while collection happens in the main thread:

Another thing to observe here is that the flowOn operator has changed the default sequential nature of the flow. Now collection happens in one coroutine
("coroutine#1") and emission happens in another coroutine ("coroutine#2") that is running in another thread concurrently with the collecting coroutine. The flowOn
operator creates another coroutine for an upstream flow when it has to change the CoroutineDispatcher in its context.

Buffering
Running different parts of a flow in different coroutines can be helpful from the standpoint of the overall time it takes to collect the flow, especially when long-
running asynchronous operations are involved. For example, consider a case when the emission by a simple flow is slow, taking 100 ms to produce an element; and
collector is also slow, taking 300 ms to process an element. Let's see how long it takes to collect such a flow with three numbers:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
import	kotlin.system.*

//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								delay(100)	//	pretend	we	are	asynchronously	waiting	100	ms
								emit(i)	//	emit	next	value

You can get the full code from here.

You can get the full code from here.

934

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-14.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-15.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html

				}
}

fun	main()	=	runBlocking<Unit>	{	
				val	time	=	measureTimeMillis	{
								simple().collect	{	value	->	
												delay(300)	//	pretend	we	are	processing	it	for	300	ms
												println(value)	
								}	
				}			
				println("Collected	in	$time	ms")
}
//sampleEnd

It produces something like this, with the whole collection taking around 1200 ms (three numbers, 400 ms for each):

1
2
3
Collected	in	1220	ms

We can use a buffer operator on a flow to run emitting code of the simple flow concurrently with collecting code, as opposed to running them sequentially:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
import	kotlin.system.*

fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								delay(100)	//	pretend	we	are	asynchronously	waiting	100	ms
								emit(i)	//	emit	next	value
				}
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	time	=	measureTimeMillis	{
								simple()
												.buffer()	//	buffer	emissions,	don't	wait
												.collect	{	value	->	
																delay(300)	//	pretend	we	are	processing	it	for	300	ms
																println(value)	
												}	
				}			
				println("Collected	in	$time	ms")
//sampleEnd
}

It produces the same numbers just faster, as we have effectively created a processing pipeline, having to only wait 100 ms for the first number and then spending
only 300 ms to process each number. This way it takes around 1000 ms to run:

1
2
3
Collected	in	1071	ms

Conflation

You can get the full code from here.

You can get the full code from here.

Note that the flowOn operator uses the same buffering mechanism when it has to change a CoroutineDispatcher, but here we explicitly request buffering
without changing the execution context.

935

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-16.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/buffer.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-17.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-on.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-dispatcher/index.html

When a flow represents partial results of the operation or operation status updates, it may not be necessary to process each value, but instead, only most recent
ones. In this case, the conflate operator can be used to skip intermediate values when a collector is too slow to process them. Building on the previous example:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
import	kotlin.system.*

fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								delay(100)	//	pretend	we	are	asynchronously	waiting	100	ms
								emit(i)	//	emit	next	value
				}
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	time	=	measureTimeMillis	{
								simple()
												.conflate()	//	conflate	emissions,	don't	process	each	one
												.collect	{	value	->	
																delay(300)	//	pretend	we	are	processing	it	for	300	ms
																println(value)	
												}	
				}			
				println("Collected	in	$time	ms")
//sampleEnd
}

We see that while the first number was still being processed the second, and third were already produced, so the second one was conflated and only the most
recent (the third one) was delivered to the collector:

1
3
Collected	in	758	ms

Processing
the
latest
value
Conflation is one way to speed up processing when both the emitter and collector are slow. It does it by dropping emitted values. The other way is to cancel a slow
collector and restart it every time a new value is emitted. There is a family of xxxLatest operators that perform the same essential logic of a xxx operator, but cancel
the code in their block on a new value. Let's try changing conflate to collectLatest in the previous example:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
import	kotlin.system.*

fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								delay(100)	//	pretend	we	are	asynchronously	waiting	100	ms
								emit(i)	//	emit	next	value
				}
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	time	=	measureTimeMillis	{
								simple()
												.collectLatest	{	value	->	//	cancel	&	restart	on	the	latest	value
																println("Collecting	$value")	
																delay(300)	//	pretend	we	are	processing	it	for	300	ms
																println("Done	$value")	
												}	
				}			
				println("Collected	in	$time	ms")
//sampleEnd
}

You can get the full code from here.

936

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/conflate.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-18.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/conflate.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html

Since the body of collectLatest takes 300 ms, but new values are emitted every 100 ms, we see that the block is run on every value, but completes only for the last
value:

Collecting	1
Collecting	2
Collecting	3
Done	3
Collected	in	741	ms

Composing
multiple
flows
There are lots of ways to compose multiple flows.

Zip
Just like the Sequence.zip extension function in the Kotlin standard library, flows have a zip operator that combines the corresponding values of two flows:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{	
//sampleStart																																																																											
				val	nums	=	(1..3).asFlow()	//	numbers	1..3
				val	strs	=	flowOf("one",	"two",	"three")	//	strings	
				nums.zip(strs)	{	a,	b	->	"$a	->	$b"	}	//	compose	a	single	string
								.collect	{	println(it)	}	//	collect	and	print
//sampleEnd
}

This example prints:

1	->	one
2	->	two
3	->	three

Combine
When flow represents the most recent value of a variable or operation (see also the related section on conflation), it might be needed to perform a computation that
depends on the most recent values of the corresponding flows and to recompute it whenever any of the upstream flows emit a value. The corresponding family of
operators is called combine.

For example, if the numbers in the previous example update every 300ms, but strings update every 400 ms, then zipping them using the zip operator will still
produce the same result, albeit results that are printed every 400 ms:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{	
//sampleStart																																																																											
				val	nums	=	(1..3).asFlow().onEach	{	delay(300)	}	//	numbers	1..3	every	300	ms
				val	strs	=	flowOf("one",	"two",	"three").onEach	{	delay(400)	}	//	strings	every	400	ms
				val	startTime	=	System.currentTimeMillis()	//	remember	the	start	time	
				nums.zip(strs)	{	a,	b	->	"$a	->	$b"	}	//	compose	a	single	string	with	"zip"
								.collect	{	value	->	//	collect	and	print	

You can get the full code from here.

You can get the full code from here.

We use a onEach intermediate operator in this example to delay each element and make the code that emits sample flows more declarative and shorter.

937

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-19.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/zip.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-20.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/combine.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html

												println("$value	at	${System.currentTimeMillis()	-	startTime}	ms	from	start")	
								}	
//sampleEnd
}

However, when using a combine operator here instead of a zip:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	main()	=	runBlocking<Unit>	{	
//sampleStart																																																																											
				val	nums	=	(1..3).asFlow().onEach	{	delay(300)	}	//	numbers	1..3	every	300	ms
				val	strs	=	flowOf("one",	"two",	"three").onEach	{	delay(400)	}	//	strings	every	400	ms										
				val	startTime	=	System.currentTimeMillis()	//	remember	the	start	time	
				nums.combine(strs)	{	a,	b	->	"$a	->	$b"	}	//	compose	a	single	string	with	"combine"
								.collect	{	value	->	//	collect	and	print	
												println("$value	at	${System.currentTimeMillis()	-	startTime}	ms	from	start")	
								}	
//sampleEnd
}

We get quite a different output, where a line is printed at each emission from either nums or strs flows:

1	->	one	at	452	ms	from	start
2	->	one	at	651	ms	from	start
2	->	two	at	854	ms	from	start
3	->	two	at	952	ms	from	start
3	->	three	at	1256	ms	from	start

Flattening
flows
Flows represent asynchronously received sequences of values, and so it is quite easy to get into a situation where each value triggers a request for another
sequence of values. For example, we can have the following function that returns a flow of two strings 500 ms apart:

fun	requestFlow(i:	Int):	Flow<String>	=	flow	{
				emit("$i:	First")	
				delay(500)	//	wait	500	ms
				emit("$i:	Second")				
}

Now if we have a flow of three integers and call requestFlow on each of them like this:

(1..3).asFlow().map	{	requestFlow(it)	}

Then we will end up with a flow of flows (Flow<Flow<String>>) that needs to be flattened into a single flow for further processing. Collections and sequences have
flatten and flatMap operators for this. However, due to the asynchronous nature of flows they call for different modes of flattening, and hence, a family of flattening
operators on flows exists.

flatMapConcat
Concatenation of flows of flows is provided by the flatMapConcat and flattenConcat operators. They are the most direct analogues of the corresponding sequence
operators. They wait for the inner flow to complete before starting to collect the next one as the following example shows:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

You can get the full code from here.

You can get the full code from here.

938

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-21.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/combine.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/zip.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-22.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/flatten.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/flat-map.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-concat.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-concat.html

fun	requestFlow(i:	Int):	Flow<String>	=	flow	{
				emit("$i:	First")	
				delay(500)	//	wait	500	ms
				emit("$i:	Second")				
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	startTime	=	System.currentTimeMillis()	//	remember	the	start	time	
				(1..3).asFlow().onEach	{	delay(100)	}	//	emit	a	number	every	100	ms	
								.flatMapConcat	{	requestFlow(it)	}																																																																											
								.collect	{	value	->	//	collect	and	print	
												println("$value	at	${System.currentTimeMillis()	-	startTime}	ms	from	start")	
								}	
//sampleEnd
}

The sequential nature of flatMapConcat is clearly seen in the output:

1:	First	at	121	ms	from	start
1:	Second	at	622	ms	from	start
2:	First	at	727	ms	from	start
2:	Second	at	1227	ms	from	start
3:	First	at	1328	ms	from	start
3:	Second	at	1829	ms	from	start

flatMapMerge
Another flattening operation is to concurrently collect all the incoming flows and merge their values into a single flow so that values are emitted as soon as possible.
It is implemented by flatMapMerge and flattenMerge operators. They both accept an optional concurrency parameter that limits the number of concurrent flows that
are collected at the same time (it is equal to DEFAULT_CONCURRENCY by default).

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	requestFlow(i:	Int):	Flow<String>	=	flow	{
				emit("$i:	First")	
				delay(500)	//	wait	500	ms
				emit("$i:	Second")				
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	startTime	=	System.currentTimeMillis()	//	remember	the	start	time	
				(1..3).asFlow().onEach	{	delay(100)	}	//	a	number	every	100	ms	
								.flatMapMerge	{	requestFlow(it)	}																																																																											
								.collect	{	value	->	//	collect	and	print	
												println("$value	at	${System.currentTimeMillis()	-	startTime}	ms	from	start")	
								}	
//sampleEnd
}

The concurrent nature of flatMapMerge is obvious:

1:	First	at	136	ms	from	start
2:	First	at	231	ms	from	start
3:	First	at	333	ms	from	start
1:	Second	at	639	ms	from	start
2:	Second	at	732	ms	from	start
3:	Second	at	833	ms	from	start

You can get the full code from here.

You can get the full code from here.

939

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-23.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-concat.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-merge.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-d-e-f-a-u-l-t_-c-o-n-c-u-r-r-e-n-c-y.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-24.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html

flatMapLatest
In a similar way to the collectLatest operator, that was described in the section "Processing the latest value", there is the corresponding "Latest" flattening mode
where the collection of the previous flow is cancelled as soon as new flow is emitted. It is implemented by the flatMapLatest operator.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	requestFlow(i:	Int):	Flow<String>	=	flow	{
				emit("$i:	First")	
				delay(500)	//	wait	500	ms
				emit("$i:	Second")				
}

fun	main()	=	runBlocking<Unit>	{	
//sampleStart
				val	startTime	=	System.currentTimeMillis()	//	remember	the	start	time	
				(1..3).asFlow().onEach	{	delay(100)	}	//	a	number	every	100	ms	
								.flatMapLatest	{	requestFlow(it)	}																																																																											
								.collect	{	value	->	//	collect	and	print	
												println("$value	at	${System.currentTimeMillis()	-	startTime}	ms	from	start")	
								}	
//sampleEnd
}

The output here in this example is a good demonstration of how flatMapLatest works:

1:	First	at	142	ms	from	start
2:	First	at	322	ms	from	start
3:	First	at	425	ms	from	start
3:	Second	at	931	ms	from	start

Flow
exceptions
Flow collection can complete with an exception when an emitter or code inside the operators throw an exception. There are several ways to handle these
exceptions.

Collector
try
and
catch
A collector can use Kotlin's try/catch block to handle exceptions:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								println("Emitting	$i")
								emit(i)	//	emit	next	value
				}
}

fun	main()	=	runBlocking<Unit>	{
				try	{

Note that the flatMapMerge calls its block of code ({ requestFlow(it) } in this example) sequentially, but collects the resulting flows concurrently, it is the
equivalent of performing a sequential map { requestFlow(it) } first and then calling flattenMerge on the result.

You can get the full code from here.

Note that flatMapLatest cancels all the code in its block ({ requestFlow(it) } in this example) when a new value is received. It makes no difference in this
particular example, because the call to requestFlow itself is fast, not-suspending, and cannot be cancelled. However, a differnce in output would be
visible if we were to use suspending functions like delay in requestFlow.

940

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-merge.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flatten-merge.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect-latest.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-25.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flat-map-latest.html
https://kotlinlang.org/docs/reference/exceptions.html

								simple().collect	{	value	->									
												println(value)
												check(value	<=	1)	{	"Collected	$value"	}
								}
				}	catch	(e:	Throwable)	{
								println("Caught	$e")
				}	
}												
//sampleEnd

This code successfully catches an exception in collect terminal operator and, as we see, no more values are emitted after that:

Emitting	1
1
Emitting	2
2
Caught	java.lang.IllegalStateException:	Collected	2

Everything
is
caught
The previous example actually catches any exception happening in the emitter or in any intermediate or terminal operators. For example, let's change the code so
that emitted values are mapped to strings, but the corresponding code produces an exception:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<String>	=	
				flow	{
								for	(i	in	1..3)	{
												println("Emitting	$i")
												emit(i)	//	emit	next	value
								}
				}
				.map	{	value	->
								check(value	<=	1)	{	"Crashed	on	$value"	}																	
								"string	$value"
				}

fun	main()	=	runBlocking<Unit>	{
				try	{
								simple().collect	{	value	->	println(value)	}
				}	catch	(e:	Throwable)	{
								println("Caught	$e")
				}	
}												
//sampleEnd

This exception is still caught and collection is stopped:

Emitting	1
string	1
Emitting	2
Caught	java.lang.IllegalStateException:	Crashed	on	2

Exception
transparency
But how can code of the emitter encapsulate its exception handling behavior?

Flows must be transparent to exceptions and it is a violation of the exception transparency to emit values in the flow { ... } builder from inside of a try/catch block.
This guarantees that a collector throwing an exception can always catch it using try/catch as in the previous example.

You can get the full code from here.

You can get the full code from here.

941

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-26.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/map.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-27.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html

The emitter can use a catch operator that preserves this exception transparency and allows encapsulation of its exception handling. The body of the catch operator
can analyze an exception and react to it in different ways depending on which exception was caught:

Exceptions can be rethrown using throw.

Exceptions can be turned into emission of values using emit from the body of catch.

Exceptions can be ignored, logged, or processed by some other code.

For example, let us emit the text on catching an exception:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	simple():	Flow<String>	=	
				flow	{
								for	(i	in	1..3)	{
												println("Emitting	$i")
												emit(i)	//	emit	next	value
								}
				}
				.map	{	value	->
								check(value	<=	1)	{	"Crashed	on	$value"	}																	
								"string	$value"
				}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				simple()
								.catch	{	e	->	emit("Caught	$e")	}	//	emit	on	exception
								.collect	{	value	->	println(value)	}
//sampleEnd
}												

The output of the example is the same, even though we do not have try/catch around the code anymore.

Transparent
catch
The catch intermediate operator, honoring exception transparency, catches only upstream exceptions (that is an exception from all the operators above catch, but
not below it). If the block in collect { ... } (placed below catch) throws an exception then it escapes:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								println("Emitting	$i")
								emit(i)
				}
}

fun	main()	=	runBlocking<Unit>	{
				simple()
								.catch	{	e	->	println("Caught	$e")	}	//	does	not	catch	downstream	exceptions
								.collect	{	value	->
												check(value	<=	1)	{	"Collected	$value"	}																	
												println(value)	
								}
}												
//sampleEnd

A "Caught ..." message is not printed despite there being a catch operator:

You can get the full code from here.

You can get the full code from here.

942

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-28.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-29.kt

Emitting	1
1
Emitting	2
Exception	in	thread	"main"	java.lang.IllegalStateException:	Collected	2
	at	...

Catching
declaratively
We can combine the declarative nature of the catch operator with a desire to handle all the exceptions, by moving the body of the collect operator into onEach and
putting it before the catch operator. Collection of this flow must be triggered by a call to collect() without parameters:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								println("Emitting	$i")
								emit(i)
				}
}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				simple()
								.onEach	{	value	->
												check(value	<=	1)	{	"Collected	$value"	}																	
												println(value)	
								}
								.catch	{	e	->	println("Caught	$e")	}
								.collect()
//sampleEnd
}												

Now we can see that a "Caught ..." message is printed and so we can catch all the exceptions without explicitly using a try/catch block:

Emitting	1
1
Emitting	2
Caught	java.lang.IllegalStateException:	Collected	2

Flow
completion
When flow collection completes (normally or exceptionally) it may need to execute an action. As you may have already noticed, it can be done in two ways:
imperative or declarative.

Imperative
finally
block
In addition to try/catch, a collector can also use a finally block to execute an action upon collect completion.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<Int>	=	(1..3).asFlow()

fun	main()	=	runBlocking<Unit>	{
				try	{
								simple().collect	{	value	->	println(value)	}
				}	finally	{
								println("Done")
				}
}												
//sampleEnd

You can get the full code from here.

943

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-30.kt

This code prints three numbers produced by the simple flow followed by a "Done" string:

1
2
3
Done

Declarative
handling
For the declarative approach, flow has onCompletion intermediate operator that is invoked when the flow has completely collected.

The previous example can be rewritten using an onCompletion operator and produces the same output:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

fun	simple():	Flow<Int>	=	(1..3).asFlow()

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				simple()
								.onCompletion	{	println("Done")	}
								.collect	{	value	->	println(value)	}
//sampleEnd
}												

The key advantage of onCompletion is a nullable Throwable parameter of the lambda that can be used to determine whether the flow collection was completed
normally or exceptionally. In the following example the simple flow throws an exception after emitting the number 1:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<Int>	=	flow	{
				emit(1)
				throw	RuntimeException()
}

fun	main()	=	runBlocking<Unit>	{
				simple()
								.onCompletion	{	cause	->	if	(cause	!=	null)	println("Flow	completed	exceptionally")	}
								.catch	{	cause	->	println("Caught	exception")	}
								.collect	{	value	->	println(value)	}
}												
//sampleEnd

As you may expect, it prints:

1
Flow	completed	exceptionally
Caught	exception

The onCompletion operator, unlike catch, does not handle the exception. As we can see from the above example code, the exception still flows downstream. It will
be delivered to further onCompletion operators and can be handled with a catch operator.

You can get the full code from here.

You can get the full code from here.

You can get the full code from here.

944

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-31.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-32.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-33.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html

Successful
completion
Another difference with catch operator is that onCompletion sees all exceptions and receives a null exception only on successful completion of the upstream flow
(without cancellation or failure).

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
fun	simple():	Flow<Int>	=	(1..3).asFlow()

fun	main()	=	runBlocking<Unit>	{
				simple()
								.onCompletion	{	cause	->	println("Flow	completed	with	$cause")	}
								.collect	{	value	->
												check(value	<=	1)	{	"Collected	$value"	}																	
												println(value)	
								}
}
//sampleEnd

We can see the completion cause is not null, because the flow was aborted due to downstream exception:

1
Flow	completed	with	java.lang.IllegalStateException:	Collected	2
Exception	in	thread	"main"	java.lang.IllegalStateException:	Collected	2

Imperative
versus
declarative
Now we know how to collect flow, and handle its completion and exceptions in both imperative and declarative ways. The natural question here is, which approach
is preferred and why? As a library, we do not advocate for any particular approach and believe that both options are valid and should be selected according to your
own preferences and code style.

Launching
flow
It is easy to use flows to represent asynchronous events that are coming from some source. In this case, we need an analogue of the addEventListener function that
registers a piece of code with a reaction for incoming events and continues further work. The onEach operator can serve this role. However, onEach is an
intermediate operator. We also need a terminal operator to collect the flow. Otherwise, just calling onEach has no effect.

If we use the collect terminal operator after onEach, then the code after it will wait until the flow is collected:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart
//	Imitate	a	flow	of	events
fun	events():	Flow<Int>	=	(1..3).asFlow().onEach	{	delay(100)	}

fun	main()	=	runBlocking<Unit>	{
				events()
								.onEach	{	event	->	println("Event:	$event")	}
								.collect()	//	<---	Collecting	the	flow	waits
				println("Done")
}												
//sampleEnd

As you can see, it prints:

You can get the full code from here.

You can get the full code from here.

945

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/catch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-completion.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-34.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/on-each.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-35.kt

Event:	1
Event:	2
Event:	3
Done

The launchIn terminal operator comes in handy here. By replacing collect with launchIn we can launch a collection of the flow in a separate coroutine, so that
execution of further code immediately continues:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//	Imitate	a	flow	of	events
fun	events():	Flow<Int>	=	(1..3).asFlow().onEach	{	delay(100)	}

//sampleStart
fun	main()	=	runBlocking<Unit>	{
				events()
								.onEach	{	event	->	println("Event:	$event")	}
								.launchIn(this)	//	<---	Launching	the	flow	in	a	separate	coroutine
				println("Done")
}												
//sampleEnd

It prints:

Done
Event:	1
Event:	2
Event:	3

The required parameter to launchIn must specify a CoroutineScope in which the coroutine to collect the flow is launched. In the above example this scope comes
from the runBlocking coroutine builder, so while the flow is running, this runBlocking scope waits for completion of its child coroutine and keeps the main function
from returning and terminating this example.

In actual applications a scope will come from an entity with a limited lifetime. As soon as the lifetime of this entity is terminated the corresponding scope is
cancelled, cancelling the collection of the corresponding flow. This way the pair of onEach { ... }.launchIn(scope) works like the addEventListener. However, there is
no need for the corresponding removeEventListener function, as cancellation and structured concurrency serve this purpose.

Note that launchIn also returns a Job, which can be used to cancel the corresponding flow collection coroutine only without cancelling the whole scope or to join it.

Flow
cancellation
checks
For convenience, the flow builder performs additional ensureActive checks for cancellation on each emitted value. It means that a busy loop emitting from a flow {
... } is cancellable:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart											
fun	foo():	Flow<Int>	=	flow	{	
				for	(i	in	1..5)	{
								println("Emitting	$i")	
								emit(i)	
				}
}

fun	main()	=	runBlocking<Unit>	{
				foo().collect	{	value	->	
								if	(value	==	3)	cancel()		
								println(value)
				}	
}
//sampleEnd

You can get the full code from here.

946

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/launch-in.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-36.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/launch-in.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/join.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/ensure-active.html

We get only numbers up to 3 and a CancellationException after trying to emit number 4:

Emitting	1
1
Emitting	2
2
Emitting	3
3
Emitting	4
Exception	in	thread	"main"	kotlinx.coroutines.JobCancellationException:	BlockingCoroutine	was	cancelled;	
job="coroutine#1":BlockingCoroutine{Cancelled}@6d7b4f4c

However, most other flow operators do not do additional cancellation checks on their own for performance reasons. For example, if you use IntRange.asFlow
extension to write the same busy loop and don't suspend anywhere, then there are no checks for cancellation:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart											
fun	main()	=	runBlocking<Unit>	{
				(1..5).asFlow().collect	{	value	->	
								if	(value	==	3)	cancel()		
								println(value)
				}	
}
//sampleEnd

All numbers from 1 to 5 are collected and cancellation gets detected only before return from runBlocking:

1
2
3
4
5
Exception	in	thread	"main"	kotlinx.coroutines.JobCancellationException:	BlockingCoroutine	was	cancelled;	
job="coroutine#1":BlockingCoroutine{Cancelled}@3327bd23

Making busy flow cancellable
In the case where you have a busy loop with coroutines you must explicitly check for cancellation. You can add .onEach { currentCoroutineContext().ensureActive()
}, but there is a ready-to-use cancellable operator provided to do that:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*

//sampleStart											
fun	main()	=	runBlocking<Unit>	{
				(1..5).asFlow().cancellable().collect	{	value	->	
								if	(value	==	3)	cancel()		
								println(value)
				}	
}
//sampleEnd

With the cancellable operator only the numbers from 1 to 3 are collected:

1

You can get the full code from here.

You can get the full code from here.

You can get the full code from here.

947

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-37.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/as-flow.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-38.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/cancellable.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-flow-39.kt

2
3
Exception	in	thread	"main"	kotlinx.coroutines.JobCancellationException:	BlockingCoroutine	was	cancelled;	
job="coroutine#1":BlockingCoroutine{Cancelled}@5ec0a365

Flow
and
Reactive
Streams
For those who are familiar with Reactive Streams or reactive frameworks such as RxJava and project Reactor, design of the Flow may look very familiar.

Indeed, its design was inspired by Reactive Streams and its various implementations. But Flow main goal is to have as simple design as possible, be Kotlin and
suspension friendly and respect structured concurrency. Achieving this goal would be impossible without reactive pioneers and their tremendous work. You can
read the complete story in Reactive Streams and Kotlin Flows article.

While being different, conceptually, Flow is a reactive stream and it is possible to convert it to the reactive (spec and TCK compliant) Publisher and vice versa. Such
converters are provided by kotlinx.coroutines out-of-the-box and can be found in corresponding reactive modules (kotlinx-coroutines-reactive for Reactive Streams,
kotlinx-coroutines-reactor for Project Reactor and kotlinx-coroutines-rx2/kotlinx-coroutines-rx3 for RxJava2/RxJava3). Integration modules include conversions
from and to Flow, integration with Reactor's Context and suspension-friendly ways to work with various reactive entities.

Channels
Deferred values provide a convenient way to transfer a single value between coroutines. Channels provide a way to transfer a stream of values.

Channel
basics
A Channel is conceptually very similar to BlockingQueue. One key difference is that instead of a blocking put operation it has a suspending send, and instead of a
blocking take operation it has a suspending receive.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking	{
//sampleStart
				val	channel	=	Channel<Int>()
				launch	{
								//	this	might	be	heavy	CPU-consuming	computation	or	async	logic,	we'll	just	send	five	squares
								for	(x	in	1..5)	channel.send(x	*	x)
				}
				//	here	we	print	five	received	integers:
				repeat(5)	{	println(channel.receive())	}
				println("Done!")
//sampleEnd
}

The output of this code is:

1
4
9
16
25
Done!

Closing
and
iteration
over
channels
Unlike a queue, a channel can be closed to indicate that no more elements are coming. On the receiver side it is convenient to use a regular for loop to receive
elements from the channel.

Conceptually, a close is like sending a special close token to the channel. The iteration stops as soon as this close token is received, so there is a guarantee that all

You can get the full code here.

948

https://www.reactive-streams.org/
https://medium.com/@elizarov/reactive-streams-and-kotlin-flows-bfd12772cda4
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/send.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/close.html

previously sent elements before the close are received:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking	{
//sampleStart
				val	channel	=	Channel<Int>()
				launch	{
								for	(x	in	1..5)	channel.send(x	*	x)
								channel.close()	//	we're	done	sending
				}
				//	here	we	print	received	values	using	`for`	loop	(until	the	channel	is	closed)
				for	(y	in	channel)	println(y)
				println("Done!")
//sampleEnd
}

Building
channel
producers
The pattern where a coroutine is producing a sequence of elements is quite common. This is a part of producer-consumer pattern that is often found in concurrent
code. You could abstract such a producer into a function that takes channel as its parameter, but this goes contrary to common sense that results must be returned
from functions.

There is a convenient coroutine builder named produce that makes it easy to do it right on producer side, and an extension function consumeEach, that replaces a
for loop on the consumer side:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	CoroutineScope.produceSquares():	ReceiveChannel<Int>	=	produce	{
				for	(x	in	1..5)	send(x	*	x)
}

fun	main()	=	runBlocking	{
//sampleStart
				val	squares	=	produceSquares()
				squares.consumeEach	{	println(it)	}
				println("Done!")
//sampleEnd
}

Pipelines
A pipeline is a pattern where one coroutine is producing, possibly infinite, stream of values:

fun	CoroutineScope.produceNumbers()	=	produce<Int>	{
				var	x	=	1
				while	(true)	send(x++)	//	infinite	stream	of	integers	starting	from	1
}

And another coroutine or coroutines are consuming that stream, doing some processing, and producing some other results. In the example below, the numbers are
just squared:

fun	CoroutineScope.square(numbers:	ReceiveChannel<Int>):	ReceiveChannel<Int>	=	produce	{
				for	(x	in	numbers)	send(x	*	x)
}

The main code starts and connects the whole pipeline:

You can get the full code here.

You can get the full code here.

949

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/consume-each.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-03.kt

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking	{
//sampleStart
				val	numbers	=	produceNumbers()	//	produces	integers	from	1	and	on
				val	squares	=	square(numbers)	//	squares	integers
				repeat(5)	{
								println(squares.receive())	//	print	first	five
				}
				println("Done!")	//	we	are	done
				coroutineContext.cancelChildren()	//	cancel	children	coroutines
//sampleEnd
}

fun	CoroutineScope.produceNumbers()	=	produce<Int>	{
				var	x	=	1
				while	(true)	send(x++)	//	infinite	stream	of	integers	starting	from	1
}

fun	CoroutineScope.square(numbers:	ReceiveChannel<Int>):	ReceiveChannel<Int>	=	produce	{
				for	(x	in	numbers)	send(x	*	x)
}

Prime
numbers
with
pipeline
Let's take pipelines to the extreme with an example that generates prime numbers using a pipeline of coroutines. We start with an infinite sequence of numbers.

fun	CoroutineScope.numbersFrom(start:	Int)	=	produce<Int>	{
				var	x	=	start
				while	(true)	send(x++)	//	infinite	stream	of	integers	from	start
}

The following pipeline stage filters an incoming stream of numbers, removing all the numbers that are divisible by the given prime number:

fun	CoroutineScope.filter(numbers:	ReceiveChannel<Int>,	prime:	Int)	=	produce<Int>	{
				for	(x	in	numbers)	if	(x	%	prime	!=	0)	send(x)
}

Now we build our pipeline by starting a stream of numbers from 2, taking a prime number from the current channel, and launching new pipeline stage for each
prime number found:

numbersFrom(2)	->	filter(2)	->	filter(3)	->	filter(5)	->	filter(7)	...	

The following example prints the first ten prime numbers, running the whole pipeline in the context of the main thread. Since all the coroutines are launched in the
scope of the main runBlocking coroutine we don't have to keep an explicit list of all the coroutines we have started. We use cancelChildren extension function to
cancel all the children coroutines after we have printed the first ten prime numbers.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking	{
//sampleStart
				var	cur	=	numbersFrom(2)
				repeat(10)	{
								val	prime	=	cur.receive()
								println(prime)
								cur	=	filter(cur,	prime)
				}
				coroutineContext.cancelChildren()	//	cancel	all	children	to	let	main	finish

You can get the full code here.

All functions that create coroutines are defined as extensions on CoroutineScope, so that we can rely on structured concurrency to make sure that we
don't have lingering global coroutines in our application.

950

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel-children.html

//sampleEnd				
}

fun	CoroutineScope.numbersFrom(start:	Int)	=	produce<Int>	{
				var	x	=	start
				while	(true)	send(x++)	//	infinite	stream	of	integers	from	start
}

fun	CoroutineScope.filter(numbers:	ReceiveChannel<Int>,	prime:	Int)	=	produce<Int>	{
				for	(x	in	numbers)	if	(x	%	prime	!=	0)	send(x)
}

The output of this code is:

2
3
5
7
11
13
17
19
23
29

Note that you can build the same pipeline using iterator coroutine builder from the standard library. Replace produce with iterator, send with yield, receive with next,
ReceiveChannel with Iterator, and get rid of the coroutine scope. You will not need runBlocking either. However, the benefit of a pipeline that uses channels as
shown above is that it can actually use multiple CPU cores if you run it in Dispatchers.Default context.

Anyway, this is an extremely impractical way to find prime numbers. In practice, pipelines do involve some other suspending invocations (like asynchronous calls to
remote services) and these pipelines cannot be built using sequence/iterator, because they do not allow arbitrary suspension, unlike produce, which is fully
asynchronous.

Fan-out
Multiple coroutines may receive from the same channel, distributing work between themselves. Let us start with a producer coroutine that is periodically producing
integers (ten numbers per second):

fun	CoroutineScope.produceNumbers()	=	produce<Int>	{
				var	x	=	1	//	start	from	1
				while	(true)	{
								send(x++)	//	produce	next
								delay(100)	//	wait	0.1s
				}
}

Then we can have several processor coroutines. In this example, they just print their id and received number:

fun	CoroutineScope.launchProcessor(id:	Int,	channel:	ReceiveChannel<Int>)	=	launch	{
				for	(msg	in	channel)	{
								println("Processor	#$id	received	$msg")
				}				
}

Now let us launch five processors and let them work for almost a second. See what happens:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	producer	=	produceNumbers()
				repeat(5)	{	launchProcessor(it,	producer)	}
				delay(950)
				producer.cancel()	//	cancel	producer	coroutine	and	thus	kill	them	all

You can get the full code here.

951

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-05.kt
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.sequences/iterator.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html

//sampleEnd
}

fun	CoroutineScope.produceNumbers()	=	produce<Int>	{
				var	x	=	1	//	start	from	1
				while	(true)	{
								send(x++)	//	produce	next
								delay(100)	//	wait	0.1s
				}
}

fun	CoroutineScope.launchProcessor(id:	Int,	channel:	ReceiveChannel<Int>)	=	launch	{
				for	(msg	in	channel)	{
								println("Processor	#$id	received	$msg")
				}				
}

The output will be similar to the the following one, albeit the processor ids that receive each specific integer may be different:

Processor	#2	received	1
Processor	#4	received	2
Processor	#0	received	3
Processor	#1	received	4
Processor	#3	received	5
Processor	#2	received	6
Processor	#4	received	7
Processor	#0	received	8
Processor	#1	received	9
Processor	#3	received	10

Note that cancelling a producer coroutine closes its channel, thus eventually terminating iteration over the channel that processor coroutines are doing.

Also, pay attention to how we explicitly iterate over channel with for loop to perform fan-out in launchProcessor code. Unlike consumeEach, this for loop pattern is
perfectly safe to use from multiple coroutines. If one of the processor coroutines fails, then others would still be processing the channel, while a processor that is
written via consumeEach always consumes (cancels) the underlying channel on its normal or abnormal completion.

Fan-in
Multiple coroutines may send to the same channel. For example, let us have a channel of strings, and a suspending function that repeatedly sends a specified
string to this channel with a specified delay:

suspend	fun	sendString(channel:	SendChannel<String>,	s:	String,	time:	Long)	{
				while	(true)	{
								delay(time)
								channel.send(s)
				}
}

Now, let us see what happens if we launch a couple of coroutines sending strings (in this example we launch them in the context of the main thread as main
coroutine's children):

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking	{
//sampleStart
				val	channel	=	Channel<String>()
				launch	{	sendString(channel,	"foo",	200L)	}
				launch	{	sendString(channel,	"BAR!",	500L)	}
				repeat(6)	{	//	receive	first	six
								println(channel.receive())
				}
				coroutineContext.cancelChildren()	//	cancel	all	children	to	let	main	finish
//sampleEnd
}

suspend	fun	sendString(channel:	SendChannel<String>,	s:	String,	time:	Long)	{

You can get the full code here.

952

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-06.kt

				while	(true)	{
								delay(time)
								channel.send(s)
				}
}

The output is:

foo
foo
BAR!
foo
foo
BAR!

Buffered
channels
The channels shown so far had no buffer. Unbuffered channels transfer elements when sender and receiver meet each other (aka rendezvous). If send is invoked
first, then it is suspended until receive is invoked, if receive is invoked first, it is suspended until send is invoked.

Both Channel() factory function and produce builder take an optional capacity parameter to specify buffer size. Buffer allows senders to send multiple elements
before suspending, similar to the BlockingQueue with a specified capacity, which blocks when buffer is full.

Take a look at the behavior of the following code:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	channel	=	Channel<Int>(4)	//	create	buffered	channel
				val	sender	=	launch	{	//	launch	sender	coroutine
								repeat(10)	{
												println("Sending	$it")	//	print	before	sending	each	element
												channel.send(it)	//	will	suspend	when	buffer	is	full
								}
				}
				//	don't	receive	anything...	just	wait....
				delay(1000)
				sender.cancel()	//	cancel	sender	coroutine
//sampleEnd				
}

It prints "sending" five times using a buffered channel with capacity of four:

Sending	0
Sending	1
Sending	2
Sending	3
Sending	4

The first four elements are added to the buffer and the sender suspends when trying to send the fifth one.

Channels
are
fair
Send and receive operations to channels are fair with respect to the order of their invocation from multiple coroutines. They are served in first-in first-out order, e.g.
the first coroutine to invoke receive gets the element. In the following example two coroutines "ping" and "pong" are receiving the "ball" object from the shared
"table" channel.

You can get the full code here.

You can get the full code here.

953

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-07.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-channel.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-08.kt

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

//sampleStart
data	class	Ball(var	hits:	Int)

fun	main()	=	runBlocking	{
				val	table	=	Channel<Ball>()	//	a	shared	table
				launch	{	player("ping",	table)	}
				launch	{	player("pong",	table)	}
				table.send(Ball(0))	//	serve	the	ball
				delay(1000)	//	delay	1	second
				coroutineContext.cancelChildren()	//	game	over,	cancel	them
}

suspend	fun	player(name:	String,	table:	Channel<Ball>)	{
				for	(ball	in	table)	{	//	receive	the	ball	in	a	loop
								ball.hits++
								println("$name	$ball")
								delay(300)	//	wait	a	bit
								table.send(ball)	//	send	the	ball	back
				}
}
//sampleEnd

The "ping" coroutine is started first, so it is the first one to receive the ball. Even though "ping" coroutine immediately starts receiving the ball again after sending it
back to the table, the ball gets received by the "pong" coroutine, because it was already waiting for it:

ping	Ball(hits=1)
pong	Ball(hits=2)
ping	Ball(hits=3)
pong	Ball(hits=4)

Note that sometimes channels may produce executions that look unfair due to the nature of the executor that is being used. See this issue for details.

Ticker
channels
Ticker channel is a special rendezvous channel that produces Unit every time given delay passes since last consumption from this channel. Though it may seem to
be useless standalone, it is a useful building block to create complex time-based produce pipelines and operators that do windowing and other time-dependent
processing. Ticker channel can be used in select to perform "on tick" action.

To create such channel use a factory method ticker. To indicate that no further elements are needed use ReceiveChannel.cancel method on it.

Now let's see how it works in practice:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*

//sampleStart
fun	main()	=	runBlocking<Unit>	{
				val	tickerChannel	=	ticker(delayMillis	=	100,	initialDelayMillis	=	0)	//	create	ticker	channel
				var	nextElement	=	withTimeoutOrNull(1)	{	tickerChannel.receive()	}
				println("Initial	element	is	available	immediately:	$nextElement")	//	no	initial	delay

				nextElement	=	withTimeoutOrNull(50)	{	tickerChannel.receive()	}	//	all	subsequent	elements	have	100ms	delay
				println("Next	element	is	not	ready	in	50	ms:	$nextElement")

				nextElement	=	withTimeoutOrNull(60)	{	tickerChannel.receive()	}
				println("Next	element	is	ready	in	100	ms:	$nextElement")

				//	Emulate	large	consumption	delays
				println("Consumer	pauses	for	150ms")
				delay(150)
				//	Next	element	is	available	immediately
				nextElement	=	withTimeoutOrNull(1)	{	tickerChannel.receive()	}
				println("Next	element	is	available	immediately	after	large	consumer	delay:	$nextElement")
				//	Note	that	the	pause	between	`receive`	calls	is	taken	into	account	and	next	element	arrives	faster
				nextElement	=	withTimeoutOrNull(60)	{	tickerChannel.receive()	}	

You can get the full code here.

954

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-09.kt
https://github.com/Kotlin/kotlinx.coroutines/issues/111
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.selects/select.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/ticker.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/cancel.html

				println("Next	element	is	ready	in	50ms	after	consumer	pause	in	150ms:	$nextElement")

				tickerChannel.cancel()	//	indicate	that	no	more	elements	are	needed
}
//sampleEnd

It prints following lines:

Initial	element	is	available	immediately:	kotlin.Unit
Next	element	is	not	ready	in	50	ms:	null
Next	element	is	ready	in	100	ms:	kotlin.Unit
Consumer	pauses	for	150ms
Next	element	is	available	immediately	after	large	consumer	delay:	kotlin.Unit
Next	element	is	ready	in	50ms	after	consumer	pause	in	150ms:	kotlin.Unit

Note that ticker is aware of possible consumer pauses and, by default, adjusts next produced element delay if a pause occurs, trying to maintain a fixed rate of
produced elements.

Optionally, a mode parameter equal to TickerMode.FIXED_DELAY can be specified to maintain a fixed delay between elements.

Coroutine
exceptions
handling
This section covers exception handling and cancellation on exceptions. We already know that a cancelled coroutine throws CancellationException in suspension
points and that it is ignored by the coroutines' machinery. Here we look at what happens if an exception is thrown during cancellation or multiple children of the
same coroutine throw an exception.

Exception
propagation
Coroutine builders come in two flavors: propagating exceptions automatically (launch and actor) or exposing them to users (async and produce). When these
builders are used to create a root coroutine, that is not a child of another coroutine, the former builders treat exceptions as uncaught exceptions, similar to Java's
Thread.uncaughtExceptionHandler, while the latter are relying on the user to consume the final exception, for example via await or receive (produce and receive are
covered in Channels section).

It can be demonstrated by a simple example that creates root coroutines using the GlobalScope:

import	kotlinx.coroutines.*

//sampleStart
@OptIn(DelicateCoroutinesApi::class)
fun	main()	=	runBlocking	{
				val	job	=	GlobalScope.launch	{	//	root	coroutine	with	launch
								println("Throwing	exception	from	launch")
								throw	IndexOutOfBoundsException()	//	Will	be	printed	to	the	console	by	Thread.defaultUncaughtExceptionHandler
				}
				job.join()
				println("Joined	failed	job")
				val	deferred	=	GlobalScope.async	{	//	root	coroutine	with	async
								println("Throwing	exception	from	async")
								throw	ArithmeticException()	//	Nothing	is	printed,	relying	on	user	to	call	await
				}
				try	{
								deferred.await()
								println("Unreached")
				}	catch	(e:	ArithmeticException)	{
								println("Caught	ArithmeticException")
				}
}
//sampleEnd

You can get the full code here.

GlobalScope is a delicate API that can backfire in non-trivial ways. Creating a root coroutine for the whole application is one of the rare legitimate uses for
GlobalScope, so you must explicitly opt-in into using GlobalScope with @OptIn(DelicateCoroutinesApi::class).

955

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-channel-10.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/ticker.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-ticker-mode/-f-i-x-e-d_-d-e-l-a-y/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-cancellation-exception/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/actor.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/produce.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/channels.md
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html

The output of this code is (with debug):

Throwing	exception	from	launch
Exception	in	thread	"DefaultDispatcher-worker-2	@coroutine#2"	java.lang.IndexOutOfBoundsException
Joined	failed	job
Throwing	exception	from	async
Caught	ArithmeticException

CoroutineExceptionHandler
It is possible to customize the default behavior of printing uncaught exceptions to the console. CoroutineExceptionHandler context element on a root coroutine can
be used as a generic catch block for this root coroutine and all its children where custom exception handling may take place. It is similar to
Thread.uncaughtExceptionHandler. You cannot recover from the exception in the CoroutineExceptionHandler. The coroutine had already completed with the
corresponding exception when the handler is called. Normally, the handler is used to log the exception, show some kind of error message, terminate, and/or restart
the application.

CoroutineExceptionHandler is invoked only on uncaught exceptions — exceptions that were not handled in any other way. In particular, all children coroutines
(coroutines created in the context of another Job) delegate handling of their exceptions to their parent coroutine, which also delegates to the parent, and so on until
the root, so the CoroutineExceptionHandler installed in their context is never used. In addition to that, async builder always catches all exceptions and represents
them in the resulting Deferred object, so its CoroutineExceptionHandler has no effect either.

import	kotlinx.coroutines.*

@OptIn(DelicateCoroutinesApi::class)
fun	main()	=	runBlocking	{
//sampleStart
				val	handler	=	CoroutineExceptionHandler	{	_,	exception	->	
								println("CoroutineExceptionHandler	got	$exception")	
				}
				val	job	=	GlobalScope.launch(handler)	{	//	root	coroutine,	running	in	GlobalScope
								throw	AssertionError()
				}
				val	deferred	=	GlobalScope.async(handler)	{	//	also	root,	but	async	instead	of	launch
								throw	ArithmeticException()	//	Nothing	will	be	printed,	relying	on	user	to	call	deferred.await()
				}
				joinAll(job,	deferred)
//sampleEnd				
}

The output of this code is:

CoroutineExceptionHandler	got	java.lang.AssertionError

Cancellation
and
exceptions
Cancellation is closely related to exceptions. Coroutines internally use CancellationException for cancellation, these exceptions are ignored by all handlers, so they
should be used only as the source of additional debug information, which can be obtained by catch block. When a coroutine is cancelled using Job.cancel, it
terminates, but it does not cancel its parent.

You can get the full code here.

Coroutines running in supervision scope do not propagate exceptions to their parent and are excluded from this rule. A further Supervision section of this
document gives more details.

You can get the full code here.

956

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-01.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/coroutine-context-and-dispatchers.md#debugging-coroutines-and-threads
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#setUncaughtExceptionHandler(java.lang.Thread.UncaughtExceptionHandler)
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/index.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/cancel.html

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	job	=	launch	{
								val	child	=	launch	{
												try	{
																delay(Long.MAX_VALUE)
												}	finally	{
																println("Child	is	cancelled")
												}
								}
								yield()
								println("Cancelling	child")
								child.cancel()
								child.join()
								yield()
								println("Parent	is	not	cancelled")
				}
				job.join()
//sampleEnd				
}

The output of this code is:

Cancelling	child
Child	is	cancelled
Parent	is	not	cancelled

If a coroutine encounters an exception other than CancellationException, it cancels its parent with that exception. This behaviour cannot be overridden and is used
to provide stable coroutines hierarchies for structured concurrency. CoroutineExceptionHandler implementation is not used for child coroutines.

The original exception is handled by the parent only when all its children terminate, which is demonstrated by the following example.

import	kotlinx.coroutines.*

@OptIn(DelicateCoroutinesApi::class)
fun	main()	=	runBlocking	{
//sampleStart
				val	handler	=	CoroutineExceptionHandler	{	_,	exception	->	
								println("CoroutineExceptionHandler	got	$exception")	
				}
				val	job	=	GlobalScope.launch(handler)	{
								launch	{	//	the	first	child
												try	{
																delay(Long.MAX_VALUE)
												}	finally	{
																withContext(NonCancellable)	{
																				println("Children	are	cancelled,	but	exception	is	not	handled	until	all	children	terminate")
																				delay(100)
																				println("The	first	child	finished	its	non	cancellable	block")
																}
												}
								}
								launch	{	//	the	second	child
												delay(10)
												println("Second	child	throws	an	exception")
												throw	ArithmeticException()
								}
				}
				job.join()
//sampleEnd	
}

You can get the full code here.

In these examples, CoroutineExceptionHandler is always installed to a coroutine that is created in GlobalScope. It does not make sense to install an
exception handler to a coroutine that is launched in the scope of the main runBlocking, since the main coroutine is going to be always cancelled when its
child completes with exception despite the installed handler.

957

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-03.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/docs/composing-suspending-functions.md#structured-concurrency-with-async
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-global-scope/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html

The output of this code is:

Second	child	throws	an	exception
Children	are	cancelled,	but	exception	is	not	handled	until	all	children	terminate
The	first	child	finished	its	non	cancellable	block
CoroutineExceptionHandler	got	java.lang.ArithmeticException

Exceptions
aggregation
When multiple children of a coroutine fail with an exception, the general rule is "the first exception wins", so the first exception gets handled. All additional
exceptions that happen after the first one are attached to the first exception as suppressed ones.

import	kotlinx.coroutines.*
import	java.io.*

@OptIn(DelicateCoroutinesApi::class)
fun	main()	=	runBlocking	{
				val	handler	=	CoroutineExceptionHandler	{	_,	exception	->
								println("CoroutineExceptionHandler	got	$exception	with	suppressed	${exception.suppressed.contentToString()}")
				}
				val	job	=	GlobalScope.launch(handler)	{
								launch	{
												try	{
																delay(Long.MAX_VALUE)	//	it	gets	cancelled	when	another	sibling	fails	with	IOException
												}	finally	{
																throw	ArithmeticException()	//	the	second	exception
												}
								}
								launch	{
												delay(100)
												throw	IOException()	//	the	first	exception
								}
								delay(Long.MAX_VALUE)
				}
				job.join()		
}

The output of this code is:

CoroutineExceptionHandler	got	java.io.IOException	with	suppressed	[java.lang.ArithmeticException]

Cancellation exceptions are transparent and are unwrapped by default:

import	kotlinx.coroutines.*
import	java.io.*

@OptIn(DelicateCoroutinesApi::class)
fun	main()	=	runBlocking	{
//sampleStart
				val	handler	=	CoroutineExceptionHandler	{	_,	exception	->
								println("CoroutineExceptionHandler	got	$exception")
				}
				val	job	=	GlobalScope.launch(handler)	{

You can get the full code here.

You can get the full code here.

Note: This above code will work properly only on JDK7+ that supports suppressed exceptions

Note that this mechanism currently only works on Java version 1.7+. The JS and Native restrictions are temporary and will be lifted in the future.

958

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-04.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-05.kt

								val	inner	=	launch	{	//	all	this	stack	of	coroutines	will	get	cancelled
												launch	{
																launch	{
																				throw	IOException()	//	the	original	exception
																}
												}
								}
								try	{
												inner.join()
								}	catch	(e:	CancellationException)	{
												println("Rethrowing	CancellationException	with	original	cause")
												throw	e	//	cancellation	exception	is	rethrown,	yet	the	original	IOException	gets	to	the	handler		
								}
				}
				job.join()
//sampleEnd				
}

The output of this code is:

Rethrowing	CancellationException	with	original	cause
CoroutineExceptionHandler	got	java.io.IOException

Supervision
As we have studied before, cancellation is a bidirectional relationship propagating through the whole hierarchy of coroutines. Let us take a look at the case when
unidirectional cancellation is required.

A good example of such a requirement is a UI component with the job defined in its scope. If any of the UI's child tasks have failed, it is not always necessary to
cancel (effectively kill) the whole UI component, but if the UI component is destroyed (and its job is cancelled), then it is necessary to cancel all child jobs as their
results are no longer needed.

Another example is a server process that spawns multiple child jobs and needs to supervise their execution, tracking their failures and only restarting the failed
ones.

Supervision
job
The SupervisorJob can be used for these purposes. It is similar to a regular Job with the only exception that cancellation is propagated only downwards. This can
easily be demonstrated using the following example:

import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				val	supervisor	=	SupervisorJob()
				with(CoroutineScope(coroutineContext	+	supervisor))	{
								//	launch	the	first	child	--	its	exception	is	ignored	for	this	example	(don't	do	this	in	practice!)
								val	firstChild	=	launch(CoroutineExceptionHandler	{	_,	_	->		})	{
												println("The	first	child	is	failing")
												throw	AssertionError("The	first	child	is	cancelled")
								}
								//	launch	the	second	child
								val	secondChild	=	launch	{
												firstChild.join()
												//	Cancellation	of	the	first	child	is	not	propagated	to	the	second	child
												println("The	first	child	is	cancelled:	${firstChild.isCancelled},	but	the	second	one	is	still	active")
												try	{
																delay(Long.MAX_VALUE)
												}	finally	{
																//	But	cancellation	of	the	supervisor	is	propagated
																println("The	second	child	is	cancelled	because	the	supervisor	was	cancelled")
												}
								}
								//	wait	until	the	first	child	fails	&	completes
								firstChild.join()
								println("Cancelling	the	supervisor")
								supervisor.cancel()

You can get the full code here.

959

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-exceptions-06.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-supervisor-job.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-job.html

								secondChild.join()
				}
//sampleEnd
}

The output of this code is:

The	first	child	is	failing
The	first	child	is	cancelled:	true,	but	the	second	one	is	still	active
Cancelling	the	supervisor
The	second	child	is	cancelled	because	the	supervisor	was	cancelled

Supervision
scope
Instead of coroutineScope, we can use supervisorScope for scoped concurrency. It propagates the cancellation in one direction only and cancels all its children
only if it failed itself. It also waits for all children before completion just like coroutineScope does.

import	kotlin.coroutines.*
import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{
//sampleStart
				try	{
								supervisorScope	{
												val	child	=	launch	{
																try	{
																				println("The	child	is	sleeping")
																				delay(Long.MAX_VALUE)
																}	finally	{
																				println("The	child	is	cancelled")
																}
												}
												//	Give	our	child	a	chance	to	execute	and	print	using	yield	
												yield()
												println("Throwing	an	exception	from	the	scope")
												throw	AssertionError()
								}
				}	catch(e:	AssertionError)	{
								println("Caught	an	assertion	error")
				}
//sampleEnd
}

The output of this code is:

The	child	is	sleeping
Throwing	an	exception	from	the	scope
The	child	is	cancelled
Caught	an	assertion	error

Exceptions in supervised coroutines
Another crucial difference between regular and supervisor jobs is exception handling. Every child should handle its exceptions by itself via the exception handling
mechanism. This difference comes from the fact that child's failure does not propagate to the parent. It means that coroutines launched directly inside the
supervisorScope do use the CoroutineExceptionHandler that is installed in their scope in the same way as root coroutines do (see the CoroutineExceptionHandler
section for details).

import	kotlin.coroutines.*
import	kotlinx.coroutines.*

fun	main()	=	runBlocking	{

You can get the full code here.

You can get the full code here.

960

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/supervisor-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/coroutine-scope.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-02.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/supervisor-scope.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-coroutine-exception-handler/index.html

//sampleStart
				val	handler	=	CoroutineExceptionHandler	{	_,	exception	->	
								println("CoroutineExceptionHandler	got	$exception")	
				}
				supervisorScope	{
								val	child	=	launch(handler)	{
												println("The	child	throws	an	exception")
												throw	AssertionError()
								}
								println("The	scope	is	completing")
				}
				println("The	scope	is	completed")
//sampleEnd
}

The output of this code is:

The	scope	is	completing
The	child	throws	an	exception
CoroutineExceptionHandler	got	java.lang.AssertionError
The	scope	is	completed

Shared
mutable
state
and
concurrency
Coroutines can be executed parallelly using a multi-threaded dispatcher like the Dispatchers.Default. It presents all the usual parallelism problems. The main
problem being synchronization of access to shared mutable state. Some solutions to this problem in the land of coroutines are similar to the solutions in the multi-
threaded world, but others are unique.

The
problem
Let us launch a hundred coroutines all doing the same action a thousand times. We'll also measure their completion time for further comparisons:

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

We start with a very simple action that increments a shared mutable variable using multi-threaded Dispatchers.Default.

import	kotlinx.coroutines.*
import	kotlin.system.*				

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				

You can get the full code here.

961

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-supervision-03.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html

}

//sampleStart
var	counter	=	0

fun	main()	=	runBlocking	{
				withContext(Dispatchers.Default)	{
								massiveRun	{
												counter++
								}
				}
				println("Counter	=	$counter")
}
//sampleEnd				

What does it print at the end? It is highly unlikely to ever print "Counter = 100000", because a hundred coroutines increment the counter concurrently from multiple
threads without any synchronization.

Volatiles
are
of
no
help
There is a common misconception that making a variable volatile solves concurrency problem. Let us try it:

import	kotlinx.coroutines.*
import	kotlin.system.*

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

//sampleStart
@Volatile	//	in	Kotlin	`volatile`	is	an	annotation	
var	counter	=	0

fun	main()	=	runBlocking	{
				withContext(Dispatchers.Default)	{
								massiveRun	{
												counter++
								}
				}
				println("Counter	=	$counter")
}
//sampleEnd				

This code works slower, but we still don't always get "Counter = 100000" at the end, because volatile variables guarantee linearizable (this is a technical term for
"atomic") reads and writes to the corresponding variable, but do not provide atomicity of larger actions (increment in our case).

Thread-safe
data
structures
The general solution that works both for threads and for coroutines is to use a thread-safe (aka synchronized, linearizable, or atomic) data structure that provides all
the necessary synchronization for the corresponding operations that needs to be performed on a shared state. In the case of a simple counter we can use
AtomicInteger class which has atomic incrementAndGet operations:

You can get the full code here.

You can get the full code here.

962

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-01.kt
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-02.kt

import	kotlinx.coroutines.*
import	java.util.concurrent.atomic.*
import	kotlin.system.*

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

//sampleStart
val	counter	=	AtomicInteger()

fun	main()	=	runBlocking	{
				withContext(Dispatchers.Default)	{
								massiveRun	{
												counter.incrementAndGet()
								}
				}
				println("Counter	=	$counter")
}
//sampleEnd				

This is the fastest solution for this particular problem. It works for plain counters, collections, queues and other standard data structures and basic operations on
them. However, it does not easily scale to complex state or to complex operations that do not have ready-to-use thread-safe implementations.

Thread
confinement
fine-grained
Thread confinement is an approach to the problem of shared mutable state where all access to the particular shared state is confined to a single thread. It is
typically used in UI applications, where all UI state is confined to the single event-dispatch/application thread. It is easy to apply with coroutines by using a single-
threaded context.

import	kotlinx.coroutines.*
import	kotlin.system.*

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

//sampleStart
val	counterContext	=	newSingleThreadContext("CounterContext")
var	counter	=	0

fun	main()	=	runBlocking	{
				withContext(Dispatchers.Default)	{
								massiveRun	{
												//	confine	each	increment	to	a	single-threaded	context
												withContext(counterContext)	{
																counter++
												}

You can get the full code here.

963

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-03.kt

								}
				}
				println("Counter	=	$counter")
}
//sampleEnd						

This code works very slowly, because it does fine-grained thread-confinement. Each individual increment switches from multi-threaded Dispatchers.Default context
to the single-threaded context using withContext(counterContext) block.

Thread
confinement
coarse-grained
In practice, thread confinement is performed in large chunks, e.g. big pieces of state-updating business logic are confined to the single thread. The following
example does it like that, running each coroutine in the single-threaded context to start with.

import	kotlinx.coroutines.*
import	kotlin.system.*

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

//sampleStart
val	counterContext	=	newSingleThreadContext("CounterContext")
var	counter	=	0

fun	main()	=	runBlocking	{
				//	confine	everything	to	a	single-threaded	context
				withContext(counterContext)	{
								massiveRun	{
												counter++
								}
				}
				println("Counter	=	$counter")
}
//sampleEnd					

This now works much faster and produces correct result.

Mutual
exclusion
Mutual exclusion solution to the problem is to protect all modifications of the shared state with a critical section that is never executed concurrently. In a blocking
world you'd typically use synchronized or ReentrantLock for that. Coroutine's alternative is called Mutex. It has lock and unlock functions to delimit a critical
section. The key difference is that Mutex.lock() is a suspending function. It does not block a thread.

There is also withLock extension function that conveniently represents mutex.lock(); try { ... } finally { mutex.unlock() } pattern:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.sync.*
import	kotlin.system.*

You can get the full code here.

You can get the full code here.

964

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-default.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/with-context.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-05.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/index.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/lock.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/-mutex/unlock.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.sync/with-lock.html

suspend	fun	massiveRun(action:	suspend	()	->	Unit)	{
				val	n	=	100		//	number	of	coroutines	to	launch
				val	k	=	1000	//	times	an	action	is	repeated	by	each	coroutine
				val	time	=	measureTimeMillis	{
								coroutineScope	{	//	scope	for	coroutines	
												repeat(n)	{
																launch	{
																				repeat(k)	{	action()	}
																}
												}
								}
				}
				println("Completed	${n	*	k}	actions	in	$time	ms")				
}

//sampleStart
val	mutex	=	Mutex()
var	counter	=	0

fun	main()	=	runBlocking	{
				withContext(Dispatchers.Default)	{
								massiveRun	{
												//	protect	each	increment	with	lock
												mutex.withLock	{
																counter++
												}
								}
				}
				println("Counter	=	$counter")
}
//sampleEnd				

The locking in this example is fine-grained, so it pays the price. However, it is a good choice for some situations where you absolutely must modify some shared
state periodically, but there is no natural thread that this state is confined to.

Select
expression
(experimental)
Select expression makes it possible to await multiple suspending functions simultaneously and select the first one that becomes available.

Selecting
from
channels
Let us have two producers of strings: fizz and buzz. The fizz produces "Fizz" string every 500 ms:

fun	CoroutineScope.fizz()	=	produce<String>	{
				while	(true)	{	//	sends	"Fizz"	every	500	ms
								delay(500)
								send("Fizz")
				}
}

And the buzz produces "Buzz!" string every 1000 ms:

fun	CoroutineScope.buzz()	=	produce<String>	{
				while	(true)	{	//	sends	"Buzz!"	every	1000	ms
								delay(1000)
								send("Buzz!")
				}
}

Using receive suspending function we can receive either from one channel or the other. But select expression allows us to receive from both simultaneously using

You can get the full code here.

Select expressions are an experimental feature of kotlinx.coroutines. Their API is expected to evolve in the upcoming updates of the kotlinx.coroutines
library with potentially breaking changes.

965

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-sync-06.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/receive.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.selects/select.html

its onReceive clauses:

suspend	fun	selectFizzBuzz(fizz:	ReceiveChannel<String>,	buzz:	ReceiveChannel<String>)	{
				select<Unit>	{	//	<Unit>	means	that	this	select	expression	does	not	produce	any	result	
								fizz.onReceive	{	value	->		//	this	is	the	first	select	clause
												println("fizz	->	'$value'")
								}
								buzz.onReceive	{	value	->		//	this	is	the	second	select	clause
												println("buzz	->	'$value'")
								}
				}
}

Let us run it all seven times:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*
import	kotlinx.coroutines.selects.*

fun	CoroutineScope.fizz()	=	produce<String>	{
				while	(true)	{	//	sends	"Fizz"	every	500	ms
								delay(500)
								send("Fizz")
				}
}

fun	CoroutineScope.buzz()	=	produce<String>	{
				while	(true)	{	//	sends	"Buzz!"	every	1000	ms
								delay(1000)
								send("Buzz!")
				}
}

suspend	fun	selectFizzBuzz(fizz:	ReceiveChannel<String>,	buzz:	ReceiveChannel<String>)	{
				select<Unit>	{	//	<Unit>	means	that	this	select	expression	does	not	produce	any	result	
								fizz.onReceive	{	value	->		//	this	is	the	first	select	clause
												println("fizz	->	'$value'")
								}
								buzz.onReceive	{	value	->		//	this	is	the	second	select	clause
												println("buzz	->	'$value'")
								}
				}
}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	fizz	=	fizz()
				val	buzz	=	buzz()
				repeat(7)	{
								selectFizzBuzz(fizz,	buzz)
				}
				coroutineContext.cancelChildren()	//	cancel	fizz	&	buzz	coroutines
//sampleEnd								
}

The result of this code is:

fizz	->	'Fizz'
buzz	->	'Buzz!'
fizz	->	'Fizz'
fizz	->	'Fizz'
buzz	->	'Buzz!'
fizz	->	'Fizz'
fizz	->	'Fizz'

Selecting
on
close
The onReceive clause in select fails when the channel is closed causing the corresponding select to throw an exception. We can use onReceiveCatching clause to

You can get the full code here.

966

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-01.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive-catching.html

perform a specific action when the channel is closed. The following example also shows that select is an expression that returns the result of its selected clause:

suspend	fun	selectAorB(a:	ReceiveChannel<String>,	b:	ReceiveChannel<String>):	String	=
				select<String>	{
								a.onReceiveCatching	{	it	->
												val	value	=	it.getOrNull()
												if	(value	!=	null)	{
																"a	->	'$value'"
												}	else	{
																"Channel	'a'	is	closed"
												}
								}
								b.onReceiveCatching	{	it	->
												val	value	=	it.getOrNull()
												if	(value	!=	null)	{
																"b	->	'$value'"
												}	else	{
																"Channel	'b'	is	closed"
												}
								}
				}

Let's use it with channel a that produces "Hello" string four times and channel b that produces "World" four times:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*
import	kotlinx.coroutines.selects.*

suspend	fun	selectAorB(a:	ReceiveChannel<String>,	b:	ReceiveChannel<String>):	String	=
				select<String>	{
								a.onReceiveCatching	{	it	->
												val	value	=	it.getOrNull()
												if	(value	!=	null)	{
																"a	->	'$value'"
												}	else	{
																"Channel	'a'	is	closed"
												}
								}
								b.onReceiveCatching	{	it	->
												val	value	=	it.getOrNull()
												if	(value	!=	null)	{
																"b	->	'$value'"
												}	else	{
																"Channel	'b'	is	closed"
												}
								}
				}
				
fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	a	=	produce<String>	{
								repeat(4)	{	send("Hello	$it")	}
				}
				val	b	=	produce<String>	{
								repeat(4)	{	send("World	$it")	}
				}
				repeat(8)	{	//	print	first	eight	results
								println(selectAorB(a,	b))
				}
				coroutineContext.cancelChildren()		
//sampleEnd						
}				

The result of this code is quite interesting, so we'll analyze it in more detail:

a	->	'Hello	0'
a	->	'Hello	1'
b	->	'World	0'
a	->	'Hello	2'
a	->	'Hello	3'
b	->	'World	1'
Channel	'a'	is	closed

You can get the full code here.

967

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-02.kt

Channel	'a'	is	closed

There are a couple of observations to make out of it.

First of all, select is biased to the first clause. When several clauses are selectable at the same time, the first one among them gets selected. Here, both channels
are constantly producing strings, so a channel, being the first clause in select, wins. However, because we are using unbuffered channel, the a gets suspended from
time to time on its send invocation and gives a chance for b to send, too.

The second observation, is that onReceiveCatching gets immediately selected when the channel is already closed.

Selecting
to
send
Select expression has onSend clause that can be used for a great good in combination with a biased nature of selection.

Let us write an example of a producer of integers that sends its values to a side channel when the consumers on its primary channel cannot keep up with it:

fun	CoroutineScope.produceNumbers(side:	SendChannel<Int>)	=	produce<Int>	{
				for	(num	in	1..10)	{	//	produce	10	numbers	from	1	to	10
								delay(100)	//	every	100	ms
								select<Unit>	{
												onSend(num)	{}	//	Send	to	the	primary	channel
												side.onSend(num)	{}	//	or	to	the	side	channel					
								}
				}
}

Consumer is going to be quite slow, taking 250 ms to process each number:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*
import	kotlinx.coroutines.selects.*

fun	CoroutineScope.produceNumbers(side:	SendChannel<Int>)	=	produce<Int>	{
				for	(num	in	1..10)	{	//	produce	10	numbers	from	1	to	10
								delay(100)	//	every	100	ms
								select<Unit>	{
												onSend(num)	{}	//	Send	to	the	primary	channel
												side.onSend(num)	{}	//	or	to	the	side	channel					
								}
				}
}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	side	=	Channel<Int>()	//	allocate	side	channel
				launch	{	//	this	is	a	very	fast	consumer	for	the	side	channel
								side.consumeEach	{	println("Side	channel	has	$it")	}
				}
				produceNumbers(side).consumeEach	{	
								println("Consuming	$it")
								delay(250)	//	let	us	digest	the	consumed	number	properly,	do	not	hurry
				}
				println("Done	consuming")
				coroutineContext.cancelChildren()		
//sampleEnd						
}

So let us see what happens:

Consuming	1
Side	channel	has	2
Side	channel	has	3
Consuming	4
Side	channel	has	5
Side	channel	has	6
Consuming	7
Side	channel	has	8

You can get the full code here.

968

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/send.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive-catching.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-send-channel/on-send.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-03.kt

Side	channel	has	9
Consuming	10
Done	consuming

Selecting
deferred
values
Deferred values can be selected using onAwait clause. Let us start with an async function that returns a deferred string value after a random delay:

fun	CoroutineScope.asyncString(time:	Int)	=	async	{
				delay(time.toLong())
				"Waited	for	$time	ms"
}

Let us start a dozen of them with a random delay.

fun	CoroutineScope.asyncStringsList():	List<Deferred<String>>	{
				val	random	=	Random(3)
				return	List(12)	{	asyncString(random.nextInt(1000))	}
}

Now the main function awaits for the first of them to complete and counts the number of deferred values that are still active. Note that we've used here the fact that
select expression is a Kotlin DSL, so we can provide clauses for it using an arbitrary code. In this case we iterate over a list of deferred values to provide onAwait
clause for each deferred value.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.selects.*
import	java.util.*
				
fun	CoroutineScope.asyncString(time:	Int)	=	async	{
				delay(time.toLong())
				"Waited	for	$time	ms"
}

fun	CoroutineScope.asyncStringsList():	List<Deferred<String>>	{
				val	random	=	Random(3)
				return	List(12)	{	asyncString(random.nextInt(1000))	}
}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	list	=	asyncStringsList()
				val	result	=	select<String>	{
								list.withIndex().forEach	{	(index,	deferred)	->
												deferred.onAwait	{	answer	->
																"Deferred	$index	produced	answer	'$answer'"
												}
								}
				}
				println(result)
				val	countActive	=	list.count	{	it.isActive	}
				println("$countActive	coroutines	are	still	active")
//sampleEnd
}

The output is:

Deferred	4	produced	answer	'Waited	for	128	ms'
11	coroutines	are	still	active

Switch
over
a
channel
of
deferred
values
Let us write a channel producer function that consumes a channel of deferred string values, waits for each received deferred value, but only until the next deferred
value comes over or the channel is closed. This example puts together onReceiveCatching and onAwait clauses in the same select:

You can get the full code here.

969

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/on-await.html
https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-04.kt
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.channels/-receive-channel/on-receive-catching.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/on-await.html

fun	CoroutineScope.switchMapDeferreds(input:	ReceiveChannel<Deferred<String>>)	=	produce<String>	{
				var	current	=	input.receive()	//	start	with	first	received	deferred	value
				while	(isActive)	{	//	loop	while	not	cancelled/closed
								val	next	=	select<Deferred<String>?>	{	//	return	next	deferred	value	from	this	select	or	null
												input.onReceiveCatching	{	update	->
																update.getOrNull()
												}
												current.onAwait	{	value	->
																send(value)	//	send	value	that	current	deferred	has	produced
																input.receiveCatching().getOrNull()	//	and	use	the	next	deferred	from	the	input	channel
												}
								}
								if	(next	==	null)	{
												println("Channel	was	closed")
												break	//	out	of	loop
								}	else	{
												current	=	next
								}
				}
}

To test it, we'll use a simple async function that resolves to a specified string after a specified time:

fun	CoroutineScope.asyncString(str:	String,	time:	Long)	=	async	{
				delay(time)
				str
}

The main function just launches a coroutine to print results of switchMapDeferreds and sends some test data to it:

import	kotlinx.coroutines.*
import	kotlinx.coroutines.channels.*
import	kotlinx.coroutines.selects.*
				
fun	CoroutineScope.switchMapDeferreds(input:	ReceiveChannel<Deferred<String>>)	=	produce<String>	{
				var	current	=	input.receive()	//	start	with	first	received	deferred	value
				while	(isActive)	{	//	loop	while	not	cancelled/closed
								val	next	=	select<Deferred<String>?>	{	//	return	next	deferred	value	from	this	select	or	null
												input.onReceiveCatching	{	update	->
																update.getOrNull()
												}
												current.onAwait	{	value	->
																send(value)	//	send	value	that	current	deferred	has	produced
																input.receiveCatching().getOrNull()	//	and	use	the	next	deferred	from	the	input	channel
												}
								}
								if	(next	==	null)	{
												println("Channel	was	closed")
												break	//	out	of	loop
								}	else	{
												current	=	next
								}
				}
}

fun	CoroutineScope.asyncString(str:	String,	time:	Long)	=	async	{
				delay(time)
				str
}

fun	main()	=	runBlocking<Unit>	{
//sampleStart
				val	chan	=	Channel<Deferred<String>>()	//	the	channel	for	test
				launch	{	//	launch	printing	coroutine
								for	(s	in	switchMapDeferreds(chan))	
												println(s)	//	print	each	received	string
				}
				chan.send(asyncString("BEGIN",	100))
				delay(200)	//	enough	time	for	"BEGIN"	to	be	produced
				chan.send(asyncString("Slow",	500))
				delay(100)	//	not	enough	time	to	produce	slow
				chan.send(asyncString("Replace",	100))
				delay(500)	//	give	it	time	before	the	last	one
				chan.send(asyncString("END",	500))
				delay(1000)	//	give	it	time	to	process
				chan.close()	//	close	the	channel	...	
				delay(500)	//	and	wait	some	time	to	let	it	finish

970

//sampleEnd
}

The result of this code:

BEGIN
Replace
END
Channel	was	closed

Debug
coroutines
using
IntelliJ
IDEA
–
tutorial
This tutorial demonstrates how to create Kotlin coroutines and debug them using IntelliJ IDEA.

The tutorial assumes you have prior knowledge of the coroutines concept.

Create
coroutines
1. Open a Kotlin project in IntelliJ IDEA. If you don't have a project, create one.

2. To use the kotlinx.coroutines library in a Gradle project, add the following dependency to build.gradle(.kts):

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
}

Groovy

dependencies	{
				implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
}

For other build systems, see instructions in the kotlinx.coroutines README.

3. Open the Main.kt file in src/main/kotlin.

The src directory contains Kotlin source files and resources. The Main.kt file contains sample code that will print Hello World!.

4. Change code in the main() function:

Use the runBlocking() block to wrap a coroutine.

Use the async() function to create coroutines that compute deferred values a and b.

Use the await() function to await the computation result.

Use the println() function to print computing status and the result of multiplication to the output.

import	kotlinx.coroutines.*

fun	main()	=	runBlocking<Unit>	{
				val	a	=	async	{
								println("I'm	computing	part	of	the	answer")
								6
				}
				val	b	=	async	{
								println("I'm	computing	another	part	of	the	answer")

You can get the full code here.

971

https://github.com/Kotlin/kotlinx.coroutines/blob/master/kotlinx-coroutines-core/jvm/test/guide/example-select-05.kt
https://github.com/Kotlin/kotlinx.coroutines#using-in-your-projects
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/async.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-deferred/await.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/println.html

								7
				}
				println("The	answer	is	${a.await()	*	b.await()}")
}

5. Build the code by clicking Build Project.

Build an application

Debug
coroutines
1. Set breakpoints at the lines with the println() function call:

Build a console application

2. Run the code in debug mode by clicking Debug next to the run configuration at the top of the screen.

972

Build a console application

The Debug tool window appears:

The Frames tab contains the call stack.

The Variables tab contains variables in the current context.

The Coroutines tab contains information on running or suspended coroutines. It shows that there are three coroutines. The first one has the RUNNING status,
and the other two have the CREATED status.

Debug the coroutine

3. Resume the debugger session by clicking Resume Program in the Debug tool window:

Debug the coroutine

Now the Coroutines tab shows the following:

The first coroutine has the SUSPENDED status – it is waiting for the values so it can multiply them.

The second coroutine is calculating the a value – it has the RUNNING status.

973

The third coroutine has the CREATED status and isn’t calculating the value of b.

4. Resume the debugger session by clicking Resume Program in the Debug tool window:

Build a console application

Now the Coroutines tab shows the following:

The first coroutine has the SUSPENDED status – it is waiting for the values so it can multiply them.

The second coroutine has computed its value and disappeared.

The third coroutine is calculating the value of b – it has the RUNNING status.

Using IntelliJ IDEA debugger, you can dig deeper into each coroutine to debug your code.

Optimized-out
variables
If you use suspend functions, in the debugger, you might see the "was optimized out" text next to a variable's name:

Variable "a" was optimized out

This text means that the variable's lifetime was decreased, and the variable doesn't exist anymore. It is difficult to debug code with optimized variables because you

974

don't see their values. You can disable this behavior with the -Xdebug compiler option.

Debug
Kotlin
Flow
using
IntelliJ
IDEA
–
tutorial
This tutorial demonstrates how to create Kotlin Flow and debug it using IntelliJ IDEA.

The tutorial assumes you have prior knowledge of the coroutines and Kotlin Flow concepts.

Create
a
Kotlin
flow
Create a Kotlin flow with a slow emitter and a slow collector:

1. Open a Kotlin project in IntelliJ IDEA. If you don't have a project, create one.

2. To use the kotlinx.coroutines library in a Gradle project, add the following dependency to build.gradle(.kts):

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
}

Groovy

dependencies	{
				implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
}

For other build systems, see instructions in the kotlinx.coroutines README.

3. Open the Main.kt file in src/main/kotlin.

The src directory contains Kotlin source files and resources. The Main.kt file contains sample code that will print Hello World!.

4. Create the simple() function that returns a flow of three numbers:

Use the delay() function to imitate CPU-consuming blocking code. It suspends the coroutine for 100 ms without blocking the thread.

Produce the values in the for loop using the emit() function.

import	kotlinx.coroutines.*
import	kotlinx.coroutines.flow.*
import	kotlin.system.*

fun	simple():	Flow<Int>	=	flow	{
				for	(i	in	1..3)	{
								delay(100)
								emit(i)
				}
}

5. Change the code in the main() function:

Use the runBlocking() block to wrap a coroutine.

Collect the emitted values using the collect() function.

Use the delay() function to imitate CPU-consuming code. It suspends the coroutine for 300 ms without blocking the thread.

Print the collected value from the flow using the println() function.

Never use this flag in production: -Xdebug can cause memory leaks.

975

https://youtrack.jetbrains.com/issue/KT-48678/Coroutine-debugger-disable-was-optimised-out-compiler-feature#focus=Comments-27-6015585.0-0
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html
https://github.com/Kotlin/kotlinx.coroutines#using-in-your-projects
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-flow-collector/emit.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/run-blocking.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/collect.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/delay.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.io/println.html

fun	main()	=	runBlocking	{
				simple()
								.collect	{	value	->
												delay(300)
												println(value)
								}
}

6. Build the code by clicking Build Project.

Build an application

Debug
the
coroutine
1. Set a breakpoint at the line where the emit() function is called:

976

Build a console application

2. Run the code in debug mode by clicking Debug next to the run configuration at the top of the screen.

Build a console application

The Debug tool window appears:

The Frames tab contains the call stack.

The Variables tab contains variables in the current context. It tells us that the flow is emitting the first value.

The Coroutines tab contains information on running or suspended coroutines.

977

Debug the coroutine

3. Resume the debugger session by clicking Resume Program in the Debug tool window. The program stops at the same breakpoint.

Debug the coroutine

Now the flow emits the second value.

Debug the coroutine

Optimized-out
variables
If you use suspend functions, in the debugger, you might see the "was optimized out" text next to a variable's name:

978

Variable "a" was optimized out

This text means that the variable's lifetime was decreased, and the variable doesn't exist anymore. It is difficult to debug code with optimized variables because you
don't see their values. You can disable this behavior with the -Xdebug compiler option.

Add
a
concurrently
running
coroutine
1. Open the Main.kt file in src/main/kotlin.

2. Enhance the code to run the emitter and collector concurrently:

Add a call to the buffer() function to run the emitter and collector concurrently. buffer() stores emitted values and runs the flow collector in a separate
coroutine.

fun	main()	=	runBlocking<Unit>	{
				simple()
								.buffer()
								.collect	{	value	->
												delay(300)
												println(value)
								}
}

3. Build the code by clicking Build Project.

Debug
a
Kotlin
flow
with
two
coroutines
1. Set a new breakpoint at println(value).

2. Run the code in debug mode by clicking Debug next to the run configuration at the top of the screen.

Never use this flag in production: -Xdebug can cause memory leaks.

979

https://youtrack.jetbrains.com/issue/KT-48678/Coroutine-debugger-disable-was-optimised-out-compiler-feature#focus=Comments-27-6015585.0-0
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/buffer.html

Build a console application

The Debug tool window appears.

In the Coroutines tab, you can see that there are two coroutines running concurrently. The flow collector and emitter run in separate coroutines because of the
buffer() function. The buffer() function buffers emitted values from the flow. The emitter coroutine has the RUNNING status, and the collector coroutine has the
SUSPENDED status.

3. Resume the debugger session by clicking Resume Program in the Debug tool window.

Debugging coroutines

Now the collector coroutine has the RUNNING status, while the emitter coroutine has the SUSPENDED status.

You can dig deeper into each coroutine to debug your code.

Serialization
Serialization is the process of converting data used by an application to a format that can be transferred over a network or stored in a database or a file. In turn,
deserialization is the opposite process of reading data from an external source and converting it into a runtime object. Together they are an essential part of most
applications that exchange data with third parties.

Some data serialization formats, such as JSON and protocol buffers are particularly common. Being language-neutral and platform-neutral, they enable data
exchange between systems written in any modern language.

In Kotlin, data serialization tools are available in a separate component, kotlinx.serialization. It consists of several parts: the org.jetbrains.kotlin.plugin.serialization
Gradle plugin, runtime libraries, and compiler plugins.

Compiler plugins, kotlinx-serialization-compiler-plugin and kotlinx-serialization-compiler-plugin-embeddable, are published directly to Maven Central. The second
plugin is designed for working with the kotlin-compiler-embeddable artifact, which is the default option for scripting artifacts. Gradle adds compiler plugins to your
projects as compiler arguments.

Libraries
kotlinx.serialization provides sets of libraries for all supported platforms – JVM, JavaScript, Native – and for various serialization formats – JSON, CBOR, protocol
buffers, and others. You can find the complete list of supported serialization formats below.

980

https://www.json.org/json-en.html
https://developers.google.com/protocol-buffers
https://github.com/Kotlin/kotlinx.serialization

All Kotlin serialization libraries belong to the org.jetbrains.kotlinx: group. Their names start with kotlinx-serialization- and have suffixes that reflect the serialization
format. Examples:

org.jetbrains.kotlinx:kotlinx-serialization-json provides JSON serialization for Kotlin projects.

org.jetbrains.kotlinx:kotlinx-serialization-cbor provides CBOR serialization.

Platform-specific artifacts are handled automatically; you don't need to add them manually. Use the same dependencies in JVM, JS, Native, and multiplatform
projects.

Note that the kotlinx.serialization libraries use their own versioning structure, which doesn't match Kotlin's versioning. Check out the releases on GitHub to find the
latest versions.

Formats
kotlinx.serialization includes libraries for various serialization formats:

JSON: kotlinx-serialization-json

Protocol buffers: kotlinx-serialization-protobuf

CBOR: kotlinx-serialization-cbor

Properties: kotlinx-serialization-properties

HOCON: kotlinx-serialization-hocon (only on JVM)

Note that all libraries except JSON serialization (kotlinx-serialization-json) are Experimental, which means their API can be changed without notice.

There are also community-maintained libraries that support more serialization formats, such as YAML or Apache Avro. For detailed information about available
serialization formats, see the kotlinx.serialization documentation.

Example:
JSON
serialization
Let's take a look at how to serialize Kotlin objects into JSON.

Before starting, you'll need to configure your build script so that you can use Kotlin serialization tools in your project:

1. Apply the Kotlin serialization Gradle plugin org.jetbrains.kotlin.plugin.serialization (or kotlin("plugin.serialization") in the Kotlin Gradle DSL).

Kotlin

plugins	{
				kotlin("jvm")	version	"1.9.20"
				kotlin("plugin.serialization")	version	"1.9.20"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.jvm'	version	'1.9.20'
				id	'org.jetbrains.kotlin.plugin.serialization'	version	'1.9.20'		
}

2. Add the JSON serialization library dependency:org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0")
}	

981

https://github.com/Kotlin/kotlinx.serialization/releases
https://www.json.org/
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md#json
https://developers.google.com/protocol-buffers
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md#protobuf
https://cbor.io/
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md#cbor
https://en.wikipedia.org/wiki/.properties
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md#properties
https://github.com/lightbend/config/blob/master/HOCON.md
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md#hocon
https://yaml.org/
https://avro.apache.org/
https://github.com/Kotlin/kotlinx.serialization/blob/master/formats/README.md

Groovy

dependencies	{
				implementation	'org.jetbrains.kotlinx:kotlinx-serialization-json:1.6.0'
}	

Now you're ready to use the serialization API in your code. The API is located in the the kotlinx.serialization package and its format-specific subpackages such as
kotlinx.serialization.json.

First, make a class serializable by annotating it with @Serializable.

import	kotlinx.serialization.Serializable

@Serializable
data	class	Data(val	a:	Int,	val	b:	String)

You can now serialize an instance of this class by calling Json.encodeToString().

import	kotlinx.serialization.Serializable
import	kotlinx.serialization.json.Json
import	kotlinx.serialization.encodeToString

@Serializable
data	class	Data(val	a:	Int,	val	b:	String)

fun	main()	{
			val	json	=	Json.encodeToString(Data(42,	"str"))
}

As a result, you get a string containing the state of this object in the JSON format: {"a": 42, "b": "str"}

You can also serialize object collections, such as lists, in a single call.

val	dataList	=	listOf(Data(42,	"str"),	Data(12,	"test"))
val	jsonList	=	Json.encodeToString(dataList)

To deserialize an object from JSON, use the decodeFromString() function:

import	kotlinx.serialization.Serializable
import	kotlinx.serialization.json.Json
import	kotlinx.serialization.decodeFromString

@Serializable
data	class	Data(val	a:	Int,	val	b:	String)

fun	main()	{
			val	obj	=	Json.decodeFromString<Data>("""{"a":42,	"b":	"str"}""")
}

For more information about serialization in Kotlin, see the Kotlin Serialization Guide.

Lincheck
guide
Lincheck is a practical and user-friendly framework for testing concurrent algorithms on the JVM. It provides a simple and declarative way to write concurrent tests.

With the Lincheck framework, instead of describing how to perform tests, you can specify what to test by declaring all the operations to examine and the required
correctness property. As a result, a typical concurrent Lincheck test contains only about 15 lines.

When given a list of operations, Lincheck automatically:

Generates a set of random concurrent scenarios.

Examines them using either stress-testing or bounded model checking.

Verifies that the results of each invocation satisfy the required correctness property (linearizability is the default one).

982

https://github.com/Kotlin/kotlinx.serialization/blob/master/docs/serialization-guide.md

Add
Lincheck
to
your
project
To enable the Lincheck support, include the corresponding repository and dependency to the Gradle configuration. In your build.gradle(.kts) file, add the following:

Kotlin

repositories	{
				mavenCentral()
}
	
dependencies	{
				testImplementation("org.jetbrains.kotlinx:lincheck:2.23")
}

Groovy

repositories	{
				mavenCentral()
}

dependencies	{
				testImplementation	"org.jetbrains.kotlinx:lincheck:2.23"
}

Explore
Lincheck
This guide will help you get in touch with the framework and try the most useful features with examples. Learn the Lincheck features step-by-step:

1. Write your first test with Lincheck

2. Choose your testing strategy

3. Configure operation arguments

4. Consider popular algorithm constraints

5. Check the algorithm for non-blocking progress guarantees

6. Define sequential specification of the algorithm

Additional
references
"How we test concurrent algorithms in Kotlin Coroutines" by Nikita Koval: Video. KotlinConf 2023

"Lincheck: Testing concurrency on the JVM" workshop by Maria Sokolova: Part 1, Part 2. Hydra 2021

Write
your
first
test
with
Lincheck
This tutorial demonstrates how to write your first Lincheck test, set up the Lincheck framework, and use its basic API. You will create a new IntelliJ IDEA project with
an incorrect concurrent counter implementation and write a test for it, finding and analyzing the bug afterward.

Create
a
project
Open an existing Kotlin project in IntelliJ IDEA or create a new one. When creating a project, use the Gradle build system.

Add
required
dependencies
1. Open the build.gradle(.kts) file and make sure that mavenCentral() is added to the repository list.

2. Add the following dependencies to the Gradle configuration:

983

https://youtu.be/jZqkWfa11Js
https://www.youtube.com/watch?v=YNtUK9GK4pA
https://www.youtube.com/watch?v=EW7mkAOErWw
https://kotlinlang.org/docs/jvm-get-started.html

Kotlin

repositories	{
				mavenCentral()
}

dependencies	{
				//	Lincheck	dependency
				testImplementation("org.jetbrains.kotlinx:lincheck:2.23")
				//	This	dependency	allows	you	to	work	with	kotlin.test	and	JUnit:
				testImplementation("junit:junit:4.13")
}

Groovy

repositories	{
				mavenCentral()
}

dependencies	{
				//	Lincheck	dependency
				testImplementation	"org.jetbrains.kotlinx:lincheck:2.23"
				//	This	dependency	allows	you	to	work	with	kotlin.test	and	JUnit:
				testImplementation	"junit:junit:4.13"
}

Write
a
concurrent
counter
and
run
the
test
1. In the src/test/kotlin directory, create a BasicCounterTest.kt file and add the following code with a buggy concurrent counter and a Lincheck test for it:

import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.*
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.junit.*

class	Counter	{
				@Volatile
				private	var	value	=	0

				fun	inc():	Int	=	++value
				fun	get()	=	value
}

class	BasicCounterTest	{
				private	val	c	=	Counter()	//	Initial	state

				//	Operations	on	the	Counter
				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@Test	//	JUnit
				fun	stressTest()	=	StressOptions().check(this::class)	//	The	magic	button
}

This Lincheck test automatically:

Generates several random concurrent scenarios with the specified inc() and get() operations.

Performs a lot of invocations for each of the generated scenarios.

Verifies that each invocation result is correct.

2. Run the test above, and you will see the following error:

=	Invalid	execution	results	=
|	-------------------	|
|	Thread	1	|	Thread	2	|
|	-------------------	|
|	inc():	1	|	inc():	1	|

984

|	-------------------	|

Here, Lincheck found an execution that violates the counter atomicity – two concurrent increments ended with the same result 1. It means that one increment
has been lost, and the behavior of the counter is incorrect.

Trace
the
invalid
execution
Besides showing invalid execution results, Lincheck can also provide an interleaving that leads to the error. This feature is accessible with the model checking
testing strategy, which examines numerous executions with a bounded number of context switches.

1. To switch the testing strategy, replace the options type from StressOptions() to ModelCheckingOptions(). The updated BasicCounterTest class will look like this:

import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.*

class	Counter	{
				@Volatile
				private	var	value	=	0

				fun	inc():	Int	=	++value
				fun	get()	=	value
}

class	BasicCounterTest	{
				private	val	c	=	Counter()

				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

2. Run the test again. You will get the execution trace that leads to incorrect results:

=	Invalid	execution	results	=
|	-------------------	|
|	Thread	1	|	Thread	2	|
|	-------------------	|
|	inc():	1	|	inc():	1	|
|	-------------------	|

The	following	interleaving	leads	to	the	error:
|	---	|
|	Thread	1	|																										Thread		2																									|
|	---	|
|										|	inc()																																																						|
|										|			inc():	1	at	BasicCounterTest.inc(BasicCounterTest.kt:18)	|
|										|					value.READ:	0	at	Counter.inc(BasicCounterTest.kt:10)			|
|										|					switch																																																	|
|	inc():	1	|																																																												|
|										|					value.WRITE(1)	at	Counter.inc(BasicCounterTest.kt:10)		|
|										|					value.READ:	1	at	Counter.inc(BasicCounterTest.kt:10)			|
|										|			result:	1																																																|
|	---	|

According to the trace, the following events have occurred:

T2: The second thread starts the inc() operation, reading the current counter value (value.READ: 0) and pausing.

T1: The first thread executes inc(), which returns 1, and finishes.

T2: The second thread resumes and increments the previously obtained counter value, incorrectly updating the counter to 1.

Get the full code.

985

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/BasicCounterTest.kt

Test
the
Java
standard
library
Let's now find a bug in the standard Java's ConcurrentLinkedDeque class. The Lincheck test below finds a race between removing and adding an element to the
head of the deque:

import	org.jetbrains.kotlinx.lincheck.*
import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.*
import	java.util.concurrent.*

class	ConcurrentDequeTest	{
				private	val	deque	=	ConcurrentLinkedDeque<Int>()

				@Operation
				fun	addFirst(e:	Int)	=	deque.addFirst(e)

				@Operation
				fun	addLast(e:	Int)	=	deque.addLast(e)

				@Operation
				fun	pollFirst()	=	deque.pollFirst()

				@Operation
				fun	pollLast()	=	deque.pollLast()

				@Operation
				fun	peekFirst()	=	deque.peekFirst()

				@Operation
				fun	peekLast()	=	deque.peekLast()

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

Run modelCheckingTest(). The test will fail with the following output:

=	Invalid	execution	results	=
|	--	|
|						Thread	1					|							Thread	2							|
|	--	|
|	addLast(22):	void	|																						|
|	--	|
|	pollFirst():	22			|	addFirst(8):	void				|
|																			|	peekLast():	22	[-,1]	|
|	--	|

All	operations	above	the	horizontal	line	|	-----	|	happen	before	those	below	the	line

Values	in	"[..]"	brackets	indicate	the	number	of	completed	operations
in	each	of	the	parallel	threads	seen	at	the	beginning	of	the	current	operation

The	following	interleaving	leads	to	the	error:

Thread 1

pollFirst()
pollFirst(): 22 at ConcurrentDequeTest.pollFirst(ConcurrentDequeTest.kt:17)
first(): Node@1 at ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:915)
item.READ: null at ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:917)
next.READ: Node@2 at ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:925)
item.READ: 22 at ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:917)
prev.READ: null at ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:919)
switch

986

|																																																																																																												|	addFirst(8):	void				
|
|																																																																																																												|	peekLast():	22							
|
|					compareAndSet(Node@2,22,null):	true	at	ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:920)	|																						
|
|					unlink(Node@2)	at	ConcurrentLinkedDeque.pollFirst(ConcurrentLinkedDeque.java:921)																						|																						
|
|			result:	22																																																																																															|																						
|

Next
step
Choose your testing strategy and configure test execution.

See
also
How to generate operation arguments

Popular algorithm constraints

Checking for non-blocking progress guarantees

Define sequential specification of the algorithm

Stress
testing
and
model
checking
Lincheck offers two testing strategies: stress testing and model checking. Learn what happens under the hood of both approaches using the Counter we coded in
the BasicCounterTest.kt file in the previous step:

class	Counter	{
				@Volatile
				private	var	value	=	0

				fun	inc():	Int	=	++value
				fun	get()	=	value
}

Stress
testing

Write
a
stress
test
Create a concurrent stress test for the Counter, following these steps:

1. Create the CounterTest class.

2. In this class, add the field c of the Counter type, creating an instance in the constructor.

3. List the counter operations and mark them with the @Operation annotation, delegating their implementations to c.

4. Specify the stress testing strategy using StressOptions().

5. Invoke the StressOptions.check() function to run the test.

The resulting code will look like this:

import	org.jetbrains.kotlinx.lincheck.annotations.*

Get the full code.

987

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/ConcurrentLinkedDequeTest.kt

import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.junit.*

class	CounterTest	{
				private	val	c	=	Counter()	//	Initial	state
				
				//	Operations	on	the	Counter
				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@Test	//	Run	the	test
				fun	stressTest()	=	StressOptions().check(this::class)
}

How
stress
testing
works
At first, Lincheck generates a set of concurrent scenarios using the operations marked with @Operation. Then it launches native threads, synchronizing them at the
beginning to guarantee that operations start simultaneously. Finally, Lincheck executes each scenario on these native threads multiple times, expecting to hit an
interleaving that produces incorrect results.

The figure below shows a high-level scheme of how Lincheck may execute generated scenarios:

Stress execution of the Counter

Model
checking
The main concern regarding stress testing is that you may spend hours trying to understand how to reproduce the found bug. To help you with that, Lincheck
supports bounded model checking, which automatically provides an interleaving for reproducing bugs.

A model checking test is constructed the same way as the stress test. Just replace the StressOptions() that specify the testing strategy with

988

ModelCheckingOptions().

Write
a
model
checking
test
To change the stress testing strategy to model checking, replace StressOptions() with ModelCheckingOptions() in your test:

import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.*

class	CounterTest	{
				private	val	c	=	Counter()	//	Initial	state

				//	Operations	on	the	Counter
				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@Test	//	Run	the	test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

How
model
checking
works
Most bugs in complicated concurrent algorithms can be reproduced with classic interleavings, switching the execution from one thread to another. Besides, model
checkers for weak memory models are very complicated, so Lincheck uses a bounded model checking under the sequential consistency memory model.

In short, Lincheck analyzes all interleavings, starting with one context switch, then two, continuing the process until the specified number of interleaving is
examined. This strategy allows finding an incorrect schedule with the lowest possible number of context switches, making further bug investigation easier.

To control the execution, Lincheck inserts special switch points into the testing code. These points identify where a context switch can be performed. Essentially,
these are shared memory accesses, such as field and array element reads or updates in the JVM, as well as wait/notify and park/unpark calls. To insert a switch
point, Lincheck transforms the testing code on the fly using the ASM framework, adding internal function invocations to the existing code.

As the model checking strategy controls the execution, Lincheck can provide the trace that leads to the invalid interleaving, which is extremely helpful in practice.
You can see the example of trace for the incorrect execution of the Counter in the Write your first test with Lincheck tutorial.

Which
testing
strategy
is
better?
The model checking strategy is preferable for finding bugs under the sequentially consistent memory model since it ensures better coverage and provides a failing
execution trace if an error is found.

Although stress testing doesn't guarantee any coverage, checking algorithms for bugs introduced by low-level effects, such as a missed volatile modifier, is still
helpful. Stress testing is also a great help in discovering rare bugs that require many context switches to reproduce, and it's impossible to analyze them all due to
the current restrictions in the model checking strategy.

Configure
the
testing
strategy
To configure the testing strategy, set options in the <TestingMode>Options class.

To use model checking strategy for Java 9 and later, add the following JVM properties:

--add-opens	java.base/jdk.internal.misc=ALL-UNNAMED
--add-exports	java.base/jdk.internal.util=ALL-UNNAMED

They are required if the testing code uses classes from the java.util package since some of them use jdk.internal.misc.Unsafe or similar internal classes
under the hood. If you use Gradle, add the following lines to build.gradle.kts:

tasks.withType<Test> { jvmArgs("--add-opens", "java.base/jdk.internal.misc=ALL-UNNAMED", "--add-exports", "java.base/jdk.internal.util=ALL-
UNNAMED", "--add-exports", "java.base/sun.security.action=ALL-UNNAMED") }

989

1. Set the options for scenario generation and execution for the CounterTest:

import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.junit.*

class	CounterTest	{
				private	val	c	=	Counter()

				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@Test
				fun	stressTest()	=	StressOptions()	//	Stress	testing	options:
								.actorsBefore(2)	//	Number	of	operations	before	the	parallel	part
								.threads(2)	//	Number	of	threads	in	the	parallel	part
								.actorsPerThread(2)	//	Number	of	operations	in	each	thread	of	the	parallel	part
								.actorsAfter(1)	//	Number	of	operations	after	the	parallel	part
								.iterations(100)	//	Generate	100	random	concurrent	scenarios
								.invocationsPerIteration(1000)	//	Run	each	generated	scenario	1000	times
								.check(this::class)	//	Run	the	test
}

2. Run stressTest() again, Lincheck will generate scenarios similar to the one below:

|	-------------------	|
|	Thread	1	|	Thread	2	|
|	-------------------	|
|	inc()				|										|
|	inc()				|										|
|	-------------------	|
|	get()				|	inc()				|
|	inc()				|	get()				|
|	-------------------	|
|	inc()				|										|
|	-------------------	|

Here, there are two operations before the parallel part, two threads for each of the two operations, followed after that by a single operation in the end.

You can configure your model checking tests in the same way.

Scenario
minimization
You may already have noticed that detected errors are usually represented with a scenario smaller than the specified in the test configuration. Lincheck tries to
minimize the error, actively removing an operation while it's possible to keep the test from failing.

Here's the minimized scenario for the counter test above:

=	Invalid	execution	results	=
|	-------------------	|
|	Thread	1	|	Thread	2	|
|	-------------------	|
|	inc()				|	inc()				|
|	-------------------	|

As it's easier to analyze smaller scenarios, scenario minimization is enabled by default. To disable this feature, add minimizeFailedScenario(false) to the [Stress,
ModelChecking]Options configuration.

Logging
data
structure
states
Another useful feature for debugging is state logging. When analyzing an interleaving that leads to an error, you usually draw the data structure changes on a sheet
of paper, changing the state after each event. To automize this procedure, you can provide a special method that returns a String representation of the data
structure, so Lincheck prints the state representation after each event in the interleaving that modifies the data structure.

For this, define a method that doesn't take arguments and is marked with the @StateRepresentation annotation. The method should be thread-safe, non-blocking,

990

and never modify the data structure.

1. In the Counter example, the String representation is simply the value of the counter. Thus, to print the counter states in the trace, add the stateRepresentation()
function to the CounterTest:

import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.Test

class	CounterTest	{
				private	val	c	=	Counter()

				@Operation
				fun	inc()	=	c.inc()

				@Operation
				fun	get()	=	c.get()

				@StateRepresentation
				fun	stateRepresentation()	=	c.get().toString()

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

2. Run the modelCheckingTest() now and check the states of the Counter printed at the switch points that modify the counter state (they start with STATE:):

=	Invalid	execution	results	=
|	-------------------	|
|	Thread	1	|	Thread	2	|
|	-------------------	|
STATE: 0
inc(): 1

STATE: 1

The	following	interleaving	leads	to	the	error:
|	--	|
|	Thread	1	|																									Thread	2																										|
|	--	|
|										|	inc()																																																					|
|										|			inc():	1	at	CounterTest.inc(CounterTest.kt:10)										|
|										|					value.READ:	0	at	Counter.inc(BasicCounterTest.kt:10)		|
|										|					switch																																																|
|	inc():	1	|																																																											|
|	STATE:	1	|																																																											|
|										|					value.WRITE(1)	at	Counter.inc(BasicCounterTest.kt:10)	|
|										|					STATE:	1																																														|
|										|					value.READ:	1	at	Counter.inc(BasicCounterTest.kt:10)		|
|										|			result:	1																																															|
|	--	|

In case of stress testing, Lincheck prints the state representation right before and after the parallel part of the scenario, as well as at the end.

Next
step
Learn how to configure arguments passed to the operations and when it can be useful.

Operation
arguments

Get the full code of these examples

See more test examples

991

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/CounterTest.kt
https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/StackTest.kt

In this tutorial, you'll learn how to configure operation arguments.

Consider this straightforward MultiMap implementation below. It's based on the ConcurrentHashMap, internally storing a list of values:

import	java.util.concurrent.*

class	MultiMap<K,	V>	{
				private	val	map	=	ConcurrentHashMap<K,	List<V>>()
			
				//	Maintains	a	list	of	values	
				//	associated	with	the	specified	key.
				fun	add(key:	K,	value:	V)	{
								val	list	=	map[key]
								if	(list	==	null)	{
												map[key]	=	listOf(value)
								}	else	{
												map[key]	=	list	+	value
								}
				}

				fun	get(key:	K):	List<V>	=	map[key]	?:	emptyList()
}

Is this MultiMap implementation linearizable? If not, an incorrect interleaving is more likely to be detected when accessing a small range of keys, thus, increasing
the possibility of processing the same key concurrently.

For this, configure the generator for a key: Int parameter:

1. Declare the @Param annotation.

2. Specify the integer generator class: @Param(gen = IntGen::class). Lincheck supports random parameter generators for almost all primitives and strings out of the
box.

3. Define the range of values generated with the string configuration @Param(conf = "1:2").

4. Specify the parameter configuration name (@Param(name = "key")) to share it for several operations.

Below is the stress test for MultiMap that generates keys for add(key, value) and get(key) operations in the range of [1..2]:

import	java.util.concurrent.*
import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.paramgen.*
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.*

class	MultiMap<K,	V>	{
				private	val	map	=	ConcurrentHashMap<K,	List<V>>()

				//	Maintains	a	list	of	values	
				//	associated	with	the	specified	key.
				fun	add(key:	K,	value:	V)	{
								val	list	=	map[key]
								if	(list	==	null)	{
												map[key]	=	listOf(value)
								}	else	{
												map[key]	=	list	+	value
								}
				}

				fun	get(key:	K):	List<V>	=	map[key]	?:	emptyList()
}

@Param(name	=	"key",	gen	=	IntGen::class,	conf	=	"1:2")
class	MultiMapTest	{
				private	val	map	=	MultiMap<Int,	Int>()

				@Operation
				fun	add(@Param(name	=	"key")	key:	Int,	value:	Int)	=	map.add(key,	value)

				@Operation
				fun	get(@Param(name	=	"key")	key:	Int)	=	map.get(key)

				@Test
				fun	stressTest()	=	StressOptions().check(this::class)

992

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

5. Run the stressTest() and see the following output:

=	Invalid	execution	results	=
|	----------------------------------	|
|				Thread	1					|					Thread	2					|
|	----------------------------------	|
|	add(2,	0):	void	|	add(2,	-1):	void	|
|	----------------------------------	|
|	get(2):	[0]					|																		|
|	----------------------------------	|

6. Finally, run modelCheckingTest(). It fails with the following output:

=	Invalid	execution	results	=
|	----------------------------------	|
|				Thread	1					|					Thread	2					|
|	----------------------------------	|
|	add(2,	0):	void	|	add(2,	-1):	void	|
|	----------------------------------	|
|	get(2):	[-1]				|																		|
|	----------------------------------	|

All	operations	above	the	horizontal	line	|	-----	|	happen	before	those	below	the	line

The	following	interleaving	leads	to	the	error:
|	--	|
|				Thread	1					|																							Thread	2																							|
|	--	|
|																	|	add(2,	-1)																																											|
|																	|			add(2,-1)	at	MultiMapTest.add(MultiMap.kt:31)						|
|																	|					get(2):	null	at	MultiMap.add(MultiMap.kt:15)					|
|																	|					switch																																											|
|	add(2,	0):	void	|																																																						|
|																	|					put(2,[-1]):	[0]	at	MultiMap.add(MultiMap.kt:17)	|
|																	|			result:	void																																							|
|	--	|

Due to the small range of keys, Lincheck quickly reveals the race: when two values are being added concurrently by the same key, one of the values may be
overwritten and lost.

Next
step
Learn how to test data structures that set access constraints on the execution, such as single-producer single-consumer queues.

Data
structure
constraints
Some data structures may require a part of operations not to be executed concurrently, such as single-producer single-consumer queues. Lincheck provides out-
of-the-box support for such contracts, generating concurrent scenarios according to the restrictions.

Consider the single-consumer queue from the JCTools library. Let's write a test to check correctness of its poll(), peek(), and offer(x) operations.

In your build.gradle(.kts) file, add the JCTools dependency:

Kotlin

dependencies	{
				//	jctools	dependency
				testImplementation("org.jctools:jctools-core:3.3.0")

Get the full code.

993

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/MultiMapTest.kt
https://github.com/JCTools/JCTools/blob/66e6cbc9b88e1440a597c803b7df9bd1d60219f6/jctools-core/src/main/java/org/jctools/queues/atomic/MpscLinkedAtomicQueue.java
https://github.com/JCTools/JCTools

}

Groovy

dependencies	{
				//	jctools	dependency
				testImplementation	"org.jctools:jctools-core:3.3.0"
}

To meet the single-consumer restriction, ensure that all poll() and peek() consuming operations are called from a single thread. For that, we can set the
nonParallelGroup parameter of the corresponding @Operation annotations to the same value, e.g. "consumers".

Here is the resulting test:

import	org.jctools.queues.atomic.*
import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.check
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.junit.*

class	MPSCQueueTest	{
				private	val	queue	=	MpscLinkedAtomicQueue<Int>()

				@Operation
				fun	offer(x:	Int)	=	queue.offer(x)

				@Operation(nonParallelGroup	=	"consumers")	
				fun	poll():	Int?	=	queue.poll()

				@Operation(nonParallelGroup	=	"consumers")
				fun	peek():	Int?	=	queue.peek()

				@Test
				fun	stressTest()	=	StressOptions().check(this::class)

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions().check(this::class)
}

Here is an example of the scenario generated for this test:

=	Iteration	15	/	100	=
|	---------------------	|
|	Thread	1		|	Thread	2		|
|	---------------------	|
|	poll()				|											|
|	poll()				|											|
|	peek()				|											|
|	peek()				|											|
|	peek()				|											|
|	---------------------	|
|	offer(-1)	|	offer(0)		|
|	offer(0)		|	offer(-1)	|
|	peek()				|	offer(-1)	|
|	offer(1)		|	offer(1)		|
|	peek()				|	offer(1)		|
|	---------------------	|
|	peek()				|											|
|	offer(-2)	|											|
|	offer(-2)	|											|
|	offer(2)		|											|
|	offer(-2)	|											|
|	---------------------	|

Note that all consuming poll() and peek() invocations are performed from a single thread, thus satisfying the "single-consumer" restriction.

Get the full code.

994

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/MPSCQueueTest.kt

Next
step
Learn how to check your algorithm for progress guarantees with the model checking strategy.

Progress
guarantees
Many concurrent algorithms provide non-blocking progress guarantees, such as lock-freedom and wait-freedom. As they are usually non-trivial, it's easy to add a
bug that blocks the algorithm. Lincheck can help you find liveness bugs using the model checking strategy.

To check the progress guarantee of the algorithm, enable the checkObstructionFreedom option in ModelCheckingOptions():

ModelCheckingOptions().checkObstructionFreedom()

Create a ConcurrentMapTest.kt file. Then add the following test to detect that ConcurrentHashMap::put(key: K, value: V) from the Java standard library is a blocking
operation:

import	org.jetbrains.kotlinx.lincheck.*
import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.strategy.managed.modelchecking.*
import	org.junit.*
import	java.util.concurrent.*

class	ConcurrentHashMapTest	{
				private	val	map	=	ConcurrentHashMap<Int,	Int>()

				@Operation
				fun	put(key:	Int,	value:	Int)	=	map.put(key,	value)

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions()
								.actorsBefore(1)	//	To	init	the	HashMap
								.actorsPerThread(1)
								.actorsAfter(0)
								.minimizeFailedScenario(false)
								.checkObstructionFreedom()
								.check(this::class)
}

Run the modelCheckingTest(). You should get the following result:

=	Obstruction-freedom	is	required	but	a	lock	has	been	found	=
|	----------------------	|
|		Thread	1		|	Thread	2		|
|	----------------------	|
|	put(1,	-1)	|											|
|	----------------------	|
|	put(2,	-2)	|	put(3,	2)	|
|	----------------------	|

All	operations	above	the	horizontal	line	|	-----	|	happen	before	those	below	the	line

The	following	interleaving	leads	to	the	error:

Thread 1
Thread 2

--
ConcurrentHashMapTest.put(ConcurrentMapTest.kt:11)
ConcurrentHashMap.put(ConcurrentHashMap.java:1006)
ConcurrentHashMap.putVal(ConcurrentHashMap.java:1014)
ConcurrentHashMap.putVal(ConcurrentHashMap.java:1018)
ConcurrentHashMap.putVal(ConcurrentHashMap.java:1031)														|

995

|																																																																																										|							tabAt(Node[]@1,0):	Node@1	at	
ConcurrentHashMap.putVal(ConcurrentHashMap.java:1032)	|
|																																																																																										|							next.READ:	null	at	
ConcurrentHashMap.putVal(ConcurrentHashMap.java:1046)											|
|																																																																																										|							switch																																																																													
|
|	put(2,	-2)																																																																															|																																																																																										
|
|			put(2,-2)	at	ConcurrentHashMapTest.put(ConcurrentMapTest.kt:11)																								|																																																																																										
|
|					putVal(2,-2,false)	at	ConcurrentHashMap.put(ConcurrentHashMap.java:1006)													|																																																																																										
|
|							table.READ:	Node[]@1	at	ConcurrentHashMap.putVal(ConcurrentHashMap.java:1014)						|																																																																																										
|
|							tabAt(Node[]@1,0):	Node@1	at	ConcurrentHashMap.putVal(ConcurrentHashMap.java:1018)	|																																																																																										
|
|							MONITORENTER	at	ConcurrentHashMap.putVal(ConcurrentHashMap.java:1031)														|																																																																																										
|

Now let's add a test for the non-blocking ConcurrentSkipListMap<K, V>, expecting the test to pass successfully:

class	ConcurrentSkipListMapTest	{
				private	val	map	=	ConcurrentSkipListMap<Int,	Int>()

				@Operation
				fun	put(key:	Int,	value:	Int)	=	map.put(key,	value)

				@Test
				fun	modelCheckingTest()	=	ModelCheckingOptions()
								.checkObstructionFreedom()
								.check(this::class)
}

At the moment, Lincheck supports only the obstruction-freedom progress guarantees. However, most real-life liveness bugs add unexpected blocking code, so the
obstruction-freedom check will also help with lock-free and wait-free algorithms.

Next
step
Learn how to specify the sequential specification of the testing algorithm explicitly, improving the Lincheck tests robustness.

Sequential
specification
To be sure that the algorithm provides correct sequential behavior, you can define its sequential specification by writing a straightforward sequential implementation
of the testing data structure.

The common non-blocking progress guarantees are (from strongest to weakest):

wait-freedom, when each operation is completed in a bounded number of steps no matter what other threads do.

lock-freedom, which guarantees system-wide progress so that at least one operation is completed in a bounded number of steps while a particular
operation may be stuck.

obstruction-freedom, when any operation is completed in a bounded number of steps if all the other threads pause.

Get the full code of the example.

See another example where the Michael-Scott queue implementation is tested for progress guarantees.

996

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/ConcurrentMapTest.kt
https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/ObstructionFreedomViolationTest.kt

To provide a sequential specification of the algorithm for verification:

1. Implement a sequential version of all the testing methods.

2. Pass the class with sequential implementation to the sequentialSpecification() option:

StressOptions().sequentialSpecification(SequentialQueue::class)

For example, here is the test to check correctness of j.u.c.ConcurrentLinkedQueue from the Java standard library.

import	org.jetbrains.kotlinx.lincheck.*
import	org.jetbrains.kotlinx.lincheck.annotations.*
import	org.jetbrains.kotlinx.lincheck.strategy.stress.*
import	org.junit.*
import	java.util.*
import	java.util.concurrent.*

class	ConcurrentLinkedQueueTest	{
				private	val	s	=	ConcurrentLinkedQueue<Int>()

				@Operation
				fun	add(value:	Int)	=	s.add(value)

				@Operation
				fun	poll():	Int?	=	s.poll()
			
				@Test
				fun	stressTest()	=	StressOptions()
								.sequentialSpecification(SequentialQueue::class.java)
								.check(this::class)
}

class	SequentialQueue	{
				private	val	s	=	LinkedList<Int>()

				fun	add(x:	Int)	=	s.add(x)
				fun	poll():	Int?	=	s.poll()
}

Keywords
and
operators

Hard
keywords
The following tokens are always interpreted as keywords and cannot be used as identifiers:

as

is used for type casts.

specifies an alias for an import

as? is used for safe type casts.

break terminates the execution of a loop.

class declares a class.

continue proceeds to the next step of the nearest enclosing loop.

do begins a do/while loop (a loop with a postcondition).

else defines the branch of an if expression that is executed when the condition is false.

This feature also allows you to write a single test instead of two separate sequential and concurrent tests.

Get the full code of the examples.

997

https://github.com/Kotlin/kotlinx-lincheck/blob/guide/src/jvm/test/org/jetbrains/kotlinx/lincheck/test/guide/ConcurrentLinkedQueueTest.kt

false specifies the 'false' value of the Boolean type.

for begins a for loop.

fun declares a function.

if begins an if expression.

in

specifies the object being iterated in a for loop.

is used as an infix operator to check that a value belongs to a range, a collection, or another entity that defines a 'contains' method.

is used in when expressions for the same purpose.

marks a type parameter as contravariant.

!in

is used as an operator to check that a value does NOT belong to a range, a collection, or another entity that defines a 'contains' method.

is used in when expressions for the same purpose.

interface declares an interface.

is

checks that a value has a certain type.

is used in when expressions for the same purpose.

!is

checks that a value does NOT have a certain type.

is used in when expressions for the same purpose.

null is a constant representing an object reference that doesn't point to any object.

object declares a class and its instance at the same time.

package specifies the package for the current file.

return returns from the nearest enclosing function or anonymous function.

super

refers to the superclass implementation of a method or property.

calls the superclass constructor from a secondary constructor.

this

refers to the current receiver.

calls another constructor of the same class from a secondary constructor.

throw throws an exception.

true specifies the 'true' value of the Boolean type.

try begins an exception-handling block.

typealias declares a type alias.

typeof is reserved for future use.

val declares a read-only property or local variable.

var declares a mutable property or local variable.

when begins a when expression (executes one of the given branches).

998

while begins a while loop (a loop with a precondition).

Soft
keywords
The following tokens act as keywords in the context in which they are applicable, and they can be used as identifiers in other contexts:

by

delegates the implementation of an interface to another object.

delegates the implementation of the accessors for a property to another object.

catch begins a block that handles a specific exception type.

constructor declares a primary or secondary constructor.

delegate is used as an annotation use-site target.

dynamic references a dynamic type in Kotlin/JS code.

field is used as an annotation use-site target.

file is used as an annotation use-site target.

finally begins a block that is always executed when a try block exits.

get

declares the getter of a property.

is used as an annotation use-site target.

import imports a declaration from another package into the current file.

init begins an initializer block.

param is used as an annotation use-site target.

property is used as an annotation use-site target.

receiveris used as an annotation use-site target.

set

declares the setter of a property.

is used as an annotation use-site target.

setparam is used as an annotation use-site target.

value with the class keyword declares an inline class.

where specifies the constraints for a generic type parameter.

Modifier
keywords
The following tokens act as keywords in modifier lists of declarations, and they can be used as identifiers in other contexts:

abstract marks a class or member as abstract.

actual denotes a platform-specific implementation in multiplatform projects.

annotation declares an annotation class.

companion declares a companion object.

const marks a property as a compile-time constant.

crossinline forbids non-local returns in a lambda passed to an inline function.

999

data instructs the compiler to generate canonical members for a class.

enum declares an enumeration.

expect marks a declaration as platform-specific, expecting an implementation in platform modules.

external marks a declaration as implemented outside of Kotlin (accessible through JNI or in JavaScript).

final forbids overriding a member.

infix allows calling a function using infix notation.

inline tells the compiler to inline a function and the lambdas passed to it at the call site.

inner allows referring to an outer class instance from a nested class.

internal marks a declaration as visible in the current module.

lateinit allows initializing a non-nullable property outside of a constructor.

noinline turns off inlining of a lambda passed to an inline function.

open allows subclassing a class or overriding a member.

operator marks a function as overloading an operator or implementing a convention.

out marks a type parameter as covariant.

override marks a member as an override of a superclass member.

private marks a declaration as visible in the current class or file.

protected marks a declaration as visible in the current class and its subclasses.

public marks a declaration as visible anywhere.

reified marks a type parameter of an inline function as accessible at runtime.

sealed declares a sealed class (a class with restricted subclassing).

suspend marks a function or lambda as suspending (usable as a coroutine).

tailrec marks a function as tail-recursive (allowing the compiler to replace recursion with iteration).

vararg allows passing a variable number of arguments for a parameter .

Special
identifiers
The following identifiers are defined by the compiler in specific contexts, and they can be used as regular identifiers in other contexts:

field is used inside a property accessor to refer to the backing field of the property.

it is used inside a lambda to refer to its parameter implicitly.

Operators
and
special
symbols
Kotlin supports the following operators and special symbols:

+, -, *, /, % - mathematical operators

* is also used to pass an array to a vararg parameter.

=

assignment operator.

is used to specify default values for parameters.

+=, -=, *=, /=, %= - augmented assignment operators.

1000

++, -- - increment and decrement operators.

&&, ||, ! - logical 'and', 'or', 'not' operators (for bitwise operations, use the corresponding infix functions instead).

==, != - equality operators (translated to calls of equals() for non-primitive types).

===, !== - referential equality operators.

<, >, <=, >= - comparison operators (translated to calls of compareTo() for non-primitive types).

[,] - indexed access operator (translated to calls of get and set).

!! asserts that an expression is non-nullable.

?. performs a safe call (calls a method or accesses a property if the receiver is non-nullable).

?: takes the right-hand value if the left-hand value is null (the elvis operator).

:: creates a member reference or a class reference.

.., ..< create ranges.

: separates a name from a type in a declaration.

? marks a type as nullable.

->

separates the parameters and body of a lambda expression.

separates the parameters and return type declaration in a function type.

separates the condition and body of a when expression branch.

@

introduces an annotation.

introduces or references a loop label.

introduces or references a lambda label.

references a 'this' expression from an outer scope.

references an outer superclass.

; separates multiple statements on the same line.

$ references a variable or expression in a string template.

_

substitutes an unused parameter in a lambda expression.

substitutes an unused parameter in a destructuring declaration.

For operator precedence, see this reference in Kotlin grammar.

Gradle
Gradle is a build system that helps to automate and manage your building process. It downloads required dependencies, packages your code, and prepares it for
compilation. Learn about Gradle basics and specifics on the Gradle website.

You can set up your own project with these instructions for different platforms or pass a small step-by-step tutorial that will show you how to create a simple
backend "Hello World" application in Kotlin.

You can find information about the compatibility of Kotlin, Gradle, and Android Gradle plugin versions here.

1001

https://kotlinlang.org/docs/reference/grammar.html#expressions
https://docs.gradle.org/current/userguide/userguide.html

In this chapter, you can also learn about:

Compiler options and how to pass them.

Incremental compilation, caches support, build reports, and the Kotlin daemon.

Support for Gradle plugin variants.

What's
next?
Learn about:

Gradle Kotlin DSL. The Gradle Kotlin DSL is a domain specific language that you can use to write build scripts quickly and efficiently.

Annotation processing. Kotlin supports annotation processing via the Kotlin Symbol processing API.

Generating documentation. To generate documentation for Kotlin projects, use Dokka; please refer to the Dokka README for configuration instructions. Dokka
supports mixed-language projects and can generate output in multiple formats, including standard Javadoc.

OSGi. For OSGi support see the Kotlin OSGi page.

Get
started
with
Gradle
and
Kotlin/JVM
This tutorial demonstrates how to use IntelliJ IDEA and Gradle for creating a console application.

To get started, first download and install the latest version of IntelliJ IDEA.

Create
a
project
1. In IntelliJ IDEA, select File | New | Project.

2. In the panel on the left, select New Project.

3. Name the new project and change its location, if necessary.

4. From the Language list, select Kotlin.

Select the Create Git repository checkbox to place the new project under version control. You will be able to do it later at any time.

1002

https://docs.gradle.org/current/userguide/kotlin_dsl.html
https://github.com/Kotlin/dokka
https://github.com/Kotlin/dokka/blob/master/README.md#using-the-gradle-plugin
https://www.jetbrains.com/idea/download/index.html

Create a console application

5. Select the Gradle build system.

6. From the JDK list, select the JDK that you want to use in your project.

If the JDK is installed on your computer, but not defined in the IDE, select Add JDK and specify the path to the JDK home directory.

If you don't have the necessary JDK on your computer, select Download JDK.

7. From the Gradle DSL list, select Kotlin.

8. Select the Add sample code checkbox to create a file with a sample "Hello World!" application.

9. Click Create.

You have successfully created a project with Gradle.

Explore
the
build
script
Open the build.gradle.kts file. This is the Gradle Kotlin build script, which contains Kotlin-related artifacts and other parts required for the application:

	//	For	`KotlinCompile`	task	below
import	org.jetbrains.kotlin.gradle.tasks.KotlinCompile

plugins	{
				kotlin("jvm")	version	"1.9.20"	//	Kotlin	version	to	use
				application	 	Application	plugin.	Also	see	 	below	the	code
}

1003

https://www.oracle.com/java/technologies/downloads/

group	=	"org.example"	//	A	company	name,	for	example,	`org.jetbrains`
version	=	"1.0-SNAPSHOT"	//	Version	to	assign	to	the	built	artifact

repositories	{	 	Sources	of	dependencies.	See	
				mavenCentral()	 	Maven	Central	Repository.	See	
}

dependencies	{	 	All	the	libraries	you	want	to	use.	See	
				//	Copy	dependencies'	names	after	you	find	them	in	a	repository
				testImplementation(kotlin("test"))	//	The	Kotlin	test	library
}

tasks.test	{	 	See	
				useJUnitPlatform()	 	JUnitPlatform	for	tests.	See	
}

kotlin	{	//	Extension	for	easy	setup
				jvmToolchain(17)	 	Target	version	of	generated	JVM	bytecode.	See	
}

application	{
				mainClass.set("MainKt")	//	The	main	class	of	the	application
}

 Application plugin to add support for building CLI application in Java.

 Lean more about sources of dependencies.

 The Maven Central Repository. It can also be Google's Maven repository or your company's private repository.

 Learn more about declaring dependencies.

 Learn more about tasks.

 JUnitPlatform for tests.

 Learn more about setting up a Java toolchain.

As you can see, there are a few Kotlin-specific artifacts added to the Gradle build file:

1. In the plugins block, there is the kotlin("jvm") artifact – the plugin defines the version of Kotlin to be used in the project.

2. In the dependencies section, there is testImplementation(kotlin("test")). Learn more about setting dependencies on test libraries.

3. After the dependencies section, there is the KotlinCompile task configuration block. This is where you can add extra arguments to the compiler to enable or
disable various language features.

Run
the
application
Open the Main.kt file in src/main/kotlin.
The src directory contains Kotlin source files and resources. The Main.kt file contains sample code that will print Hello World!.

1004

https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/declaring_repositories.html
https://central.sonatype.com/
https://maven.google.com/
https://docs.gradle.org/current/userguide/declaring_dependencies.html
https://docs.gradle.org/current/dsl/org.gradle.api.Task.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform

Main.kt with main fun

The easiest way to run the application is to click the green Run icon in the gutter and select Run 'MainKt'.

Running a console app

You can see the result in the Run tool window.

Kotlin run output

Congratulations! You have just run your first Kotlin application.

What's
next?
Learn more about:

Gradle build file properties.

Targeting different platforms and setting library dependencies.

Compiler options and how to pass them.

Incremental compilation, caches support, build reports, and the Kotlin daemon.

Configure
a
Gradle
project
To build a Kotlin project with Gradle, you need to add the Kotlin Gradle plugin to your build script file build.gradle(.kts) and configure the project's dependencies
there.

Apply
the
plugin
To apply the Kotlin Gradle plugin, use the plugins block from the Gradle plugins DSL:

To learn more about the contents of a build script, visit the Explore the build script section.

1005

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#N14E9A
https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block

Kotlin

//	replace	`<...>`	with	the	plugin	name	
plugins	{
				kotlin("<...>")	version	"1.9.20"
}

Groovy

//	replace	`<...>`	with	the	plugin	name
plugins	{
				id	'org.jetbrains.kotlin.<...>'	version	'1.9.20'
}

When configuring your project, check the Kotlin Gradle plugin (KGP) compatibility with available Gradle versions. In the following table, there are the minimum and
maximum fully supported versions of Gradle and Android Gradle plugin (AGP):

KGP version Gradle min and max versions AGP min and max versions

1.9.20 6.8.3–8.1.1 4.2.2–7.4.0

1.9.0–1.9.10 6.8.3–7.6.0 4.2.2–7.4.0

1.8.20–1.8.22 6.8.3–7.6.0 4.1.3–7.4.0

1.8.0–1.8.11 6.8.3–7.3.3 4.1.3–7.2.1

1.7.20–1.7.22 6.7.1–7.1.1 3.6.4–7.0.4

1.7.0–1.7.10 6.7.1–7.0.2 3.4.3–7.0.2

1.6.20–1.6.21 6.1.1–7.0.2 3.4.3–7.0.2

For example, the Kotlin Gradle plugin and the kotlin-multiplatform plugin 1.9.20 require the minimum Gradle version of 6.8.3 for your project to compile.

Similarly, the maximum fully supported version is 8.1.1. It doesn't have deprecated Gradle methods and properties, and supports all the current Gradle features.

Targeting
the
JVM
To target the JVM, apply the Kotlin JVM plugin.

Kotlin

plugins	{

The Kotlin Gradle plugin (KGP) and Kotlin share the same version numbering.

You can also use Gradle and AGP versions up to the latest releases, but if you do, keep in mind that you might encounter deprecation warnings or some
new features might not work.

1006

				kotlin("jvm")	version	"1.9.20"
}

Groovy

plugins	{
				id	"org.jetbrains.kotlin.jvm"	version	"1.9.20"
}

The version should be literal in this block, and it cannot be applied from another build script.

Kotlin
and
Java
sources
Kotlin sources and Java sources can be stored in the same directory, or they can be placed in different directories.

The default convention is to use different directories:

project
				-	src
								-	main	(root)
												-	kotlin
												-	java

The corresponding sourceSets property should be updated if you are not using the default convention:

Kotlin

sourceSets.main	{
				java.srcDirs("src/main/myJava",	"src/main/myKotlin")
}

Groovy

sourceSets	{
				main.kotlin.srcDirs	+=	'src/main/myKotlin'
				main.java.srcDirs	+=	'src/main/myJava'
}

Check
for
JVM
target
compatibility
of
related
compile
tasks
In the build module, you may have related compile tasks, for example:

compileKotlin and compileJava

compileTestKotlin and compileTestJava

For related tasks like these, the Kotlin Gradle plugin checks for JVM target compatibility. Different values of the jvmTarget attribute in the kotlin extension or task
and targetCompatibility in the java extension or task cause JVM target incompatibility. For example: the compileKotlin task has jvmTarget=1.8, and the compileJava
task has (or inherits) targetCompatibility=15.

Configure the behavior of this check for the whole project by setting the kotlin.jvm.target.validation.mode property in the build.gradle(.kts) file to:

error – the plugin fails the build; the default value for projects on Gradle 8.0+.

Do not store Java .java files in the src/*/kotlin directory, as the .java files will not be compiled.

Instead, you can use src/main/java.

main and test source set compile tasks are not related.

1007

https://docs.gradle.org/current/userguide/java_plugin.html#sec:java-extension
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java-extension

warning – the plugin prints a warning message; the default value for projects on Gradle less than 8.0.

ignore – the plugin skips the check and doesn't produce any messages.

You can also configure it at task level in your build.gradle(.kts) file:

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile>().configureEach	{
				jvmTargetValidationMode.set(org.jetbrains.kotlin.gradle.dsl.jvm.JvmTargetValidationMode.WARNING)
}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile.class).configureEach	{
				jvmTargetValidationMode	=	org.jetbrains.kotlin.gradle.dsl.jvm.JvmTargetValidationMode.WARNING
}

To avoid JVM target incompatibility, configure a toolchain or align JVM versions manually.

What can go wrong if not checking targets compatibility
There are two ways of manually setting JVM targets for Kotlin and Java source sets:

The implicit way via setting up a Java toolchain.

The explicit way via setting the jvmTarget attribute in the kotlin extension or task and targetCompatibility in the java extension or task.

JVM target incompatibility occurs if you:

Explicitly set different values of jvmTarget and targetCompatibility.

Have a default configuration, and your JDK is not equal to 1.8.

Let's consider a default configuration of JVM targets when you have only the Kotlin JVM plugin in your build script and no additional settings for JVM targets:

Kotlin

plugins	{
				kotlin("jvm")	version	"1.9.20"
}

Groovy

plugins	{
				id	"org.jetbrains.kotlin.jvm"	version	"1.9.20"
}

When there is no explicit information about the jvmTarget value in the build script, its default value is null, and the compiler translates it to the default value 1.8. The
targetCompatibility equals the current Gradle's JDK version, which is equal to your JDK version (unless you use a Java toolchain approach). Assuming that your
JDK version is 17, your published library artifact will declare itself compatible with JDK 17+: org.gradle.jvm.version=17, which is wrong. In this case, you have to use
Java 17 in your main project to add this library, even though the bytecode's version is 1.8. Configure a toolchain to solve this issue.

Gradle
Java
toolchains
support

1008

https://docs.gradle.org/current/userguide/publishing_gradle_module_metadata.html

Gradle 6.7 introduced Java toolchains support. Using this feature, you can:

Use a JDK and a JRE that are different from the ones in Gradle to run compilations, tests, and executables.

Compile and test code with a not-yet-released language version.

With toolchains support, Gradle can autodetect local JDKs and install missing JDKs that Gradle requires for the build. Now Gradle itself can run on any JDK and still
reuse the remote build cache feature for tasks that depend on a major JDK version.

The Kotlin Gradle plugin supports Java toolchains for Kotlin/JVM compilation tasks. JS and Native tasks don't use toolchains. The Kotlin compiler always runs on
the JDK the Gradle daemon is running on. A Java toolchain:

Sets the -jdk-home option available for JVM targets.

Sets the compilerOptions.jvmTarget to the toolchain's JDK version if the user doesn't set the jvmTarget option explicitly. If the user doesn't configure the
toolchain, the jvmTarget field uses the default value. Learn more about JVM target compatibility.

Sets the toolchain to be used by any Java compile, test and javadoc tasks.

Affects which JDK kapt workers are running on.

Use the following code to set a toolchain. Replace the placeholder <MAJOR_JDK_VERSION> with the JDK version you would like to use:

Kotlin

kotlin	{
				jvmToolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))
				}
				//	Or	shorter:
				jvmToolchain(<MAJOR_JDK_VERSION>)
				//	For	example:
				jvmToolchain(17)
}

Groovy

kotlin	{
				jvmToolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))
				}
				//	Or	shorter:
				jvmToolchain(<MAJOR_JDK_VERSION>)
				//	For	example:
				jvmToolchain(17)
}

Note that setting a toolchain via the kotlin extension updates the toolchain for Java compile tasks as well.

You can set a toolchain via the java extension, and Kotlin compilation tasks will use it:

Kotlin

A warning for Android users. To use Gradle toolchain support, use the Android Gradle plugin (AGP) version 8.1.0-alpha09 or higher.

Gradle Java toolchain support is available only from AGP 7.4.0. Nevertheless, because of this issue, AGP did not set targetCompatibility to be equal to
the toolchain's JDK until the version 8.1.0-alpha09. If you use versions less than 8.1.0-alpha09, you need to configure targetCompatibility manually via
compileOptions. Replace the placeholder <MAJOR_JDK_VERSION> with the JDK version you would like to use:

android	{
				compileOptions	{
								sourceCompatibility	=	<MAJOR_JDK_VERSION>
								targetCompatibility	=	<MAJOR_JDK_VERSION>
				}
}

1009

https://issuetracker.google.com/issues/194113162
https://issuetracker.google.com/issues/260059413
https://docs.gradle.org/current/userguide/toolchains.html

java	{
				toolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))	
				}
}

Groovy

java	{
				toolchain	{
								languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))	
				}
}

If you use Gradle 8.0.2 or higher, you also need to add a toolchain resolver plugin. This type of plugin manages which repositories to download a toolchain from. As
an example, add to your settings.gradle(.kts) the following plugin:

Kotlin

plugins	{
		id("org.gradle.toolchains.foojay-resolver-convention")	version("0.5.0")
}

Groovy

plugins	{
		id	'org.gradle.toolchains.foojay-resolver-convention'	version	'0.5.0'
}

Check that the version of foojay-resolver-convention corresponds to your Gradle version on the Gradle site.

To set any JDK (even local) for a specific task, use the Task DSL.

Learn more about Gradle JVM toolchain support in the Kotlin plugin.

Set
JDK
version
with
the
Task
DSL
The Task DSL allows setting any JDK version for any task implementing the UsesKotlinJavaToolchain interface. At the moment, these tasks are KotlinCompile and
KaptTask. If you want Gradle to search for the major JDK version, replace the <MAJOR_JDK_VERSION> placeholder in your build script:

Kotlin

val	service	=	project.extensions.getByType<JavaToolchainService>()
val	customLauncher	=	service.launcherFor	{
				languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))
}
project.tasks.withType<UsesKotlinJavaToolchain>().configureEach	{
				kotlinJavaToolchain.toolchain.use(customLauncher)
}

Groovy

JavaToolchainService	service	=	project.getExtensions().getByType(JavaToolchainService.class)
Provider<JavaLauncher>	customLauncher	=	service.launcherFor	{
				it.languageVersion.set(JavaLanguageVersion.of(<MAJOR_JDK_VERSION>))
}
tasks.withType(UsesKotlinJavaToolchain::class).configureEach	{	task	->
				task.kotlinJavaToolchain.toolchain.use(customLauncher)

To understand which toolchain Gradle uses, run your Gradle build with the log level --info and find a string in the output starting with [KOTLIN] Kotlin
compilation 'jdkHome' argument:. The part after the colon will be the JDK version from the toolchain.

1010

https://docs.gradle.org/current/userguide/toolchains.html#sub:download_repositories
https://docs.gradle.org/current/userguide/toolchains.html#sub:download_repositories
https://docs.gradle.org/current/userguide/logging.html#sec:choosing_a_log_level
https://blog.jetbrains.com/kotlin/2021/11/gradle-jvm-toolchain-support-in-the-kotlin-plugin/

}

Or you can specify the path to your local JDK and replace the placeholder <LOCAL_JDK_VERSION> with this JDK version:

tasks.withType<UsesKotlinJavaToolchain>().configureEach	{
				kotlinJavaToolchain.jdk.use(
								"/path/to/local/jdk",	//	Put	a	path	to	your	JDK
								JavaVersion.<LOCAL_JDK_VERSION>	//	For	example,	JavaVersion.17
)
}

Associate
compiler
tasks
You can associate compilations by setting up such a relationship between them that one compilation uses the compiled outputs of the other. Associating
compilations establishes internal visibility between them.

The Kotlin compiler associates some compilations by default, such as the test and main compilations of each target. If you need to express that one of your custom
compilations is connected to another, create your own associated compilation.

To make the IDE support associated compilations for inferring visibility between source sets, add the following code to your build.gradle(.kts):

Kotlin

val	integrationTestCompilation	=	kotlin.target.compilations.create("integrationTest")	{
				associateWith(kotlin.target.compilations.getByName("main"))
}

Groovy

integrationTestCompilation	{
				kotlin.target.compilations.create("integrationTest")	{
								associateWith(kotlin.target.compilations.getByName("main"))
				}
}

Here, the integrationTest compilation is associated with the main compilation that gives access to internal objects from functional tests.

Configure
with
Java
Modules
(JPMS)
enabled
To make the Kotlin Gradle plugin work with Java Modules, add the following lines to your build script and replace YOUR_MODULE_NAME with a reference to your
JPMS module, for example, org.company.module:

Kotlin

//	Add	the	following	three	lines	if	you	use	a	Gradle	version	less	than	7.0
java	{
				modularity.inferModulePath.set(true)
}

tasks.named("compileJava",	JavaCompile::class.java)	{
				options.compilerArgumentProviders.add(CommandLineArgumentProvider	{
								//	Provide	compiled	Kotlin	classes	to	javac	–	needed	for	Java/Kotlin	mixed	sources	to	work
								listOf("--patch-module",	"YOUR_MODULE_NAME=${sourceSets["main"].output.asPath}")
				})
}

Groovy

//	Add	the	following	three	lines	if	you	use	a	Gradle	version	less	than	7.0
java	{
				modularity.inferModulePath	=	true
}

tasks.named("compileJava",	JavaCompile.class)	{

1011

https://www.oracle.com/corporate/features/understanding-java-9-modules.html

				options.compilerArgumentProviders.add(new	CommandLineArgumentProvider()	{
								@Override
								Iterable<String>	asArguments()	{
												//	Provide	compiled	Kotlin	classes	to	javac	–	needed	for	Java/Kotlin	mixed	sources	to	work
												return	["--patch-module",	"YOUR_MODULE_NAME=${sourceSets["main"].output.asPath}"]
								}
				})
}

Learn more about:

Building modules for the Java Module System

Building applications using the Java Module System

What "module" means in Kotlin

Other
details
Learn more about Kotlin/JVM.

Lazy Kotlin/JVM task creation
Starting from Kotlin 1.8.20, the Kotlin Gradle plugin registers all tasks and doesn't configure them on a dry run.

Non-default location of compile tasks' destinationDirectory
If you override the Kotlin/JVM KotlinJvmCompile/KotlinCompile task's destinationDirectory location, update your build script. You need to explicitly add
sourceSets.main.kotlin.classesDirectories to sourceSets.main.outputs in your JAR file:

tasks.jar(type:	Jar)	{
					from	sourceSets.main.outputs
					from	sourceSets.main.kotlin.classesDirectories
}

Targeting
multiple
platforms
Projects targeting multiple platforms, called multiplatform projects, require the kotlin-multiplatform plugin.

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

Learn more about Kotlin Multiplatform for different platforms and Kotlin Multiplatform for iOS and Android.

Put module-info.java into the src/main/java directory as usual.

For a module, a package name in Kotlin files should be equal to the package name from module-info.java to avoid a "package is empty or does not exist"
build failure.

The kotlin-multiplatform plugin works with Gradle 6.8.3 or later.

1012

https://docs.gradle.org/current/userguide/java_library_plugin.html#sec:java_library_modular
https://docs.gradle.org/current/userguide/application_plugin.html#sec:application_modular
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html

Targeting
Android
It's recommended to use Android Studio for creating Android applications. Learn how to use the Android Gradle plugin.

Targeting
JavaScript
When targeting JavaScript, use the kotlin-multiplatform plugin as well. Learn more about setting up a Kotlin/JS project

Kotlin

plugins	{
				kotlin("multiplatform")	version	"1.9.20"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.multiplatform'	version	'1.9.20'
}

Kotlin
and
Java
sources
for
JavaScript
This plugin only works for Kotlin files, so it is recommended that you keep Kotlin and Java files separate (if the project contains Java files). If you don't store them
separately, specify the source folder in the sourceSets block:

Kotlin

kotlin	{
				sourceSets["main"].apply	{				
								kotlin.srcDir("src/main/myKotlin")	
				}
}

Groovy

kotlin	{
				sourceSets	{
								main.kotlin.srcDirs	+=	'src/main/myKotlin'
				}
}

Triggering
configuration
actions
with
the
KotlinBasePlugin
interface
To trigger some configuration action whenever any Kotlin Gradle plugin (JVM, JS, Multiplatform, Native, and others) is applied, use the KotlinBasePlugin interface
that all Kotlin plugins inherit from:

Kotlin

import	org.jetbrains.kotlin.gradle.plugin.KotlinBasePlugin

//	...

project.plugins.withType<KotlinBasePlugin>()	{
				//	Configure	your	action	here
}

Groovy

import	org.jetbrains.kotlin.gradle.plugin.KotlinBasePlugin

1013

https://developer.android.com/studio/releases/gradle-plugin

//	...

project.plugins.withType(KotlinBasePlugin.class)	{
				//	Configure	your	action	here
}

Configure
dependencies
To add a dependency on a library, set the dependency of the required type (for example, implementation) in the dependencies block of the source sets DSL.

Kotlin

kotlin	{
				sourceSets	{
								val	commonMain	by	getting	{
												dependencies	{
																implementation("com.example:my-library:1.0")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'com.example:my-library:1.0'
												}
								}
				}
}

Alternatively, you can set dependencies at top level.

Dependency
types
Choose the dependency type based on your requirements.

Type Description When to use

api Used both during compilation and at runtime and is exported to library consumers. If any type from a dependency is used in the public API of
the current module, use an api dependency.

implementation Used during compilation and at runtime for the current module, but is not exposed
for compilation of other modules depending on the one with the `implementation`
dependency.

Use for dependencies needed for the internal logic of a
module.

If a module is an endpoint application which is not
published, use implementation dependencies instead of
api dependencies.

compileOnly Used for compilation of the current module and is not available at runtime nor
during compilation of other modules.

Use for APIs which have a third-party implementation
available at runtime.

runtimeOnly Available at runtime but is not visible during compilation of any module.

1014

Dependency
on
the
standard
library
A dependency on the standard library (stdlib) is added automatically to each source set. The version of the standard library used is the same as the version of the
Kotlin Gradle plugin.

For platform-specific source sets, the corresponding platform-specific variant of the library is used, while a common standard library is added to the rest. The Kotlin
Gradle plugin selects the appropriate JVM standard library depending on the compilerOptions.jvmTarget compiler option of your Gradle build script.

If you declare a standard library dependency explicitly (for example, if you need a different version), the Kotlin Gradle plugin won't override it or add a second
standard library.

If you don't need a standard library at all, you can add the following Gradle property to your gradle.properties file:

kotlin.stdlib.default.dependency=false

Versions alignment of transitive dependencies
From Kotlin standard library version 1.9.20, Gradle uses metadata included in the standard library to automatically align transitive kotlin-stdlib-jdk7 and kotlin-stdlib-
jdk8 dependencies.

If you add a dependency for any Kotlin standard library version between 1.8.0 – 1.9.10, for example: implementation("org.jetbrains.kotlin:kotlin-stdlib:1.8.0"), then
the Kotlin Gradle Plugin uses this Kotlin version for transitive kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 dependencies. This avoids class duplication from different
standard library versions. Learn more about merging kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 into kotlin-stdlib. You can disable this behavior with the
kotlin.stdlib.jdk.variants.version.alignment Gradle property in your gradle.properties file:

kotlin.stdlib.jdk.variants.version.alignment=false

Other ways to align versions
If you have issues with version alignment, you can align all versions via the Kotlin BOM. Declare a platform dependency on kotlin-bom in your build script:

Kotlin

implementation(platform("org.jetbrains.kotlin:kotlin-bom:1.9.20"))

Groovy

implementation	platform('org.jetbrains.kotlin:kotlin-bom:1.9.20')

If you don't add a dependency for a standard library version, but you have two different dependencies that transitively bring different old versions of the Kotlin
standard library, then you can explicitly require 1.9.20 versions of these transitive libraries:

Kotlin

dependencies	{
				constraints	{
								add("implementation",	"org.jetbrains.kotlin:kotlin-stdlib-jdk7")	{
												version	{
																require("1.9.20")
												}
								}
								add("implementation",	"org.jetbrains.kotlin:kotlin-stdlib-jdk8")	{
												version	{
																require("1.9.20")
												}
								}
				}
}

Groovy

dependencies	{
				constraints	{

1015

https://docs.gradle.org/current/userguide/platforms.html#sub:bom_import

								add("implementation",	"org.jetbrains.kotlin:kotlin-stdlib-jdk7")	{
												version	{
																require("1.9.20")
												}
								}
								add("implementation",	"org.jetbrains.kotlin:kotlin-stdlib-jdk8")	{
												version	{
																require("1.9.20")
												}
								}
				}
}

If you add a dependency for Kotlin standard library version 1.9.20: implementation("org.jetbrains.kotlin:kotlin-stdlib:1.9.20"), and an old version (earlier than
1.8.0) of the Kotlin Gradle plugin, update the Kotlin Gradle plugin to match the standard library version:

Kotlin

plugins	{
				//	replace	`<...>`	with	the	plugin	name
				kotlin("<...>")	version	"1.9.20"
}

Groovy

plugins	{
				//	replace	`<...>`	with	the	plugin	name
				id	"org.jetbrains.kotlin.<...>"	version	"1.9.20"
}

If you use versions prior to 1.8.0 of kotlin-stdlib-jdk7/kotlin-stdlib-jdk8, for example, implementation("org.jetbrains.kotlin:kotlin-stdlib-
jdk7:SOME_OLD_KOTLIN_VERSION"), and a dependency that transitively brings kotlin-stdlib:1.8+, replace your kotlin-stdlib-
jdk<7/8>:SOME_OLD_KOTLIN_VERSION with kotlin-stdlib-jdk*:1.9.20 or exclude the transitive kotlin-stdlib:1.8+ from the library that brings it:

Kotlin

dependencies	{
				implementation("com.example:lib:1.0")	{
								exclude(group	=	"org.jetbrains.kotlin",	module	=	"kotlin-stdlib")
				}
}

Groovy

dependencies	{
				implementation("com.example:lib:1.0")	{
								exclude	group:	"org.jetbrains.kotlin",	module:	"kotlin-stdlib"
				}
}

Set
dependencies
on
test
libraries
The kotlin.test API is available for testing Kotlin projects on all supported platforms. Add the dependency kotlin-test to the commonTest source set, so that the
Gradle plugin can infer the corresponding test dependencies for each test source set:

kotlin-test-common and kotlin-test-annotations-common for common source sets

kotlin-test-junit for JVM source sets

kotlin-test-js for Kotlin/JS source sets

Kotlin/Native targets do not require additional test dependencies, and the kotlin.test API implementations are built-in.

Kotlin

1016

https://docs.gradle.org/current/userguide/dependency_downgrade_and_exclude.html#sec:excluding-transitive-deps
https://kotlinlang.org/api/latest/kotlin.test/

kotlin	{
				sourceSets	{
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))	//	This	brings	all	the	platform	dependencies	automatically
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonTest	{
												dependencies	{
																implementation	kotlin("test")	//	This	brings	all	the	platform	dependencies	automatically
												}
								}
				}
}

You can use the kotlin-test dependency in any shared or platform-specific source set as well.

For Kotlin/JVM, Gradle uses JUnit 4 by default. Therefore, the kotlin("test") dependency resolves to the variant for JUnit 4, namely kotlin-test-junit.

You can choose JUnit 5 or TestNG by calling useJUnitPlatform() or useTestNG() in the test task of your build script. The following example is for a Kotlin
Multiplatform project:

Kotlin

kotlin	{
				jvm	{
								testRuns["test"].executionTask.configure	{
												useJUnitPlatform()
								}
				}
				sourceSets	{
								val	commonTest	by	getting	{
												dependencies	{
																implementation(kotlin("test"))
												}
								}
				}
}

Groovy

kotlin	{
				jvm	{
								testRuns["test"].executionTask.configure	{
												useJUnitPlatform()
								}
				}
				sourceSets	{
								commonTest	{
												dependencies	{
																implementation	kotlin("test")
												}
								}
				}
}

The following example is for a JVM project:

You can use shorthand for a dependency on a Kotlin module, for example, kotlin("test") for "org.jetbrains.kotlin:kotlin-test".

1017

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html#useJUnitPlatform
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html#useTestNG

Kotlin

dependencies	{
				testImplementation(kotlin("test"))
}

tasks	{
				test	{
								useTestNG()
				}
}

Groovy

dependencies	{
				testImplementation	'org.jetbrains.kotlin:kotlin-test'
}

test	{
				useTestNG()
}

Learn how to test code using JUnit on the JVM.

If you need to use a different JVM test framework, disable automatic testing framework selection by adding the line kotlin.test.infer.jvm.variant=false to the project's
gradle.properties file. After doing this, add the framework as a Gradle dependency.

If you have used a variant of kotlin("test") in your build script explicitly and your project build stopped working with a compatibility conflict, see this issue in the
Compatibility Guide.

Set
a
dependency
on
a
kotlinx
library
If you use a kotlinx library and need a platform-specific dependency, you can use platform-specific variants of libraries with suffixes such as -jvm or -js, for
example, kotlinx-coroutines-core-jvm. You can also use the library's base artifact name instead – kotlinx-coroutines-core.

Kotlin

kotlin	{
				sourceSets	{
								val	jvmMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core-jvm:1.7.3")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								jvmMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core-jvm:1.7.3'
												}
								}
				}
}

If you use a multiplatform library and need to depend on the shared code, set the dependency only once, in the shared source set. Use the library's base artifact
name, such as kotlinx-coroutines-core or ktor-client-core.

Kotlin

kotlin	{
				sourceSets	{

1018

https://github.com/Kotlin/kotlinx.coroutines

								val	commonMain	by	getting	{
												dependencies	{
																implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
												}
								}
				}
}

Groovy

kotlin	{
				sourceSets	{
								commonMain	{
												dependencies	{
																implementation	'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3'
												}
								}
				}
}

Set
dependencies
at
top
level
Alternatively, you can specify the dependencies at top level, using the following pattern for the configuration names: <sourceSetName><DependencyType>. This
can be helpful for some Gradle built-in dependencies, like gradleApi(), localGroovy(), or gradleTestKit(), which are not available in the source sets' dependency DSL.

Kotlin

dependencies	{
				"commonMainImplementation"("com.example:my-library:1.0")
}

Groovy

dependencies	{
				commonMainImplementation	'com.example:my-library:1.0'
}

What's
next?
Learn more about:

Compiler options and how to pass them.

Incremental compilation, caches support, build reports, and the Kotlin daemon.

Gradle basics and specifics.

Support for Gradle plugin variants.

Compiler
options
in
the
Kotlin
Gradle
plugin
Each release of Kotlin includes compilers for the supported targets: JVM, JavaScript, and native binaries for supported platforms.

These compilers are used by:

The IDE, when you click the Compile or Run button for your Kotlin project.

Gradle, when you call gradle build in a console or in the IDE.

Maven, when you call mvn compile or mvn test-compile in a console or in the IDE.

You can also run Kotlin compilers manually from the command line as described in the Working with command-line compiler tutorial.

1019

https://docs.gradle.org/current/userguide/userguide.html

How
to
define
options
Kotlin compilers have a number of options for tailoring the compiling process.

Using a build script, you can specify additional compilation options. Use the compilerOptions property of a Kotlin compilation task for it. For example:

Kotlin

tasks.named("compileKotlin",	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask::class.java)	{
				compilerOptions	{
								freeCompilerArgs.add("-Xexport-kdoc")
				}
}

Groovy

tasks.named('compileKotlin',	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)	{
				compilerOptions	{
								freeCompilerArgs.add("-Xexport-kdoc")
				}
}

Target
the
JVM
JVM compilation tasks are called compileKotlin for production code and compileTestKotlin for test code. The tasks for custom source sets are named according to
their compile<Name>Kotlin patterns.

The names of the tasks in Android Projects contain build variant names and follow the compile<BuildVariant>Kotlin pattern, for example, compileDebugKotlin or
compileReleaseUnitTestKotlin.

For both the JVM and Android projects, it's possible to define options using the project Kotlin extension DSL:

Kotlin

kotlin	{
				compilerOptions	{
								apiVersion.set(org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_0)
				}
}

Groovy

kotlin	{
				compilerOptions	{
								apiVersion	=	org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_0
				}
}

Some important details to be aware of:

The android.kotlinOptions and kotlin.compilerOptions configuration blocks override each other. The last (lowest) block takes effect.

kotlin.compilerOptions configures every Kotlin compilation task in the project.

You can override the configuration applied by kotlin.compilerOptions DSL using the tasks.named<KotlinJvmCompile>("compileKotlin") { } (or
tasks.withType<KotlinJvmCompile>().configureEach { }) approach.

Target
JavaScript
JavaScript compilation tasks are called compileKotlinJs for production code, compileTestKotlinJs for test code, and compile<Name>KotlinJs for custom source
sets.

To configure a single task, use its name:

1020

https://developer.android.com/studio/build/build-variants.html

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

val	compileKotlin:	KotlinCompilationTask<*>	by	tasks

compileKotlin.compilerOptions.suppressWarnings.set(true)

Groovy

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named('compileKotlin',	KotlinCompilationTask)	{
				compilerOptions	{
								suppressWarnings.set(true)
				}
}

Note that with the Gradle Kotlin DSL, you should get the task from the project's tasks first.

Use the Kotlin2JsCompile and KotlinCompileCommon types for JS and common targets, respectively.

For
all
Kotlin
compilation
tasks
It is also possible to configure all of the Kotlin compilation tasks in the project:

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named<KotlinCompilationTask<*>>("compileKotlin").configure	{
				compilerOptions	{	/*...*/	}
}

Groovy

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named('compileKotlin',	KotlinCompilationTask)	{
				compilerOptions	{	/*...*/	}
}

All
compiler
options
Here is a complete list of options for Gradle tasks:

Common
attributes

Name Description Possible values Default value

optIn A property for configuring a list of opt-in compiler

arguments

listOf(/* opt-ins */) emptyList()

progressiveMode Enables the progressive compiler mode true, false false

1021

Attributes
specific
to
JVM

Name Description Possible values Default
value

javaParameters Generate metadata for Java 1.8 reflection on method
parameters

false

jvmTarget Target version of the generated JVM bytecode "1.8", "9", "10", ..., "20", "21". Also, see Types for compiler

options

"1.8"

noJdk Don't automatically include the Java runtime into the
classpath

false

jvmTargetValidationMode Validation of the JVM target compatibility between Kotlin
and Java

A property for tasks of the KotlinCompile type.

WARNING, ERROR, INFO ERROR

Attributes
common
to
JVM,
JS,
and
JS
DCE

Name Description Possible values Default value

allWarningsAsErrors Report an error if there are any warnings false

suppressWarnings Don't generate warnings false

verbose Enable verbose logging output. Works only when the Gradle debug log level enabled false

freeCompilerArgs A list of additional compiler arguments. You can use experimental -X arguments here too. See an example []

Example of additional arguments usage via freeCompilerArgs
Use the attribute freeCompilerArgs to supply additional (including experimental) compiler arguments. You can add a single argument to this attribute or a list of
arguments:

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

val	compileKotlin:	KotlinCompilationTask<*>	by	tasks

//	Single	experimental	argument
compileKotlin.compilerOptions.freeCompilerArgs.add("-Xexport-kdoc")
//	Single	additional	argument,	can	be	a	key-value	pair
compileKotlin.compilerOptions.freeCompilerArgs.add("-Xno-param-assertions")
//	List	of	arguments
compileKotlin.compilerOptions.freeCompilerArgs.addAll(listOf("-Xno-receiver-assertions",	"-Xno-call-assertions"))

We are going to deprecate the attribute freeCompilerArgs in future releases. If you miss some option in the Kotlin Gradle DSL, please, file an issue.

1022

https://docs.gradle.org/current/userguide/logging.html
https://youtrack.jetbrains.com/newissue?project=kt

Groovy

import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask
//	...

tasks.named('compileKotlin',	KotlinCompilationTask)	{
				compilerOptions	{
								//	Single	experimental	argument
								freeCompilerArgs.add("-Xexport-kdoc")
								//	Single	additional	argument,	can	be	a	key-value	pair
								freeCompilerArgs.add("-Xno-param-assertions")
								//	List	of	arguments
								freeCompilerArgs.addAll(["-Xno-receiver-assertions",	"-Xno-call-assertions"])
				}
}

Attributes
common
to
JVM
and
JS

Name Description Possible values Default
value

apiVersion Restrict the use of declarations to those from the
specified version of bundled libraries

"1.4" (DEPRECATED), "1.5" (DEPRECATED), "1.6", "1.7", "1.8", "1.9", "2.0"
(EXPERIMENTAL), "2.1" (EXPERIMENTAL)

languageVersion Provide source compatibility with the specified version
of Kotlin

"1.4" (DEPRECATED), "1.5" (DEPRECATED), "1.6", "1.7", "1.8", "1.9", "2.0"
(EXPERIMENTAL), "2.1" (EXPERIMENTAL)

Example of setting a languageVersion
To set a language version, use the following syntax:

Kotlin

tasks
				.withType<org.jetbrains.kotlin.gradle.tasks.KotlinJvmCompile>()
				.configureEach	{
								compilerOptions
												.languageVersion
												.set(
														org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_0
)
				}

Groovy

tasks
				.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompilationTask.class)
				.configureEach	{
								compilerOptions.languageVersion	=	
																org.jetbrains.kotlin.gradle.dsl.KotlinVersion.KOTLIN_2_0
}

Also, see Types for compiler options.

Attributes
specific
to
JS

Name Description Possible values Default value

1023

friendModulesDisabled Disable internal declaration export false

main Define whether the main function
should be called upon execution

"call", "noCall". Also,
see Types for compiler

options

"call"

metaInfo Generate .meta.js and .kjsm files with
metadata. Use to create a library

true

moduleKind The kind of JS module generated by
the compiler

"umd", "commonjs",
"amd", "plain", "es".
Also, see Types for

compiler options

"umd"

outputFile Destination *.js file for the compilation
result

"
<buildDir>/js/packages/<project.name>/kotlin/<project.name>.js"

sourceMap Generate source map true

sourceMapEmbedSources Embed source files into the source map "never", "always",
"inlining". Also, see
Types for compiler options

sourceMapNamesPolicy Add variable and function names that
you declared in Kotlin code into the
source map. For more information on
the behavior, see our compiler reference.

"simple-names", "fully-
qualified-names", "no".
Also, see Types for

compiler options

"simple-names"

sourceMapPrefix Add the specified prefix to paths in the
source map

target Generate JS files for specific ECMA
version

"v5" "v5"

typedArrays Translate primitive arrays to JS typed
arrays

true

Name Description Possible values Default value

Types
for
compiler
options
Some of the compilerOptions use the new types instead of the String type:

Option Type Example

jvmTarget JvmTarget compilerOptions.jvmTarget.set(JvmTarget.JVM_11)

1024

https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JvmTarget.kt

apiVersion and
languageVersion

KotlinVersion compilerOptions.languageVersion.set(KotlinVersion.KOTLIN_2_0)

main JsMainFunctionExecutionMode compilerOptions.main.set(JsMainFunctionExecutionMode.NO_CALL)

moduleKind JsModuleKind compilerOptions.moduleKind.set(JsModuleKind.MODULE_ES)

sourceMapEmbedSources JsSourceMapEmbedMode compilerOptions.sourceMapEmbedSources.set(JsSourceMapEmbedMode.SOURCE_MAP_SOURCE_CONTENT_INLINING)

sourceMapNamesPolicy JsSourceMapNamesPolicy compilerOptions.sourceMapNamesPolicy.set(JsSourceMapNamesPolicy.SOURCE_MAP_NAMES_POLICY_FQ_NAMES)

Option Type Example

What's
next?
Learn more about:

Incremental compilation, caches support, build reports, and the Kotlin daemon.

Gradle basics and specifics.

Support for Gradle plugin variants.

Compilation
and
caches
in
the
Kotlin
Gradle
plugin
On this page, you can learn about the following topics:

Incremental compilation

Gradle build cache support

Gradle configuration cache support

The Kotlin daemon and how to use it with Gradle

Defining Kotlin compiler execution strategy

Kotlin compiler fallback strategy

Build reports

Incremental
compilation
The Kotlin Gradle plugin supports incremental compilation. Incremental compilation tracks changes to source files between builds so that only the files affected by
these changes are compiled.

Incremental compilation is supported for Kotlin/JVM and Kotlin/JS projects, and is enabled by default.

There are several ways to disable incremental compilation:

Set kotlin.incremental=false for Kotlin/JVM.

Set kotlin.incremental.js=false for Kotlin/JS projects.

Use -Pkotlin.incremental=false or -Pkotlin.incremental.js=false as a command line parameter.

1025

https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/KotlinVersion.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsMainFunctionExecutionMode.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsModuleKind.kt
https://github.com/JetBrains/kotlin/blob/1.8.0/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsSourceMapEmbedMode.kt
https://github.com/JetBrains/kotlin/blob/1.8.20/libraries/tools/kotlin-gradle-compiler-types/src/generated/kotlin/org/jetbrains/kotlin/gradle/dsl/JsSourceMapNamesPolicy.kt
https://docs.gradle.org/current/userguide/userguide.html

The parameter should be added to each subsequent build.

Note: Any build with incremental compilation disabled invalidates incremental caches. The first build is never incremental.

A
new
approach
to
incremental
compilation
The new approach to incremental compilation is available since Kotlin 1.7.0 for the JVM backend in the Gradle build system only. Starting from Kotlin 1.8.20, this is
enabled by default. This approach supports changes made inside dependent non-Kotlin modules, includes an improved compilation avoidance, and is compatible
with the Gradle build cache.

All of these enhancements decrease the number of non-incremental builds, making the overall compilation time faster. You will receive the most benefit if you use
the build cache, or, frequently make changes in non-Kotlin Gradle modules.

To opt out from this new approach, set the following option in your gradle.properties:

kotlin.incremental.useClasspathSnapshot=false

We would appreciate your feedback on this feature in YouTrack.

Learn how the new approach to incremental compilation is implemented under the hood in this blog post.

Precise
backup
of
compilation
tasks'
outputs

Starting with Kotlin 1.8.20, you can enable precise backup, whereby only those classes that Kotlin recompiles in the incremental compilation are backed up. Both
full and precise backups help to run builds incrementally again after compilation errors. A precise backup takes less build time compared to a full backup. A full
backup may take noticeably more build time in large projects or if many tasks are creating backups, especially if a project is located on a slow HDD.

Enable this optimization by adding the kotlin.compiler.preciseCompilationResultsBackup Gradle property to the gradle.properties file:

kotlin.compiler.preciseCompilationResultsBackup=true

Example of using precise backup at JetBrains
In the following charts, you can see examples of using precise backup compared to full backup:

Comparison of full and precise backups

Sometimes problems with incremental compilation become visible several rounds after the failure occurs. Use build reports to track the history of
changes and compilations. This can help you to provide reproducible bug reports.

Precise backup of compilation tasks' outputs is Experimental. We would appreciate your feedback on it in YouTrack.

1026

https://youtrack.jetbrains.com/issue/KT-49682
https://blog.jetbrains.com/kotlin/2022/07/a-new-approach-to-incremental-compilation-in-kotlin/
https://kotl.in/issue/experimental-ic-optimizations

The first and second charts show how using precise backup in a Kotlin project affects building the Kotlin Gradle plugin:

1. After making a small ABI change: adding a new public method to a module that lots of modules depend on.

2. After making a small non-ABI change: adding a private function to a module that no other modules depend on.

The third chart shows how precise backup in the Space project affects building a web frontend after a small non-ABI change: adding a private function to a
Kotlin/JS module that lots of modules depend on.

These measurements were performed on a computer with an Apple M1 Max CPU; different computers will yield slightly different results. The factors affecting
performance include but are not limited to:

How warm the Kotlin daemon and the Gradle daemon are.

How fast or slow the disk is.

The CPU model and how busy it is.

Which modules are affected by the changes and how big these modules are.

Whether the changes are ABI or non-ABI.

Evaluating optimizations with build reports
To estimate the impact of the optimization on your computer for your project and your scenarios, you can use Kotlin build reports. Enable reports in text file format
by adding the following property to your gradle.properties file:

kotlin.build.report.output=file

Here is an example of a relevant part of the report before enabling precise backup:

Task ':kotlin-gradle-plugin:compileCommonKotlin' finished in 0.59 s <...> Time metrics: Total Gradle task time: 0.59 s Task action before worker execution: 0.24 s
Backup output: 0.22 s // Pay attention to this number <...>

And here is an example of a relevant part of the report after enabling precise backup:

Task ':kotlin-gradle-plugin:compileCommonKotlin' finished in 0.46 s <...> Time metrics: Total Gradle task time: 0.46 s Task action before worker execution: 0.07 s
Backup output: 0.05 s // The time has reduced Run compilation in Gradle worker: 0.32 s Clear jar cache: 0.00 s Precise backup output: 0.00 s // Related to precise
backup Cleaning up the backup stash: 0.00 s // Related to precise backup <...>

Gradle
build
cache
support
The Kotlin plugin uses the Gradle build cache, which stores the build outputs for reuse in future builds.

To disable caching for all Kotlin tasks, set the system property kotlin.caching.enabled to false (run the build with the argument -Dkotlin.caching.enabled=false).

Gradle
configuration
cache
support
The Kotlin plugin uses the Gradle configuration cache, which speeds up the build process by reusing the results of the configuration phase for subsequent builds.

See the Gradle documentation to learn how to enable the configuration cache. After you enable this feature, the Kotlin Gradle plugin automatically starts using it.

The
Kotlin
daemon
and
how
to
use
it
with
Gradle
The Kotlin daemon:

Runs with the Gradle daemon to compile the project.

Runs separately from the Gradle daemon when you compile the project with an IntelliJ IDEA built-in build system.

The Kotlin daemon starts at the Gradle execution stage when one of the Kotlin compile tasks starts to compile sources. The Kotlin daemon stops either with the
Gradle daemon or after two idle hours with no Kotlin compilation.

The Kotlin daemon uses the same JDK that the Gradle daemon does.

1027

https://en.wikipedia.org/wiki/Application_binary_interface
https://www.jetbrains.com/space/
https://docs.gradle.org/current/userguide/gradle_daemon.html
https://docs.gradle.org/current/userguide/build_cache.html
https://docs.gradle.org/current/userguide/configuration_cache.html
https://docs.gradle.org/current/userguide/configuration_cache.html#config_cache:usage
https://docs.gradle.org/current/userguide/build_lifecycle.html#sec:build_phases

Setting
Kotlin
daemon's
JVM
arguments
Each of the following ways to set arguments overrides the ones that came before it:

Gradle daemon arguments inheritance

kotlin.daemon.jvm.options system property

kotlin.daemon.jvmargs property

kotlin extension

Specific task definition

Gradle daemon arguments inheritance
If nothing is specified, the Kotlin daemon inherits arguments from the Gradle daemon. For example, in the gradle.properties file:

org.gradle.jvmargs=-Xmx1500m	-Xms=500m

kotlin.daemon.jvm.options system property
If the Gradle daemon's JVM arguments have the kotlin.daemon.jvm.options system property – use it in the gradle.properties file:

org.gradle.jvmargs=-Dkotlin.daemon.jvm.options=-Xmx1500m,Xms=500m

When passing arguments, follow these rules:

Use the minus sign - only before the arguments Xmx, XX:MaxMetaspaceSize, and XX:ReservedCodeCacheSize.

Separate arguments with commas (,) without spaces. Arguments that come after a space will be used for the Gradle daemon, not for the Kotlin daemon.

kotlin.daemon.jvmargs property
You can add the kotlin.daemon.jvmargs property in the gradle.properties file:

kotlin.daemon.jvmargs=-Xmx1500m	-Xms=500m

kotlin extension
You can specify arguments in the kotlin extension:

Kotlin

kotlin	{
				kotlinDaemonJvmArgs	=	listOf("-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC")
}

Groovy

kotlin	{
				kotlinDaemonJvmArgs	=	["-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC"]
}

Gradle ignores these properties if all the following conditions are satisfied:

Gradle is using JDK 1.9 or higher.

The version of Gradle is between 7.0 and 7.1.1 inclusively.

Gradle is compiling Kotlin DSL scripts.

The Kotlin daemon isn't running.

To overcome this, upgrade Gradle to the version 7.2 (or higher) or use the kotlin.daemon.jvmargs property – see the following section.

1028

Specific task definition
You can specify arguments for a specific task:

Kotlin

tasks.withType<CompileUsingKotlinDaemon>().configureEach	{
				kotlinDaemonJvmArguments.set(listOf("-Xmx486m",	"-Xms256m",	"-XX:+UseParallelGC"))
}

Groovy

tasks.withType(CompileUsingKotlinDaemon::class).configureEach	{	task	->
				task.kotlinDaemonJvmArguments.set(["-Xmx1g",	"-Xms512m"])
}

Kotlin
daemon's
behavior
with
JVM
arguments
When configuring the Kotlin daemon's JVM arguments, note that:

It is expected to have multiple instances of the Kotlin daemon running at the same time when different subprojects or tasks have different sets of JVM
arguments.

A new Kotlin daemon instance starts only when Gradle runs a related compilation task and existing Kotlin daemons do not have the same set of JVM arguments.
Imagine that your project has a lot of subprojects. Most of them require some heap memory for a Kotlin daemon, but one module requires a lot (though it is
rarely compiled). In this case, you should provide a different set of JVM arguments for such a module, so a Kotlin daemon with a larger heap size would start
only for developers who touch this specific module.

If the Xmx argument is not specified, the Kotlin daemon will inherit it from the Gradle daemon.

The
new
Kotlin
compiler
The new Kotlin K2 compiler is in Alpha. It has basic support for Kotlin JVM, JS, and Native projects.

The new compiler aims to speed up the development of new language features, unify all of the platforms Kotlin supports, bring performance improvements, and
provide an API for compiler extensions.

The K2 compiler will become the default starting with Kotlin 2.0. To try it in your projects now and check the performance, use the kotlin.experimental.tryK2=true
Gradle property or run the following command:

./gradlew	assemble	-Pkotlin.experimental.tryK2=true

This Gradle property automatically sets the default language version to 2.0 and updates the build report with the number of Kotlin tasks compiled using the K2
compiler compared to the current compiler.

Learn more about the stabilization of the K2 compiler in our Kotlin blog

Defining
Kotlin
compiler
execution
strategy
Kotlin compiler execution strategy defines where the Kotlin compiler is executed and if incremental compilation is supported in each case.

In this case a new Kotlin daemon instance can start on task execution. Learn more about Kotlin daemon's behavior with JVM arguments.

If you are already running a Kotlin daemon that has enough heap size to handle the compilation request, even if other requested JVM arguments are
different, this daemon will be reused instead of starting a new one.

1029

https://blog.jetbrains.com/kotlin/2023/02/k2-kotlin-2-0/

There are three compiler execution strategies:

Strategy Where Kotlin compiler
is executed

Incremental
compilation

Other characteristics and notes

Daemon Inside its own
daemon process

Yes The default and fastest strategy. Can be shared between different Gradle daemons and multiple parallel
compilations.

In
process

Inside the Gradle
daemon process

No May share the heap with the Gradle daemon. The "In process" execution strategy is slower than the "Daemon"
execution strategy. Each worker creates a separate Kotlin compiler classloader for each compilation.

Out of
process

In a separate process
for each compilation

No The slowest execution strategy. Similar to the "In process", but additionally creates a separate Java process
within a Gradle worker for each compilation.

To define a Kotlin compiler execution strategy, you can use one of the following properties:

The kotlin.compiler.execution.strategy Gradle property.

The compilerExecutionStrategy compile task property.

The task property compilerExecutionStrategy takes priority over the Gradle property kotlin.compiler.execution.strategy.

The available values for the kotlin.compiler.execution.strategy property are:

1. daemon (default)

2. in-process

3. out-of-process

Use the Gradle property kotlin.compiler.execution.strategy in gradle.properties:

kotlin.compiler.execution.strategy=out-of-process

The available values for the compilerExecutionStrategy task property are:

1. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.DAEMON (default)

2. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.IN_PROCESS

3. org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy.OUT_OF_PROCESS

Use the task property compilerExecutionStrategy in your build scripts:

Kotlin

import	org.jetbrains.kotlin.gradle.tasks.CompileUsingKotlinDaemon
import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy

//	...

tasks.withType<CompileUsingKotlinDaemon>().configureEach	{
				compilerExecutionStrategy.set(KotlinCompilerExecutionStrategy.IN_PROCESS)
}	

Groovy

import	org.jetbrains.kotlin.gradle.tasks.CompileUsingKotlinDaemon
import	org.jetbrains.kotlin.gradle.tasks.KotlinCompilerExecutionStrategy

//	...

tasks.withType(CompileUsingKotlinDaemon)

1030

https://docs.gradle.org/current/userguide/worker_api.html

				.configureEach	{
								compilerExecutionStrategy.set(KotlinCompilerExecutionStrategy.IN_PROCESS)
				}

Kotlin
compiler
fallback
strategy
The Kotlin compiler's fallback strategy is to run a compilation outside a Kotlin daemon if the daemon somehow fails. If the Gradle daemon is on, the compiler uses
the "In process" strategy. If the Gradle daemon is off, the compiler uses the "Out of process" strategy.

When this fallback happens, you have the following warning lines in your Gradle's build output:

Failed	to	compile	with	Kotlin	daemon:	java.lang.RuntimeException:	Could	not	connect	to	Kotlin	compile	daemon
[exception	stacktrace]
Using	fallback	strategy:	Compile	without	Kotlin	daemon
Try	./gradlew	--stop	if	this	issue	persists.

However, a silent fallback to another strategy can consume a lot of system resources or lead to non-deterministic builds. Read more about this in this YouTrack
issue. To avoid this, there is a Gradle property kotlin.daemon.useFallbackStrategy, whose default value is true. When the value is false, builds fail on problems with
the daemon's startup or communication. Declare this property in gradle.properties:

kotlin.daemon.useFallbackStrategy=false

There is also a useDaemonFallbackStrategy property in Kotlin compile tasks, which takes priority over the Gradle property if you use both.

Kotlin

tasks	{
				compileKotlin	{
								useDaemonFallbackStrategy.set(false)
				}			
}

Groovy

tasks.named("compileKotlin").configure	{
				useDaemonFallbackStrategy	=	false
}

If there is insufficient memory to run the compilation, you can see a message about it in the logs.

Build
reports

Build reports contain the durations of different compilation phases and any reasons why compilation couldn't be incremental. Use build reports to investigate
performance issues when the compilation time is too long or when it differs for the same project.

Kotlin build reports help you to investigate problems with build performance more efficiently than with Gradle build scans that have a single Gradle task as the unit
of granularity.

There are two common cases that analyzing build reports for long-running compilations can help you resolve:

The build wasn't incremental. Analyze the reasons and fix underlying problems.

The build was incremental but took too much time. Try reorganizing source files — split big files, save separate classes in different files, refactor large classes,
declare top-level functions in different files, and so on.

Build reports also show the Kotlin version used in the project. In addition, starting with Kotlin 1.9.0, you can see whether the current or the K2 compiler was used to

Build reports are Experimental. They may be dropped or changed at any time. Opt-in is required (see details below). Use them only for evaluation
purposes. We appreciate your feedback on them in YouTrack.

1031

https://youtrack.jetbrains.com/issue/KT-48843/Add-ability-to-disable-Kotlin-daemon-fallback-strategy
https://youtrack.jetbrains.com/issues/KT
https://scans.gradle.com/

compile the code in your Gradle build scans.

Learn how to read build reports and about how JetBrains uses build reports.

Enabling
build
reports
To enable build reports, declare where to save the build report output in gradle.properties:

kotlin.build.report.output=file

The following values and their combinations are available for the output:

Option Description

file Saves build reports in a human-readable format to a local file. By default, it's ${project_folder}/build/reports/kotlin-build/${project_name}-
timestamp.txt

single_file Saves build reports in a format of an object to a specified local file

build_scan Saves build reports in the custom values section of the build scan. Note that the Gradle Enterprise plugin limits the number of custom values and
their length. In big projects, some values could be lost

http Posts build reports using HTTP(S). The POST method sends metrics in JSON format. You can see the current version of the sent data in the Kotlin

repository. You can find samples of HTTP endpoints in this blog post

Here's a list of available options for kotlin.build.report:

#	Required	outputs.	Any	combination	is	allowed
kotlin.build.report.output=file,single_file,http,build_scan

#	Mandatory	if	single_file	output	is	used.	Where	to	put	reports	
#	Use	instead	of	the	deprecated	`kotlin.internal.single.build.metrics.file`	property
kotlin.build.report.single_file=some_filename

#	Optional.	Output	directory	for	file-based	reports.	Default:	build/reports/kotlin-build/
kotlin.build.report.file.output_dir=kotlin-reports

#	Optional.	Label	for	marking	your	build	report	(for	example,	debug	parameters)
kotlin.build.report.label=some_label

Options, applicable only to HTTP:

#	Mandatory.	Where	to	post	HTTP(S)-based	reports
kotlin.build.report.http.url=http://127.0.0.1:8080

#	Optional.	User	and	password	if	the	HTTP	endpoint	requires	authentication
kotlin.build.report.http.user=someUser
kotlin.build.report.http.password=somePassword

#	Optional.	Add	a	Git	branch	name	of	a	build	to	a	build	report
kotlin.build.report.http.include_git_branch.name=true|false

#	Optional.	Add	compiler	arguments	to	a	build	report
#	If	a	project	contains	many	modules,	its	compiler	arguments	in	the	report	can	be	very	heavy	and	not	that	helpful
kotlin.build.report.include_compiler_arguments=true|false

Limit
of
custom
values
To collect build scans' statistics, Kotlin build reports use Gradle's custom values. Both you and different Gradle plugins can write data to custom values. The
number of custom values has a limit. See the current maximum custom value count in the Build scan plugin docs.

1032

https://scans.gradle.com/
https://blog.jetbrains.com/kotlin/2022/06/introducing-kotlin-build-reports/#how_to_read_build_reports
https://blog.jetbrains.com/kotlin/2022/06/introducing-kotlin-build-reports/#how_we_use_build_reports_in_jetbrains
https://scans.gradle.com/
https://github.com/JetBrains/kotlin/blob/master/libraries/tools/kotlin-gradle-plugin/src/common/kotlin/org/jetbrains/kotlin/gradle/plugin/statistics/CompileStatisticsData.kt
https://blog.jetbrains.com/kotlin/2022/06/introducing-kotlin-build-reports/#enable_build_reports
https://docs.gradle.com/enterprise/tutorials/extending-build-scans/
https://docs.gradle.com/enterprise/gradle-plugin/#adding_custom_values

If you have a big project, a number of such custom values may be quite big. If this number exceeds the limit, you can see the following message in the logs:

Maximum	number	of	custom	values	(1,000)	exceeded

To reduce the number of custom values the Kotlin plugin produces, you can use the following property in gradle.properties:

kotlin.build.report.build_scan.custom_values_limit=500

Switching
off
collecting
project
and
system
properties
HTTP build statistic logs can contain some project and system properties. These properties can change builds' behavior, so it's useful to log them in build statistics.
These properties can store sensitive data, for example, passwords or a project's full path.

You can disable collection of these statistics by adding the kotlin.build.report.http.verbose_environment property to your gradle.properties.

What's
next?
Learn more about:

Gradle basics and specifics.

Support for Gradle plugin variants.

Support
for
Gradle
plugin
variants
Gradle 7.0 introduced a new feature for Gradle plugin authors — plugins with variants. This feature makes it easier to add support for latest Gradle features while
maintaining compatibility with older Gradle versions. Learn more about variant selection in Gradle.

With Gradle plugin variants, the Kotlin team can ship different Kotlin Gradle plugin (KGP) variants for different Gradle versions. The goal is to support the base Kotlin
compilation in the main variant, which corresponds to the oldest supported versions of Gradle. Each variant will have implementations for Gradle features from a
corresponding release. The latest variant will support the latest Gradle feature set. With this approach, it is possible to extend support for older Gradle versions with
limited functionality.

Currently, there are the following variants of the Kotlin Gradle plugin:

Variant's name Corresponding Gradle versions

main 6.8.3–6.9.3

gradle70 7.0

gradle71 7.1-7.4

gradle75 7.5

gradle76 7.6

gradle80 8.0

JetBrains doesn't collect these statistics. You choose a place where to store your reports.

1033

https://docs.gradle.org/current/userguide/userguide.html
https://docs.gradle.org/7.0/userguide/implementing_gradle_plugins.html#plugin-with-variants
https://docs.gradle.org/current/userguide/variant_model.html

gradle81 8.1.1 and higher

Variant's name Corresponding Gradle versions

In future Kotlin releases, more variants will be added.

To check which variant your build uses, enable the --info log level and find a string in the output starting with Using Kotlin Gradle plugin, for example, Using Kotlin
Gradle plugin main variant.

Troubleshooting

Gradle
can't
select
a
KGP
variant
in
a
custom
configuration
This is an expected situation that Gradle can't select a KGP variant in a custom configuration. If you use a custom Gradle configuration:

Kotlin

configurations.register("customConfiguration")	{
				//	...
}

Groovy

configurations.register("customConfiguration")	{
				//	...
}

And want to add a dependency on the Kotlin Gradle plugin, for example:

Kotlin

dependencies	{
				customConfiguration("org.jetbrains.kotlin:kotlin-gradle-plugin:1.9.20")
}

Groovy

dependencies	{
				customConfiguration	'org.jetbrains.kotlin:kotlin-gradle-plugin:1.9.20'
}

You need to add the following attributes to your customConfiguration:

Kotlin

configurations	{
				customConfiguration	{
								attributes	{
												attribute(

Here are workarounds for some known issues with variant selection in Gradle:

ResolutionStrategy in pluginManagement is not working for plugins with multivariants

Plugin variants are ignored when a plugin is added as the buildSrc common dependency

1034

https://docs.gradle.org/current/userguide/logging.html#sec:choosing_a_log_level
https://github.com/gradle/gradle/issues/20545
https://github.com/gradle/gradle/issues/20847

																Usage.USAGE_ATTRIBUTE,
																project.objects.named(Usage.class,	Usage.JAVA_RUNTIME)
)
												attribute(
																Category.CATEGORY_ATTRIBUTE,
																project.objects.named(Category.class,	Category.LIBRARY)
)
												//	If	you	want	to	depend	on	a	specific	KGP	variant:
												attribute(
																GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
																project.objects.named("7.0")
)
								}
				}
}

Groovy

configurations	{
				customConfiguration	{
								attributes	{
												attribute(
																Usage.USAGE_ATTRIBUTE,
																project.objects.named(Usage,	Usage.JAVA_RUNTIME)
)
												attribute(
																Category.CATEGORY_ATTRIBUTE,
																project.objects.named(Category,	Category.LIBRARY)
)
												//	If	you	want	to	depend	on	a	specific	KGP	variant:
												attribute(
																GradlePluginApiVersion.GRADLE_PLUGIN_API_VERSION_ATTRIBUTE,
																project.objects.named('7.0')
)
								}
				}
}

Otherwise, you will receive an error similar to this:

>	Could	not	resolve	all	files	for	configuration	':customConfiguration'.
					>	Could	not	resolve	org.jetbrains.kotlin:kotlin-gradle-plugin:1.7.0.
							Required	by:
											project	:
								>	Cannot	choose	between	the	following	variants	of	org.jetbrains.kotlin:kotlin-gradle-plugin:1.7.0:
												-	gradle70RuntimeElements
												-	runtimeElements
										All	of	them	match	the	consumer	attributes:
												-	Variant	'gradle70RuntimeElements'	capability	org.jetbrains.kotlin:kotlin-gradle-plugin:1.7.0:
																-	Unmatched	attributes:

What's
next?
Learn more about Gradle basics and specifics.

Maven
Maven is a build system that you can use to build and manage any Java-based project.

Configure
plugin
and
versions
The kotlin-maven-plugin compiles Kotlin sources and modules. Currently, only Maven v3 is supported.

Define the version of Kotlin you want to use via the kotlin.version property:

<properties>
				<kotlin.version>1.9.20</kotlin.version>

1035

https://docs.gradle.org/current/userguide/userguide.html

</properties>

Use
JDK
17
To use JDK 17, in your .mvn/jvm.config file, add:

--add-opens=java.base/java.lang=ALL-UNNAMED
--add-opens=java.base/java.io=ALL-UNNAMED

Set
dependencies
Kotlin has an extensive standard library that can be used in your applications. To use the standard library in your project, add the following dependency to your
pom.xml file:

<dependencies>
				<dependency>
								<groupId>org.jetbrains.kotlin</groupId>
								<artifactId>kotlin-stdlib</artifactId>
								<version>${kotlin.version}</version>
				</dependency>
</dependencies>

If your project uses Kotlin reflection or testing facilities, you need to add the corresponding dependencies as well. The artifact IDs are kotlin-reflect for the reflection
library, and kotlin-test and kotlin-test-junit for the testing libraries.

Compile
Kotlin-only
source
code
To compile source code, specify the source directories in the <build> tag:

<build>
				<sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirectory>
				<testSourceDirectory>${project.basedir}/src/test/kotlin</testSourceDirectory>
</build>

The Kotlin Maven Plugin needs to be referenced to compile the sources:

<build>
				<plugins>
								<plugin>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-plugin</artifactId>
												<version>${kotlin.version}</version>

												<executions>
																<execution>
																				<id>compile</id>
																				<goals>
																								<goal>compile</goal>
																				</goals>
																</execution>

																<execution>
																				<id>test-compile</id>
																				<goals>
																								<goal>test-compile</goal>
																				</goals>
																</execution>

If you're targeting JDK 7 or 8 with Kotlin versions older than:

1.8, use kotlin-stdlib-jdk7 or kotlin-stdlib-jdk8, respectively.

1.2, use kotlin-stdlib-jre7 or kotlin-stdlib-jre8, respectively.

1036

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect.full/index.html

												</executions>
								</plugin>
				</plugins>
</build>

Starting from Kotlin 1.8.20, you can replace the whole <executions> element above with <extensions>true</extensions>. Enabling extensions automatically adds
the compile, test-compile, kapt, and test-kapt executions to your build, bound to their appropriate lifecycle phases. If you need to configure an execution, you need
to specify its ID. You can find an example of this in the next section.

Compile
Kotlin
and
Java
sources
To compile projects that include Kotlin and Java source code, invoke the Kotlin compiler before the Java compiler. In Maven terms it means that kotlin-maven-
plugin should be run before maven-compiler-plugin using the following method, making sure that the kotlin plugin comes before the maven-compiler-plugin in your
pom.xml file:

<build>
				<plugins>
								<plugin>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-plugin</artifactId>
												<version>${kotlin.version}</version>
												<extensions>true</extensions>	<!--	You	can	set	this	option	
												to	automatically	take	information	about	lifecycles	-->
												<executions>
																<execution>
																				<id>compile</id>
																				<goals>
																								<goal>compile</goal>	<!--	You	can	skip	the	<goals>	element	
																								if	you	enable	extensions	for	the	plugin	-->
																				</goals>
																				<configuration>
																								<sourceDirs>
																												<sourceDir>${project.basedir}/src/main/kotlin</sourceDir>
																												<sourceDir>${project.basedir}/src/main/java</sourceDir>
																								</sourceDirs>
																				</configuration>
																</execution>
																<execution>
																				<id>test-compile</id>
																				<goals>	
																								<goal>test-compile</goal>	<!--	You	can	skip	the	<goals>	element	
																				if	you	enable	extensions	for	the	plugin	-->
																				</goals>
																				<configuration>
																								<sourceDirs>
																												<sourceDir>${project.basedir}/src/test/kotlin</sourceDir>
																												<sourceDir>${project.basedir}/src/test/java</sourceDir>
																								</sourceDirs>
																				</configuration>
																</execution>
												</executions>
								</plugin>
								<plugin>
												<groupId>org.apache.maven.plugins</groupId>
												<artifactId>maven-compiler-plugin</artifactId>
												<version>3.5.1</version>
												<executions>
																<!--	Replacing	default-compile	as	it	is	treated	specially	by	Maven	-->
																<execution>
																				<id>default-compile</id>
																				<phase>none</phase>
																</execution>
																<!--	Replacing	default-testCompile	as	it	is	treated	specially	by	Maven	-->
																<execution>
																				<id>default-testCompile</id>
																				<phase>none</phase>
																</execution>
																<execution>
																				<id>java-compile</id>
																				<phase>compile</phase>
																				<goals>

If several build plugins overwrite the default lifecycle and you have also enabled the extensions option, the last plugin in the <build> section has priority in
terms of lifecycle settings. All earlier changes to lifecycle settings are ignored.

1037

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

																								<goal>compile</goal>
																				</goals>
																</execution>
																<execution>
																				<id>java-test-compile</id>
																				<phase>test-compile</phase>
																				<goals>
																								<goal>testCompile</goal>
																				</goals>
																</execution>
												</executions>
								</plugin>
				</plugins>
</build>

Enable
incremental
compilation
To make your builds faster, you can enable incremental compilation by adding the kotlin.compiler.incremental property:

<properties>
				<kotlin.compiler.incremental>true</kotlin.compiler.incremental>
</properties>

Alternatively, run your build with the -Dkotlin.compiler.incremental=true option.

Configure
annotation
processing
See kapt – Using in Maven.

Create
JAR
file
To create a small JAR file containing just the code from your module, include the following under build->plugins in your Maven pom.xml file, where main.class is
defined as a property and points to the main Kotlin or Java class:

<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-jar-plugin</artifactId>
				<version>2.6</version>
				<configuration>
								<archive>
												<manifest>
																<addClasspath>true</addClasspath>
																<mainClass>${main.class}</mainClass>
												</manifest>
								</archive>
				</configuration>
</plugin>

Create
self-contained
JAR
file
To create a self-contained JAR file containing the code from your module along with its dependencies, include the following under build->plugins in your Maven
pom.xml file, where main.class is defined as a property and points to the main Kotlin or Java class:

<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-assembly-plugin</artifactId>
				<version>2.6</version>
				<executions>
								<execution>
												<id>make-assembly</id>
												<phase>package</phase>
												<goals>	<goal>single</goal>	</goals>
												<configuration>
																<archive>
																				<manifest>
																								<mainClass>${main.class}</mainClass>

1038

																				</manifest>
																</archive>
																<descriptorRefs>
																				<descriptorRef>jar-with-dependencies</descriptorRef>
																</descriptorRefs>
												</configuration>
								</execution>
				</executions>
</plugin>

This self-contained JAR file can be passed directly to a JRE to run your application:

java	-jar	target/mymodule-0.0.1-SNAPSHOT-jar-with-dependencies.jar

Specify
compiler
options
Additional options and arguments for the compiler can be specified as tags under the <configuration> element of the Maven plugin node:

<plugin>
				<groupId>org.jetbrains.kotlin</groupId>
				<artifactId>kotlin-maven-plugin</artifactId>
				<version>${kotlin.version}</version>
				<extensions>true</extensions>	<!--	If	you	want	to	enable	automatic	addition	of	executions	to	your	build	-->
				<executions>...</executions>
				<configuration>
								<nowarn>true</nowarn>		<!--	Disable	warnings	-->
								<args>
												<arg>-Xjsr305=strict</arg>	<!--	Enable	strict	mode	for	JSR-305	annotations	-->
												...
								</args>
				</configuration>
</plugin>

Many of the options can also be configured through properties:

<project	...>
				<properties>
								<kotlin.compiler.languageVersion>1.9</kotlin.compiler.languageVersion>
				</properties>
</project>

The following attributes are supported:

Attributes
common
to
JVM
and
JS

Name Property name Description Possible values Default value

nowarn Generate no warnings true, false false

languageVersion kotlin.compiler.languageVersion Provide source compatibility with the
specified version of Kotlin

"1.3" (DEPRECATED), "1.4" (DEPRECATED), "1.5",
"1.6", "1.7", "1.8", "1.9" (EXPERIMENTAL)

apiVersion kotlin.compiler.apiVersion Allow using declarations only from the
specified version of bundled libraries

"1.3" (DEPRECATED), "1.4" (DEPRECATED), "1.5",
"1.6", "1.7", "1.8", "1.9" (EXPERIMENTAL)

sourceDirs The directories containing the source
files to compile

The project
source roots

1039

compilerPlugins Enabled compiler plugins []

pluginOptions Options for compiler plugins []

args Additional compiler arguments []

Name Property name Description Possible values Default value

Attributes
specific
to
JVM

Name Property name Description Possible values Default
value

jvmTarget kotlin.compiler.jvmTarget Target version of the generated JVM bytecode "1.8", "9", "10", ...,
"21"

"1.8"

jdkHome kotlin.compiler.jdkHome Include a custom JDK from the specified location into the classpath instead of the
default JAVA_HOME

Attributes
specific
to
JS

Name Property
name

Description Possible values Default
value

outputFile Destination *.js file for the compilation result

metaInfo Generate .meta.js and .kjsm files with metadata. Use to create a
library

true, false true

sourceMap Generate source map true, false false

sourceMapEmbedSources Embed source files into source map "never", "always", "inlining" "inlining"

sourceMapPrefix Add the specified prefix to paths in the source map

moduleKind The kind of JS module generated by the compiler "umd", "commonjs", "amd",
"plain"

"umd"

Use
BOM
To use a Kotlin Bill of Materials (BOM), write a dependency on kotlin-bom:

<dependencyManagement>

1040

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#bill-of-materials-bom-poms
https://mvnrepository.com/artifact/org.jetbrains.kotlin/kotlin-bom

		<dependencies>		
				<dependency>
						<groupId>org.jetbrains.kotlin</groupId>
						<artifactId>kotlin-bom</artifactId>
						<version>1.9.20</version>
						<type>pom</type>
						<scope>import</scope>
				</dependency>
		</dependencies>
</dependencyManagement>

Generate
documentation
The standard Javadoc generation plugin (maven-javadoc-plugin) doesn't support Kotlin code. To generate documentation for Kotlin projects, use Dokka. Dokka
supports mixed-language projects and can generate output in multiple formats, including standard Javadoc. For more information about how to configure Dokka in
your Maven project, see Maven.

Enable
OSGi
support
Learn how to enable OSGi support in your Maven project.

Ant

Getting
the
Ant
tasks
Kotlin provides three tasks for Ant:

kotlinc: Kotlin compiler targeting the JVM

kotlin2js: Kotlin compiler targeting JavaScript

withKotlin: Task to compile Kotlin files when using the standard javac Ant task

These tasks are defined in the kotlin-ant.jar library which is located in the lib folder in the Kotlin Compiler archive. Ant version 1.8.2+ is required.

Targeting
JVM
with
Kotlin-only
source
When the project consists of exclusively Kotlin source code, the easiest way to compile the project is to use the kotlinc task:

<project	name="Ant	Task	Test"	default="build">
				<typedef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<kotlinc	src="hello.kt"	output="hello.jar"/>
				</target>
</project>

where ${kotlin.lib} points to the folder where the Kotlin standalone compiler was unzipped.

Targeting
JVM
with
Kotlin-only
source
and
multiple
roots
If a project consists of multiple source roots, use src as elements to define paths:

<project	name="Ant	Task	Test"	default="build">
				<typedef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<kotlinc	output="hello.jar">
												<src	path="root1"/>
												<src	path="root2"/>
								</kotlinc>

1041

https://github.com/Kotlin/dokka
https://github.com/JetBrains/kotlin/releases/tag/v1.9.20

				</target>
</project>

Targeting
JVM
with
Kotlin
and
Java
source
If a project consists of both Kotlin and Java source code, while it is possible to use kotlinc, to avoid repetition of task parameters, it is recommended to use
withKotlin task:

<project	name="Ant	Task	Test"	default="build">
				<typedef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<delete	dir="classes"	failonerror="false"/>
								<mkdir	dir="classes"/>
								<javac	destdir="classes"	includeAntRuntime="false"	srcdir="src">
												<withKotlin/>
								</javac>
								<jar	destfile="hello.jar">
												<fileset	dir="classes"/>
								</jar>
				</target>
</project>

You can also specify the name of the module being compiled as the moduleName attribute:

<withKotlin	moduleName="myModule"/>

Targeting
JavaScript
with
single
source
folder

<project	name="Ant	Task	Test"	default="build">
				<typedef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<kotlin2js	src="root1"	output="out.js"/>
				</target>
</project>

Targeting
JavaScript
with
Prefix,
PostFix
and
sourcemap
options

<project	name="Ant	Task	Test"	default="build">
				<taskdef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<kotlin2js	src="root1"	output="out.js"	outputPrefix="prefix"	outputPostfix="postfix"	sourcemap="true"/>
				</target>
</project>

Targeting
JavaScript
with
single
source
folder
and
metaInfo
option
The metaInfo option is useful, if you want to distribute the result of translation as a Kotlin/JavaScript library. If metaInfo was set to true, then during compilation
additional JS file with binary metadata will be created. This file should be distributed together with the result of translation:

<project	name="Ant	Task	Test"	default="build">
				<typedef	resource="org/jetbrains/kotlin/ant/antlib.xml"	classpath="${kotlin.lib}/kotlin-ant.jar"/>

				<target	name="build">
								<!--	out.meta.js	will	be	created,	which	contains	binary	metadata	-->
								<kotlin2js	src="root1"	output="out.js"	metaInfo="true"/>
				</target>
</project>

1042

References
Complete list of elements and attributes are listed below:

Attributes
common
for
kotlinc
and
kotlin2js

Name Description Required Default Value

src Kotlin source file or directory to compile Yes

nowarn Suppresses all compilation warnings No false

noStdlib Does not include the Kotlin standard library into the classpath No false

failOnError Fails the build if errors are detected during the compilation No true

kotlinc
attributes

Name Description Required Default Value

output Destination directory or .jar file name Yes

classpath Compilation class path No

classpathref Compilation class path reference No

includeRuntime If output is a .jar file, whether Kotlin runtime library is included in the jar No true

moduleName Name of the module being compiled No The name of the target (if specified) or the project

kotlin2js
attributes

Name Description Required

output Destination file Yes

libraries Paths to Kotlin libraries No

outputPrefix Prefix to use for generated JavaScript files No

outputSuffix Suffix to use for generated JavaScript files No

1043

sourcemap Whether sourcemap file should be generated No

metaInfo Whether metadata file with binary descriptors should be generated No

main Should compiler generated code call the main function No

Name Description Required

Passing
raw
compiler
arguments
To pass custom raw compiler arguments, you can use <compilerarg> elements with either value or line attributes. This can be done within the <kotlinc>,
<kotlin2js>, and <withKotlin> task elements, as follows:

<kotlinc	src="${test.data}/hello.kt"	output="${temp}/hello.jar">
				<compilerarg	value="-Xno-inline"/>
				<compilerarg	line="-Xno-call-assertions	-Xno-param-assertions"/>
				<compilerarg	value="-Xno-optimize"/>
</kotlinc>

The full list of arguments that can be used is shown when you run kotlinc -help.

Introduction
Dokka is an API documentation engine for Kotlin.

Just like Kotlin itself, Dokka supports mixed-language projects. It understands Kotlin's KDoc comments and Java's Javadoc comments.

Dokka can generate documentation in multiple formats, including its own modern HTML format, multiple flavors of Markdown, and Java's Javadoc HTML.

Here are some libraries that use Dokka for their API reference documentation:

kotlinx.coroutines

Bitmovin

Hexagon

Ktor

OkHttp

You can run Dokka using Gradle, Maven or from the command line. It is also highly pluggable.

See Get started with Dokka to take your first steps in using Dokka.

Community
Dokka has a dedicated #dokka channel in Kotlin Community Slack where you can chat about Dokka, its plugins and how to develop them, as well as get in touch
with maintainers.

Get
started
with
Dokka
Below you can find simple instructions to help you get started with Dokka.

Gradle Kotlin DSL

1044

https://kotlinlang.org/docs/kotlin-doc.html#kdoc-syntax
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://kotlinlang.org/api/kotlinx.coroutines/
https://cdn.bitmovin.com/player/android/3/docs/index.html
https://hexagonkt.com/api/index.html
https://api.ktor.io/
https://square.github.io/okhttp/5.x/okhttp/okhttp3/
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up

Apply the Gradle plugin for Dokka in the root build script of your project:

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

When documenting multi-project builds, you need to apply the Gradle plugin within subprojects as well:

subprojects	{
				apply(plugin	=	"org.jetbrains.dokka")
}

To generate documentation, run the following Gradle tasks:

dokkaHtml for single-project builds

dokkaHtmlMultiModule for multi-project builds

By default, the output directory is set to /build/dokka/html and /build/dokka/htmlMultiModule.

To learn more about using Dokka with Gradle, see Gradle.

Gradle Groovy DSL

Apply the Gradle plugin for Dokka in the root build script of your project:

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

When documenting multi-project builds, you need to apply the Gradle plugin within subprojects as well:

subprojects	{
				apply	plugin:	'org.jetbrains.dokka'
}

To generate documentation, run the following Gradle tasks:

dokkaHtml for single-project builds

dokkaHtmlMultiModule for multi-project builds

By default, the output directory is set to /build/dokka/html and /build/dokka/htmlMultiModule.

To learn more about using Dokka with Gradle, see Gradle.

Maven

Add the Maven plugin for Dokka to the plugins section of your POM file:

<build>
				<plugins>
								<plugin>
												<groupId>org.jetbrains.dokka</groupId>
												<artifactId>dokka-maven-plugin</artifactId>
												<version>1.9.10</version>
												<executions>
																<execution>
																				<phase>pre-site</phase>
																				<goals>
																								<goal>dokka</goal>
																				</goals>
																</execution>
												</executions>
								</plugin>
				</plugins>
</build>

To generate documentation, run the dokka:dokka goal.

By default, the output directory is set to target/dokka.

To learn more about using Dokka with Maven, see Maven.

1045

https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/userguide/multi_project_builds.html

Gradle
To generate documentation for a Gradle-based project, you can use the Gradle plugin for Dokka.

It comes with basic autoconfiguration for your project, has convenient Gradle tasks for generating documentation, and provides a great deal of configuration
options to customize the output.

You can play around with Dokka and see how it can be configured for various projects by visiting our Gradle example projects.

Apply
Dokka
The recommended way of applying the Gradle plugin for Dokka is with the plugins DSL:

Kotlin

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

Groovy

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

When documenting multi-project builds, you need to apply the Gradle plugin for Dokka within subprojects as well. You can use allprojects {} or subprojects {}
Gradle configurations to achieve that:

Gradle Kotlin DSL

subprojects	{
				apply(plugin	=	"org.jetbrains.dokka")
}

Gradle Groovy DSL

subprojects	{
				apply	plugin:	'org.jetbrains.dokka'
}

See Configuration examples if you are not sure where to apply Dokka.

If you cannot use the plugins DSL for some reason, you can use the legacy method of applying plugins.

Generate
documentation
The Gradle plugin for Dokka comes with HTML, Markdown and Javadoc output formats built in. It adds a number of tasks for generating documentation, both for
single and multi-project builds.

Under the hood, Dokka uses the Kotlin Gradle plugin to perform autoconfiguration of source sets for which documentation is to be generated. Make sure
to apply the Kotlin Gradle Plugin or configure source sets manually.

If you are using Dokka in a precompiled script plugin, you need to add the Kotlin Gradle plugin as a dependency for it to work properly.

1046

https://plugins.gradle.org/plugin/org.jetbrains.dokka
https://github.com/Kotlin/dokka/tree/1.9.10/examples/gradle
https://docs.gradle.org/current/userguide/plugins.html#sec:plugins_block
https://kotlinlang.org/docs/gradle-configure-project.html#apply-the-plugin
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://docs.gradle.org/current/userguide/custom_plugins.html#sec:precompiled_plugins
https://kotlinlang.org/docs/gradle-configure-project.html#apply-the-plugin
https://docs.gradle.org/current/userguide/plugins.html#sec:old_plugin_application

Single-project
builds
Use the following tasks to build documentation for simple, single-project applications and libraries:

Task Description

dokkaHtml Generates documentation in HTML format.

Experimental formats

Task Description

dokkaGfm Generates documentation in GitHub Flavored Markdown format.

dokkaJavadoc Generates documentation in Javadoc format.

dokkaJekyll Generates documentation in Jekyll compatible Markdown format.

By default, generated documentation is located in the build/dokka/{format} directory of your project. The output location, among other things, can be configured.

Multi-project
builds
For documenting multi-project builds, make sure that you apply the Gradle plugin for Dokka within subprojects that you want to generate documentation for, as well
as in their parent project.

MultiModule tasks
MultiModule tasks generate documentation for each subproject individually via Partial tasks, collect and process all outputs, and produce complete documentation
with a common table of contents and resolved cross-project references.

Dokka creates the following tasks for parent projects automatically:

Task Description

dokkaHtmlMultiModule Generates multi-module documentation in HTML output format.

Experimental formats (multi-module)

Task Description

dokkaGfmMultiModule Generates multi-module documentation in GitHub Flavored Markdown output format.

dokkaJekyllMultiModule Generates multi-module documentation in Jekyll compatible Markdown output format.

By default, you can find ready-to-use documentation under {parentProject}/build/dokka/{format}MultiModule directory.

The Javadoc output format does not have a MultiModule task, but a Collector task can be used instead.

1047

https://docs.gradle.org/current/userguide/multi_project_builds.html

MultiModule results
Given a project with the following structure:

parentProject
				└──	childProjectA
								├──	demo
												├──	ChildProjectAClass
				└──	childProjectB
								├──	demo
												├──	ChildProjectBClass

These pages are generated after running dokkaHtmlMultiModule:

Screenshot for output of dokkaHtmlMultiModule task

See our multi-module project example for more details.

Collector tasks
Similar to MultiModule tasks, Collector tasks are created for each parent project: dokkaHtmlCollector, dokkaGfmCollector, dokkaJavadocCollector and
dokkaJekyllCollector.

A Collector task executes the corresponding single-project task for each subproject (for example, dokkaHtml), and merges all outputs into a single virtual project.

The resulting documentation looks as if you have a single-project build that contains all declarations from the subprojects.

Collector results

Use the dokkaJavadocCollector task if you need to create Javadoc documentation for your multi-project build.

1048

https://github.com/Kotlin/dokka/tree/master/examples/gradle/dokka-multimodule-example

Given a project with the following structure:

parentProject
				└──	childProjectA
								├──	demo
												├──	ChildProjectAClass
				└──	childProjectB
								├──	demo
												├──	ChildProjectBClass

These pages are generated after running dokkaHtmlCollector:

Screenshot for output of dokkaHtmlCollector task

See our multi-module project example for more details.

Partial tasks
Each subproject has Partial tasks created for it: dokkaHtmlPartial,dokkaGfmPartial, and dokkaJekyllPartial.

These tasks are not intended to be run independently, they are called by the parent's MultiModule task.

However, you can configure Partial tasks to customize Dokka for your subprojects.

Build
javadoc.jar
If you want to publish your library to a repository, you may need to provide a javadoc.jar file that contains API reference documentation of your library.

For example, if you want to publish to Maven Central, you must supply a javadoc.jar alongside your project. However, not all repositories have that rule.

The Gradle plugin for Dokka does not provide any way to do this out of the box, but it can be achieved with custom Gradle tasks. One for generating
documentation in HTML format and another one for Javadoc format:

Output generated by Partial tasks contains unresolved HTML templates and references, so it cannot be used on its own without post-processing done by
the parent's MultiModule task.

If you want to generate documentation for a single subproject only, use single-project tasks. For example, :subprojectName:dokkaHtml.

1049

https://github.com/Kotlin/dokka/tree/master/examples/gradle/dokka-multimodule-example
https://central.sonatype.org/
https://central.sonatype.org/publish/requirements/

Kotlin

tasks.register<Jar>("dokkaHtmlJar")	{
				dependsOn(tasks.dokkaHtml)
				from(tasks.dokkaHtml.flatMap	{	it.outputDirectory	})
				archiveClassifier.set("html-docs")
}

tasks.register<Jar>("dokkaJavadocJar")	{
				dependsOn(tasks.dokkaJavadoc)
				from(tasks.dokkaJavadoc.flatMap	{	it.outputDirectory	})
				archiveClassifier.set("javadoc")
}

Groovy

tasks.register('dokkaHtmlJar',	Jar.class)	{
				dependsOn(dokkaHtml)
				from(dokkaHtml)
				archiveClassifier.set("html-docs")
}

tasks.register('dokkaJavadocJar',	Jar.class)	{
				dependsOn(dokkaJavadoc)
				from(dokkaJavadoc)
				archiveClassifier.set("javadoc")
}

Configuration
examples
Depending on the type of project that you have, the way you apply and configure Dokka differs slightly. However, configuration options themselves are the same,
regardless of the type of your project.

For simple and flat projects with a single build.gradle.kts or build.gradle file found in the root of your project, see Single-project configuration.

For a more complex build with subprojects and multiple nested build.gradle.kts or build.gradle files, see Multi-project configuration.

Single-project
configuration
Single-project builds usually have only one build.gradle.kts or build.gradle file in the root of the project, and typically have the following structure:

Kotlin

Single platform:

.
├──	build.gradle.kts
└──	src
				└──	main
								└──	kotlin
												└──	HelloWorld.kt

Multiplatform:

.
├──	build.gradle.kts
└──	src
				└──	commonMain
								└──	kotlin
												└──	Common.kt
				└──	jvmMain
								└──	kotlin
												└──	JvmUtils.kt
				└──	nativeMain

If you publish your library to Maven Central, you can use services like javadoc.io to host your library's API documentation for free and without any setup. It
takes documentation pages straight from the javadoc.jar. It works well with the HTML format as demonstrated in this example.

1050

https://javadoc.io/
https://javadoc.io/doc/com.trib3/server/latest/index.html

								└──	kotlin
												└──	NativeUtils.kt

Groovy

Single platform:

.
├──	build.gradle
└──	src
				└──	main
								└──	kotlin
												└──	HelloWorld.kt

Multiplatform:

.
├──	build.gradle
└──	src
				└──	commonMain
								└──	kotlin
												└──	Common.kt
				└──	jvmMain
								└──	kotlin
												└──	JvmUtils.kt
				└──	nativeMain
								└──	kotlin
												└──	NativeUtils.kt

In such projects, you need to apply Dokka and its configuration in the root build.gradle.kts or build.gradle file.

You can configure tasks and output formats individually:

Kotlin

Inside ./build.gradle.kts:

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

tasks.dokkaHtml	{
				outputDirectory.set(buildDir.resolve("documentation/html"))
}

tasks.dokkaGfm	{
				outputDirectory.set(buildDir.resolve("documentation/markdown"))
}

Groovy

Inside ./build.gradle:

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

dokkaHtml	{
				outputDirectory.set(file("build/documentation/html"))
}

dokkaGfm	{
				outputDirectory.set(file("build/documentation/markdown"))
}

Or you can configure all tasks and output formats at the same time:

Kotlin

Inside ./build.gradle.kts:

1051

import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.gradle.DokkaTaskPartial
import	org.jetbrains.dokka.DokkaConfiguration.Visibility

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

//	Configure	all	single-project	Dokka	tasks	at	the	same	time,	
//	such	as	dokkaHtml,	dokkaJavadoc	and	dokkaGfm.
tasks.withType<DokkaTask>().configureEach	{
				dokkaSourceSets.configureEach	{
								documentedVisibilities.set(
												setOf(
																Visibility.PUBLIC,
																Visibility.PROTECTED,
)
)

								perPackageOption	{
												matchingRegex.set(".*internal.*")
												suppress.set(true)
								}
				}
}

Groovy

Inside ./build.gradle:

import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.gradle.DokkaTaskPartial
import	org.jetbrains.dokka.DokkaConfiguration.Visibility

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

//	Configure	all	single-project	Dokka	tasks	at	the	same	time,	
//	such	as	dokkaHtml,	dokkaJavadoc	and	dokkaGfm.
tasks.withType(DokkaTask.class)	{
				dokkaSourceSets.configureEach	{
								documentedVisibilities.set([
																Visibility.PUBLIC,
																Visibility.PROTECTED
])

								perPackageOption	{
												matchingRegex.set(".*internal.*")
												suppress.set(true)
								}
				}
}

Multi-project
configuration
Gradle's multi-project builds are more complex in structure and configuration. They usually have multiple nested build.gradle.kts or build.gradle files, and typically
have the following structure:

Kotlin

.
├──	build.gradle.kts
├──	settings.gradle.kts
├──	subproject-A
				└──	build.gradle.kts
				└──	src
								└──	main
												└──	kotlin
																└──	HelloFromA.kt
├──	subproject-B
				└──	build.gradle.kts
				└──	src
								└──	main
												└──	kotlin

1052

https://docs.gradle.org/current/userguide/multi_project_builds.html

																└──	HelloFromB.kt

Groovy

.
├──	build.gradle
├──	settings.gradle
├──	subproject-A
				└──	build.gradle
				└──	src
								└──	main
												└──	kotlin
																└──	HelloFromA.kt
├──	subproject-B
				└──	build.gradle
				└──	src
								└──	main
												└──	kotlin
																└──	HelloFromB.kt

In this case, there are multiple ways of applying and configuring Dokka.

Subproject configuration
To configure subprojects in a multi-project build, you need to configure Partial tasks.

You can configure all subprojects at the same time in the root build.gradle.kts or build.gradle file, using Gradle's allprojects {} or subprojects {} configuration blocks:

Kotlin

In the root ./build.gradle.kts:

import	org.jetbrains.dokka.gradle.DokkaTaskPartial

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

subprojects	{
				apply(plugin	=	"org.jetbrains.dokka")

				//	configure	only	the	HTML	task
				tasks.dokkaHtmlPartial	{
								outputDirectory.set(buildDir.resolve("docs/partial"))
				}

				//	configure	all	format	tasks	at	once
				tasks.withType<DokkaTaskPartial>().configureEach	{
								dokkaSourceSets.configureEach	{
												includes.from("README.md")
								}
				}
}

Groovy

In the root ./build.gradle:

import	org.jetbrains.dokka.gradle.DokkaTaskPartial

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

subprojects	{
				apply	plugin:	'org.jetbrains.dokka'

				//	configure	only	the	HTML	task
				dokkaHtmlPartial	{
								outputDirectory.set(file("build/docs/partial"))
				}

				//	configure	all	format	tasks	at	once
				tasks.withType(DokkaTaskPartial.class)	{

1053

								dokkaSourceSets.configureEach	{
												includes.from("README.md")
								}
				}
}

Alternatively, you can apply and configure Dokka within subprojects individually.

For example, to have specific settings for the subproject-A subproject only, you need to apply the following code inside ./subproject-A/build.gradle.kts:

Kotlin

Inside ./subproject-A/build.gradle.kts:

apply(plugin	=	"org.jetbrains.dokka")

//	configuration	for	subproject-A	only.
tasks.dokkaHtmlPartial	{
				outputDirectory.set(buildDir.resolve("docs/partial"))
}

Groovy

Inside ./subproject-A/build.gradle:

apply	plugin:	'org.jetbrains.dokka'

//	configuration	for	subproject-A	only.
dokkaHtmlPartial	{
				outputDirectory.set(file("build/docs/partial"))
}

Parent project configuration
If you want to configure something which is universal across all documentation and does not belong to the subprojects - in other words, it's a property of the parent
project - you need to configure the MultiModule tasks.

For example, if you want to change the name of your project which is used in the header of the HTML documentation, you need to apply the following inside the
root build.gradle.kts or build.gradle file:

Kotlin

In the root ./build.gradle.kts file:

plugins	{
				id("org.jetbrains.dokka")	version	"1.9.10"
}

tasks.dokkaHtmlMultiModule	{
				moduleName.set("WHOLE	PROJECT	NAME	USED	IN	THE	HEADER")
}

Groovy

In the root ./build.gradle file:

plugins	{
				id	'org.jetbrains.dokka'	version	'1.9.10'
}

dokkaHtmlMultiModule	{
				moduleName.set("WHOLE	PROJECT	NAME	USED	IN	THE	HEADER")
}

Configuration
options
Dokka has many configuration options to tailor your and your reader's experience.

1054

Below are some examples and detailed descriptions for each configuration section. You can also find an example with all configuration options applied at the
bottom of the page.

See Configuration examples for more details on where to apply configuration blocks and how.

General
configuration
Here is an example of general configuration of any Dokka task, regardless of source set or package:

Kotlin

import	org.jetbrains.dokka.gradle.DokkaTask

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				moduleName.set(project.name)
				moduleVersion.set(project.version.toString())
				outputDirectory.set(buildDir.resolve("dokka/$name"))
				failOnWarning.set(false)
				suppressObviousFunctions.set(true)
				suppressInheritedMembers.set(false)
				offlineMode.set(false)
				
				//	..
				//	source	set	configuration	section
				//	..
}

Groovy

import	org.jetbrains.dokka.gradle.DokkaTask

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType(DokkaTask.class)	{
				moduleName.set(project.name)
				moduleVersion.set(project.version.toString())
				outputDirectory.set(file("build/dokka/$name"))
				failOnWarning.set(false)
				suppressObviousFunctions.set(true)
				suppressInheritedMembers.set(false)
				offlineMode.set(false)

				//	..
				//	source	set	configuration	section
				//	..
}

moduleName
The display name used to refer to the module. It is used for the table of contents, navigation, logging, etc.

If set for a single-project build or a MultiModule task, it is used as the project name.

Default: Gradle project name

moduleVersion
The module version. If set for a single-project build or a MultiModule task, it is used as the project version.

Default: Gradle project version

outputDirectory
The directory to where documentation is generated, regardless of format. It can be set on a per-task basis.

The default is {project}/{buildDir}/{format}, where {format} is the task name with the "dokka" prefix removed. For the dokkaHtmlMultiModule task, it is
project/buildDir/htmlMultiModule.

failOnWarning
Whether to fail documentation generation if Dokka has emitted a warning or an error. The process waits until all errors and warnings have been emitted first.

1055

This setting works well with reportUndocumented.

Default: false

suppressObviousFunctions
Whether to suppress obvious functions.

A function is considered to be obvious if it is:

Inherited from kotlin.Any, Kotlin.Enum, java.lang.Object or java.lang.Enum, such as equals, hashCode, toString.

Synthetic (generated by the compiler) and does not have any documentation, such as dataClass.componentN or dataClass.copy.

Default: true

suppressInheritedMembers
Whether to suppress inherited members that aren't explicitly overridden in a given class.

Note: This can suppress functions such as equals / hashCode / toString, but cannot suppress synthetic functions such as dataClass.componentN and
dataClass.copy. Use suppressObviousFunctions for that.

Default: false

offlineMode
Whether to resolve remote files/links over your network.

This includes package-lists used for generating external documentation links. For example, to make classes from the standard library clickable.

Setting this to true can significantly speed up build times in certain cases, but can also worsen documentation quality and user experience. For example, by not
resolving class/member links from your dependencies, including the standard library.

Note: You can cache fetched files locally and provide them to Dokka as local paths. See externalDocumentationLinks section.

Default: false

Source
set
configuration
Dokka allows configuring some options for Kotlin source sets:

Kotlin

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.Platform
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				//	..
				//	general	configuration	section
				//	..

				dokkaSourceSets	{
								//	configuration	exclusive	to	the	'linux'	source	set
								named("linux")	{
												dependsOn("native")
												sourceRoots.from(file("linux/src"))
								}
								configureEach	{
												suppress.set(false)
												displayName.set(name)
												documentedVisibilities.set(setOf(Visibility.PUBLIC))
												reportUndocumented.set(false)
												skipEmptyPackages.set(true)
												skipDeprecated.set(false)
												suppressGeneratedFiles.set(true)
												jdkVersion.set(8)
												languageVersion.set("1.7")
												apiVersion.set("1.7")
												noStdlibLink.set(false)
												noJdkLink.set(false)
												noAndroidSdkLink.set(false)
												includes.from(project.files(),	"packages.md",	"extra.md")

1056

https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

												platform.set(Platform.DEFAULT)
												sourceRoots.from(file("src"))
												classpath.from(project.files(),	file("libs/dependency.jar"))
												samples.from(project.files(),	"samples/Basic.kt",	"samples/Advanced.kt")

												sourceLink	{
																//	Source	link	section
												}
												externalDocumentationLink	{
																//	External	documentation	link	section
												}
												perPackageOption	{
																//	Package	options	section
												}
								}
				}
}

Groovy

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.Platform
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType(DokkaTask.class)	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets	{
								//	configuration	exclusive	to	the	'linux'	source	set	
								named("linux")	{
												dependsOn("native")
												sourceRoots.from(file("linux/src"))
								}
								configureEach	{
												suppress.set(false)
												displayName.set(name)
												documentedVisibilities.set([Visibility.PUBLIC])
												reportUndocumented.set(false)
												skipEmptyPackages.set(true)
												skipDeprecated.set(false)
												suppressGeneratedFiles.set(true)
												jdkVersion.set(8)
												languageVersion.set("1.7")
												apiVersion.set("1.7")
												noStdlibLink.set(false)
												noJdkLink.set(false)
												noAndroidSdkLink.set(false)
												includes.from(project.files(),	"packages.md",	"extra.md")
												platform.set(Platform.DEFAULT)
												sourceRoots.from(file("src"))
												classpath.from(project.files(),	file("libs/dependency.jar"))
												samples.from(project.files(),	"samples/Basic.kt",	"samples/Advanced.kt")

												sourceLink	{
																//	Source	link	section
												}
												externalDocumentationLink	{
																//	External	documentation	link	section
												}
												perPackageOption	{
																//	Package	options	section
												}
								}
				}
}

suppress
Whether this source set should be skipped when generating documentation.

Default: false

displayName

1057

The display name used to refer to this source set.

The name is used both externally (for example, as source set name visible to documentation readers) and internally (for example, for logging messages of
reportUndocumented).

By default, the value is deduced from information provided by the Kotlin Gradle plugin.

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations, as well as if you want to exclude public declarations and only document internal
API.

This can be configured on per-package basis.

Default: DokkaConfiguration.Visibility.PUBLIC

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

This can be configured on per-package basis.

Default: false

skipEmptyPackages
Whether to skip packages that contain no visible declarations after various filters have been applied.

For example, if skipDeprecated is set to true and your package contains only deprecated declarations, it is considered to be empty.

Default: true

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be configured on per-package basis.

Default: false

suppressGeneratedFiles
Whether to document/analyze generated files.

Generated files are expected to be present under the {project}/{buildDir}/generated directory.

If set to true, it effectively adds all files from that directory to the suppressedFiles option, so you can configure it manually.

Default: true

jdkVersion
The JDK version to use when generating external documentation links for Java types.

For example, if you use java.util.UUID in some public declaration signature, and this option is set to 8, Dokka generates an external documentation link to JDK 8
Javadocs for it.

Default: JDK 8

languageVersion
The Kotlin language version used for setting up analysis and @sample environment.

By default, the latest language version available to Dokka's embedded compiler is used.

apiVersion
The Kotlin API version used for setting up analysis and @sample environment.

By default, it is deduced from languageVersion.

noStdlibLink
Whether to generate external documentation links that lead to the API reference documentation of Kotlin's standard library.

Note: Links are generated when noStdLibLink is set to false.

Default: false

1058

https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier

noJdkLink
Whether to generate external documentation links to JDK's Javadocs.

The version of JDK Javadocs is determined by the jdkVersion option.

Note: Links are generated when noJdkLink is set to false.

Default: false

noAndroidSdkLink
Whether to generate external documentation links to the Android SDK API reference.

This is only relevant in Android projects, ignored otherwise.

Note: Links are generated when noAndroidSdkLink is set to false.

Default: false

includes
A list of Markdown files that contain module and package documentation.

The contents of the specified files are parsed and embedded into documentation as module and package descriptions.

See Dokka gradle example for an example of what it looks like and how to use it.

platform
The platform to be used for setting up code analysis and @sample environment.

The default value is deduced from information provided by the Kotlin Gradle plugin.

sourceRoots
The source code roots to be analyzed and documented. Acceptable inputs are directories and individual .kt / .java files.

By default, source roots are deduced from information provided by the Kotlin Gradle plugin.

classpath
The classpath for analysis and interactive samples.

This is useful if some types that come from dependencies are not resolved/picked up automatically.

This option accepts both .jar and .klib files.

By default, classpath is deduced from information provided by the Kotlin Gradle plugin.

samples
A list of directories or files that contain sample functions which are referenced via the @sample KDoc tag.

Source
link
configuration
The sourceLinks configuration block allows you to add a source link to each signature that leads to the remoteUrl with a specific line number. (The line number is
configurable by setting remoteLineSuffix).

This helps readers to find the source code for each declaration.

For an example, see the documentation for the count() function in kotlinx.coroutines.

Kotlin

import	org.jetbrains.dokka.gradle.DokkaTask
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets.configureEach	{
								//	..
								//	source	set	configuration	section
								//	..
								

1059

https://github.com/Kotlin/dokka/tree/master/examples/gradle/dokka-gradle-example
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/count.html

								sourceLink	{
												localDirectory.set(projectDir.resolve("src"))
												remoteUrl.set(URL("https://github.com/kotlin/dokka/tree/master/src"))
												remoteLineSuffix.set("#L")
								}
				}
}

Groovy

import	org.jetbrains.dokka.gradle.DokkaTask
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType(DokkaTask.class)	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets.configureEach	{
								//	..
								//	source	set	configuration	section
								//	..
								
								sourceLink	{
												localDirectory.set(file("src"))
												remoteUrl.set(new	URL("https://github.com/kotlin/dokka/tree/master/src"))
												remoteLineSuffix.set("#L")
								}
				}
}

localDirectory
The path to the local source directory. The path must be relative to the root of the current project.

remoteUrl
The URL of the source code hosting service that can be accessed by documentation readers, like GitHub, GitLab, Bitbucket, etc. This URL is used to generate
source code links of declarations.

remoteLineSuffix
The suffix used to append the source code line number to the URL. This helps readers navigate not only to the file, but to the specific line number of the declaration.

The number itself is appended to the specified suffix. For example, if this option is set to #L and the line number is 10, the resulting URL suffix is #L10.

Suffixes used by popular services:

GitHub: #L

GitLab: #L

Bitbucket: #lines-

Default: #L

Package
options
The perPackageOption configuration block allows setting some options for specific packages matched by matchingRegex.

Kotlin

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				//	..
				//	general	configuration	section
				//	..
				

1060

				dokkaSourceSets.configureEach	{
								//	..
								//	source	set	configuration	section
								//	..
								
								perPackageOption	{
												matchingRegex.set(".*api.*")
												suppress.set(false)
												skipDeprecated.set(false)
												reportUndocumented.set(false)
												documentedVisibilities.set(setOf(Visibility.PUBLIC))
								}
				}
}

Groovy

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.
tasks.withType(DokkaTask.class)	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets.configureEach	{
								//	..
								//	Source	set	configuration	section
								//	..
								
								perPackageOption	{
												matchingRegex.set(".*api.*")
												suppress.set(false)
												skipDeprecated.set(false)
												reportUndocumented.set(false)
												documentedVisibilities.set([Visibility.PUBLIC])
								}
				}
}

matchingRegex
The regular expression that is used to match the package.

Default: .*

suppress
Whether this package should be skipped when generating documentation.

Default: false

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be configured on source set level.

Default: false

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

This can be configured on source set level.

Default: false

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations within this package, as well as if you want to exclude public declarations and only
document internal API.

1061

This can be configured on source set level.

Default: DokkaConfiguration.Visibility.PUBLIC

External
documentation
links
configuration
The externalDocumentationLink block allows the creation of links that lead to the externally hosted documentation of your dependencies.

For example, if you are using types from kotlinx.serialization, by default they are unclickable in your documentation, as if they are unresolved. However, since the
API reference documentation for kotlinx.serialization is built by Dokka and is published on kotlinlang.org, you can configure external documentation links for it. Thus
allowing Dokka to generate links for types from the library, making them resolve successfully and clickable.

By default, external documentation links for Kotlin standard library, JDK, Android SDK and AndroidX are configured.

Kotlin

import	org.jetbrains.dokka.gradle.DokkaTask
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets.configureEach	{
								//	..
								//	source	set	configuration	section
								//	..
								
								externalDocumentationLink	{
												url.set(URL("https://kotlinlang.org/api/kotlinx.serialization/"))
												packageListUrl.set(
																rootProject.projectDir.resolve("serialization.package.list").toURL()
)
								}
				}
}

Groovy

import	org.jetbrains.dokka.gradle.DokkaTask
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType(DokkaTask.class)	{
				//	..
				//	general	configuration	section
				//	..
				
				dokkaSourceSets.configureEach	{
								//	..
								//	source	set	configuration	section
								//	..
								
								externalDocumentationLink	{
												url.set(new	URL("https://kotlinlang.org/api/kotlinx.serialization/"))
												packageListUrl.set(
																file("serialization.package.list").toURL()
)
								}
				}
}

url
The root URL of documentation to link to. It must contain a trailing slash.

Dokka does its best to automatically find package-list for the given URL, and link declarations together.

1062

https://kotlinlang.org/api/kotlinx.serialization/

If automatic resolution fails or if you want to use locally cached files instead, consider setting the packageListUrl option.

packageListUrl
The exact location of a package-list. This is an alternative to relying on Dokka automatically resolving it.

Package lists contain information about the documentation and the project itself, such as module and package names.

This can also be a locally cached file to avoid network calls.

Complete
configuration
Below you can see all possible configuration options applied at the same time.

Kotlin

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.Platform
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType<DokkaTask>().configureEach	{
				moduleName.set(project.name)
				moduleVersion.set(project.version.toString())
				outputDirectory.set(buildDir.resolve("dokka/$name"))
				failOnWarning.set(false)
				suppressObviousFunctions.set(true)
				suppressInheritedMembers.set(false)
				offlineMode.set(false)

				dokkaSourceSets	{
								named("linux")	{
												dependsOn("native")
												sourceRoots.from(file("linux/src"))
								}
								configureEach	{
												suppress.set(false)
												displayName.set(name)
												documentedVisibilities.set(setOf(Visibility.PUBLIC))
												reportUndocumented.set(false)
												skipEmptyPackages.set(true)
												skipDeprecated.set(false)
												suppressGeneratedFiles.set(true)
												jdkVersion.set(8)
												languageVersion.set("1.7")
												apiVersion.set("1.7")
												noStdlibLink.set(false)
												noJdkLink.set(false)
												noAndroidSdkLink.set(false)
												includes.from(project.files(),	"packages.md",	"extra.md")
												platform.set(Platform.DEFAULT)
												sourceRoots.from(file("src"))
												classpath.from(project.files(),	file("libs/dependency.jar"))
												samples.from(project.files(),	"samples/Basic.kt",	"samples/Advanced.kt")
												
												sourceLink	{
																localDirectory.set(projectDir.resolve("src"))
																remoteUrl.set(URL("https://github.com/kotlin/dokka/tree/master/src"))
																remoteLineSuffix.set("#L")
												}

												externalDocumentationLink	{
																url.set(URL("https://kotlinlang.org/api/latest/jvm/stdlib/"))
																packageListUrl.set(
																				rootProject.projectDir.resolve("stdlib.package.list").toURL()
)
												}

												perPackageOption	{
																matchingRegex.set(".*api.*")
																suppress.set(false)
																skipDeprecated.set(false)
																reportUndocumented.set(false)
																documentedVisibilities.set(
																				setOf(
																								Visibility.PUBLIC,

1063

																								Visibility.PRIVATE,
																								Visibility.PROTECTED,
																								Visibility.INTERNAL,
																								Visibility.PACKAGE
)
)
												}
								}
				}
}

Groovy

import	org.jetbrains.dokka.DokkaConfiguration.Visibility
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.Platform
import	java.net.URL

//	Note:	To	configure	multi-project	builds,	you	need	
//							to	configure	Partial	tasks	of	the	subprojects.	
//							See	"Configuration	example"	section	of	documentation.	
tasks.withType(DokkaTask.class)	{
				moduleName.set(project.name)
				moduleVersion.set(project.version.toString())
				outputDirectory.set(file("build/dokka/$name"))
				failOnWarning.set(false)
				suppressObviousFunctions.set(true)
				suppressInheritedMembers.set(false)
				offlineMode.set(false)

				dokkaSourceSets	{
								named("linux")	{
												dependsOn("native")
												sourceRoots.from(file("linux/src"))
								}
								configureEach	{
												suppress.set(false)
												displayName.set(name)
												documentedVisibilities.set([Visibility.PUBLIC])
												reportUndocumented.set(false)
												skipEmptyPackages.set(true)
												skipDeprecated.set(false)
												suppressGeneratedFiles.set(true)
												jdkVersion.set(8)
												languageVersion.set("1.7")
												apiVersion.set("1.7")
												noStdlibLink.set(false)
												noJdkLink.set(false)
												noAndroidSdkLink.set(false)
												includes.from(project.files(),	"packages.md",	"extra.md")
												platform.set(Platform.DEFAULT)
												sourceRoots.from(file("src"))
												classpath.from(project.files(),	file("libs/dependency.jar"))
												samples.from(project.files(),	"samples/Basic.kt",	"samples/Advanced.kt")

												sourceLink	{
																localDirectory.set(file("src"))
																remoteUrl.set(new	URL("https://github.com/kotlin/dokka/tree/master/src"))
																remoteLineSuffix.set("#L")
												}

												externalDocumentationLink	{
																url.set(new	URL("https://kotlinlang.org/api/latest/jvm/stdlib/"))
																packageListUrl.set(
																								file("stdlib.package.list").toURL()
)
												}

												perPackageOption	{
																matchingRegex.set(".*api.*")
																suppress.set(false)
																skipDeprecated.set(false)
																reportUndocumented.set(false)
																documentedVisibilities.set([Visibility.PUBLIC])
												}
								}
				}
}

1064

Maven
To generate documentation for a Maven-based project, you can use the Maven plugin for Dokka.

You can play around with Dokka and see how it can be configured for a Maven project by visiting our Maven example project.

Apply
Dokka
To apply Dokka, you need to add dokka-maven-plugin to the plugins section of your POM file:

<build>
				<plugins>
								<plugin>
												<groupId>org.jetbrains.dokka</groupId>
												<artifactId>dokka-maven-plugin</artifactId>
												<version>1.9.10</version>
												<executions>
																<execution>
																				<phase>pre-site</phase>
																				<goals>
																								<goal>dokka</goal>
																				</goals>
																</execution>
												</executions>
								</plugin>
				</plugins>
</build>

Generate
documentation
The following goals are provided by the Maven plugin:

Goal Description

dokka:dokka Generates documentation with Dokka plugins applied. HTML format by default.

Experimental

Goal Description

dokka:javadoc Generates documentation in Javadoc format.

dokka:javadocJar Generates a javadoc.jar file that contains documentation in Javadoc format.

Other
output
formats
By default, the Maven plugin for Dokka builds documentation in HTML output format.

All other output formats are implemented as Dokka plugins. In order to generate documentation in the desired format, you have to add it as a Dokka plugin to the
configuration.

For example, to use the experimental GFM format, you have to add gfm-plugin artifact:

Compared to the Gradle plugin for Dokka, the Maven plugin has only basic features and does not provide support for multi-module builds.

1065

https://github.com/Kotlin/dokka/tree/1.9.10/examples/maven

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<dokkaPlugins>
												<plugin>
																<groupId>org.jetbrains.dokka</groupId>
																<artifactId>gfm-plugin</artifactId>
																<version>1.9.10</version>
												</plugin>
								</dokkaPlugins>
				</configuration>
</plugin>

With this configuration, running the dokka:dokka goal produces documentation in GFM format.

To learn more about Dokka plugins, see Dokka plugins.

Build
javadoc.jar
If you want to publish your library to a repository, you may need to provide a javadoc.jar file that contains API reference documentation of your library.

For example, if you want to publish to Maven Central, you must supply a javadoc.jar alongside your project. However, not all repositories have that rule.

Unlike the Gradle plugin for Dokka, the Maven plugin comes with a ready-to-use dokka:javadocJar goal. By default, it generates documentation in Javadoc output
format in thetarget folder.

If you are not satisfied with the built-in goal or want to customize the output (for example, you want to generate documentation in HTML format instead of Javadoc),
similar behavior can be achieved by adding the Maven JAR plugin with the following configuration:

<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-jar-plugin</artifactId>
				<version>3.3.0</version>
				<executions>
								<execution>
												<goals>
																<goal>test-jar</goal>
												</goals>
								</execution>
								<execution>
												<id>dokka-jar</id>
												<phase>package</phase>
												<goals>
																<goal>jar</goal>
												</goals>
												<configuration>
																<classifier>dokka</classifier>
																<classesDirectory>${project.build.directory}/dokka</classesDirectory>
																<skipIfEmpty>true</skipIfEmpty>
												</configuration>
								</execution>
				</executions>
</plugin>

The documentation and the .jar archive for it are then generated by running dokka:dokka and jar:jar@dokka-jar goals:

mvn	dokka:dokka	jar:jar@dokka-jar

Configuration
example
Maven's plugin configuration block can be used to configure Dokka.

If you publish your library to Maven Central, you can use services like javadoc.io to host your library's API documentation for free and without any setup. It
takes documentation pages straight from the javadoc.jar. It works well with the HTML format as demonstrated in this example.

1066

https://central.sonatype.org/
https://central.sonatype.org/publish/requirements/
https://javadoc.io/
https://javadoc.io/doc/com.trib3/server/latest/index.html

Here is an example of a basic configuration that only changes the output location of your documentation:

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<outputDir>${project.basedir}/target/documentation/dokka</outputDir>
				</configuration>
</plugin>

Configuration
options
Dokka has many configuration options to tailor your and your reader's experience.

Below are some examples and detailed descriptions for each configuration section. You can also find an example with all configuration options applied at the
bottom of the page.

General
configuration

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				<!--		...		-->
				<configuration>
								<skip>false</skip>
								<moduleName>${project.artifactId}</moduleName>
								<outputDir>${project.basedir}/target/documentation</outputDir>
								<failOnWarning>false</failOnWarning>
								<suppressObviousFunctions>true</suppressObviousFunctions>
								<suppressInheritedMembers>false</suppressInheritedMembers>
								<offlineMode>false</offlineMode>
								<sourceDirectories>
												<dir>${project.basedir}/src</dir>
								</sourceDirectories>
								<documentedVisibilities>
												<visibility>PUBLIC</visibility>
												<visibility>PROTECTED</visibility>
								</documentedVisibilities>
								<reportUndocumented>false</reportUndocumented>
								<skipDeprecated>false</skipDeprecated>
								<skipEmptyPackages>true</skipEmptyPackages>
								<suppressedFiles>
												<file>/path/to/dir</file>
												<file>/path/to/file</file>
								</suppressedFiles>
								<jdkVersion>8</jdkVersion>
								<languageVersion>1.7</languageVersion>
								<apiVersion>1.7</apiVersion>
								<noStdlibLink>false</noStdlibLink>
								<noJdkLink>false</noJdkLink>
								<includes>
												<include>packages.md</include>
												<include>extra.md</include>
								</includes>
								<classpath>${project.compileClasspathElements}</classpath>
								<samples>
												<dir>${project.basedir}/samples</dir>
								</samples>
								<sourceLinks>
												<!--	Separate	section	-->
								</sourceLinks>
								<externalDocumentationLinks>
												<!--	Separate	section	-->
								</externalDocumentationLinks>
								<perPackageOptions>
												<!--	Separate	section	-->
								</perPackageOptions>
				</configuration>
</plugin>

skip
Whether to skip documentation generation.

1067

Default: false

moduleName
The display name used to refer to the project/module. It's used for the table of contents, navigation, logging, etc.

Default: {project.artifactId}

outputDir
The directory to where documentation is generated, regardless of format.

Default: {project.basedir}/target/dokka

failOnWarning
Whether to fail documentation generation if Dokka has emitted a warning or an error. The process waits until all errors and warnings have been emitted first.

This setting works well with reportUndocumented.

Default: false

suppressObviousFunctions
Whether to suppress obvious functions.

A function is considered to be obvious if it is:

Inherited from kotlin.Any, Kotlin.Enum, java.lang.Object or java.lang.Enum, such as equals, hashCode, toString.

Synthetic (generated by the compiler) and does not have any documentation, such as dataClass.componentN or dataClass.copy.

Default: true

suppressInheritedMembers
Whether to suppress inherited members that aren't explicitly overridden in a given class.

Note: This can suppress functions such as equals/hashCode/toString, but cannot suppress synthetic functions such as dataClass.componentN and
dataClass.copy. Use suppressObviousFunctions for that.

Default: false

offlineMode
Whether to resolve remote files/links over your network.

This includes package-lists used for generating external documentation links. For example, to make classes from the standard library clickable.

Setting this to true can significantly speed up build times in certain cases, but can also worsen documentation quality and user experience. For example, by not
resolving class/member links from your dependencies, including the standard library.

Note: You can cache fetched files locally and provide them to Dokka as local paths. See externalDocumentationLinks section.

Default: false

sourceDirectories
The source code roots to be analyzed and documented. Acceptable inputs are directories and individual .kt / .java files.

Default: {project.compileSourceRoots}

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations, as well as if you want to exclude public declarations and only document internal
API.

Can be configured on per-package basis.

Default: PUBLIC

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

This can be overridden at package level.

Default: false

1068

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be overridden at package level.

Default: false

skipEmptyPackages
Whether to skip packages that contain no visible declarations after various filters have been applied.

For example, if skipDeprecated is set to true and your package contains only deprecated declarations, it is considered to be empty.

Default: true

suppressedFiles
The directories or individual files that should be suppressed, meaning that declarations from them are not documented.

jdkVersion
The JDK version to use when generating external documentation links for Java types.

For example, if you use java.util.UUID in some public declaration signature, and this option is set to 8, Dokka generates an external documentation link to JDK 8
Javadocs for it.

Default: JDK 8

languageVersion
The Kotlin language version used for setting up analysis and @sample environment.

By default, the latest language version available to Dokka's embedded compiler is used.

apiVersion
The Kotlin API version used for setting up analysis and @sample environment.

By default, it is deduced from languageVersion.

noStdlibLink
Whether to generate external documentation links that lead to the API reference documentation of Kotlin's standard library.

Note: Links are generated when noStdLibLink is set to false.

Default: false

noJdkLink
Whether to generate external documentation links to JDK's Javadocs.

The version of JDK Javadocs is determined by the jdkVersion option.

Note: Links are generated when noJdkLink is set to false.

Default: false

includes
A list of Markdown files that contain module and package documentation

The contents of specified files are parsed and embedded into documentation as module and package descriptions.

classpath
The classpath for analysis and interactive samples.

This is useful if some types that come from dependencies are not resolved/picked up automatically. This option accepts both .jar and .klib files.

Default: {project.compileClasspathElements}

samples
A list of directories or files that contain sample functions which are referenced via @sample KDoc tag.

Source
link
configuration
The sourceLinks configuration block allows you to add a source link to each signature that leads to the url with a specific line number. (The line number is
configurable by setting lineSuffix).

This helps readers to find the source code for each declaration.

For an example, see the documentation for the count() function in kotlinx.coroutines.

1069

https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/count.html

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				<!--		...		-->
				<configuration>
								<sourceLinks>
												<link>
																<path>src</path>
																<url>https://github.com/kotlin/dokka/tree/master/src</url>
																<lineSuffix>#L</lineSuffix>
												</link>
								</sourceLinks>
				</configuration>
</plugin>

path
The path to the local source directory. The path must be relative to the root of the current module.

Note: Only Unix based paths are allowed, Windows-style paths will throw an error.

url
The URL of the source code hosting service that can be accessed by documentation readers, like GitHub, GitLab, Bitbucket, etc. This URL is used to generate
source code links of declarations.

lineSuffix
The suffix used to append source code line number to the URL. This helps readers navigate not only to the file, but to the specific line number of the declaration.

The number itself is appended to the specified suffix. For example, if this option is set to #L and the line number is 10, the resulting URL suffix is #L10.

Suffixes used by popular services:

GitHub: #L

GitLab: #L

Bitbucket: #lines-

External
documentation
links
configuration
The externalDocumentationLinks block allows the creation of links that lead to the externally hosted documentation of your dependencies.

For example, if you are using types from kotlinx.serialization, by default they are unclickable in your documentation, as if they are unresolved. However, since the
API reference documentation for kotlinx.serialization is built by Dokka and is published on kotlinlang.org, you can configure external documentation links for it. Thus
allowing Dokka to generate links for types from the library, making them resolve successfully and clickable.

By default, external documentation links for Kotlin standard library and JDK are configured.

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				<!--		...		-->
				<configuration>
								<externalDocumentationLinks>
												<link>
																<url>https://kotlinlang.org/api/kotlinx.serialization/</url>
																<packageListUrl>file:/${project.basedir}/serialization.package.list</packageListUrl>
												</link>
								</externalDocumentationLinks>
				</configuration>
</plugin>

url
The root URL of documentation to link to. It must contain a trailing slash.

Dokka does its best to automatically find the package-list for the given URL, and link declarations together.

If automatic resolution fails or if you want to use locally cached files instead, consider setting the packageListUrl option.

packageListUrl
The exact location of a package-list. This is an alternative to relying on Dokka automatically resolving it.

Package lists contain information about the documentation and the project itself, such as module and package names.

1070

https://kotlinlang.org/api/kotlinx.serialization/

This can also be a locally cached file to avoid network calls.

Package
options
The perPackageOptions configuration block allows setting some options for specific packages matched by matchingRegex.

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				<!--		...		-->
				<configuration>
								<perPackageOptions>
												<packageOptions>
																<matchingRegex>.*api.*</matchingRegex>
																<suppress>false</suppress>
																<reportUndocumented>false</reportUndocumented>
																<skipDeprecated>false</skipDeprecated>
																<documentedVisibilities>
																				<visibility>PUBLIC</visibility>
																				<visibility>PRIVATE</visibility>
																				<visibility>PROTECTED</visibility>
																				<visibility>INTERNAL</visibility>
																				<visibility>PACKAGE</visibility>
																</documentedVisibilities>
												</packageOptions>
								</perPackageOptions>
				</configuration>
</plugin>

matchingRegex
The regular expression that is used to match the package.

Default: .*

suppress
Whether this package should be skipped when generating documentation.

Default: false

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations within this package, as well as if you want to exclude public declarations and only
document internal API.

Default: PUBLIC

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be set on project/module level.

Default: false

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

Default: false

Complete
configuration
Below you can see all the possible configuration options applied at the same time.

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				<!--		...		-->
				<configuration>
								<skip>false</skip>
								<moduleName>${project.artifactId}</moduleName>
								<outputDir>${project.basedir}/target/documentation</outputDir>

1071

								<failOnWarning>false</failOnWarning>
								<suppressObviousFunctions>true</suppressObviousFunctions>
								<suppressInheritedMembers>false</suppressInheritedMembers>
								<offlineMode>false</offlineMode>
								<sourceDirectories>
												<dir>src</dir>
								</sourceDirectories>
								<documentedVisibilities>
												<visibility>PUBLIC</visibility>
												<visibility>PRIVATE</visibility>
												<visibility>PROTECTED</visibility>
												<visibility>INTERNAL</visibility>
												<visibility>PACKAGE</visibility>
								</documentedVisibilities>
								<reportUndocumented>false</reportUndocumented>
								<skipDeprecated>false</skipDeprecated>
								<skipEmptyPackages>true</skipEmptyPackages>
								<suppressedFiles>
												<file>/path/to/dir</file>
												<file>/path/to/file</file>
								</suppressedFiles>
								<jdkVersion>8</jdkVersion>
								<languageVersion>1.7</languageVersion>
								<apiVersion>1.7</apiVersion>
								<noStdlibLink>false</noStdlibLink>
								<noJdkLink>false</noJdkLink>
								<includes>
												<include>packages.md</include>
												<include>extra.md</include>
								</includes>
								<classpath>${project.compileClasspathElements}</classpath>
								<samples>
												<dir>${project.basedir}/samples</dir>
								</samples>
								<sourceLinks>
												<link>
																<path>${project.basedir}/src</path>
																<url>https://github.com/kotlin/dokka/tree/master/src</url>
																<lineSuffix>#L</lineSuffix>
												</link>
								</sourceLinks>
								<externalDocumentationLinks>
												<link>
																<url>https://kotlinlang.org/api/latest/jvm/stdlib/</url>
																<packageListUrl>file:/${project.basedir}/stdlib.package.list</packageListUrl>
												</link>
								</externalDocumentationLinks>
								<perPackageOptions>
												<packageOptions>
																<matchingRegex>.*api.*</matchingRegex>
																<suppress>false</suppress>
																<reportUndocumented>false</reportUndocumented>
																<skipDeprecated>false</skipDeprecated>
																<documentedVisibilities>
																				<visibility>PUBLIC</visibility>
																				<visibility>PRIVATE</visibility>
																				<visibility>PROTECTED</visibility>
																				<visibility>INTERNAL</visibility>
																				<visibility>PACKAGE</visibility>
																</documentedVisibilities>
												</packageOptions>
								</perPackageOptions>
				</configuration>
</plugin>

CLI
If for some reason you cannot use Gradle or Maven build tools, Dokka has a command line (CLI) runner for generating documentation.

In comparison, it has the same, if not more, capabilities as the Gradle plugin for Dokka. Although it is considerably more difficult to set up as there is no
autoconfiguration, especially in multiplatform and multi-module environments.

Get
started
The CLI runner is published to Maven Central as a separate runnable artifact.

1072

You can find it on Maven Central or download it directly.

With the dokka-cli-1.9.10.jar file saved on your computer, run it with the -help option to see all available configuration options and their description:

java	-jar	dokka-cli-1.9.10.jar	-help

It also works for some nested options, such as -sourceSet:

java	-jar	dokka-cli-1.9.10.jar	-sourceSet	-help

Generate
documentation

Prerequisites
Since there is no build tool to manage dependencies, you have to provide dependency .jar files yourself.

Listed below are the dependencies that you need for any output format:

Group Artifact Version Link

org.jetbrains.dokka dokka-base 1.9.10 download

org.jetbrains.dokka analysis-kotlin-descriptors 1.9.10 download

Below are the additional dependencies that you need for HTML output format:

Group Artifact Version Link

org.jetbrains.kotlinx kotlinx-html-jvm 0.8.0 download

org.freemarker freemarker 2.3.31 download

Run
with
command
line
options
You can pass command line options to configure the CLI runner.

At the very least you need to provide the following options:

-pluginsClasspath - a list of absolute/relative paths to downloaded dependencies, separated by semi-colons ;

-sourceSet - an absolute path to code sources to generate documentation for

-outputDir - an absolute/relative path of the documentation output directory

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;./analysis-kotlin-descriptors-1.9.10.jar;./kotlinx-html-jvm-0.8.0.jar;./freemarker-
2.3.31.jar"	\
					-sourceSet	"-src	/home/myCoolProject/src/main/kotlin"	\
					-outputDir	"./dokka/html"

Executing the given example generates documentation in HTML output format.

See Command line options for more configuration details.

1073

https://central.sonatype.com/artifact/org.jetbrains.dokka/dokka-cli
https://repo1.maven.org/maven2/org/jetbrains/dokka/dokka-cli/1.9.10/dokka-cli-1.9.10.jar
https://repo1.maven.org/maven2/org/jetbrains/dokka/dokka-base/1.9.10/dokka-base-1.9.10.jar
https://repo1.maven.org/maven2/org/jetbrains/dokka/analysis-kotlin-descriptors/1.9.10/analysis-kotlin-descriptors-1.9.10.jar
https://repo1.maven.org/maven2/org/jetbrains/kotlinx/kotlinx-html-jvm/0.8.0/kotlinx-html-jvm-0.8.0.jar
https://repo1.maven.org/maven2/org/freemarker/freemarker/2.3.31/freemarker-2.3.31.jar

Run
with
JSON
configuration
It's possible to configure the CLI runner with JSON. In this case, you need to provide an absolute/relative path to the JSON configuration file as the first and only
argument. All other configuration options are parsed from it.

java	-jar	dokka-cli-1.9.10.jar	dokka-configuration.json

At the very least, you need the following JSON configuration file:

{
		"outputDir":	"./dokka/html",
		"sourceSets":	[
				{
						"sourceSetID":	{
								"scopeId":	"moduleName",
								"sourceSetName":	"main"
						},
						"sourceRoots":	[
								"/home/myCoolProject/src/main/kotlin"
]
				}
],
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"./kotlinx-html-jvm-0.8.0.jar",
				"./analysis-kotlin-descriptors-1.9.10.jar",
				"./freemarker-2.3.31.jar"
]
}

See JSON configuration options for more details.

Other
output
formats
By default, the dokka-base artifact contains the HTML output format only.

All other output formats are implemented as Dokka plugins. In order to use them, you have to put them on the plugins classpath.

For example, if you want to generate documentation in the experimental GFM output format, you need to download and pass gfm-plugin's JAR (download) into the
pluginsClasspath configuration option.

Via command line options:

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;...;./gfm-plugin-1.9.10.jar"	\
					...

Via JSON configuration:

{
		...
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"...",
				"./gfm-plugin-1.9.10.jar"
],
		...
}

With the GFM plugin passed to pluginsClasspath, the CLI runner generates documentation in the GFM output format.

For more information, see Markdown and Javadoc pages.

Command
line
options
To see the list of all possible command line options and their detailed description, run:

java	-jar	dokka-cli-1.9.10.jar	-help

1074

https://repo1.maven.org/maven2/org/jetbrains/dokka/gfm-plugin/1.9.10/gfm-plugin-1.9.10.jar

Short summary:

Option Description

moduleName Name of the project/module.

moduleVersion Documented version.

outputDir Output directory path, ./dokka by default.

sourceSet Configuration for a Dokka source set. Contains nested configuration options.

pluginsConfiguration Configuration for Dokka plugins.

pluginsClasspath List of jars with Dokka plugins and their dependencies. Accepts multiple paths separated by semicolons.

offlineMode Whether to resolve remote files/links over network.

failOnWarning Whether to fail documentation generation if Dokka has emitted a warning or an error.

delayTemplateSubstitution Whether to delay substitution of some elements. Used in incremental builds of multi-module projects.

noSuppressObviousFunctions Whether to suppress obvious functions such as those inherited from kotlin.Any and java.lang.Object.

includes Markdown files that contain module and package documentation. Accepts multiple values separated by semicolons.

suppressInheritedMembers Whether to suppress inherited members that aren't explicitly overridden in a given class.

globalPackageOptions Global list of package configuration options in format "matchingRegex,-deprecated,-
privateApi,+warnUndocumented,+suppress;+visibility:PUBLIC;...". Accepts multiple values separated by semicolons.

globalLinks Global external documentation links in format {url}^{packageListUrl}. Accepts multiple values separated by ^^.

globalSrcLink Global mapping between a source directory and a Web service for browsing the code. Accepts multiple paths separated by
semicolons.

helpSourceSet Prints help for the nested -sourceSet configuration.

loggingLevel Logging level, possible values: DEBUG, PROGRESS, INFO, WARN, ERROR.

help, h Usage info.

1075

Source
set
options
To see the list of command line options for the nested -sourceSet configuration, run:

java	-jar	dokka-cli-1.9.10.jar	-sourceSet	-help

Short summary:

Option Description

sourceSetName Name of the source set.

displayName Display name of the source set, used both internally and externally.

classpath Classpath for analysis and interactive samples. Accepts multiple paths separated by semicolons.

src Source code roots to be analyzed and documented. Accepts multiple paths separated by semicolons.

dependentSourceSets Names of the dependent source sets in format moduleName/sourceSetName. Accepts multiple values separated by semicolons.

samples List of directories or files that contain sample functions. Accepts multiple paths separated by semicolons.

includes Markdown files that contain module and package documentation. Accepts multiple paths separated by semicolons.

documentedVisibilities Visibilities to be documented. Accepts multiple values separated by semicolons. Possible values: PUBLIC, PRIVATE, PROTECTED,
INTERNAL, PACKAGE.

reportUndocumented Whether to report undocumented declarations.

noSkipEmptyPackages Whether to create pages for empty packages.

skipDeprecated Whether to skip deprecated declarations.

jdkVersion Version of JDK to use for linking to JDK Javadocs.

languageVersion Language version used for setting up analysis and samples.

apiVersion Kotlin API version used for setting up analysis and samples.

noStdlibLink Whether to generate links to the Kotlin standard library.

noJdkLink Whether to generate links to JDK Javadocs.

suppressedFiles Paths to files to be suppressed. Accepts multiple paths separated by semicolons.

1076

analysisPlatform Platform used for setting up analysis.

perPackageOptions List of package source set configurations in format matchingRegexp,-deprecated,-privateApi,+warnUndocumented,+suppress;....
Accepts multiple values separated by semicolons.

externalDocumentationLinks External documentation links in format {url}^{packageListUrl}. Accepts multiple values separated by ^^.

srcLink Mapping between a source directory and a Web service for browsing the code. Accepts multiple paths separated by semicolons.

Option Description

JSON
configuration
Below are some examples and detailed descriptions for each configuration section. You can also find an example with all configuration options applied at the
bottom of the page.

General
configuration

{
		"moduleName":	"Dokka	Example",
		"moduleVersion":	null,
		"outputDir":	"./build/dokka/html",
		"failOnWarning":	false,
		"suppressObviousFunctions":	true,
		"suppressInheritedMembers":	false,
		"offlineMode":	false,
		"includes":	[
				"module.md"
],
		"sourceLinks":		[
				{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
		"perPackageOptions":	[
				{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
		"externalDocumentationLinks":		[
				{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
		"sourceSets":	[
				{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"./kotlinx-html-jvm-0.8.0.jar",
				"./analysis-kotlin-descriptors-1.9.10.jar",
				"./freemarker-2.3.31.jar"
]
}

moduleName
The display name used to refer to the module. It is used for the table of contents, navigation, logging, etc.

Default: root

moduleVersion
The module version.

Default: empty

outputDirectory
The directory to where documentation is generated, regardless of output format.

Default: ./dokka

1077

failOnWarning
Whether to fail documentation generation if Dokka has emitted a warning or an error. The process waits until all errors and warnings have been emitted first.

This setting works well with reportUndocumented

Default: false

suppressObviousFunctions
Whether to suppress obvious functions.

A function is considered to be obvious if it is:

Inherited from kotlin.Any, Kotlin.Enum, java.lang.Object or java.lang.Enum, such as equals, hashCode, toString.

Synthetic (generated by the compiler) and does not have any documentation, such as dataClass.componentN or dataClass.copy.

Default: true

suppressInheritedMembers
Whether to suppress inherited members that aren't explicitly overridden in a given class.

Note: This can suppress functions such as equals / hashCode / toString, but cannot suppress synthetic functions such as dataClass.componentN and
dataClass.copy. Use suppressObviousFunctions for that.

Default: false

offlineMode
Whether to resolve remote files/links over your network.

This includes package-lists used for generating external documentation links. For example, to make classes from the standard library clickable.

Setting this to true can significantly speed up build times in certain cases, but can also worsen documentation quality and user experience. For example, by not
resolving class/member links from your dependencies, including the standard library.

Note: You can cache fetched files locally and provide them to Dokka as local paths. See externalDocumentationLinks section.

Default: false

includes
A list of Markdown files that contain module and package documentation.

The contents of specified files are parsed and embedded into documentation as module and package descriptions.

This can be configured on per-package basis.

sourceSets
Individual and additional configuration of Kotlin source sets.

For a list of possible options, see source set configuration.

sourceLinks
The global configuration of source links that is applied for all source sets.

For a list of possible options, see source link configuration.

perPackageOptions
The global configuration of matched packages, regardless of the source set they are in.

For a list of possible options, see per-package configuration.

externalDocumentationLinks
The global configuration of external documentation links, regardless of the source set they are used in.

For a list of possible options, see external documentation links configuration.

pluginsClasspath
A list of JAR files with Dokka plugins and their dependencies.

Source
set
configuration
How to configure Kotlin source sets:

{
		"sourceSets":	[

1078

https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

				{
						"displayName":	"jvm",
						"sourceSetID":	{
								"scopeId":	"moduleName",
								"sourceSetName":	"main"
						},
						"dependentSourceSets":	[
								{
										"scopeId":	"dependentSourceSetScopeId",
										"sourceSetName":	"dependentSourceSetName"
								}
],
						"documentedVisibilities":	["PUBLIC",	"PRIVATE",	"PROTECTED",	"INTERNAL",	"PACKAGE"],
						"reportUndocumented":	false,
						"skipEmptyPackages":	true,
						"skipDeprecated":	false,
						"jdkVersion":	8,
						"languageVersion":	"1.7",
						"apiVersion":	"1.7",
						"noStdlibLink":	false,
						"noJdkLink":	false,
						"includes":	[
								"module.md"
],
						"analysisPlatform":	"jvm",
						"sourceRoots":	[
								"/home/ignat/IdeaProjects/dokka-debug-mvn/src/main/kotlin"
],
						"classpath":	[
								"libs/kotlin-stdlib-1.9.20.jar",
								"libs/kotlin-stdlib-common-1.9.20.jar"
],
						"samples":	[
								"samples/basic.kt"
],
						"suppressedFiles":	[
								"src/main/kotlin/org/jetbrains/dokka/Suppressed.kt"
],
						"sourceLinks":		[
								{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
						"perPackageOptions":	[
								{	"_comment":	"Options	are	described	in	a	separate	section"	}
],
						"externalDocumentationLinks":		[
								{	"_comment":	"Options	are	described	in	a	separate	section"	}
]
				}
]
}

displayName
The display name used to refer to this source set.

The name is used both externally (for example, the source set name is visible to documentation readers) and internally (for example, for logging messages of
reportUndocumented).

The platform name can be used if you don't have a better alternative.

sourceSetID
The technical ID of the source set

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations, as well as if you want to exclude public declarations and only document internal
API.

This can be configured on per-package basis.

Possible values:

PUBLIC

PRIVATE

PROTECTED

1079

INTERNAL

PACKAGE

Default: PUBLIC

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

This can be configured on per-package basis.

Default: false

skipEmptyPackages
Whether to skip packages that contain no visible declarations after various filters have been applied.

For example, if skipDeprecated is set to true and your package contains only deprecated declarations, it is considered to be empty.

Default for CLI runner is false.

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be configured on per-package basis.

Default: false

jdkVersion
The JDK version to use when generating external documentation links for Java types.

For example, if you use java.util.UUID in some public declaration signature, and this option is set to 8, Dokka generates an external documentation link to JDK 8
Javadocs for it.

languageVersion
The Kotlin language version used for setting up analysis and @sample environment.

apiVersion
The Kotlin API version used for setting up analysis and @sample environment.

noStdlibLink
Whether to generate external documentation links that lead to the API reference documentation of Kotlin's standard library.

Note: Links are generated when noStdLibLink is set to false.

Default: false

noJdkLink
Whether to generate external documentation links to JDK's Javadocs.

The version of JDK Javadocs is determined by the jdkVersion option.

Note: Links are generated when noJdkLink is set to false.

Default: false

includes
A list of Markdown files that contain module and package documentation.

The contents of the specified files are parsed and embedded into documentation as module and package descriptions.

analysisPlatform
Platform to be used for setting up code analysis and @sample environment.

Possible values:

jvm

common

js

native

1080

https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/compatibility-modes.html
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier

sourceRoots
The source code roots to be analyzed and documented. Acceptable inputs are directories and individual .kt / .java files.

classpath
The classpath for analysis and interactive samples.

This is useful if some types that come from dependencies are not resolved/picked up automatically.

This option accepts both .jar and .klib files.

samples
A list of directories or files that contain sample functions which are referenced via the @sample KDoc tag.

suppressedFiles
The files to be suppressed when generating documentation.

sourceLinks
A set of parameters for source links that is applied only for this source set.

For a list of possible options, see source link configuration.

perPackageOptions
A set of parameters specific to matched packages within this source set.

For a list of possible options, see per-package configuration.

externalDocumentationLinks
A set of parameters for external documentation links that is applied only for this source set.

For a list of possible options, see external documentation links configuration.

Source
link
configuration
The sourceLinks configuration block allows you to add a source link to each signature that leads to the remoteUrl with a specific line number. (The line number is
configurable by setting remoteLineSuffix).

This helps readers to find the source code for each declaration.

For an example, see the documentation for the count() function in kotlinx.coroutines.

You can configure source links for all source sets together at the same time, or individually:

{
		"sourceLinks":	[
				{
						"localDirectory":	"src/main/kotlin",
						"remoteUrl":	"https://github.com/Kotlin/dokka/tree/master/src/main/kotlin",
						"remoteLineSuffix":	"#L"
				}
]
}

localDirectory
The path to the local source directory.

remoteUrl
The URL of the source code hosting service that can be accessed by documentation readers, like GitHub, GitLab, Bitbucket, etc. This URL is used to generate
source code links of declarations.

remoteLineSuffix
The suffix used to append the source code line number to the URL. This helps readers navigate not only to the file, but to the specific line number of the declaration.

The number itself is appended to the specified suffix. For example, if this option is set to #L and the line number is 10, the resulting URL suffix is #L10.

Suffixes used by popular services:

GitHub: #L

GitLab: #L

Bitbucket: #lines-

Default: empty (no suffix)

1081

https://kotlinlang.org/docs/kotlin-doc.html#sample-identifier
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/count.html

Per-package
configuration
The perPackageOptions configuration block allows setting some options for specific packages matched by matchingRegex.

You can add package configurations for all source sets together at the same time, or individually:

{
		"perPackageOptions":	[
				{
						"matchingRegex":	".*internal.*",
						"suppress":	false,
						"skipDeprecated":	false,
						"reportUndocumented":	false,
						"documentedVisibilities":	["PUBLIC",	"PRIVATE",	"PROTECTED",	"INTERNAL",	"PACKAGE"]
				}
]
}

matchingRegex
The regular expression that is used to match the package.

suppress
Whether this package should be skipped when generating documentation.

Default: false

skipDeprecated
Whether to document declarations annotated with @Deprecated.

This can be set on project/module level.

Default: false

reportUndocumented
Whether to emit warnings about visible undocumented declarations, that is declarations without KDocs after they have been filtered by documentedVisibilities and
other filters.

This setting works well with failOnWarning.

This can be configured on source set level.

Default: false

documentedVisibilities
The set of visibility modifiers that should be documented.

This can be used if you want to document protected/internal/private declarations within this package, as well as if you want to exclude public declarations and only
document internal API.

Can be configured on source set level.

Default: PUBLIC

External
documentation
links
configuration
The externalDocumentationLinks block allows the creation of links that lead to the externally hosted documentation of your dependencies.

For example, if you are using types from kotlinx.serialization, by default they are unclickable in your documentation, as if they are unresolved. However, since the
API reference documentation for kotlinx.serialization is built by Dokka and is published on kotlinlang.org, you can configure external documentation links for it. Thus
allowing Dokka to generate links for types from the library, making them resolve successfully and clickable.

You can configure external documentation links for all source sets together at the same time, or individually:

{
		"externalDocumentationLinks":	[
				{
						"url":	"https://kotlinlang.org/api/kotlinx.serialization/",
						"packageListUrl":	"https://kotlinlang.org/api/kotlinx.serialization/package-list"
				}
]
}

url

1082

https://kotlinlang.org/api/kotlinx.serialization/

The root URL of documentation to link to. It must contain a trailing slash.

Dokka does its best to automatically find package-list for the given URL, and link declarations together.

If automatic resolution fails or if you want to use locally cached files instead, consider setting the packageListUrl option.

packageListUrl
The exact location of a package-list. This is an alternative to relying on Dokka automatically resolving it.

Package lists contain information about the documentation and the project itself, such as module and package names.

This can also be a locally cached file to avoid network calls.

Complete
configuration
Below you can see all possible configuration options applied at the same time.

{
		"moduleName":	"Dokka	Example",
		"moduleVersion":	null,
		"outputDir":	"./build/dokka/html",
		"failOnWarning":	false,
		"suppressObviousFunctions":	true,
		"suppressInheritedMembers":	false,
		"offlineMode":	false,
		"sourceLinks":	[
				{
						"localDirectory":	"src/main/kotlin",
						"remoteUrl":	"https://github.com/Kotlin/dokka/tree/master/src/main/kotlin",
						"remoteLineSuffix":	"#L"
				}
],
		"externalDocumentationLinks":	[
				{
						"url":	"https://docs.oracle.com/javase/8/docs/api/",
						"packageListUrl":	"https://docs.oracle.com/javase/8/docs/api/package-list"
				},
				{
						"url":	"https://kotlinlang.org/api/latest/jvm/stdlib/",
						"packageListUrl":	"https://kotlinlang.org/api/latest/jvm/stdlib/package-list"
				}
],
		"perPackageOptions":	[
				{
						"matchingRegex":	".*internal.*",
						"suppress":	false,
						"reportUndocumented":	false,
						"skipDeprecated":	false,
						"documentedVisibilities":	["PUBLIC",	"PRIVATE",	"PROTECTED",	"INTERNAL",	"PACKAGE"]
				}
],
		"sourceSets":	[
				{
						"displayName":	"jvm",
						"sourceSetID":	{
								"scopeId":	"moduleName",
								"sourceSetName":	"main"
						},
						"dependentSourceSets":	[
								{
										"scopeId":	"dependentSourceSetScopeId",
										"sourceSetName":	"dependentSourceSetName"
								}
],
						"documentedVisibilities":	["PUBLIC",	"PRIVATE",	"PROTECTED",	"INTERNAL",	"PACKAGE"],
						"reportUndocumented":	false,
						"skipEmptyPackages":	true,
						"skipDeprecated":	false,
						"jdkVersion":	8,
						"languageVersion":	"1.7",
						"apiVersion":	"1.7",
						"noStdlibLink":	false,
						"noJdkLink":	false,
						"includes":	[
								"module.md"
],
						"analysisPlatform":	"jvm",
						"sourceRoots":	[
								"/home/ignat/IdeaProjects/dokka-debug-mvn/src/main/kotlin"

1083

],
						"classpath":	[
								"libs/kotlin-stdlib-1.9.20.jar",
								"libs/kotlin-stdlib-common-1.9.20.jar"
],
						"samples":	[
								"samples/basic.kt"
],
						"suppressedFiles":	[
								"src/main/kotlin/org/jetbrains/dokka/Suppressed.kt"
],
						"sourceLinks":	[
								{
										"localDirectory":	"src/main/kotlin",
										"remoteUrl":	"https://github.com/Kotlin/dokka/tree/master/src/main/kotlin",
										"remoteLineSuffix":	"#L"
								}
],
						"externalDocumentationLinks":	[
								{
										"url":	"https://docs.oracle.com/javase/8/docs/api/",
										"packageListUrl":	"https://docs.oracle.com/javase/8/docs/api/package-list"
								},
								{
										"url":	"https://kotlinlang.org/api/latest/jvm/stdlib/",
										"packageListUrl":	"https://kotlinlang.org/api/latest/jvm/stdlib/package-list"
								}
],
						"perPackageOptions":	[
								{
										"matchingRegex":	".*internal.*",
										"suppress":	false,
										"reportUndocumented":	false,
										"skipDeprecated":	false,
										"documentedVisibilities":	["PUBLIC",	"PRIVATE",	"PROTECTED",	"INTERNAL",	"PACKAGE"]
								}
]
				}
],
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"./kotlinx-html-jvm-0.8.0.jar",
				"./analysis-kotlin-descriptors-1.9.10.jar",
				"./freemarker-2.3.31.jar"
],
		"pluginsConfiguration":	[
				{
						"fqPluginName":	"org.jetbrains.dokka.base.DokkaBase",
						"serializationFormat":	"JSON",
						"values":	"{\"separateInheritedMembers\":false,\"footerMessage\":\"©	2021	pretty	good	Copyright\"}"
				}
],
		"includes":	[
				"module.md"
]
}

HTML
HTML is Dokka's default and recommended output format. It is currently in Beta and approaching the Stable release.

You can see an example of the output by browsing documentation for kotlinx.coroutines.

Generate
HTML
documentation
HTML as an output format is supported by all runners. To generate HTML documentation, follow these steps depending on your build tool or runner:

For Gradle, run dokkaHtml or dokkaHtmlMultiModule tasks.

For Maven, run the dokka:dokka goal.

For CLI runner, run with HTML dependencies set.

1084

https://kotlinlang.org/api/kotlinx.coroutines/

Configuration
HTML format is Dokka's base format, so it is configurable through DokkaBase and DokkaBaseConfiguration classes:

Kotlin

Via type-safe Kotlin DSL:

import	org.jetbrains.dokka.base.DokkaBase
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.base.DokkaBaseConfiguration

buildscript	{
				dependencies	{
								classpath("org.jetbrains.dokka:dokka-base:1.9.10")
				}
}

tasks.withType<DokkaTask>().configureEach	{
				pluginConfiguration<DokkaBase,	DokkaBaseConfiguration>	{
								customAssets	=	listOf(file("my-image.png"))
								customStyleSheets	=	listOf(file("my-styles.css"))
								footerMessage	=	"(c)	2022	MyOrg"
								separateInheritedMembers	=	false
								templatesDir	=	file("dokka/templates")
								mergeImplicitExpectActualDeclarations	=	false
				}
}

Via JSON:

import	org.jetbrains.dokka.gradle.DokkaTask

tasks.withType<DokkaTask>().configureEach	{
				val	dokkaBaseConfiguration	=	"""
				{
						"customAssets":	["${file("assets/my-image.png")}"],
						"customStyleSheets":	["${file("assets/my-styles.css")}"],
						"footerMessage":	"(c)	2022	MyOrg",
						"separateInheritedMembers":	false,
						"templatesDir":	"${file("dokka/templates")}",
						"mergeImplicitExpectActualDeclarations":	false
				}
				"""
				pluginsMapConfiguration.set(
								mapOf(
												//	fully	qualified	plugin	name	to	json	configuration
												"org.jetbrains.dokka.base.DokkaBase"	to	dokkaBaseConfiguration
)
)
}

Groovy

import	org.jetbrains.dokka.gradle.DokkaTask

tasks.withType(DokkaTask.class)	{
				String	dokkaBaseConfiguration	=	"""
				{
						"customAssets":	["${file("assets/my-image.png")}"],
						"customStyleSheets":	["${file("assets/my-styles.css")}"],
						"footerMessage":	"(c)	2022	MyOrg"
						"separateInheritedMembers":	false,
						"templatesDir":	"${file("dokka/templates")}",
						"mergeImplicitExpectActualDeclarations":	false
				}

HTML pages generated by this format need to be hosted on a web server in order to render everything correctly.

You can use any free static site hosting service, such as GitHub Pages.

Locally, you can use the built-in IntelliJ web server.

1085

https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages
https://www.jetbrains.com/help/idea/php-built-in-web-server.html

				"""
				pluginsMapConfiguration.set(
												//	fully	qualified	plugin	name	to	json	configuration
												["org.jetbrains.dokka.base.DokkaBase":	dokkaBaseConfiguration]
)
}

Maven

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<pluginsConfiguration>
												<!--	Fully	qualified	plugin	name	-->
												<org.jetbrains.dokka.base.DokkaBase>
																<!--	Options	by	name	-->
																<customAssets>
																				<asset>${project.basedir}/my-image.png</asset>
																</customAssets>
																<customStyleSheets>
																				<stylesheet>${project.basedir}/my-styles.css</stylesheet>
																</customStyleSheets>
																<footerMessage>(c)	MyOrg	2022	Maven</footerMessage>
																<separateInheritedMembers>false</separateInheritedMembers>
																<templatesDir>${project.basedir}/dokka/templates</templatesDir>
																<mergeImplicitExpectActualDeclarations>false</mergeImplicitExpectActualDeclarations>
												</org.jetbrains.dokka.base.DokkaBase>
								</pluginsConfiguration>
				</configuration>
</plugin>

CLI

Via command line options:

java	-jar	dokka-cli-1.9.10.jar	\
					...
					-pluginsConfiguration	"org.jetbrains.dokka.base.DokkaBase={\"customAssets\":	[\"my-image.png\"],	\"customStyleSheets\":	[\"my-
styles.css\"],	\"footerMessage\":	\"(c)	2022	MyOrg\",	\"separateInheritedMembers\":	false,	\"templatesDir\":	\"dokka/templates\",	
\"mergeImplicitExpectActualDeclarations\":	false}
"

Via JSON configuration:

{
		"moduleName":	"Dokka	Example",
		"pluginsConfiguration":	[
				{
						"fqPluginName":	"org.jetbrains.dokka.base.DokkaBase",
						"serializationFormat":	"JSON",
						"values":	"{\"customAssets\":	[\"my-image.png\"],	\"customStyleSheets\":	[\"my-styles.css\"],	\"footerMessage\":	\"(c)	2022	
MyOrg\",	\"separateInheritedMembers\":	false,	\"templatesDir\":	\"dokka/templates\",	\"mergeImplicitExpectActualDeclarations\":	
false}"
				}
]
}

Configuration
options
The table below contains all of the possible configuration options and their purpose.

Option Description

customAssets List of paths for image assets to be bundled with documentation. The image assets can have any file extension. For
more information, see Customizing assets.

1086

customStyleSheets List of paths for .css stylesheets to be bundled with documentation and used for rendering. For more information, see
Customizing styles.

templatesDir Path to the directory containing custom HTML templates. For more information, see Templates.

footerMessage The text displayed in the footer.

separateInheritedMembers This is a boolean option. If set to true, Dokka renders properties/functions and inherited properties/inherited functions
separately. This is disabled by default.

mergeImplicitExpectActualDeclarations This is a boolean option. If set to true, Dokka merges declarations that are not declared as expect/actual, but have the
same fully qualified name. This can be useful for legacy codebases. This is disabled by default.

Option Description

For more information about configuring Dokka plugins, see Configuring Dokka plugins.

Customization
To help you add your own look and feel to your documentation, the HTML format supports a number of customization options.

Customize
styles
You can use your own stylesheets by using the customStyleSheets configuration option. These are applied to every page.

It's also possible to override Dokka's default stylesheets by providing files with the same name:

Stylesheet name Description

style.css Main stylesheet, contains most of the styles used across all pages

logo-styles.css Header logo styling

prism.css Styles for PrismJS syntax highlighter

The source code for all of Dokka's stylesheets is available on GitHub.

Customize
assets
You can provide your own images to be bundled with documentation by using the customAssets configuration option.

These files are copied to the <output>/images directory.

It's possible to override Dokka's images and icons by providing files with the same name. The most useful and relevant one being logo-icon.svg, which is the image
that's used in the header. The rest is mostly icons.

You can find all images used by Dokka on GitHub.

Change
the
logo

1087

https://kotlinlang.org/docs/multiplatform-connect-to-apis.html
https://prismjs.com/
https://github.com/Kotlin/dokka/tree/1.9.10/plugins/base/src/main/resources/dokka/styles
https://github.com/Kotlin/dokka/tree/1.9.10/plugins/base/src/main/resources/dokka/images

To customize the logo, you can begin by providing your own asset for logo-icon.svg.

If you don't like how it looks, or you want to use a .png file instead of the default .svg file, you can override the logo-styles.css stylesheet to customize it.

For an example of how to do this, see our custom format example project.

Modify
the
footer
You can modify text in the footer by using the footerMessage configuration option.

Templates
Dokka provides the ability to modify FreeMarker templates used for generating documentation pages.

You can change the header completely, add your own banners/menus/search, load analytics, change body styling and so on.

Dokka uses the following templates:

Template Description

base.ftl Defines the general design of all pages to be rendered.

includes/header.ftl The page header that by default contains the logo, version, source set selector, light/dark theme switch, and search.

includes/footer.ftl The page footer that contains the footerMessage configuration option and copyright.

includes/page_metadata.ftl Metadata used within <head> container.

includes/source_set_selector.ftl The source set selector in the header.

The base template is base.ftl and it includes all of the remaining listed templates. You can find the source code for all of Dokka's templates on GitHub.

You can override any template by using the templatesDir configuration option. Dokka searches for the exact template names within the given directory. If it fails to
find user-defined templates, it uses the default templates.

Variables
The following variables are available inside all templates:

Variable Description

${pageName} The page name

${footerMessage} The text which is set by the footerMessage configuration option

${sourceSets} A nullable list of source sets for multi-platform pages. Each item has name, platform, and filter properties.

${projectName} The project name. It's available only within the template_cmd directive.

${pathToRoot} The path to root from the current page. It's useful for locating assets and is available only within the template_cmd directive.

1088

https://github.com/Kotlin/dokka/tree/1.9.10/examples/gradle/dokka-customFormat-example
https://freemarker.apache.org/
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets
https://github.com/Kotlin/dokka/tree/1.9.10/plugins/base/src/main/resources/dokka/templates
https://kotlinlang.org/docs/multiplatform-discover-project.html#source-sets

Variables projectName and pathToRoot are available only within the template_cmd directive as they require more context and thus they need to be resolved at later
stages by the MultiModule task:

<@template_cmd	name="projectName">
			${projectName}
</@template_cmd>

Directives
You can also use the following Dokka-defined directives:

Variable Description

<@content/> The main page content.

<@resources/> Resources such as scripts and stylesheets.

<@version/> The module version taken from configuration. If the versioning plugin is applied, it is replaced with a version navigator.

Markdown

Dokka is able to generate documentation in GitHub Flavored and Jekyll compatible Markdown.

These formats give you more freedom in terms of hosting documentation as the output can be embedded right into your documentation website. For example, see
OkHttp's API reference pages.

Markdown output formats are implemented as Dokka plugins, maintained by the Dokka team, and they are open source.

GFM
The GFM output format generates documentation in GitHub Flavored Markdown.

Gradle

The Gradle plugin for Dokka comes with the GFM output format included. You can use the following tasks with it:

Task Description

dokkaGfm Generates GFM documentation for a single project.

dokkaGfmMultiModule A MultiModule task created only for parent projects in multi-project builds. It generates documentation for subprojects and collects all outputs in a single

place with a common table of contents.

dokkaGfmCollector A Collector task created only for parent projects in multi-project builds. It calls dokkaGfm for every subproject and merges all outputs into a single virtual

project.

Maven

Since GFM format is implemented as a Dokka plugin, you need to apply it as a plugin dependency:

The Markdown output formats are still in Alpha, so you may find bugs and experience migration issues when using them. You use them at your own risk.

1089

https://freemarker.apache.org/docs/ref_directive_userDefined.html
https://github.com/Kotlin/dokka/tree/master/plugins/versioning
https://square.github.io/okhttp/4.x/okhttp/okhttp3/
https://github.github.com/gfm/

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<dokkaPlugins>
												<plugin>
																<groupId>org.jetbrains.dokka</groupId>
																<artifactId>gfm-plugin</artifactId>
																<version>1.9.10</version>
												</plugin>
								</dokkaPlugins>
				</configuration>
</plugin>

After configuring this, running the dokka:dokka goal produces documentation in GFM format.

For more information, see the Mavin plugin documentation for Other output formats.

CLI

Since GFM format is implemented as a Dokka plugin, you need to download the JAR file and pass it to pluginsClasspath.

Via command line options:

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;...;./gfm-plugin-1.9.10.jar"	\
					...

Via JSON configuration:

{
		...
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"...",
				"./gfm-plugin-1.9.10.jar"
],
		...
}

For more information, see the CLI runner's documentation for Other output formats.

You can find the source code on GitHub.

Jekyll
The Jekyll output format generates documentation in Jekyll compatible Markdown.

Gradle

The Gradle plugin for Dokka comes with the Jekyll output format included. You can use the following tasks with it:

Task Description

dokkaJekyll Generates Jekyll documentation for a single project.

dokkaJekyllMultiModule A MultiModule task created only for parent projects in multi-project builds. It generates documentation for subprojects and collects all outputs in a single

place with a common table of contents.

dokkaJekyllCollector A Collector task created only for parent projects in multi-project builds. It calls dokkaJekyll for every subproject and merges all outputs into a single virtual

project.

Maven

1090

file:///Users/Sarah.Haggarty/kotlin-web-site/dist/docs/(https://repo1.maven.org/maven2/org/jetbrains/dokka/gfm-plugin/1.9.10/gfm-plugin-1.9.10.jar)
https://github.com/Kotlin/dokka/tree/1.9.10/plugins/gfm
https://jekyllrb.com/

Since Jekyll format is implemented as a Dokka plugin, you need to apply it as a plugin dependency:

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<dokkaPlugins>
												<plugin>
																<groupId>org.jetbrains.dokka</groupId>
																<artifactId>jekyll-plugin</artifactId>
																<version>1.9.10</version>
												</plugin>
								</dokkaPlugins>
				</configuration>
</plugin>

After configuring this, running the dokka:dokka goal produces documentation in GFM format.

For more information, see the Maven plugin's documentation for Other output formats.

CLI

Since Jekyll format is implemented as a Dokka plugin, you need to download the JAR file. This format is also based on GFM format, so you need to provide it as a dependency as well.

Both JARs need to be passed to pluginsClasspath:

Via command line options:

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;...;./gfm-plugin-1.9.10.jar;./jekyll-plugin-1.9.10.jar"	\
					...

Via JSON configuration:

{
		...
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"...",
				"./gfm-plugin-1.9.10.jar",
				"./jekyll-plugin-1.9.10.jar"
],
		...
}

For more information, see the CLI runner's documentation for Other output formats.

You can find the source code on GitHub.

Javadoc

Dokka's Javadoc output format is a lookalike of Java's Javadoc HTML format.

It tries to visually mimic HTML pages generated by the Javadoc tool, but it's not a direct implementation or an exact copy.

The Javadoc output format is still in Alpha, so you may find bugs and experience migration issues when using it. Successful integration with tools that
accept Java's Javadoc HTML as input is not guaranteed. You use it at your own risk.

1091

https://repo1.maven.org/maven2/org/jetbrains/dokka/jekyll-plugin/1.9.10/jekyll-plugin-1.9.10.jar
https://github.com/Kotlin/dokka/tree/1.9.10/plugins/jekyll
https://docs.oracle.com/en/java/javase/19/docs/api/index.html

Screenshot of javadoc output format

All Kotlin code and signatures are rendered as seen from Java's perspective. This is achieved with our Kotlin as Java Dokka plugin, which comes bundled and
applied by default for this format.

The Javadoc output format is implemented as a Dokka plugin, and it is maintained by the Dokka team. It is open source and you can find the source code on
GitHub.

Generate
Javadoc
documentation

Gradle

The Gradle plugin for Dokka comes with the Javadoc output format included. You can use the following tasks:

Task Description

dokkaJavadoc Generates Javadoc documentation for a single project.

The Javadoc format does not support multiplatform projects.

1092

https://github.com/Kotlin/dokka/tree/master/plugins/kotlin-as-java
https://github.com/Kotlin/dokka/tree/master/plugins/javadoc

dokkaJavadocCollector A Collector task created only for parent projects in multi-project builds. It calls dokkaJavadoc for every subproject and merges all outputs into a single virtual

project.

Task Description

The javadoc.jar file can be generated separately. For more information, see Building javadoc.jar.

Maven

The Maven plugin for Dokka comes with the Javadoc output format built in. You can generate documentation by using the following goals:

Goal Description

dokka:javadoc Generates documentation in Javadoc format

dokka:javadocJar Generates a javadoc.jar file that contains documentation in Javadoc

format

CLI

Since the Javadoc output format is a Dokka plugin, you need to download the plugin's JAR file.

The Javadoc output format has two dependencies that you need to provide as additional JAR files:

kotlin-as-java plugin

korte-jvm

Via command line options:

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;...;./javadoc-plugin-1.9.10.jar"	\
					...

Via JSON configuration:

{
		...
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"...",
				"./kotlin-as-java-plugin-1.9.10.jar",
				"./korte-jvm-3.3.0.jar",
				"./javadoc-plugin-1.9.10.jar"
],
		...
}

For more information, see Other output formats in the CLI runner's documentation.

Dokka
plugins
Dokka was built from the ground up to be easily extensible and highly customizable, which allows the community to implement plugins for missing or very specific
features that are not provided out of the box.

Dokka plugins range anywhere from supporting other programming language sources to exotic output formats. You can add support for your own KDoc tags or
annotations, teach Dokka how to render different DSLs that are found in KDoc descriptions, visually redesign Dokka's pages to be seamlessly integrated into your
company's website, integrate it with other tools and so much more.

If you want to learn how to create Dokka plugins, see Developer guides.

1093

https://repo1.maven.org/maven2/org/jetbrains/dokka/javadoc-plugin/1.9.10/javadoc-plugin-1.9.10.jar
https://repo1.maven.org/maven2/org/jetbrains/dokka/kotlin-as-java-plugin/1.9.10/kotlin-as-java-plugin-1.9.10.jar
https://repo1.maven.org/maven2/com/soywiz/korlibs/korte/korte-jvm/3.3.0/korte-jvm-3.3.0.jar
https://kotlin.github.io/dokka/1.9.10/developer_guide/introduction/

Apply
Dokka
plugins
Dokka plugins are published as separate artifacts, so to apply a Dokka plugin you only need to add it as a dependency. From there, the plugin extends Dokka by
itself - no further action is needed.

Let's have a look at how you can apply the mathjax plugin to your project:

Kotlin

The Gradle plugin for Dokka creates convenient dependency configurations that allow you to apply plugins universally or for a specific output format only.

dependencies	{
				//	Is	applied	universally
				dokkaPlugin("org.jetbrains.dokka:mathjax-plugin:1.9.10")

				//	Is	applied	for	the	single-module	dokkaHtml	task	only
				dokkaHtmlPlugin("org.jetbrains.dokka:kotlin-as-java-plugin:1.9.10")

				//	Is	applied	for	HTML	format	in	multi-project	builds
				dokkaHtmlPartialPlugin("org.jetbrains.dokka:kotlin-as-java-plugin:1.9.10")
}

Groovy

The Gradle plugin for Dokka creates convenient dependency configurations that allow you to apply Dokka plugins universally or for a specific output format only.

dependencies	{
				//	Is	applied	universally
				dokkaPlugin	'org.jetbrains.dokka:mathjax-plugin:1.9.10'

				//	Is	applied	for	the	single-module	dokkaHtml	task	only
				dokkaHtmlPlugin	'org.jetbrains.dokka:kotlin-as-java-plugin:1.9.10'

				//	Is	applied	for	HTML	format	in	multi-project	builds
				dokkaHtmlPartialPlugin	'org.jetbrains.dokka:kotlin-as-java-plugin:1.9.10'
}

Maven

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<dokkaPlugins>
												<plugin>
																<groupId>org.jetbrains.dokka</groupId>
																<artifactId>mathjax-plugin</artifactId>
																<version>1.9.10</version>
												</plugin>
								</dokkaPlugins>
				</configuration>
</plugin>

Plugins that use the same extension points or work in a similar way can interfere with each other. This may lead to visual bugs, general undefined
behaviour or even failed builds. However, it should not lead to concurrency issues since Dokka does not expose any mutable data structures or objects.

If you notice problems like this, it's a good idea to check which plugins are applied and what they do.

When documenting multi-project builds, you need to apply Dokka plugins within subprojects as well as in their parent project.

When documenting multi-project builds, you need to apply Dokka plugins within subprojects as well as in their parent project.

1094

https://github.com/Kotlin/dokka/tree/master/plugins/mathjax

CLI

If you are using the CLI runner with command line options, Dokka plugins should be passed as .jar files to -pluginsClasspath:

java	-jar	dokka-cli-1.9.10.jar	\
					-pluginsClasspath	"./dokka-base-1.9.10.jar;...;./mathjax-plugin-1.9.10.jar"	\
					...

If you are using JSON configuration, Dokka plugins should be specified under pluginsClasspath.

{
		...
		"pluginsClasspath":	[
				"./dokka-base-1.9.10.jar",
				"...",
				"./mathjax-plugin-1.9.10.jar"
],
		...
}

Configure
Dokka
plugins
Dokka plugins can also have configuration options of their own. To see which options are available, consult the documentation of the plugins you are using.

Let's have a look at how you can configure the DokkaBase plugin, which is responsible for generating HTML documentation, by adding a custom image to the
assets (customAssets option), by adding custom style sheets (customStyleSheets option), and by modifying the footer message (footerMessage option):

Kotlin

Gradle's Kotlin DSL allows for type-safe plugin configuration. This is achievable by adding the plugin's artifact to the classpath dependencies in the buildscript block, and then importing

plugin and configuration classes:

import	org.jetbrains.dokka.base.DokkaBase
import	org.jetbrains.dokka.gradle.DokkaTask
import	org.jetbrains.dokka.base.DokkaBaseConfiguration

buildscript	{
				dependencies	{
								classpath("org.jetbrains.dokka:dokka-base:1.9.10")
				}
}

tasks.withType<DokkaTask>().configureEach	{
				pluginConfiguration<DokkaBase,	DokkaBaseConfiguration>	{
								customAssets	=	listOf(file("my-image.png"))
								customStyleSheets	=	listOf(file("my-styles.css"))
								footerMessage	=	"(c)	2022	MyOrg"
				}
}

Alternatively, plugins can be configured via JSON. With this method, no additional dependencies are needed.

import	org.jetbrains.dokka.gradle.DokkaTask

tasks.withType<DokkaTask>().configureEach	{
				val	dokkaBaseConfiguration	=	"""
				{
						"customAssets":	["${file("assets/my-image.png")}"],
						"customStyleSheets":	["${file("assets/my-styles.css")}"],
						"footerMessage":	"(c)	2022	MyOrg"
				}
				"""
				pluginsMapConfiguration.set(
								mapOf(
												//	fully	qualified	plugin	name	to	json	configuration
												"org.jetbrains.dokka.base.DokkaBase"	to	dokkaBaseConfiguration
)
)
}

Groovy

1095

import	org.jetbrains.dokka.gradle.DokkaTask

tasks.withType(DokkaTask.class)	{
				String	dokkaBaseConfiguration	=	"""
				{
						"customAssets":	["${file("assets/my-image.png")}"],
						"customStyleSheets":	["${file("assets/my-styles.css")}"],
						"footerMessage":	"(c)	2022	MyOrg"
				}
				"""
				pluginsMapConfiguration.set(
												//	fully	qualified	plugin	name	to	json	configuration
												["org.jetbrains.dokka.base.DokkaBase":	dokkaBaseConfiguration]
)
}

Maven

<plugin>
				<groupId>org.jetbrains.dokka</groupId>
				<artifactId>dokka-maven-plugin</artifactId>
				...
				<configuration>
								<pluginsConfiguration>
												<!--	Fully	qualified	plugin	name	-->
												<org.jetbrains.dokka.base.DokkaBase>
																<!--	Options	by	name	-->
																<customAssets>
																				<asset>${project.basedir}/my-image.png</asset>
																</customAssets>
																<customStyleSheets>
																				<stylesheet>${project.basedir}/my-styles.css</stylesheet>
																</customStyleSheets>
																<footerMessage>(c)	MyOrg	2022	Maven</footerMessage>
												</org.jetbrains.dokka.base.DokkaBase>
								</pluginsConfiguration>
				</configuration>
</plugin>

CLI

If you are using the CLI runner with command line options, use the -pluginsConfiguration option that accepts JSON configuration in the form of fullyQualifiedPluginName=json.

If you need to configure multiple plugins, you can pass multiple values separated by ̂ ^.

java	-jar	dokka-cli-1.9.10.jar	\
					...
					-pluginsConfiguration	"org.jetbrains.dokka.base.DokkaBase={\"customAssets\":	[\"my-image.png\"],	\"customStyleSheets\":	[\"my-
styles.css\"],	\"footerMessage\":	\"(c)	2022	MyOrg	CLI\"}"

If you are using JSON configuration, there exists a similar pluginsConfiguration array that accepts JSON configuration in values.

{
		"moduleName":	"Dokka	Example",
		"pluginsConfiguration":	[
				{
						"fqPluginName":	"org.jetbrains.dokka.base.DokkaBase",
						"serializationFormat":	"JSON",
						"values":	"{\"customAssets\":	[\"my-image.png\"],	\"customStyleSheets\":	[\"my-styles.css\"],	\"footerMessage\":	\"(c)	2022	
MyOrg\"}"
				}
]
}

Notable
plugins
Here are some notable Dokka plugins that you might find useful:

Name Description

1096

Android documentation

plugin

Improves the documentation experience on Android

Versioning plugin Adds version selector and helps to organize documentation for different versions of your application/library

MermaidJS HTML plugin Renders MermaidJS diagrams and visualizations found in KDocs

Mathjax HTML plugin Pretty prints mathematics found in KDocs

Kotlin as Java plugin Renders Kotlin signatures as seen from Java's perspective

Name Description

If you are a Dokka plugin author and would like to add your plugin to this list, get in touch with maintainers via Slack or GitHub.

Module
documentation
Documentation for a module as a whole, as well as packages in that module, can be provided as separate Markdown files.

File
format
Inside the Markdown file, the documentation for the module as a whole and for individual packages is introduced by the corresponding first-level headings. The text
of the heading must be Module <module name> for a module, and Package <package qualified name> for a package.

The file doesn't have to contain both module and package documentation. You can have files that contain only package or module documentation. You can even
have a Markdown file per module or package.

Using Markdown syntax, you can add:

Headings up to level 6

Emphasis with bold or italic formatting

Links

Inline code

Code blocks

Blockquotes

Here's an example file containing both module and package documentation:

#	Module	kotlin-demo

This	content	appears	under	your	module	name.

#	Package	org.jetbrains.kotlin.demo

This	content	appears	under	your	package	name	in	the	packages	list.
It	also	appears	under	the	first-level	heading	on	your	package's	page.

##	Level	2	heading	for	package	org.jetbrains.kotlin.demo

Content	after	this	heading	is	also	part	of	documentation	for	`org.jetbrains.kotlin.demo`

#	Package	org.jetbrains.kotlin.demo2

This	content	appears	under	your	package	name	in	the	packages	list.

1097

https://github.com/Kotlin/dokka/tree/master/plugins/android-documentation
https://github.com/Kotlin/dokka/tree/master/plugins/versioning
https://github.com/glureau/dokka-mermaid
https://mermaid-js.github.io/mermaid/#/
https://github.com/Kotlin/dokka/tree/master/plugins/mathjax
https://github.com/Kotlin/dokka/tree/master/plugins/kotlin-as-java
https://github.com/Kotlin/dokka/
https://www.markdownguide.org/basic-syntax/

It	also	appears	under	the	first-level	heading	on	your	package's	page.

##	Level	2	heading	for	package	org.jetbrains.kotlin.demo2

Content	after	this	heading	is	also	part	of	documentation	for	`org.jetbrains.kotlin.demo2`

To explore an example project with Gradle, see Dokka gradle example.

Pass
files
to
Dokka
To pass these files to Dokka, you need to use the relevant includes option for Gradle, Maven, or CLI:

Gradle

Use the includes option in Source set configuration.

Maven

Use the includes option in General configuration.

CLI

If you are using command line configuration, use the includes option in Source set options.

If you are using JSON configuration, use the includes option in General configuration.

IDEs
for
Kotlin
development
JetBrains provides the official Kotlin plugin for two Integrated Development Environments (IDEs): IntelliJ IDEA and Android Studio.

Other IDEs and source editors, such as Eclipse, Visual Studio Code, and Atom, have Kotlin community-supported plugins.

IntelliJ
IDEA
IntelliJ IDEA is an IDE for JVM languages designed to maximize developer productivity. It does the routine and repetitive tasks for you by providing clever code
completion, static code analysis, and refactorings, and lets you focus on the bright side of software development, making it not only productive but also an
enjoyable experience.

Kotlin plugin is bundled with each IntelliJ IDEA release.

Read more about IntelliJ IDEA in the official documentation.

Android
Studio
Android Studio is the official IDE for Android app development, based on IntelliJ IDEA. On top of IntelliJ's powerful code editor and developer tools, Android Studio
offers even more features that enhance your productivity when building Android apps.

Kotlin plugin is bundled with each Android Studio release.

Read more about Android Studio in the official documentation.

Eclipse
Eclipse is an IDE that is used to develop applications in different programming languages, including Kotlin. Eclipse also has the Kotlin plugin: originally developed
by JetBrains, now the Kotlin plugin is supported by the Kotlin community contributors.

You can install the Kotlin plugin manually from the Eclipse Marketplace.

The Kotlin team manages the development and contribution process to the Kotlin plugin for Eclipse. If you want to contribute to the plugin, send a pull request to
the Kotlin for Eclipse repository on GitHub.

1098

https://github.com/Kotlin/dokka/tree/master/examples/gradle/dokka-gradle-example
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/help/idea/discover-intellij-idea.html
https://developer.android.com/studio
https://www.jetbrains.com/idea/
https://developer.android.com/studio/intro
https://eclipseide.org/release/
https://marketplace.eclipse.org/content/kotlin-plugin-eclipse
https://github.com/Kotlin/kotlin-eclipse

Compatibility
with
the
Kotlin
language
versions
For IntelliJ IDEA and Android Studio the Kotlin plugin is bundled with each IDE release. When the new Kotlin version is released, these IDEs will suggest updating
Kotlin to the latest version automatically. See the latest supported language version for each IDE in Kotlin releases.

Other
IDEs
support
JetBrains doesn't provide the Kotlin plugin for other IDEs. However, some of the other IDEs and source editors, such as Eclipse, Visual Studio Code, and Atom,
have their own Kotlin plugins supported by the Kotlin community.

You can use any text editor to write the Kotlin code, but without IDE-related features: code formatting, debugging tools, and so on. To use Kotlin in text editors, you
can download the latest Kotlin command-line compiler (kotlin-compiler-1.9.20.zip) from Kotlin GitHub Releases and install it manually. Also, you could use package
managers, such as Homebrew, SDKMAN!, and Snap package.

What's
next?
Start your first project using IntelliJ IDEA IDE

Create your first cross-platform mobile app using Android Studio

Learn how to install EAP version of the Kotlin plugin

Migrate
to
Kotlin
code
style

Kotlin
coding
conventions
and
IntelliJ
IDEA
formatter
Kotlin coding conventions affect several aspects of writing idiomatic Kotlin, and a set of formatting recommendations aimed at improving Kotlin code readability is
among them.

Unfortunately, the code formatter built into IntelliJ IDEA had to work long before this document was released and now has a default setup that produces different
formatting from what is now recommended.

It may seem a logical next step to remove this obscurity by switching the defaults in IntelliJ IDEA and make formatting consistent with the Kotlin coding
conventions. But this would mean that all the existing Kotlin projects will have a new code style enabled the moment the Kotlin plugin is installed. Not really the
expected result for plugin update, right?

That's why we have the following migration plan instead:

Enable the official code style formatting by default starting from Kotlin 1.3 and only for new projects (old formatting can be enabled manually)

Authors of existing projects may choose to migrate to the Kotlin coding conventions

Authors of existing projects may choose to explicitly declare using the old code style in a project (this way the project won't be affected by switching to the
defaults in the future)

Switch to the default formatting and make it consistent with Kotlin coding conventions in Kotlin 1.4

Differences
between
"Kotlin
coding
conventions"
and
"IntelliJ
IDEA
default
code
style"
The most notable change is in the continuation indentation policy. There's a nice idea to use the double indent for showing that a multi-line expression hasn't ended
on the previous line. This is a very simple and general rule, but several Kotlin constructions look a bit awkward when they are formatted this way. In Kotlin coding
conventions, it's recommended to use a single indent in cases where the long continuation indent has been forced before.

1099

https://github.com/JetBrains/kotlin/releases/tag/v1.9.20
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-create-first-app.html

Code formatting

In practice, quite a bit of code is affected, so this can be considered a major code style update.

Migration
to
a
new
code
style
discussion
A new code style adoption might be a very natural process if it starts with a new project, when there's no code formatted in the old way. That is why starting from
version 1.3, the Kotlin IntelliJ Plugin creates new projects with formatting from the Coding conventions document which is enabled by default.

Changing formatting in an existing project is a far more demanding task, and should probably be started with discussing all the caveats with the team.

The main disadvantage of changing the code style in an existing project is that the blame/annotate VCS feature will point to irrelevant commits more often. While
each VCS has some kind of way to deal with this problem ("Annotate Previous Revision" can be used in IntelliJ IDEA), it's important to decide if a new style is worth
all the effort. The practice of separating reformatting commits from meaningful changes can help a lot with later investigations.

Also migrating can be harder for larger teams because committing a lot of files in several subsystems may produce merging conflicts in personal branches. And
while each conflict resolution is usually trivial, it's still wise to know if there are large feature branches currently in work.

In general, for small projects, we recommend converting all the files at once.

For medium and large projects the decision may be tough. If you are not ready to update many files right away you may decide to migrate module by module, or
continue with gradual migration for modified files only.

Migration
to
a
new
code
style
Switching to the Kotlin Coding Conventions code style can be done in Settings/Preferences | Editor | Code Style | Kotlin dialog. Switch scheme to Project and
activate Set from... | Kotlin style guide.

In order to share those changes for all project developers .idea/codeStyle folder have to be committed to VCS.

If an external build system is used for configuring the project, and it's been decided not to share .idea/codeStyle folder, Kotlin coding conventions can be forced
with an additional property:

In
Gradle
Add kotlin.code.style=official property to the gradle.properties file at the project root and commit the file to VCS.

In
Maven
Add kotlin.code.style official property to root pom.xml project file.

<properties> <kotlin.code.style>official</kotlin.code.style> </properties>

After updating your code style settings, activate Reformat Code in the project view on the desired scope.

Having the kotlin.code.style option set may modify the code style scheme during a project import and may change the code style settings.

1100

https://www.jetbrains.com/help/idea/investigate-changes.html

Reformat code

For a gradual migration, it's possible to enable the File is not formatted according to project settings inspection. It will highlight the places that should be
reformatted. After enabling the Apply only to modified files option, inspection will show formatting problems only in modified files. Such files are probably going to
be committed soon anyway.

Store
old
code
style
in
project
It's always possible to explicitly set the IntelliJ IDEA code style as the correct code style for the project:

1. In Settings/Preferences | Editor | Code Style | Kotlin, switch to the Project scheme.

2. Open the Load/Save tab and in the Use defaults from select Kotlin obsolete IntelliJ IDEA codestyle.

In order to share the changes across the project developers .idea/codeStyle folder, it has to be committed to VCS. Alternatively, kotlin.code.style=obsolete can be
used for projects configured with Gradle or Maven.

Run
code
snippets
Kotlin code is typically organized into projects with which you work in an IDE, a text editor, or another tool. However, if you want to quickly see how a function works
or find an expression's value, there's no need to create a new project and build it. Check out these three handy ways to run Kotlin code instantly in different
environments:

Scratch files and worksheets in the IDE.

Kotlin Playground in the browser.

ki shell in the command line.

1101

IDE:
scratches
and
worksheets
IntelliJ IDEA and Android Studio support Kotlin scratch files and worksheets.

Scratch files (or just scratches) let you create code drafts in the same IDE window as your project and run them on the fly. Scratches are not tied to projects; you
can access and run all your scratches from any IntelliJ IDEA window on your OS.

To create a Kotlin scratch, click File | New | Scratch File and select the Kotlin type.

Worksheets are project files: they are stored in project directories and tied to the project modules. Worksheets are useful for writing pieces of code that don't
actually make a software unit but should still be stored together in a project, such as educational or demo materials.

To create a Kotlin worksheet in a project directory, right-click the directory in the project tree and select New | Kotlin Class/File | Kotlin Worksheet.

Syntax highlighting, auto-completion, and other IntelliJ IDEA code editing features are supported in scratches and worksheets. There's no need to declare the main()
function – all the code you write is executed as if it were in the body of main().

Once you have finished writing your code in a scratch or a worksheet, click Run. The execution results will appear in the lines opposite your code.

Run scratch

Interactive
mode
The IDE can run code from scratches and worksheets automatically. To get execution results as soon as you stop typing, switch on Interactive mode.

Scratch interactive mode

Use
modules
You can use classes or functions from a Kotlin project in your scratches and worksheets.

Worksheets automatically have access to classes and functions from the module where they reside.

To use classes or functions from a project in a scratch, import them into the scratch file with the import statement, as usual. Then write your code and run it with the
appropriate module selected in the Use classpath of module list.

Both scratches and worksheets use the compiled versions of connected modules. So, if you modify a module's source files, the changes will propagate to
scratches and worksheets when you rebuild the module. To rebuild the module automatically before each run of a scratch or a worksheet, select Make module

1102

https://www.jetbrains.com/help/idea/kotlin-repl.html#efb8fb32

before Run.

Scratch select module

Run
as
REPL
To evaluate each particular expression in a scratch or a worksheet, run it with Use REPL selected. The code lines will run sequentially, providing the results of each
call. You can later use the results in the same file by reffering to their auto-generated res* names (they are shown in the corresponding lines).

Scratch REPL

Browser:
Kotlin
Playground
Kotlin Playground is an online application for writing, running, and sharing Kotlin code in your browser.

Write
and
edit
code
In the Playground's editor area, you can write code just as you would in a source file:

Add your own classes, functions, and top-level declarations in an arbitrary order.

Write the executable part in the body of the main() function.

As in typical Kotlin projects, the main() function in the Playground can have the args parameter or no parameters at all. To pass program arguments upon execution,
write them in the Program arguments field.

1103

https://play.kotlinlang.org/

Playground: code completion

The Playground highlights the code and shows code completion options as you type. It automatically imports declarations from the standard library and
kotlinx.coroutines.

Choose
execution
environment
The Playground provides ways to customize the execution environment:

Multiple Kotlin versions, including available previews of future versions.

Multiple backends to run the code in: JVM, JS (legacy or IR compiler, or Canvas), or JUnit.

Playground: environment setup

For JS backends, you can also see the generated JS code.

1104

Playground: generated JS

Share
code
online
Use the Playground to share your code with others – click Copy link and send it to anyone you want to show the code to.

You can also embed code snippets from the Playground into other websites and even make them runnable. Click Share code to embed your sample into any web
page or into a Medium article.

Playground: share code

Command
line:
ki
shell
The ki shell (Kotlin Interactive Shell) is a command-line utility for running Kotlin code in the terminal. It's available for Linux, macOS, and Windows.

The ki shell provides basic code evaluation capabilities, along with advanced features such as:

1105

https://medium.com/
https://github.com/Kotlin/kotlin-interactive-shell

code completion

type checks

external dependencies

paste mode for code snippets

scripting support

See the ki shell GitHub repository for more details.

Install
and
run
ki
shell
To install the ki shell, download the latest version of it from GitHub and unzip it in the directory of your choice.

On macOS, you can also install the ki shell with Homebrew by running the following command:

brew	install	ki

To start the ki shell, run bin/ki.sh on Linux and macOS (or just ki if the ki shell was installed with Homebrew) or bin\ki.bat on Windows.

Once the shell is running, you can immediately start writing Kotlin code in your terminal. Type :help (or :h) to see the commands that are available in the ki shell.

Code
completion
and
highlighting
The ki shell shows code completion options when you press Tab. It also provides syntax highlighting as you type. You can disable this feature by entering :syntax
off.

ki shell highlighting and completion

When you press Enter, the ki shell evaluates the entered line and prints the result. Expression values are printed as variables with auto-generated names like res*.
You can later use such variables in the code you run. If the construct entered is incomplete (for example, an if with a condition but without the body), the shell prints
three dots and expects the remaining part.

ki shell results

Check
an
expression's
type
For complex expressions or APIs that you don't know well, the ki shell provides the :type (or :t) command, which shows the type of an expression:

1106

https://github.com/Kotlin/kotlin-interactive-shell
https://github.com/Kotlin/kotlin-interactive-shell

ki shell type

Load
code
If the code you need is stored somewhere else, there are two ways to load it and use it in the ki shell:

Load a source file with the :load (or :l) command.

Copy and paste the code snippet in paste mode with the :paste (or :p) command.

ki shell load file

The ls command shows available symbols (variables and functions).

Add
external
dependencies
Along with the standard library, the ki shell also supports external dependencies. This lets you try out third-party libraries in it without creating a whole project.

To add a third-party library in the ki shell, use the :dependsOn command. By default, the ki shell works with Maven Central, but you can use other repositories if you
connect them using the :repository command:

ki shell external dependency

Kotlin
and
continuous
integration
with
TeamCity
On this page, you'll learn how to set up TeamCity to build your Kotlin project. For more information and basics of TeamCity please check the Documentation page

1107

https://www.jetbrains.com/teamcity/
https://www.jetbrains.com/teamcity/documentation/

which contains information about installation, basic configuration, etc.

Kotlin works with different build tools, so if you're using a standard tool such as Ant, Maven or Gradle, the process for setting up a Kotlin project is no different to
any other language or library that integrates with these tools. Where there are some minor requirements and differences is when using the internal build system of
IntelliJ IDEA, which is also supported on TeamCity.

Gradle,
Maven,
and
Ant
If using Ant, Maven or Gradle, the setup process is straightforward. All that is needed is to define the Build Step. For example, if using Gradle, simply define the
required parameters such as the Step Name and Gradle tasks that need executing for the Runner Type.

Gradle Build Step

Since all the dependencies required for Kotlin are defined in the Gradle file, nothing else needs to be configured specifically for Kotlin to run correctly.

If using Ant or Maven, the same configuration applies. The only difference being that the Runner Type would be Ant or Maven respectively.

IntelliJ
IDEA
Build
System
If using IntelliJ IDEA build system with TeamCity, make sure that the version of Kotlin being used by IntelliJ IDEA is the same as the one that TeamCity runs. You
may need to download the specific version of the Kotlin plugin and install it on TeamCity.

Fortunately, there is a meta-runner already available that takes care of most of the manual work. If not familiar with the concept of TeamCity meta-runners, check
the documentation. They are very easy and powerful way to introduce custom Runners without the need to write plugins.

Download
and
install
the
meta-runner
The meta-runner for Kotlin is available on GitHub. Download that meta-runner and import it from the TeamCity user interface

1108

https://www.jetbrains.com/help/teamcity/working-with-meta-runner.html
https://github.com/jonnyzzz/Kotlin.TeamCity

Meta-runner

Setup
Kotlin
compiler
fetching
step
Basically this step is limited to defining the Step Name and the version of Kotlin you need. Tags can be used.

Setup Kotlin Compiler

The runner will set the value for the property system.path.macro.KOTLIN.BUNDLED to the correct one based on the path settings from the IntelliJ IDEA project.
However, this value needs to be defined in TeamCity (and can be set to any value). Therefore, you need to define it as a system variable.

Setup
Kotlin
compilation
step
The final step is to define the actual compilation of the project, which uses the standard IntelliJ IDEA Runner Type.

IntelliJ IDEA Runner

With that, our project should now build and produce the corresponding artifacts.

1109

Other
CI
servers
If using a continuous integration tool different to TeamCity, as long as it supports any of the build tools, or calling command line tools, compiling Kotlin and
automating things as part of a CI process should be possible.

Document
Kotlin
code:
KDoc
The language used to document Kotlin code (the equivalent of Java's Javadoc) is called KDoc. In essence, KDoc combines Javadoc's syntax for block tags
(extended to support Kotlin's specific constructs) and Markdown for inline markup.

KDoc
syntax
Just like with Javadoc, KDoc comments start with /** and end with */. Every line of the comment may begin with an asterisk, which is not considered part of the
contents of the comment.

By convention, the first paragraph of the documentation text (the block of text until the first blank line) is the summary description of the element, and the following
text is the detailed description.

Every block tag begins on a new line and starts with the @ character.

Here's an example of a class documented using KDoc:

/**
	*	A	group	of	*members*.
	*
	*	This	class	has	no	useful	logic;	it's	just	a	documentation	example.
	*
	*	@param	T	the	type	of	a	member	in	this	group.
	*	@property	name	the	name	of	this	group.
	*	@constructor	Creates	an	empty	group.
	*/
class	Group<T>(val	name:	String)	{
				/**
					*	Adds	a	[member]	to	this	group.
					*	@return	the	new	size	of	the	group.
					*/
				fun	add(member:	T):	Int	{	...	}
}

Block
tags
KDoc currently supports the following block tags:

@param
name
Documents a value parameter of a function or a type parameter of a class, property or function. To better separate the parameter name from the description, if you
prefer, you can enclose the name of the parameter in brackets. The following two syntaxes are therefore equivalent:

@param name description. @param[name] description.

@return
Documents the return value of a function.

@constructor
Documents the primary constructor of a class.

Kotlin's documentation engine: Dokka, understands KDoc and can be used to generate documentation in various formats. For more information, read our
Dokka documentation.

1110

@receiver
Documents the receiver of an extension function.

@property
name
Documents the property of a class which has the specified name. This tag can be used for documenting properties declared in the primary constructor, where
putting a doc comment directly before the property definition would be awkward.

@throws
class,
@exception
class
Documents an exception which can be thrown by a method. Since Kotlin does not have checked exceptions, there is also no expectation that all possible
exceptions are documented, but you can still use this tag when it provides useful information for users of the class.

@sample
identifier
Embeds the body of the function with the specified qualified name into the documentation for the current element, in order to show an example of how the element
could be used.

@see
identifier
Adds a link to the specified class or method to the See also block of the documentation.

@author
Specifies the author of the element being documented.

@since
Specifies the version of the software in which the element being documented was introduced.

@suppress
Excludes the element from the generated documentation. Can be used for elements which are not part of the official API of a module but still have to be visible
externally.

Inline
markup
For inline markup, KDoc uses the regular Markdown syntax, extended to support a shorthand syntax for linking to other elements in the code.

Links
to
elements
To link to another element (class, method, property, or parameter), simply put its name in square brackets:

Use	the	method	[foo]	for	this	purpose.

If you want to specify a custom label for the link, add it in another set of square brackets before the element link:

Use	[this	method][foo]	for	this	purpose.

You can also use qualified names in the element links. Note that, unlike Javadoc, qualified names always use the dot character to separate the components, even
before a method name:

Use	[kotlin.reflect.KClass.properties]	to	enumerate	the	properties	of	the	class.

Names in element links are resolved using the same rules as if the name was used inside the element being documented. In particular, this means that if you have
imported a name into the current file, you don't need to fully qualify it when you use it in a KDoc comment.

KDoc does not support the @deprecated tag. Instead, please use the @Deprecated annotation.

1111

https://daringfireball.net/projects/markdown/syntax

Note that KDoc does not have any syntax for resolving overloaded members in links. Since Kotlin's documentation generation tool puts the documentation for all
overloads of a function on the same page, identifying a specific overloaded function is not required for the link to work.

External
links
To add an external link, use the typical Markdown syntax:

For	more	information	about	KDoc	syntax,	see	[KDoc](<example-URL>).

What's
next?
Learn how to use Kotlin's documentation generation tool: Dokka.

Kotlin
and
OSGi
To enable Kotlin OSGi support in your Kotlin project, include kotlin-osgi-bundle instead of the regular Kotlin libraries. It is recommended to remove kotlin-runtime,
kotlin-stdlib and kotlin-reflect dependencies as kotlin-osgi-bundle already contains all of them. You also should pay attention in case when external Kotlin libraries
are included. Most regular Kotlin dependencies are not OSGi-ready, so you shouldn't use them and should remove them from your project.

Maven
To include the Kotlin OSGi bundle to a Maven project:

<dependencies>
				<dependency>
								<groupId>org.jetbrains.kotlin</groupId>
								<artifactId>kotlin-osgi-bundle</artifactId>
								<version>${kotlin.version}</version>
				</dependency>
</dependencies>

To exclude the standard library from external libraries (notice that "star exclusion" works in Maven 3 only):

<dependency>
				<groupId>some.group.id</groupId>
				<artifactId>some.library</artifactId>
				<version>some.library.version</version>

				<exclusions>
								<exclusion>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>*</artifactId>
								</exclusion>
				</exclusions>
</dependency>

Gradle
To include kotlin-osgi-bundle to a Gradle project:

Kotlin

dependencies	{
				implementation(kotlin("osgi-bundle"))
}

Groovy

dependencies	{

1112

https://www.osgi.org/

				implementation	"org.jetbrains.kotlin:kotlin-osgi-bundle:1.9.20"
}

To exclude default Kotlin libraries that comes as transitive dependencies you can use the following approach:

Kotlin

dependencies	{
				implementation("some.group.id:some.library:someversion")	{
								exclude(group	=	"org.jetbrains.kotlin")
				}
}

Groovy

dependencies	{
				implementation('some.group.id:some.library:someversion')	{
								exclude	group:	'org.jetbrains.kotlin'
				}
}

FAQ

Why
not
just
add
required
manifest
options
to
all
Kotlin
libraries
Even though it is the most preferred way to provide OSGi support, unfortunately it couldn't be done for now due to so called "package split" issue that couldn't be
easily eliminated and such a big change is not planned for now. There is Require-Bundle feature but it is not the best option too and not recommended to use. So it
was decided to make a separate artifact for OSGi.

Kotlin
command-line
compiler
Every Kotlin release ships with a standalone version of the compiler. You can download the latest version manually or via a package manager.

Install
the
compiler

Manual
install

1. Download the latest version (kotlin-compiler-1.9.20.zip) from GitHub Releases.

2. Unzip the standalone compiler into a directory and optionally add the bin directory to the system path. The bin directory contains the scripts needed to compile
and run Kotlin on Windows, macOS, and Linux.

SDKMAN!
An easier way to install Kotlin on UNIX-based systems, such as macOS, Linux, Cygwin, FreeBSD, and Solaris, is SDKMAN!. It also works in Bash and ZSH shells.
Learn how to install SDKMAN!.

To install the Kotlin compiler via SDKMAN!, run the following command in the terminal:

sdk	install	kotlin

Installing the command-line compiler is not an essential step to use Kotlin. A general way to write Kotlin applications is using an IDE - IntelliJ IDEA or
Android Studio. They provide full Kotlin support out of the box without needing additional components. Learn how to get started with Kotlin in an IDE.

1113

http://wiki.osgi.org/wiki/Split_Packages
https://www.jetbrains.com/idea/
https://developer.android.com/studio
https://github.com/JetBrains/kotlin/releases/tag/v1.9.20
https://sdkman.io
https://sdkman.io/install

Homebrew
Alternatively, on macOS you can install the compiler via Homebrew:

brew	update
brew	install	kotlin

Snap
package
If you use Snap on Ubuntu 16.04 or later, you can install the compiler from the command line:

sudo	snap	install	--classic	kotlin

Create
and
run
an
application
1. Create a simple application in Kotlin that displays "Hello, World!". In your favorite editor, create a new file called hello.kt with the following lines:

fun	main()	{
				println("Hello,	World!")
}

2. Compile the application using the Kotlin compiler:

kotlinc	hello.kt	-include-runtime	-d	hello.jar

The -d option indicates the output path for generated class files, which may be either a directory or a .jar file. The -include-runtime option makes the resulting .jar
file self-contained and runnable by including the Kotlin runtime library in it.

To see all available options, run

kotlinc	-help

3. Run the application.

java	-jar	hello.jar

Compile
a
library
If you're developing a library to be used by other Kotlin applications, you can build the .jar file without including the Kotlin runtime in it:

kotlinc	hello.kt	-d	hello.jar

Since binaries compiled this way depend on the Kotlin runtime, you should make sure the latter is present in the classpath whenever your compiled library is used.

You can also use the kotlin script to run binaries produced by the Kotlin compiler:

kotlin	-classpath	hello.jar	HelloKt

HelloKt is the main class name that the Kotlin compiler generates for the file named hello.kt.

Run
the
REPL
You can run the compiler without parameters to have an interactive shell. In this shell, you can type any valid Kotlin code and see the results.

1114

https://brew.sh/
https://snapcraft.io/

Shell

Run
scripts
Kotlin can also be used as a scripting language. A script is a Kotlin source file (.kts) with top-level executable code.

import	java.io.File

//	Get	the	passed	in	path,	i.e.	"-d	some/path"	or	use	the	current	path.
val	path	=	if	(args.contains("-d"))	args[1	+	args.indexOf("-d")]
											else	"."

val	folders	=	File(path).listFiles	{	file	->	file.isDirectory()	}
folders?.forEach	{	folder	->	println(folder)	}

To run a script, pass the -script option to the compiler with the corresponding script file:

kotlinc	-script	list_folders.kts	--	-d	<path_to_folder_to_inspect>

Kotlin provides experimental support for script customization, such as adding external properties, providing static or dynamic dependencies, and so on.
Customizations are defined by so-called Script definitions - annotated kotlin classes with the appropriate support code. The script filename extension is used to
select the appropriate definition. Learn more about Kotlin custom scripting.

Properly prepared script definitions are detected and applied automatically when the appropriate jars are included in the compilation classpath. Alternatively, you
can specify definitions manually by passing the -script-templates option to the compiler:

kotlinc	-script-templates	org.example.CustomScriptDefinition	-script	custom.script1.kts

For additional details, please consult the KEEP-75.

Kotlin
compiler
options
Each release of Kotlin includes compilers for the supported targets: JVM, JavaScript, and native binaries for supported platforms.

These compilers are used by:

The IDE, when you click the Compile or Run button for your Kotlin project.

Gradle, when you call gradle build in a console or in the IDE.

Maven, when you call mvn compile or mvn test-compile in a console or in the IDE.

You can also run Kotlin compilers manually from the command line as described in the Working with command-line compiler tutorial.

Compiler
options
Kotlin compilers have a number of options for tailoring the compiling process. Compiler options for different targets are listed on this page together with a
description of each one.

There are several ways to set the compiler options and their values (compiler arguments):

In IntelliJ IDEA, write in the compiler arguments in the Additional command line parameters text box in Settings/Preferences | Build, Execution, Deployment |
Compiler | Kotlin Compiler.

1115

https://github.com/Kotlin/KEEP/blob/master/proposals/scripting-support.md

If you're using Gradle, specify the compiler arguments in the compilerOptions property of the Kotlin compilation task. For details, see Gradle compiler options.

If you're using Maven, specify the compiler arguments in the <configuration> element of the Maven plugin node. For details, see Maven.

If you run a command-line compiler, add the compiler arguments directly to the utility call or write them into an argfile.

For example:

$	kotlinc	hello.kt	-include-runtime	-d	hello.jar

Common
options
The following options are common for all Kotlin compilers.

-version
Display the compiler version.

-nowarn
Suppress the compiler from displaying warnings during compilation.

-Werror
Turn any warnings into a compilation error.

-verbose
Enable verbose logging output which includes details of the compilation process.

-script
Evaluate a Kotlin script file. When called with this option, the compiler executes the first Kotlin script (*.kts) file among the given arguments.

-help
(-h)
Display usage information and exit. Only standard options are shown. To show advanced options, use -X.

-X
Display information about the advanced options and exit. These options are currently unstable: their names and behavior may be changed without notice.

-kotlin-home
path
Specify a custom path to the Kotlin compiler used for the discovery of runtime libraries.

-P
plugin:pluginId:optionName=value
Pass an option to a Kotlin compiler plugin. Available plugins and their options are listed in the Tools > Compiler plugins section of the documentation.

-language-version
version
Provide source compatibility with the specified version of Kotlin.

On Windows, when you pass compiler arguments that contain delimiter characters (whitespace, =, ;, ,), surround these arguments with double quotes (").

$ kotlinc.bat hello.kt -include-runtime -d "My Folder\hello.jar"

1116

-api-version
version
Allow using declarations only from the specified version of Kotlin bundled libraries.

-progressive
Enable the progressive mode for the compiler.

In the progressive mode, deprecations and bug fixes for unstable code take effect immediately, instead of going through a graceful migration cycle. Code written in
the progressive mode is backwards compatible; however, code written in a non-progressive mode may cause compilation errors in the progressive mode.

@argfile
Read the compiler options from the given file. Such a file can contain compiler options with values and paths to the source files. Options and paths should be
separated by whitespaces. For example:

-include-runtime -d hello.jar hello.kt

To pass values that contain whitespaces, surround them with single (') or double (") quotes. If a value contains quotation marks in it, escape them with a backslash
(\).

-include-runtime -d 'My folder'

You can also pass multiple argument files, for example, to separate compiler options from source files.

$	kotlinc	@compiler.options	@classes

If the files reside in locations different from the current directory, use relative paths.

$	kotlinc	@options/compiler.options	hello.kt

-opt-in
annotation
Enable usages of API that requires opt-in with a requirement annotation with the given fully qualified name.

Kotlin/JVM
compiler
options
The Kotlin compiler for JVM compiles Kotlin source files into Java class files. The command-line tools for Kotlin to JVM compilation are kotlinc and kotlinc-jvm. You
can also use them for executing Kotlin script files.

In addition to the common options, Kotlin/JVM compiler has the options listed below.

-classpath
path
(-cp
path)
Search for class files in the specified paths. Separate elements of the classpath with system path separators (; on Windows, : on macOS/Linux). The classpath can
contain file and directory paths, ZIP, or JAR files.

-d
path
Place the generated class files into the specified location. The location can be a directory, a ZIP, or a JAR file.

-include-runtime
Include the Kotlin runtime into the resulting JAR file. Makes the resulting archive runnable on any Java-enabled environment.

-jdk-home
path
Use a custom JDK home directory to include into the classpath if it differs from the default JAVA_HOME.

-Xjdk-release=version
Specify the target version of the generated JVM bytecode. Limit the API of the JDK in the classpath to the specified Java version. Automatically sets -jvm-target

1117

version. Possible values are 1.8, 9, 10, ..., 21. The default value is 1.8.

-jvm-target
version
Specify the target version of the generated JVM bytecode. Possible values are 1.8, 9, 10, ..., 21. The default value is 1.8.

-java-parameters
Generate metadata for Java 1.8 reflection on method parameters.

-module-name
name
(JVM)
Set a custom name for the generated .kotlin_module file.

-no-jdk
Don't automatically include the Java runtime into the classpath.

-no-reflect
Don't automatically include the Kotlin reflection (kotlin-reflect.jar) into the classpath.

-no-stdlib
(JVM)
Don't automatically include the Kotlin/JVM stdlib (kotlin-stdlib.jar) and Kotlin reflection (kotlin-reflect.jar) into the classpath.

-script-templates
classnames[,]
Script definition template classes. Use fully qualified class names and separate them with commas (,).

Kotlin/JS
compiler
options
The Kotlin compiler for JS compiles Kotlin source files into JavaScript code. The command-line tool for Kotlin to JS compilation is kotlinc-js.

In addition to the common options, Kotlin/JS compiler has the options listed below.

-libraries
path
Paths to Kotlin libraries with .meta.js and .kjsm files, separated by the system path separator.

-main
{call|noCall}
Define whether the main function should be called upon execution.

-meta-info
Generate .meta.js and .kjsm files with metadata. Use this option when creating a JS library.

-module-kind
{umd|commonjs|amd|plain}
The kind of JS module generated by the compiler:

umd - a Universal Module Definition module

commonjs - a CommonJS module

amd - an Asynchronous Module Definition module

plain - a plain JS module

This option is not guaranteed to be effective for each JDK distribution.

1118

https://youtrack.jetbrains.com/issue/KT-29974
https://github.com/umdjs/umd
http://www.commonjs.org/
https://en.wikipedia.org/wiki/Asynchronous_module_definition

To learn more about the different kinds of JS module and the distinctions between them, see this article.

-no-stdlib
(JS)
Don't automatically include the default Kotlin/JS stdlib into the compilation dependencies.

-output
filepath
Set the destination file for the compilation result. The value must be a path to a .js file including its name.

-output-postfix
filepath
Add the content of the specified file to the end of the output file.

-output-prefix
filepath
Add the content of the specified file to the beginning of the output file.

-source-map
Generate the source map.

-source-map-base-dirs
path
Use the specified paths as base directories. Base directories are used for calculating relative paths in the source map.

-source-map-embed-sources
{always|never|inlining}
Embed source files into the source map.

-source-map-names-policy
{simple-names|fully-qualified-names|no}
Add variable and function names that you declared in Kotlin code into the source map.

Setting Description Example output

simple-names Variable names and simple function names are added. (Default) main

fully-qualified-names Variable names and fully qualified function names are added. com.example.kjs.playground.main

no No variable or function names are added. N/A

-source-map-prefix
Add the specified prefix to paths in the source map.

Kotlin/Native
compiler
options
Kotlin/Native compiler compiles Kotlin source files into native binaries for the supported platforms. The command-line tool for Kotlin/Native compilation is kotlinc-
native.

In addition to the common options, Kotlin/Native compiler has the options listed below.

-enable-assertions
(-ea)

1119

https://www.davidbcalhoun.com/2014/what-is-amd-commonjs-and-umd/

Enable runtime assertions in the generated code.

-g
Enable emitting debug information.

-generate-test-runner
(-tr)
Produce an application for running unit tests from the project.

-generate-no-exit-test-runner
(-trn)
Produce an application for running unit tests without an explicit process exit.

-include-binary
path
(-ib
path)
Pack external binary within the generated klib file.

-library
path
(-l
path)
Link with the library. To learn about using libraries in Kotlin/native projects, see Kotlin/Native libraries.

-library-version
version
(-lv
version)
Set the library version.

-list-targets
List the available hardware targets.

-manifest
path
Provide a manifest addend file.

-module-name
name
(Native)
Specify a name for the compilation module. This option can also be used to specify a name prefix for the declarations exported to Objective-C: How do I specify a
custom Objective-C prefix/name for my Kotlin framework?

-native-library
path
(-nl
path)
Include the native bitcode library.

-no-default-libs
Disable linking user code with the default platform libraries distributed with the compiler.

-nomain
Assume the main entry point to be provided by external libraries.

-nopack
Don't pack the library into a klib file.

-linker-option
Pass an argument to the linker during binary building. This can be used for linking against some native library.

-linker-options
args

1120

Pass multiple arguments to the linker during binary building. Separate arguments with whitespaces.

-nostdlib
Don't link with stdlib.

-opt
Enable compilation optimizations.

-output
name
(-o
name)
Set the name for the output file.

-entry
name
(-e
name)
Specify the qualified entry point name.

-produce
output
(-p
output)
Specify output file kind:

program

static

dynamic

framework

library

bitcode

-repo
path
(-r
path)
Library search path. For more information, see Library search sequence.

-target
target
Set hardware target. To see the list of available targets, use the -list-targets option.

All-open
compiler
plugin
Kotlin has classes and their members final by default, which makes it inconvenient to use frameworks and libraries such as Spring AOP that require classes to be
open. The all-open compiler plugin adapts Kotlin to the requirements of those frameworks and makes classes annotated with a specific annotation and their
members open without the explicit open keyword.

For instance, when you use Spring, you don't need all the classes to be open, but only classes annotated with specific annotations like @Configuration or @Service.
All-open allows to specify such annotations.

We provide all-open plugin support both for Gradle and Maven with the complete IDE integration.

Gradle
Add the plugin using Gradle's plugins DSL:

plugins	{

For Spring, you can use the kotlin-spring compiler plugin (see below).

1121

				id	"org.jetbrains.kotlin.plugin.allopen"	version	"1.9.20"
}

Then specify the list of annotations that will make classes open:

allOpen	{
				annotation("com.my.Annotation")
				//	annotations("com.another.Annotation",	"com.third.Annotation")
}

If the class (or any of its superclasses) is annotated with com.my.Annotation, the class itself and all its members will become open.

It also works with meta-annotations:

@com.my.Annotation
annotation	class	MyFrameworkAnnotation

@MyFrameworkAnnotation
class	MyClass	//	will	be	all-open

MyFrameworkAnnotation is annotated with the all-open meta-annotation com.my.Annotation, so it becomes an all-open annotation as well.

Maven
Here's how to use all-open with Maven:

<plugin>
				<artifactId>kotlin-maven-plugin</artifactId>
				<groupId>org.jetbrains.kotlin</groupId>
				<version>${kotlin.version}</version>

				<configuration>
								<compilerPlugins>
												<!--	Or	"spring"	for	the	Spring	support	-->
												<plugin>all-open</plugin>
								</compilerPlugins>

								<pluginOptions>
												<!--	Each	annotation	is	placed	on	its	own	line	-->
												<option>all-open:annotation=com.my.Annotation</option>
												<option>all-open:annotation=com.their.AnotherAnnotation</option>
								</pluginOptions>
				</configuration>

				<dependencies>
								<dependency>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-allopen</artifactId>
												<version>${kotlin.version}</version>
								</dependency>
				</dependencies>
</plugin>

Please refer to the Gradle section for the detailed information about how all-open annotations work.

Spring
support
If you use Spring, you can enable the kotlin-spring compiler plugin instead of specifying Spring annotations manually. The kotlin-spring is a wrapper on top of all-
open, and it behaves exactly the same way.

Add the plugin using Gradle's plugins DSL:

plugins	{
				id	"org.jetbrains.kotlin.plugin.spring"	version	"1.9.20"
}

In Maven, the spring plugin is provided by the kotlin-maven-allopen plugin dependency, so to enable it:

1122

<compilerPlugins>
				<plugin>spring</plugin>
</compilerPlugins>

<dependencies>
				<dependency>
								<groupId>org.jetbrains.kotlin</groupId>
								<artifactId>kotlin-maven-allopen</artifactId>
								<version>${kotlin.version}</version>
				</dependency>
</dependencies>

The plugin specifies the following annotations:

@Component

@Async

@Transactional

@Cacheable

@SpringBootTest

Thanks to meta-annotations support, classes annotated with @Configuration, @Controller, @RestController, @Service or @Repository are automatically opened
since these annotations are meta-annotated with @Component.

Of course, you can use both kotlin-allopen and kotlin-spring in the same project.

Note that if you use the project template generated by the start.spring.io service, the kotlin-spring plugin will be enabled by default.

Command-line
compiler
All-open compiler plugin JAR is available in the binary distribution of the Kotlin compiler. You can attach the plugin by providing the path to its JAR file using the
Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/allopen-compiler-plugin.jar

You can specify all-open annotations directly, using the annotation plugin option, or enable the "preset". The presets available now for all-open are spring,
micronaut, and quarkus.

#	The	plugin	option	format	is:	"-P	plugin:<plugin	id>:<key>=<value>".	
#	Options	can	be	repeated.

-P	plugin:org.jetbrains.kotlin.allopen:annotation=com.my.Annotation
-P	plugin:org.jetbrains.kotlin.allopen:preset=spring

No-arg
compiler
plugin
The no-arg compiler plugin generates an additional zero-argument constructor for classes with a specific annotation.

The generated constructor is synthetic, so it can't be directly called from Java or Kotlin, but it can be called using reflection.

This allows the Java Persistence API (JPA) to instantiate a class although it doesn't have the zero-parameter constructor from Kotlin or Java point of view (see the
description of kotlin-jpa plugin below).

In
your
Kotlin
file
Add new annotations to mark the code that needs a zero-argument constructor:

package	com.my

annotation	class	Annotation

1123

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/annotation/Async.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/cache/annotation/Cacheable.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/test/context/SpringBootTest.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Repository.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Component.html
https://start.spring.io/#!language=kotlin

Gradle
Add the plugin using Gradle's plugins DSL:

Kotlin

plugins	{
				kotlin("plugin.noarg")	version	"1.9.20"
}

Groovy

plugins	{
				id	"org.jetbrains.kotlin.plugin.noarg"	version	"1.9.20"
}

Then specify the list of no-arg annotations that must lead to generating a no-arg constructor for the annotated classes:

noArg	{
				annotation("com.my.Annotation")
}

Enable invokeInitializers option if you want the plugin to run the initialization logic from the synthetic constructor. By default, it is disabled.

noArg	{
				invokeInitializers	=	true
}

Maven

<plugin>
				<artifactId>kotlin-maven-plugin</artifactId>
				<groupId>org.jetbrains.kotlin</groupId>
				<version>${kotlin.version}</version>

				<configuration>
								<compilerPlugins>
												<!--	Or	"jpa"	for	JPA	support	-->
												<plugin>no-arg</plugin>
								</compilerPlugins>

								<pluginOptions>
												<option>no-arg:annotation=com.my.Annotation</option>
												<!--	Call	instance	initializers	in	the	synthetic	constructor	-->
												<!--	<option>no-arg:invokeInitializers=true</option>	-->
								</pluginOptions>
				</configuration>

				<dependencies>
								<dependency>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-noarg</artifactId>
												<version>${kotlin.version}</version>
								</dependency>
				</dependencies>
</plugin>

JPA
support
As with the kotlin-spring plugin wrapped on top of all-open, kotlin-jpa is wrapped on top of no-arg. The plugin specifies @Entity, @Embeddable, and
@MappedSuperclass no-arg annotations automatically.

Add the plugin using the Gradle plugins DSL:

1124

https://docs.oracle.com/javaee/7/api/javax/persistence/Entity.html
https://docs.oracle.com/javaee/7/api/javax/persistence/Embeddable.html
https://docs.oracle.com/javaee/7/api/javax/persistence/MappedSuperclass.html

Kotlin

plugins	{
				kotlin("plugin.jpa")	version	"1.9.20"
}

Groovy

plugins	{
				id	"org.jetbrains.kotlin.plugin.jpa"	version	"1.9.20"
}

In Maven, enable the jpa plugin:

<compilerPlugins>
				<plugin>jpa</plugin>
</compilerPlugins>

Command-line
compiler
Add the plugin JAR file to the compiler plugin classpath and specify annotations or presets:

-Xplugin=$KOTLIN_HOME/lib/noarg-compiler-plugin.jar
-P	plugin:org.jetbrains.kotlin.noarg:annotation=com.my.Annotation
-P	plugin:org.jetbrains.kotlin.noarg:preset=jpa

SAM-with-receiver
compiler
plugin
The sam-with-receiver compiler plugin makes the first parameter of the annotated Java "single abstract method" (SAM) interface method a receiver in Kotlin. This
conversion only works when the SAM interface is passed as a Kotlin lambda, both for SAM adapters and SAM constructors (see the SAM conversions
documentation for more details).

Here is an example:

public	@interface	SamWithReceiver	{}

@SamWithReceiver
public	interface	TaskRunner	{
				void	run(Task	task);
}

fun	test(context:	TaskContext)	{
				val	runner	=	TaskRunner	{
								//	Here	'this'	is	an	instance	of	'Task'

								println("$name	is	started")
								context.executeTask(this)
								println("$name	is	finished")
				}
}

Gradle
The usage is the same to all-open and no-arg, except the fact that sam-with-receiver does not have any built-in presets, and you need to specify your own list of
special-treated annotations.

plugins	{
				id("org.jetbrains.kotlin.plugin.sam.with.receiver")	version	"$kotlin_version"
}

1125

Then specify the list of SAM-with-receiver annotations:

samWithReceiver	{
				annotation("com.my.SamWithReceiver")
}

Maven

<plugin>
				<artifactId>kotlin-maven-plugin</artifactId>
				<groupId>org.jetbrains.kotlin</groupId>
				<version>${kotlin.version}</version>

				<configuration>
								<compilerPlugins>
												<plugin>sam-with-receiver</plugin>
								</compilerPlugins>

								<pluginOptions>
												<option>
																sam-with-receiver:annotation=com.my.SamWithReceiver
												</option>
								</pluginOptions>
				</configuration>

				<dependencies>
								<dependency>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-sam-with-receiver</artifactId>
												<version>${kotlin.version}</version>
								</dependency>
				</dependencies>
</plugin>

Command-line
compiler
Add the plugin JAR file to the compiler plugin classpath and specify the list of sam-with-receiver annotations:

-Xplugin=$KOTLIN_HOME/lib/sam-with-receiver-compiler-plugin.jar
-P	plugin:org.jetbrains.kotlin.samWithReceiver:annotation=com.my.SamWithReceiver

kapt
compiler
plugin

Annotation processors (see JSR 269) are supported in Kotlin with the kapt compiler plugin.

In a nutshell, you can use libraries such as Dagger or Data Binding in your Kotlin projects.

Please read below about how to apply the kapt plugin to your Gradle/Maven build.

Use
in
Gradle
Follow these steps:

1. Apply the kotlin-kapt Gradle plugin:

Kotlin

kapt is in maintenance mode. We are keeping it up-to-date with recent Kotlin and Java releases but have no plans to implement new features. Please use
the Kotlin Symbol Processing API (KSP) for annotation processing. See the list of libraries supported by KSP.

1126

https://jcp.org/en/jsr/detail?id=269
https://google.github.io/dagger/
https://developer.android.com/topic/libraries/data-binding/index.html

plugins	{
				kotlin("kapt")	version	"1.9.20"
}

Groovy

plugins	{
				id	"org.jetbrains.kotlin.kapt"	version	"1.9.20"
}

2. Add the respective dependencies using the kapt configuration in your dependencies block:

Kotlin

dependencies	{
				kapt("groupId:artifactId:version")
}

Groovy

dependencies	{
				kapt	'groupId:artifactId:version'
}

3. If you previously used the Android support for annotation processors, replace usages of the annotationProcessor configuration with kapt. If your project contains
Java classes, kapt will also take care of them.

If you use annotation processors for your androidTest or test sources, the respective kapt configurations are named kaptAndroidTest and kaptTest. Note that
kaptAndroidTest and kaptTest extends kapt, so you can just provide the kapt dependency and it will be available both for production sources and tests.

Try
Kotlin
K2
compiler

From Kotlin 1.9.20, you can try using the kapt compiler plugin with the K2 compiler, which brings performance improvements and many other benefits. To use the
K2 compiler in your project, add the following options to your gradle.properties file:

kotlin.experimental.tryK2=true
kapt.use.k2=true

Alternatively, you can enable K2 for kapt by completing the following steps:

1. In your build.gradle.kts file, set the language version to 2.0.

2. In your gradle.properties file, add kapt.use.k2=true.

If you encounter any issues when using kapt with the K2 compiler, please report them to our issue tracker.

Annotation
processor
arguments
Use arguments {} block to pass arguments to annotation processors:

kapt	{
				arguments	{
								arg("key",	"value")
				}
}

Support for K2 in the kapt compiler plugin is Experimental. Opt-in is required (see details below), and you should use it only for evaluation purposes.

1127

https://developer.android.com/studio/build/gradle-plugin-3-0-0-migration.html#annotationProcessor_config
https://blog.jetbrains.com/kotlin/2021/10/the-road-to-the-k2-compiler/
http://kotl.in/issue

Gradle
build
cache
support
The kapt annotation processing tasks are cached in Gradle by default. However, annotation processors run arbitrary code that may not necessarily transform the
task inputs into the outputs, might access and modify the files that are not tracked by Gradle etc. If the annotation processors used in the build cannot be properly
cached, it is possible to disable caching for kapt entirely by adding the following lines to the build script, in order to avoid false-positive cache hits for the kapt
tasks:

kapt	{
				useBuildCache	=	false
}

Improve
the
speed
of
builds
that
use
kapt

Run
kapt
tasks
in
parallel
To improve the speed of builds that use kapt, you can enable the Gradle Worker API for kapt tasks. Using the Worker API lets Gradle run independent annotation
processing tasks from a single project in parallel, which in some cases significantly decreases the execution time.

When you use the custom JDK home feature in the Kotlin Gradle plugin, kapt task workers use only process isolation mode. Note that the kapt.workers.isolation
property is ignored.

If you want to provide additional JVM arguments for a kapt worker process, use the input kaptProcessJvmArgs of the KaptWithoutKotlincTask:

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.internal.KaptWithoutKotlincTask>()
				.configureEach	{
								kaptProcessJvmArgs.add("-Xmx512m")
				}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.internal.KaptWithoutKotlincTask.class)
				.configureEach	{
								kaptProcessJvmArgs.add('-Xmx512m')
				}

Caching
for
annotation
processors'
classloaders

Caching for annotation processors' classloaders helps kapt perform faster if you run many Gradle tasks consecutively.

To enable this feature, use the following properties in your gradle.properties file:

#	positive	value	will	enable	caching
#	use	the	same	value	as	the	number	of	modules	that	use	kapt
kapt.classloaders.cache.size=5

#	disable	for	caching	to	work
kapt.include.compile.classpath=false

If you run into any problems with caching for annotation processors, disable caching for them:

#	specify	annotation	processors'	full	names	to	disable	caching	for	them
kapt.classloaders.cache.disableForProcessors=[annotation	processors	full	names]

Caching for annotation processors' classloaders in kapt is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes.
We would appreciate your feedback on it in YouTrack.

1128

https://guides.gradle.org/using-build-cache/
https://guides.gradle.org/using-the-worker-api/
https://docs.gradle.org/current/userguide/worker_api.html#changing_the_isolation_mode
https://youtrack.jetbrains.com/issue/KT-28901

Measure
performance
of
annotation
processors
Get a performance statistics on the annotation processors execution using the -Kapt-show-processor-timings plugin option. An example output:

Kapt	Annotation	Processing	performance	report:
com.example.processor.TestingProcessor:	total:	133	ms,	init:	36	ms,	2	round(s):	97	ms,	0	ms
com.example.processor.AnotherProcessor:	total:	100	ms,	init:	6	ms,	1	round(s):	93	ms

You can dump this report into a file with the plugin option -Kapt-dump-processor-timings (org.jetbrains.kotlin.kapt3:dumpProcessorTimings). The following
command will run kapt and dump the statistics to the ap-perf-report.file file:

kotlinc	-cp	$MY_CLASSPATH	\
-Xplugin=kotlin-annotation-processing-SNAPSHOT.jar	-P	\
plugin:org.jetbrains.kotlin.kapt3:aptMode=stubsAndApt,\
plugin:org.jetbrains.kotlin.kapt3:apclasspath=processor/build/libs/processor.jar,\
plugin:org.jetbrains.kotlin.kapt3:dumpProcessorTimings=ap-perf-report.file	\
-Xplugin=$JAVA_HOME/lib/tools.jar	\
-d	cli-tests/out	\
-no-jdk	-no-reflect	-no-stdlib	-verbose	\
sample/src/main/

Measure
the
number
of
files
generated
with
annotation
processors
The kotlin-kapt Gradle plugin can report statistics on the number of generated files for each annotation processor.

This is useful to track if there are unused annotation processors as a part of the build. You can use the generated report to find modules that trigger unnecessary
annotation processors and update the modules to prevent that.

Enable the statistics in two steps:

Set the showProcessorStats flag to true in your build.gradle(.kts):

kapt	{
				showProcessorStats	=	true
}

Set the kapt.verbose Gradle property to true in your gradle.properties:

kapt.verbose=true

The statistics will appear in the logs with the info level. You'll see the Annotation processor stats: line followed by statistics on the execution time of each annotation
processor. After these lines, there will be the Generated files report: line followed by statistics on the number of generated files for each annotation processor. For
example:

[INFO]	Annotation	processor	stats:
[INFO]	org.mapstruct.ap.MappingProcessor:	total:	290	ms,	init:	1	ms,	3	round(s):	289	ms,	0	ms,	0	ms
[INFO]	Generated	files	report:
[INFO]	org.mapstruct.ap.MappingProcessor:	total	sources:	2,	sources	per	round:	2,	0,	0

Compile
avoidance
for
kapt
To improve the times of incremental builds with kapt, it can use the Gradle compile avoidance. With compile avoidance enabled, Gradle can skip annotation
processing when rebuilding a project. Particularly, annotation processing is skipped when:

The project's source files are unchanged.

The changes in dependencies are ABI compatible. For example, the only changes are in method bodies.

However, compile avoidance can't be used for annotation processors discovered in the compile classpath since any changes in them require running the annotation
processing tasks.

You can also enable verbose output via the command line option verbose.

1129

https://github.com/JetBrains/kotlin/pull/4280
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_compile_avoidance
https://en.wikipedia.org/wiki/Application_binary_interface

To run kapt with compile avoidance:

Add the annotation processor dependencies to the kapt* configurations manually as described above.

Turn off the discovery of annotation processors in the compile classpath by adding this line to your gradle.properties file:

kapt.include.compile.classpath=false

Incremental
annotation
processing
kapt supports incremental annotation processing that is enabled by default. Currently, annotation processing can be incremental only if all annotation processors
being used are incremental.

To disable incremental annotation processing, add this line to your gradle.properties file:

kapt.incremental.apt=false

Note that incremental annotation processing requires incremental compilation to be enabled as well.

Java
compiler
options
kapt uses Java compiler to run annotation processors.
Here is how you can pass arbitrary options to javac:

kapt	{
				javacOptions	{
								//	Increase	the	max	count	of	errors	from	annotation	processors.
								//	Default	is	100.
								option("-Xmaxerrs",	500)
				}
}

Non-existent
type
correction
Some annotation processors (such as AutoFactory) rely on precise types in declaration signatures. By default, kapt replaces every unknown type (including types for
the generated classes) to NonExistentClass, but you can change this behavior. Add the option to the build.gradle(.kts) file to enable error type inferring in stubs:

kapt	{
				correctErrorTypes	=	true
}

Use
in
Maven
Add an execution of the kapt goal from kotlin-maven-plugin before compile:

<execution>
				<id>kapt</id>
				<goals>
								<goal>kapt</goal>	<!--	You	can	skip	the	<goals>	element	
								if	you	enable	extensions	for	the	plugin	-->
				</goals>
				<configuration>
								<sourceDirs>
												<sourceDir>src/main/kotlin</sourceDir>
												<sourceDir>src/main/java</sourceDir>
								</sourceDirs>
								<annotationProcessorPaths>
												<!--	Specify	your	annotation	processors	here	-->
												<annotationProcessorPath>
																<groupId>com.google.dagger</groupId>
																<artifactId>dagger-compiler</artifactId>
																<version>2.9</version>

1130

												</annotationProcessorPath>
								</annotationProcessorPaths>
				</configuration>
</execution>

To configure the level of annotation processing, set one of the following as the aptMode in the <configuration> block:

stubs – only generate stubs needed for annotation processing.

apt – only run annotation processing.

stubsAndApt – (default) generate stubs and run annotation processing.

For example:

<configuration>
			...
			<aptMode>stubs</aptMode>
</configuration>

Use
in
IntelliJ
build
system
kapt is not supported for IntelliJ IDEA's own build system. Launch the build from the "Maven Projects" toolbar whenever you want to re-run the annotation
processing.

Use
in
CLI
kapt compiler plugin is available in the binary distribution of the Kotlin compiler.

You can attach the plugin by providing the path to its JAR file using the Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/kotlin-annotation-processing.jar

Here is a list of the available options:

sources (required): An output path for the generated files.

classes (required): An output path for the generated class files and resources.

stubs (required): An output path for the stub files. In other words, some temporary directory.

incrementalData: An output path for the binary stubs.

apclasspath (repeatable): A path to the annotation processor JAR. Pass as many apclasspath options as the number of JARs that you have.

apoptions: A base64-encoded list of the annotation processor options. See AP/javac options encoding for more information.

javacArguments: A base64-encoded list of the options passed to javac. See AP/javac options encoding for more information.

processors: A comma-specified list of annotation processor qualified class names. If specified, kapt does not try to find annotation processors in apclasspath.

verbose: Enable verbose output.

aptMode (required)

stubs – only generate stubs needed for annotation processing.

apt – only run annotation processing.

stubsAndApt – generate stubs and run annotation processing.

correctErrorTypes: See below. Disabled by default.

dumpFileReadHistory: An output path to dump for each file a list of classes used during annotation processing.

The plugin option format is: -P plugin:<plugin id>:<key>=<value>. Options can be repeated.

1131

An example:

-P	plugin:org.jetbrains.kotlin.kapt3:sources=build/kapt/sources
-P	plugin:org.jetbrains.kotlin.kapt3:classes=build/kapt/classes
-P	plugin:org.jetbrains.kotlin.kapt3:stubs=build/kapt/stubs

-P	plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/ap.jar
-P	plugin:org.jetbrains.kotlin.kapt3:apclasspath=lib/anotherAp.jar

-P	plugin:org.jetbrains.kotlin.kapt3:correctErrorTypes=true

Generate
Kotlin
sources
kapt can generate Kotlin sources. Just write the generated Kotlin source files to the directory specified by processingEnv.options["kapt.kotlin.generated"], and
these files will be compiled together with the main sources.

Note that kapt does not support multiple rounds for the generated Kotlin files.

AP/Javac
options
encoding
apoptions and javacArguments CLI options accept an encoded map of options.
Here is how you can encode options by yourself:

fun	encodeList(options:	Map<String,	String>):	String	{
				val	os	=	ByteArrayOutputStream()
				val	oos	=	ObjectOutputStream(os)

				oos.writeInt(options.size)
				for	((key,	value)	in	options.entries)	{
								oos.writeUTF(key)
								oos.writeUTF(value)
				}

				oos.flush()
				return	Base64.getEncoder().encodeToString(os.toByteArray())
}

Keep
Java
compiler's
annotation
processors
By default, kapt runs all annotation processors and disables annotation processing by javac. However, you may need some of javac's annotation processors
working (for example, Lombok).

In the Gradle build file, use the option keepJavacAnnotationProcessors:

kapt	{
				keepJavacAnnotationProcessors	=	true
}

If you use Maven, you need to specify concrete plugin settings. See this example of settings for the Lombok compiler plugin.

Lombok
compiler
plugin

The Kotlin Lombok compiler plugin allows the generation and use of Java's Lombok declarations by Kotlin code in the same mixed Java/Kotlin module. If you call
such declarations from another module, then you don't need to use this plugin for the compilation of that module.

The Lombok compiler plugin cannot replace Lombok, but it helps Lombok work in mixed Java/Kotlin modules. Thus, you still need to configure Lombok as usual
when using this plugin. Learn more about how to configure the Lombok compiler plugin.

The Lombok compiler plugin is Experimental. It may be dropped or changed at any time. Use it only for evaluation purposes. We would appreciate your
feedback on it in YouTrack.

1132

https://projectlombok.org/
https://youtrack.jetbrains.com/issue/KT-7112
https://projectlombok.org/

Supported
annotations
The plugin supports the following annotations:

@Getter, @Setter

@Builder

@NoArgsConstructor, @RequiredArgsConstructor, and @AllArgsConstructor

@Data

@With

@Value

We're continuing to work on this plugin. To find out the detailed current state, visit the Lombok compiler plugin's README.

Currently, we don't have plans to support the @SuperBuilder and @Tolerate annotations. However, we can consider this if you vote for @SuperBuilder and
@Tolerate in YouTrack.

Gradle
Apply the kotlin-plugin-lombok Gradle plugin in the build.gradle(.kts) file:

Kotlin

plugins	{
				kotlin("plugin.lombok")	version	"1.9.20"
				id("io.freefair.lombok")	version	"8.1.0"
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.plugin.lombok'	version	'1.9.20'
				id	'io.freefair.lombok'	version	'8.1.0'
}

See this test project with examples of the Lombok compiler plugin in use.

Using
the
Lombok
configuration
file
If you use a Lombok configuration file lombok.config, you need to set the file's path so that the plugin can find it. The path must be relative to the module's
directory. For example, add the following code to your build.gradle(.kts) file:

Kotlin

kotlinLombok	{
				lombokConfigurationFile(file("lombok.config"))
}

Groovy

kotlinLombok	{
				lombokConfigurationFile	file("lombok.config")
}

Kotlin compiler ignores Lombok annotations if you use them in Kotlin code.

1133

https://github.com/JetBrains/kotlin/tree/master/plugins/lombok
https://youtrack.jetbrains.com/issue/KT-53563/Kotlin-Lombok-Support-SuperBuilder
https://youtrack.jetbrains.com/issue/KT-53564/Kotlin-Lombok-Support-Tolerate
https://github.com/kotlin-hands-on/kotlin-lombok-examples/tree/master/kotlin_lombok_gradle/nokapt
https://projectlombok.org/features/configuration

See this test project with examples of the Lombok compiler plugin and lombok.config in use.

Maven
To use the Lombok compiler plugin, add the plugin lombok to the compilerPlugins section and the dependency kotlin-maven-lombok to the dependencies section.
If you use a Lombok configuration file lombok.config, provide a path to it to the plugin in the pluginOptions. Add the following lines to the pom.xml file:

<plugin>
				<groupId>org.jetbrains.kotlin</groupId>
				<artifactId>kotlin-maven-plugin</artifactId>
				<version>${kotlin.version}</version>
				<configuration>
								<compilerPlugins>
												<plugin>lombok</plugin>
								</compilerPlugins>
								<pluginOptions>
												<option>lombok:config=${project.basedir}/lombok.config</option>
								</pluginOptions>
				</configuration>
				<dependencies>
								<dependency>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-maven-lombok</artifactId>
												<version>${kotlin.version}</version>
								</dependency>
								<dependency>
												<groupId>org.projectlombok</groupId>
												<artifactId>lombok</artifactId>
												<version>1.18.20</version>
												<scope>provided</scope>
								</dependency>
				</dependencies>
</plugin>

See this test project example of the Lombok compiler plugin and lombok.config in use.

Using
with
kapt
By default, the kapt compiler plugin runs all annotation processors and disables annotation processing by javac. To run Lombok along with kapt, set up kapt to
keep javac's annotation processors working.

If you use Gradle, add the option to the build.gradle(.kts) file:

kapt	{
				keepJavacAnnotationProcessors	=	true
}

In Maven, use the following settings to launch Lombok with Java's compiler:

<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-compiler-plugin</artifactId>
				<version>3.5.1</version>
				<configuration>
								<source>1.8</source>
								<target>1.8</target>
								<annotationProcessorPaths>
												<annotationProcessorPath>
																<groupId>org.projectlombok</groupId>
																<artifactId>lombok</artifactId>
																<version>${lombok.version}</version>
												</annotationProcessorPath>
								</annotationProcessorPaths>
				</configuration>
</plugin>				

The Lombok compiler plugin works correctly with kapt if annotation processors don't depend on the code generated by Lombok.

Look through the test project examples of kapt and the Lombok compiler plugin in use:

1134

https://github.com/kotlin-hands-on/kotlin-lombok-examples/tree/master/kotlin_lombok_gradle/withconfig
https://projectlombok.org/features/configuration
https://github.com/kotlin-hands-on/kotlin-lombok-examples/tree/master/kotlin_lombok_maven/nokapt
https://projectlombok.org/

Using Gradle.

Using Maven

Command-line
compiler
Lombok compiler plugin JAR is available in the binary distribution of the Kotlin compiler. You can attach the plugin by providing the path to its JAR file using the
Xplugin kotlinc option:

-Xplugin=$KOTLIN_HOME/lib/lombok-compiler-plugin.jar

If you want to use the lombok.config file, replace <PATH_TO_CONFIG_FILE> with a path to your lombok.config:

#	The	plugin	option	format	is:	"-P	plugin:<plugin	id>:<key>=<value>".	
#	Options	can	be	repeated.

-P	plugin:org.jetbrains.kotlin.lombok:config=<PATH_TO_CONFIG_FILE>

Kotlin
Symbol
Processing
API
Kotlin Symbol Processing (KSP) is an API that you can use to develop lightweight compiler plugins. KSP provides a simplified compiler plugin API that leverages the
power of Kotlin while keeping the learning curve at a minimum. Compared to kapt, annotation processors that use KSP can run up to two times faster.

To learn more about how KSP compares to kapt, check out why KSP.

To get started writing a KSP processor, take a look at the KSP quickstart.

Overview
The KSP API processes Kotlin programs idiomatically. KSP understands Kotlin-specific features, such as extension functions, declaration-site variance, and local
functions. It also models types explicitly and provides basic type checking, such as equivalence and assign-compatibility.

The API models Kotlin program structures at the symbol level according to Kotlin grammar. When KSP-based plugins process source programs, constructs like
classes, class members, functions, and associated parameters are accessible for the processors, while things like if blocks and for loops are not.

Conceptually, KSP is similar to KType in Kotlin reflection. The API allows processors to navigate from class declarations to corresponding types with specific type
arguments and vice-versa. You can also substitute type arguments, specify variances, apply star projections, and mark nullabilities of types.

Another way to think of KSP is as a preprocessor framework of Kotlin programs. By considering KSP-based plugins as symbol processors, or simply processors,
the data flow in a compilation can be described in the following steps:

1. Processors read and analyze source programs and resources.

2. Processors generate code or other forms of output.

3. The Kotlin compiler compiles the source programs together with the generated code.

Unlike a full-fledged compiler plugin, processors cannot modify the code. A compiler plugin that changes language semantics can sometimes be very confusing.
KSP avoids that by treating the source programs as read-only.

You can also get an overview of KSP in this video:

1135

https://github.com/JetBrains/kotlin/tree/master/libraries/tools/kotlin-gradle-plugin-integration-tests/src/test/resources/testProject/lombokProject/yeskapt
https://github.com/kotlin-hands-on/kotlin-lombok-examples/tree/master/kotlin_lombok_maven/yeskapt
https://kotlinlang.org/docs/reference/grammar.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.reflect/-k-type/

Watch video online.

How
KSP
looks
at
source
files
Most processors navigate through the various program structures of the input source code. Before diving into usage of the API, let's see at how a file might look
from KSP's point of view:

KSFile
		packageName:	KSName
		fileName:	String
		annotations:	List<KSAnnotation>		(File	annotations)
		declarations:	List<KSDeclaration>
				KSClassDeclaration	//	class,	interface,	object
						simpleName:	KSName
						qualifiedName:	KSName
						containingFile:	String
						typeParameters:	KSTypeParameter
						parentDeclaration:	KSDeclaration
						classKind:	ClassKind
						primaryConstructor:	KSFunctionDeclaration
						superTypes:	List<KSTypeReference>
						//	contains	inner	classes,	member	functions,	properties,	etc.
						declarations:	List<KSDeclaration>
				KSFunctionDeclaration	//	top	level	function
						simpleName:	KSName
						qualifiedName:	KSName
						containingFile:	String
						typeParameters:	KSTypeParameter
						parentDeclaration:	KSDeclaration
						functionKind:	FunctionKind
						extensionReceiver:	KSTypeReference?
						returnType:	KSTypeReference
						parameters:	List<KSValueParameter>
						//	contains	local	classes,	local	functions,	local	variables,	etc.
						declarations:	List<KSDeclaration>
				KSPropertyDeclaration	//	global	variable
						simpleName:	KSName
						qualifiedName:	KSName
						containingFile:	String
						typeParameters:	KSTypeParameter
						parentDeclaration:	KSDeclaration
						extensionReceiver:	KSTypeReference?
						type:	KSTypeReference
						getter:	KSPropertyGetter
								returnType:	KSTypeReference
						setter:	KSPropertySetter
								parameter:	KSValueParameter

This view lists common things that are declared in the file: classes, functions, properties, and so on.

SymbolProcessorProvider:
the
entry
point

Gif

1136

https://youtube.com/v/bv-VyGM3HCY

KSP expects an implementation of the SymbolProcessorProvider interface to instantiate SymbolProcessor:

interface	SymbolProcessorProvider	{
				fun	create(environment:	SymbolProcessorEnvironment):	SymbolProcessor
}

While SymbolProcessor is defined as:

interface	SymbolProcessor	{
				fun	process(resolver:	Resolver):	List<KSAnnotated>	//	Let's	focus	on	this
				fun	finish()	{}
				fun	onError()	{}
}

A Resolver provides SymbolProcessor with access to compiler details such as symbols. A processor that finds all top-level functions and non-local functions in
top-level classes might look something like the following:

class	HelloFunctionFinderProcessor	:	SymbolProcessor()	{
				//	...
				val	functions	=	mutableListOf<KSClassDeclaration>()
				val	visitor	=	FindFunctionsVisitor()

				override	fun	process(resolver:	Resolver)	{
								resolver.getAllFiles().forEach	{	it.accept(visitor,	Unit)	}
				}

				inner	class	FindFunctionsVisitor	:	KSVisitorVoid()	{
								override	fun	visitClassDeclaration(classDeclaration:	KSClassDeclaration,	data:	Unit)	{
												classDeclaration.getDeclaredFunctions().forEach	{	it.accept(this,	Unit)	}
								}

								override	fun	visitFunctionDeclaration(function:	KSFunctionDeclaration,	data:	Unit)	{
												functions.add(function)
								}

								override	fun	visitFile(file:	KSFile,	data:	Unit)	{
												file.declarations.forEach	{	it.accept(this,	Unit)	}
								}
				}
				//	...
				
				class	Provider	:	SymbolProcessorProvider	{
								override	fun	create(environment:	SymbolProcessorEnvironment):	SymbolProcessor	=	TODO()
				}
}

Resources
Quickstart

Why use KSP?

Examples

How KSP models Kotlin code

Reference for Java annotation processor authors

Incremental processing notes

Multiple round processing notes

KSP on multiplatform projects

Running KSP from command line

FAQ

Supported
libraries

1137

The table includes a list of popular libraries on Android and their various stages of support for KSP:

Library Status

Room Officially supported

Moshi Officially supported

RxHttp Officially supported

Kotshi Officially supported

Lyricist Officially supported

Lich SavedState Officially supported

gRPC Dekorator Officially supported

EasyAdapter Officially supported

Koin Annotations Officially supported

Glide Officially supported

Micronaut Officially supported

Epoxy Officially supported

Paris Officially supported

Auto Dagger Officially supported

SealedX Officially supported

DeeplinkDispatch Supported via

airbnb/DeepLinkDispatch#323

Dagger Alpha

Hilt In progress

1138

https://developer.android.com/jetpack/androidx/releases/room#2.3.0-beta02
https://github.com/square/moshi/
https://github.com/liujingxing/rxhttp
https://github.com/ansman/kotshi
https://github.com/adrielcafe/lyricist
https://github.com/line/lich/tree/master/savedstate
https://github.com/mottljan/grpc-dekorator
https://github.com/AmrDeveloper/EasyAdapter
https://github.com/InsertKoinIO/koin-annotations
https://github.com/bumptech/glide
https://micronaut.io/2023/07/14/micronaut-framework-4-0-0-released/
https://github.com/airbnb/epoxy
https://github.com/airbnb/paris
https://github.com/ansman/auto-dagger
https://github.com/skydoves/sealedx
https://github.com/airbnb/DeepLinkDispatch/pull/323
https://dagger.dev/dev-guide/ksp
https://dagger.dev/dev-guide/ksp

Auto Factory Not yet supported

Library Status

KSP
quickstart
For a quick start, you can create your own processor or get a sample one.

Create
a
processor
of
your
own
1. Create an empty gradle project.

2. Specify version 1.9.10 of the Kotlin plugin in the root project for use in other project modules:

Kotlin

plugins	{
				kotlin("jvm")	version	"1.9.10"	apply	false
}

buildscript	{
				dependencies	{
								classpath(kotlin("gradle-plugin",	version	=	"1.9.10"))
				}
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.jvm'	version	'1.9.10'	apply	false
}

buildscript	{
				dependencies	{
								classpath	'org.jetbrains.kotlin:kotlin-gradle-plugin:1.9.10'
				}
}

3. Add a module for hosting the processor.

4. In the module's build script, apply Kotlin plugin and add the KSP API to the dependencies block.

Kotlin

plugins	{
				kotlin("jvm")
}

repositories	{
				mavenCentral()
}

dependencies	{
				implementation("com.google.devtools.ksp:symbol-processing-api:1.9.10-1.0.13")
}

Groovy

plugins	{
				id	'org.jetbrains.kotlin.jvm'	version	'1.9.20'
}

1139

https://github.com/google/auto/issues/982
https://github.com/google/ksp/tree/main/examples/playground

repositories	{
				mavenCentral()
}

dependencies	{
				implementation	'com.google.devtools.ksp:symbol-processing-api:1.9.10-1.0.13'
}

5. You'll need to implement com.google.devtools.ksp.processing.SymbolProcessor and com.google.devtools.ksp.processing.SymbolProcessorProvider. Your
implementation of SymbolProcessorProvider will be loaded as a service to instantiate the SymbolProcessor you implement. Note the following:

Implement SymbolProcessorProvider.create() to create a SymbolProcessor. Pass dependencies that your processor needs (such as CodeGenerator,
processor options) through the parameters of SymbolProcessorProvider.create().

Your main logic should be in the SymbolProcessor.process() method.

Use resolver.getSymbolsWithAnnotation() to get the symbols you want to process, given the fully-qualified name of an annotation.

A common use case for KSP is to implement a customized visitor (interface com.google.devtools.ksp.symbol.KSVisitor) for operating on symbols. A simple
template visitor is com.google.devtools.ksp.symbol.KSDefaultVisitor.

For sample implementations of the SymbolProcessorProvider and SymbolProcessor interfaces, see the following files in the sample project.

src/main/kotlin/BuilderProcessor.kt

src/main/kotlin/TestProcessor.kt

After writing your own processor, register your processor provider to the package by including its fully-qualified name in resources/META-
INF/services/com.google.devtools.ksp.processing.SymbolProcessorProvider.

Use
your
own
processor
in
a
project
1. Create another module that contains a workload where you want to try out your processor.

Kotlin

pluginManagement	{	
				repositories	{	
								gradlePluginPortal()
				}
}

Groovy

pluginManagement	{
				repositories	{
								gradlePluginPortal()
				}
}

2. In the module's build script, apply the com.google.devtools.ksp plugin with the specified version and add your processor to the list of dependencies.

Kotlin

plugins	{
				id("com.google.devtools.ksp")	version	"1.9.10-1.0.13"
}

dependencies	{
				implementation(kotlin("stdlib-jdk8"))
				implementation(project(":test-processor"))
				ksp(project(":test-processor"))
}

1140

https://github.com/google/ksp/tree/main/api/src/main/kotlin/com/google/devtools/ksp/processing/SymbolProcessor.kt
https://github.com/google/ksp/tree/main/api/src/main/kotlin/com/google/devtools/ksp/processing/SymbolProcessorProvider.kt
https://github.com/google/ksp/blob/master/api/src/main/kotlin/com/google/devtools/ksp/processing/SymbolProcessorProvider.kt
https://github.com/google/ksp/blob/master/api/src/main/kotlin/com/google/devtools/ksp/processing/SymbolProcessor.kt

Groovy

plugins	{
				id	'com.google.devtools.ksp'	version	'1.9.10-1.0.13'
}

dependencies	{
				implementation	'org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version'
				implementation	project(':test-processor')
				ksp	project(':test-processor')
}

3. Run ./gradlew build. You can find the generated code under build/generated/source/ksp.

Here's a sample build script to apply the KSP plugin to a workload:

Kotlin

plugins	{
				id("com.google.devtools.ksp")	version	"1.9.10-1.0.13"
				kotlin("jvm")	
}

repositories	{
				mavenCentral()
}

dependencies	{
				implementation(kotlin("stdlib-jdk8"))
				implementation(project(":test-processor"))
				ksp(project(":test-processor"))
}

Groovy

plugins	{
				id	'com.google.devtools.ksp'	version	'1.9.10-1.0.13'
				id	'org.jetbrains.kotlin.jvm'	version	'1.9.20'
}

repositories	{
				mavenCentral()
}

dependencies	{
				implementation	'org.jetbrains.kotlin:kotlin-stdlib:1.9.20'
				implementation	project(':test-processor')
				ksp	project(':test-processor')
}

Pass
options
to
processors
Processor options in SymbolProcessorEnvironment.options are specified in gradle build scripts:

ksp	{
				arg("option1",	"value1")
				arg("option2",	"value2")
				...
}

Make
IDE
aware
of
generated
code

Generated source files are registered automatically since KSP 1.8.0-1.0.9. If you're using KSP 1.0.9 or newer and don't need to make the IDE aware of
generated resources, feel free to skip this section.

1141

By default, IntelliJ IDEA or other IDEs don't know about the generated code. So it will mark references to generated symbols unresolvable. To make an IDE be able
to reason about the generated symbols, mark the following paths as generated source roots:

build/generated/ksp/main/kotlin/
build/generated/ksp/main/java/

If your IDE supports resource directories, also mark the following one:

build/generated/ksp/main/resources/

It may also be necessary to configure these directories in your KSP consumer module's build script:

Kotlin

kotlin	{
				sourceSets.main	{
								kotlin.srcDir("build/generated/ksp/main/kotlin")
				}
				sourceSets.test	{
								kotlin.srcDir("build/generated/ksp/test/kotlin")
				}
}

Groovy

kotlin	{
				sourceSets	{
								main.kotlin.srcDirs	+=	'build/generated/ksp/main/kotlin'
								test.kotlin.srcDirs	+=	'build/generated/ksp/test/kotlin'
				}
}

If you are using IntelliJ IDEA and KSP in a Gradle plugin then the above snippet will give the following warning:

Execution	optimizations	have	been	disabled	for	task	':publishPluginJar'	to	ensure	correctness	due	to	the	following	reasons:
Gradle	detected	a	problem	with	the	following	location:	'../build/generated/ksp/main/kotlin'.	
Reason:	Task	':publishPluginJar'	uses	this	output	of	task	':kspKotlin'	without	declaring	an	explicit	or	implicit	dependency.

In this case, use the following script instead:

Kotlin

plugins	{
				//	...
				idea
}

idea	{
				module	{
								//	Not	using	+=	due	to	https://github.com/gradle/gradle/issues/8749
								sourceDirs	=	sourceDirs	+	file("build/generated/ksp/main/kotlin")	//	or	tasks["kspKotlin"].destination
								testSourceDirs	=	testSourceDirs	+	file("build/generated/ksp/test/kotlin")
								generatedSourceDirs	=	generatedSourceDirs	+	file("build/generated/ksp/main/kotlin")	+	
file("build/generated/ksp/test/kotlin")
				}
}

Groovy

plugins	{
				//	...
				id	'idea'
}

idea	{
				module	{

1142

								//	Not	using	+=	due	to	https://github.com/gradle/gradle/issues/8749
								sourceDirs	=	sourceDirs	+	file('build/generated/ksp/main/kotlin')	//	or	tasks["kspKotlin"].destination
								testSourceDirs	=	testSourceDirs	+	file('build/generated/ksp/test/kotlin')
								generatedSourceDirs	=	generatedSourceDirs	+	file('build/generated/ksp/main/kotlin')	+	
file('build/generated/ksp/test/kotlin')
				}
}

Why
KSP
Compiler plugins are powerful metaprogramming tools that can greatly enhance how you write code. Compiler plugins call compilers directly as libraries to analyze
and edit input programs. These plugins can also generate output for various uses. For example, they can generate boilerplate code, and they can even generate full
implementations for specially-marked program elements, such as Parcelable. Plugins have a variety of other uses and can even be used to implement and fine-tune
features that are not provided directly in a language.

While compiler plugins are powerful, this power comes at a price. To write even the simplest plugin, you need to have some compiler background knowledge, as
well as a certain level of familiarity with the implementation details of your specific compiler. Another practical issue is that plugins are often closely tied to specific
compiler versions, meaning you might need to update your plugin each time you want to support a newer version of the compiler.

KSP
makes
creating
lightweight
compiler
plugins
easier
KSP is designed to hide compiler changes, minimizing maintenance efforts for processors that use it. KSP is designed not to be tied to the JVM so that it can be
adapted to other platforms more easily in the future. KSP is also designed to minimize build times. For some processors, such as Glide, KSP reduces full
compilation times by up to 25% when compared to kapt.

KSP is itself implemented as a compiler plugin. There are prebuilt packages on Google's Maven repository that you can download and use without having to build
the project yourself.

Comparison
to
kotlinc
compiler
plugins
kotlinc compiler plugins have access to almost everything from the compiler and therefore have maximum power and flexibility. On the other hand, because these
plugins can potentially depend on anything in the compiler, they are sensitive to compiler changes and need to be maintained frequently. These plugins also require
a deep understanding of kotlinc's implementation, so the learning curve can be steep.

KSP aims to hide most compiler changes through a well-defined API, though major changes in compiler or even the Kotlin language might still require to be
exposed to API users.

KSP tries to fulfill common use cases by providing an API that trades power for simplicity. Its capability is a strict subset of a general kotlinc plugin. For example,
while kotlinc can examine expressions and statements and can even modify code, KSP cannot.

While writing a kotlinc plugin can be a lot of fun, it can also take a lot of time. If you aren't in a position to learn kotlinc's implementation and do not need to modify
source code or read expressions, KSP might be a good fit.

Comparison
to
reflection
KSP's API looks similar to kotlin.reflect. The major difference between them is that type references in KSP need to be resolved explicitly. This is one of the reasons
why the interfaces are not shared.

Comparison
to
kapt
kapt is a remarkable solution which makes a large amount of Java annotation processors work for Kotlin programs out-of-box. The major advantages of KSP over
kapt are improved build performance, not tied to JVM, a more idiomatic Kotlin API, and the ability to understand Kotlin-only symbols.

To run Java annotation processors unmodified, kapt compiles Kotlin code into Java stubs that retain information that Java annotation processors care about. To
create these stubs, kapt needs to resolve all symbols in the Kotlin program. The stub generation costs roughly 1/3 of a full kotlinc analysis and the same order of
kotlinc code-generation. For many annotation processors, this is much longer than the time spent in the processors themselves. For example, Glide looks at a very
limited number of classes with a predefined annotation, and its code generation is fairly quick. Almost all of the build overhead resides in the stub generation phase.
Switching to KSP would immediately reduce the time spent in the compiler by 25%.

1143

https://github.com/bumptech/glide

For performance evaluation, we implemented a simplified version of Glide in KSP to make it generate code for the Tachiyomi project. While the total Kotlin
compilation time of the project is 21.55 seconds on our test device, it took 8.67 seconds for kapt to generate the code, and it took 1.15 seconds for our KSP
implementation to generate the code.

Unlike kapt, processors in KSP do not see input programs from Java's point of view. The API is more natural to Kotlin, especially for Kotlin-specific features such as
top-level functions. Because KSP doesn't delegate to javac like kapt, it doesn't assume JVM-specific behaviors and can be used with other platforms potentially.

Limitations
While KSP tries to be a simple solution for most common use cases, it has made several trade-offs compared to other plugin solutions. The following are not goals
of KSP:

Examining expression-level information of source code.

Modifying source code.

100% compatibility with the Java Annotation Processing API.

We are also exploring several additional features. These features are currently unavailable:

IDE integration: Currently IDEs know nothing about the generated code.

KSP
examples

Get
all
member
functions

fun	KSClassDeclaration.getDeclaredFunctions():	Sequence<KSFunctionDeclaration>	=
				declarations.filterIsInstance<KSFunctionDeclaration>()

Check
whether
a
class
or
function
is
local

fun	KSDeclaration.isLocal():	Boolean	=
				parentDeclaration	!=	null	&&	parentDeclaration	!is	KSClassDeclaration

Find
the
actual
class
or
interface
declaration
that
the
type
alias
points
to

fun	KSTypeAlias.findActualType():	KSClassDeclaration	{
				val	resolvedType	=	this.type.resolve().declaration
				return	if	(resolvedType	is	KSTypeAlias)	{
								resolvedType.findActualType()
				}	else	{
								resolvedType	as	KSClassDeclaration
				}
}

Collect
suppressed
names
in
a
file
annotation

//	@file:kotlin.Suppress("Example1",	"Example2")
fun	KSFile.suppressedNames():	Sequence<String>	=	annotations
				.filter	{
								it.shortName.asString()	==	"Suppress"	&&
								it.annotationType.resolve().declaration.qualifiedName?.asString()	==	"kotlin.Suppress"
				}.flatMap	{
								it.arguments.flatMap	{
												(it.value		as	Array<String>).toList()	
								}
				}

1144

https://github.com/google/ksp/releases/download/1.4.10-dev-experimental-20200924/miniGlide.zip
https://github.com/bumptech/glide
https://github.com/inorichi/tachiyomi

How
KSP
models
Kotlin
code
You can find the API definition in the KSP GitHub repository. The diagram shows an overview of how Kotlin is modeled in KSP:

KSName?name

Booleanspread

Object?value

KSValueArgument

FunctionKind()

FunctionKindANONYMOUS

FunctionKindLAMBDA

FunctionKindMEMBER

FunctionKindSTATIC

FunctionKindTOP_LEVEL

FunctionKind

KSPropertyDeclarationreceiver

KSPropertyAccessor

Set<Modifier>modifiers

KSModifierListOwner

KSDynamicReference

BooleanisAssignableFrom(KSType)

KSTypemakeNotNullable()

KSTypemakeNullable()

KSTypereplace(List<KSTypeArgument>)

KSTypestarProjection()

Sequence<KSAnnotation>annotations

List<KSTypeArgument>arguments

BooleancovarianceFlexible

KSDeclarationdeclaration

Booleanerror

BooleanfunctionType

BooleanmarkedNullable

BooleanmutabilityFlexible

Nullabilitynullability

BooleansuspendFunctionType

KSType

Raccept(KSVisitor<D, R>, D)

StringreferencedName()

KSClassifierReference?qualifier

KSClassifierReference

Visibility()

VisibilityINTERNAL

VisibilityJAVA_PACKAGE

VisibilityLOCAL

VisibilityPRIVATE

VisibilityPROTECTED

VisibilityPUBLIC

Visibility

Raccept(KSVisitor<D, R>, D)

Locationlocation

Originorigin

KSNode?parent

KSNode

AnnotationUseSiteTarget()

AnnotationUseSiteTargetDELEGATE

AnnotationUseSiteTargetFIELD

AnnotationUseSiteTargetFILE

AnnotationUseSiteTargetGET

AnnotationUseSiteTargetPARAM

AnnotationUseSiteTargetPROPERTY

AnnotationUseSiteTargetRECEIVER

AnnotationUseSiteTargetSET

AnnotationUseSiteTargetSETPARAM

AnnotationUseSiteTarget
Booleanerror

KSType?extensionReceiverType

List<KSType>parameterTypes

KSType?returnType

List<KSTypeParameter>typeParameters

KSFunction

KSFile?containingFile

String?docString

KSNamepackageName

KSDeclaration?parentDeclaration

KSName?qualifiedName

KSNamesimpleName

List<KSTypeParameter>typeParameters

KSDeclaration

FileLocation(String, Int)

StringfilePath

IntlineNumber

data FileLocation

KSValueParameterparameter

KSPropertySetter

NonExistLocation

KSTypeReferenceannotationType

List<KSValueArgument>arguments

KSNameshortName

AnnotationUseSiteTarget?useSiteTarget

KSAnnotation

KSFunctionasMemberOf(KSType)

KSDeclaration?findOverridee()

Booleanabstract

KSTypeReference?extensionReceiver

FunctionKindfunctionKind

List<KSValueParameter>parameters

KSTypeReference?returnType

KSFunctionDeclaration

StringfileName

StringfilePath

KSNamepackageName

KSFile

KSTypeasMemberOf(KSType)

KSPropertyDeclaration?findOverridee()

Booleandelegated

KSTypeReference?extensionReceiver

KSPropertyGetter?getter

BooleanhasBackingField

Booleanmutable

KSPropertySetter?setter

KSTypeReferencetype

KSPropertyDeclaration

Sequence<KSTypeReference>bounds

KSNamename

Booleanreified

Variancevariance

KSTypeParameter

KSTyperesolve()

KSReferenceElement?element

KSTypeReference

KSReferenceElementelement

KSParenthesizedReference

Variance(String)

VarianceCONTRAVARIANT

VarianceCOVARIANT

VarianceINVARIANT

VarianceSTAR

Stringlabel

Variance

Sequence<KSDeclaration>declarations

KSDeclarationContainer
KSTypeReference?type

Variancevariance

KSTypeArgument

KSVisitorVoid()

UnitvisitAnnotated(KSAnnotated, Unit)

UnitvisitAnnotation(KSAnnotation, Unit)

UnitvisitCallableReference(KSCallableReference, Unit)

UnitvisitClassDeclaration(KSClassDeclaration, Unit)

UnitvisitClassifierReference(KSClassifierReference, Unit)

UnitvisitDeclaration(KSDeclaration, Unit)

UnitvisitDeclarationContainer(KSDeclarationContainer, Unit)

UnitvisitDynamicReference(KSDynamicReference, Unit)

UnitvisitFile(KSFile, Unit)

UnitvisitFunctionDeclaration(KSFunctionDeclaration, Unit)

UnitvisitModifierListOwner(KSModifierListOwner, Unit)

UnitvisitNode(KSNode, Unit)

UnitvisitParenthesizedReference(KSParenthesizedReference, Unit)

UnitvisitPropertyAccessor(KSPropertyAccessor, Unit)

UnitvisitPropertyDeclaration(KSPropertyDeclaration, Unit)

UnitvisitPropertyGetter(KSPropertyGetter, Unit)

UnitvisitPropertySetter(KSPropertySetter, Unit)

UnitvisitReferenceElement(KSReferenceElement, Unit)

UnitvisitTypeAlias(KSTypeAlias, Unit)

UnitvisitTypeArgument(KSTypeArgument, Unit)

UnitvisitTypeParameter(KSTypeParameter, Unit)

UnitvisitTypeReference(KSTypeReference, Unit)

UnitvisitValueArgument(KSValueArgument, Unit)

UnitvisitValueParameter(KSValueParameter, Unit)

KSVisitorVoid

BooleancrossInline

BooleanhasDefault

KSName?name

BooleannoInline

KSTypeReferencetype

Booleanval

Booleanvar

Booleanvararg

KSValueParameter

ClassKind(String)

ClassKindANNOTATION_CLASS

ClassKindCLASS

ClassKindENUM_CLASS

ClassKindENUM_ENTRY

ClassKindINTERFACE

ClassKindOBJECT

Stringtype

ClassKind
Location()

Location
Origin()

OriginJAVA

OriginJAVA_LIB

OriginKOTLIN

OriginKOTLIN_LIB

OriginSYNTHETIC

Origin

Sequence<KSAnnotation>annotations

KSAnnotated

StringasString()

Stringqualifier

StringshortName

KSName

Raccept(KSVisitor<D, R>, D)

List<KSValueParameter>functionParameters

KSTypeReference?receiverType

KSTypeReferencereturnType

KSCallableReference

List<KSTypeArgument>typeArguments

KSReferenceElement

Nullability()

NullabilityNOT_NULL

NullabilityNULLABLE

NullabilityPLATFORM

Nullability

KSNamename

KSTypeReferencetype

KSTypeAlias

KSTypeReference?returnType

KSPropertyGetter

KSTypeasStarProjectedType()

KSTypeasType(List<KSTypeArgument>)

Sequence<KSFunctionDeclaration>allFunctions

Sequence<KSPropertyDeclaration>allProperties

ClassKindclassKind

BooleancompanionObject

KSFunctionDeclaration?primaryConstructor

Sequence<KSClassDeclaration>sealedSubclasses

Sequence<KSTypeReference>superTypes

KSClassDeclaration

Sequence<KSDeclaration>findActuals()

Sequence<KSDeclaration>findExpects()

Booleanactual

Booleanexpect

KSExpectActual

class diagram

Type
and
resolution
The resolution takes most of the cost of the underlying API implementation. So type references are designed to be resolved by processors explicitly (with a few
exceptions). When a type (such as KSFunctionDeclaration.returnType or KSAnnotation.annotationType) is referenced, it is always a KSTypeReference, which is a
KSReferenceElement with annotations and modifiers.

interface	KSFunctionDeclaration	:	...	{
		val	returnType:	KSTypeReference?
		//	...
}

interface	KSTypeReference	:	KSAnnotated,	KSModifierListOwner	{
		val	type:	KSReferenceElement
}

A KSTypeReference can be resolved to a KSType, which refers to a type in Kotlin's type system.

A KSTypeReference has a KSReferenceElement, which models Kotlin's program structure: namely, how the reference is written. It corresponds to the type element
in Kotlin's grammar.

A KSReferenceElement can be a KSClassifierReference or KSCallableReference, which contains a lot of useful information without the need for resolution. For
example, KSClassifierReference has referencedName, while KSCallableReference has receiverType, functionArguments, and returnType.

If the original declaration referenced by a KSTypeReference is needed, it can usually be found by resolving to KSType and accessing through KSType.declaration.
Moving from where a type is mentioned to where its class is defined looks like this:

val	ksType:	KSType	=	ksTypeReference.resolve()
val	ksDeclaration:	KSDeclaration	=	ksType.declaration

Type resolution is costly and therefore has explicit form. Some of the information obtained from resolution is already available in KSReferenceElement. For example,
KSClassifierReference.referencedName can filter out a lot of elements that are not interesting. You should resolve type only if you need specific information from
KSDeclaration or KSType.

KSTypeReference pointing to a function type has most of its information in its element. Although it can be resolved to the family of Function0, Function1, and so on,
these resolutions don't bring any more information than KSCallableReference. One use case for resolving function type references is dealing with the identity of the

See the full-sized diagram.

1145

https://github.com/google/ksp/tree/main/api/src/main/kotlin/com/google/devtools/ksp
https://github.com/google/ksp/tree/main/api/src/main/kotlin/com/google/devtools/ksp/symbol/
https://kotlinlang.org/docs/images/ksp-class-diagram.svg
https://kotlinlang.org/docs/reference/grammar.html#type

function's prototype.

Java
annotation
processing
to
KSP
reference

Program
elements

Java Closest facility in KSP Notes

AnnotationMirror KSAnnotation

AnnotationValue KSValueArguments

Element KSDeclaration / KSDeclarationContainer

ExecutableElement KSFunctionDeclaration

PackageElement KSFile KSP doesn't model packages as program elements

Parameterizable KSDeclaration

QualifiedNameable KSDeclaration

TypeElement KSClassDeclaration

TypeParameterElement KSTypeParameter

VariableElement KSValueParameter / KSPropertyDeclaration

Types
KSP requires explicit type resolution, so some functionalities in Java can only be carried out by KSType and the corresponding elements before resolution.

Java Closest facility in KSP Notes

ArrayType KSBuiltIns.arrayType

DeclaredType KSType /
KSClassifierReference

ErrorType KSType.isError

1146

ExecutableType KSType / KSCallableReference

IntersectionType KSType / KSTypeParameter

NoType KSType.isError N/A in KSP

NullType N/A in KSP

PrimitiveType KSBuiltIns Not exactly same as primitive type in Java

ReferenceType KSTypeReference

TypeMirror KSType

TypeVariable KSTypeParameter

UnionType N/A Kotlin has only one type per catch block. UnionType is also not observable by even Java annotation
processors

WildcardType KSType / KSTypeArgument

Java Closest facility in KSP Notes

Misc

Java Closest facility in KSP Notes

Name KSName

ElementKind ClassKind / FunctionKind

Modifier Modifier

NestingKind ClassKind / FunctionKind

AnnotationValueVisitor

ElementVisitor KSVisitor

AnnotatedConstruct KSAnnotated

1147

TypeVisitor

TypeKind KSBuiltIns Some can be found in builtins, otherwise check KSClassDeclaration for DeclaredType

ElementFilter Collection.filterIsInstance

ElementKindVisitor KSVisitor

ElementScanner KSTopDownVisitor

SimpleAnnotationValueVisitor Not needed in KSP

SimpleElementVisitor KSVisitor

SimpleTypeVisitor

TypeKindVisitor

Types Resolver / utils Some of the utils are also integrated into symbol interfaces

Elements Resolver / utils

Java Closest facility in KSP Notes

Details
See how functionalities of Java annotation processing API can be carried out by KSP.

AnnotationMirror

Java KSP equivalent

getAnnotationType ksAnnotation.annotationType

getElementValues ksAnnotation.arguments

AnnotationValue

Java KSP equivalent

getValue ksValueArgument.value

1148

Element

Java KSP equivalent

asType ksClassDeclaration.asType(...) is available for KSClassDeclaration only. Type arguments need to be supplied.

getAnnotation To be implemented

getAnnotationMirrors ksDeclaration.annotations

getEnclosedElements ksDeclarationContainer.declarations

getEnclosingElements ksDeclaration.parentDeclaration

getKind Type check and cast following ClassKind or FunctionKind

getModifiers ksDeclaration.modifiers

getSimpleName ksDeclaration.simpleName

ExecutableElement

Java KSP equivalent

getDefaultValue To be implemented

getParameters ksFunctionDeclaration.parameters

getReceiverType ksFunctionDeclaration.parentDeclaration

getReturnType ksFunctionDeclaration.returnType

getSimpleName ksFunctionDeclaration.simpleName

getThrownTypes Not needed in Kotlin

getTypeParameters ksFunctionDeclaration.typeParameters

isDefault Check whether parent declaration is an interface or not

isVarArgs ksFunctionDeclaration.parameters.any { it.isVarArg }

1149

Parameterizable

Java KSP equivalent

getTypeParameters ksFunctionDeclaration.typeParameters

QualifiedNameable

Java KSP equivalent

getQualifiedName ksDeclaration.qualifiedName

TypeElement

Java KSP equivalent

getEnclosedElements ksClassDeclaration.declarations

getEnclosingElement ksClassDeclaration.parentDeclaration

getInterfaces //	Should	be	able	to	do	without	resolution
ksClassDeclaration.superTypes
				.map	{	it.resolve()	}
				.filter	{	(it?.declaration	as?	KSClassDeclaration)?.classKind	==	ClassKind.INTERFACE	
}

getNestingKind Check KSClassDeclaration.parentDeclaration and inner modifier

getQualifiedName ksClassDeclaration.qualifiedName

getSimpleName ksClassDeclaration.simpleName

getSuperclass //	Should	be	able	to	do	without	resolution
ksClassDeclaration.superTypes
				.map	{	it.resolve()	}
				.filter	{	(it?.declaration	as?	KSClassDeclaration)?.classKind	==	ClassKind.CLASS	}

getTypeParameters ksClassDeclaration.typeParameters

TypeParameterElement

Java KSP equivalent

1150

getBounds ksTypeParameter.bounds

getEnclosingElement ksTypeParameter.parentDeclaration

getGenericElement ksTypeParameter.parentDeclaration

Java KSP equivalent

VariableElement

Java KSP equivalent

getConstantValue To be implemented

getEnclosingElement ksValueParameter.parentDeclaration

getSimpleName ksValueParameter.simpleName

ArrayType

Java KSP equivalent

getComponentType ksType.arguments.first()

DeclaredType

Java KSP equivalent

asElement ksType.declaration

getEnclosingType ksType.declaration.parentDeclaration

getTypeArguments ksType.arguments

ExecutableType

Java KSP equivalent

A KSType for a function is just a signature represented by the FunctionN<R, T1, T2, ..., TN> family.

1151

getParameterTypes ksType.declaration.typeParameters, ksFunctionDeclaration.parameters.map { it.type }

getReceiverType ksFunctionDeclaration.parentDeclaration.asType(...)

getReturnType ksType.declaration.typeParameters.last()

getThrownTypes Not needed in Kotlin

getTypeVariables ksFunctionDeclaration.typeParameters

Java KSP equivalent

IntersectionType

Java KSP equivalent

getBounds ksTypeParameter.bounds

TypeMirror

Java KSP equivalent

getKind Compare with types in KSBuiltIns for primitive types, Unit type, otherwise declared types

TypeVariable

Java KSP equivalent

asElement ksType.declaration

getLowerBound To be decided. Only needed if capture is provided and explicit bound checking is needed.

getUpperBound ksTypeParameter.bounds

WildcardType

Java KSP equivalent

getExtendsBound if	(ksTypeArgument.variance	==	Variance.COVARIANT)	ksTypeArgument.type	else	null

1152

getSuperBound if	(ksTypeArgument.variance	==	Variance.CONTRAVARIANT)	ksTypeArgument.type	else	null

Java KSP equivalent

Elements

Java KSP equivalent

getAllAnnotationMirrors KSDeclarations.annotations

getAllMembers getAllFunctions, getAllProperties is to be implemented

getBinaryName To be decided, see Java Specification

getConstantExpression There is constant value, not expression

getDocComment To be implemented

getElementValuesWithDefaults To be implemented

getName resolver.getKSNameFromString

getPackageElement Package not supported, while package information can be retrieved. Operation on package is not possible for KSP

getPackageOf Package not supported

getTypeElement Resolver.getClassDeclarationByName

hides To be implemented

isDeprecated KsDeclaration.annotations.any	{	
				it.annotationType.resolve()!!.declaration.qualifiedName!!.asString()	==	
Deprecated::class.qualifiedName
}

overrides KSFunctionDeclaration.overrides / KSPropertyDeclaration.overrides (member function of respective class)

printElements KSP has basic toString() implementation on most classes

Types

1153

https://docs.oracle.com/javase/specs/jls/se13/html/jls-13.html#jls-13.1

Java KSP equivalent

asElement ksType.declaration

asMemberOf resolver.asMemberOf

boxedClass Not needed

capture To be decided

contains KSType.isAssignableFrom

directSuperTypes (ksType.declaration as KSClassDeclaration).superTypes

erasure ksType.starProjection()

getArrayType ksBuiltIns.arrayType.replace(...)

getDeclaredType ksClassDeclaration.asType

getNoType ksBuiltIns.nothingType / null

getNullType Depending on the context, KSType.markNullable could be useful

getPrimitiveType Not needed, check for KSBuiltins

getWildcardType Use Variance in places expecting KSTypeArgument

isAssignable ksType.isAssignableFrom

isSameType ksType.equals

isSubsignature functionTypeA == functionTypeB / functionTypeA == functionTypeB.starProjection()

isSubtype ksType.isAssignableFrom

unboxedType Not needed

Incremental
processing

1154

Incremental processing is a processing technique that avoids re-processing of sources as much as possible. The primary goal of incremental processing is to
reduce the turn-around time of a typical change-compile-test cycle. For general information, see Wikipedia's article on incremental computing.

To determine which sources are dirty (those that need to be reprocessed), KSP needs processors' help to identify which input sources correspond to which
generated outputs. To help with this often cumbersome and error-prone process, KSP is designed to require only a minimal set of root sources that processors use
as starting points to navigate the code structure. In other words, a processor needs to associate an output with the sources of the corresponding KSNode if the
KSNode is obtained from any of the following:

Resolver.getAllFiles

Resolver.getSymbolsWithAnnotation

Resolver.getClassDeclarationByName

Resolver.getDeclarationsFromPackage

Incremental processing is currently enabled by default. To disable it, set the Gradle property ksp.incremental=false. To enable logs that dump the dirty set
according to dependencies and outputs, use ksp.incremental.log=true. You can find these log files in the build output directory with a .log file extension.

On the JVM, classpath changes, as well as Kotlin and Java source changes, are tracked by default. To track only Kotlin and Java source changes, disable classpath
tracking by setting the ksp.incremental.intermodule=false Gradle property.

Aggregating
vs
Isolating
Similar to the concepts in Gradle annotation processing, KSP supports both aggregating and isolating modes. Note that unlike Gradle annotation processing, KSP
categorizes each output as either aggregating or isolating, rather than the entire processor.

An aggregating output can potentially be affected by any input changes, except removing files that don't affect other files. This means that any input change results
in a rebuild of all aggregating outputs, which in turn means reprocessing of all corresponding registered, new, and modified source files.

As an example, an output that collects all symbols with a particular annotation is considered an aggregating output.

An isolating output depends only on its specified sources. Changes to other sources do not affect an isolating output. Note that unlike Gradle annotation
processing, you can define multiple source files for a given output.

As an example, a generated class that is dedicated to an interface it implements is considered isolating.

To summarize, if an output might depend on new or any changed sources, it is considered aggregating. Otherwise, the output is isolating.

Here's a summary for readers familiar with Java annotation processing:

In an isolating Java annotation processor, all the outputs are isolating in KSP.

In an aggregating Java annotation processor, some outputs can be isolating and some can be aggregating in KSP.

How
it
is
implemented
The dependencies are calculated by the association of input and output files, instead of annotations. This is a many-to-many relation.

The dirtiness propagation rules due to input-output associations are:

1. If an input file is changed, it will always be reprocessed.

2. If an input file is changed, and it is associated with an output, then all other input files associated with the same output will also be reprocessed. This is transitive,
namely, invalidation happens repeatedly until there is no new dirty file.

3. All input files that are associated with one or more aggregating outputs will be reprocessed. In other words, if an input file isn't associated with any aggregating
outputs, it won't be reprocessed (unless it meets 1. or 2. in the above).

Reasons are:

1. If an input is changed, new information can be introduced and therefore processors need to run again with the input.

2. An output is made out of a set of inputs. Processors may need all the inputs to regenerate the output.

3. aggregating=true means that an output may potentially depend on new information, which can come from either new files, or changed, existing files.
aggregating=false means that processor is sure that the information only comes from certain input files and never from other or new files.

1155

https://en.wikipedia.org/wiki/Incremental_computing
https://docs.gradle.org/current/userguide/java_plugin.html#sec:incremental_annotation_processing

Example
1
A processor generates outputForA after reading class A in A.kt and class B in B.kt, where A extends B. The processor got A by Resolver.getSymbolsWithAnnotation
and then got B by KSClassDeclaration.superTypes from A. Because the inclusion of B is due to A, B.kt doesn't need to be specified in dependencies for
outputForA. You can still specify B.kt in this case, but it is unnecessary.

//	A.kt
@Interesting
class	A	:	B()

//	B.kt
open	class	B

//	Example1Processor.kt
class	Example1Processor	:	SymbolProcessor	{
				override	fun	process(resolver:	Resolver)	{
								val	declA	=	resolver.getSymbolsWithAnnotation("Interesting").first()	as	KSClassDeclaration
								val	declB	=	declA.superTypes.first().resolve().declaration
								//	B.kt	isn't	required,	because	it	can	be	deduced	as	a	dependency	by	KSP
								val	dependencies	=	Dependencies(aggregating	=	true,	declA.containingFile!!)
								//	outputForA.kt
								val	outputName	=	"outputFor${declA.simpleName.asString()}"
								//	outputForA	depends	on	A.kt	and	B.kt
								val	output	=	codeGenerator.createNewFile(dependencies,	"com.example",	outputName,	"kt")
								output.write("//	$declA	:	$declB\n".toByteArray())
								output.close()
				}
				//	...
}

Example
2
Consider that a processor generates outputA after reading sourceA and outputB after reading sourceB.

When sourceA is changed:

If outputB is aggregating, both sourceA and sourceB are reprocessed.

If outputB is isolating, only sourceA is reprocessed.

When sourceC is added:

If outputB is aggregating, both sourceC and sourceB are reprocessed.

If outputB is isolating, only sourceC is reprocessed.

When sourceA is removed, nothing needs to be reprocessed.

When sourceB is removed, nothing needs to be reprocessed.

How
file
dirtiness
is
determined
A dirty file is either directly changed by users or indirectly affected by other dirty files. KSP propagates dirtiness in two steps:

Propagation by resolution tracing: Resolving a type reference (implicitly or explicitly) is the only way to navigate from one file to another. When a type reference is
resolved by a processor, a changed or affected file that contains a change that may potentially affect the resolution result will affect the file containing that
reference.

Propagation by input-output correspondence: If a source file is changed or affected, all other source files having some output in common with that file are
affected.

Note that both of them are transitive and the second forms equivalence classes.

Reporting
bugs
To report a bug, please set Gradle properties ksp.incremental=true and ksp.incremental.log=true, and perform a clean build. This build produces two log files:

1156

build/kspCaches/<source set>/logs/kspDirtySet.log

build/kspCaches/<source set>/logs/kspSourceToOutputs.log

You can then run successive incremental builds, which will generate two additional log files:

build/kspCaches/<source set>/logs/kspDirtySetByDeps.log

build/kspCaches/<source set>/logs/kspDirtySetByOutputs.log

These logs contain file names of sources and outputs, plus the timestamps of the builds.

Multiple
round
processing
KSP supports multiple round processing, or processing files over multiple rounds. It means that subsequent rounds use an output from previous rounds as
additional input.

Changes
to
your
processor
To use multiple round processing, the SymbolProcessor.process() function needs to return a list of deferred symbols (List<KSAnnotated>) for invalid symbols. Use
KSAnnotated.validate() to filter invalid symbols to be deferred to the next round.

The following sample code shows how to defer invalid symbols by using a validation check:

override	fun	process(resolver:	Resolver):	List<KSAnnotated>	{
				val	symbols	=	resolver.getSymbolsWithAnnotation("com.example.annotation.Builder")
				val	result	=	symbols.filter	{	!it.validate()	}
				symbols
								.filter	{	it	is	KSClassDeclaration	&&	it.validate()	}
								.map	{	it.accept(BuilderVisitor(),	Unit)	}
				return	result
}

Multiple
round
behavior

Deferring
symbols
to
the
next
round
Processors can defer the processing of certain symbols to the next round. When a symbol is deferred, processor is waiting for other processors to provide
additional information. It can continue deferring the symbol as many rounds as needed. Once the other processors provide the required information, the processor
can then process the deferred symbol. Processor should only defer invalid symbols which are lacking necessary information. Therefore, processors should not defer
symbols from classpath, KSP will also filter out any deferred symbols that are not from source code.

As an example, a processor that creates a builder for an annotated class might require all parameter types of its constructors to be valid (resolved to a concrete
type). In the first round, one of the parameter type is not resolvable. Then in the second round, it becomes resolvable because of the generated files from the first
round.

Validating
symbols
A convenient way to decide if a symbol should be deferred is through validation. A processor should know which information is necessary to properly process the
symbol. Note that validation usually requires resolution which can be expensive, so we recommend checking only what is required. Continuing with the previous
example, an ideal validation for the builder processor checks only whether all resolved parameter types of the constructors of annotated symbols contain isError ==
false.

KSP provides a default validation utility. For more information, see the Advanced section.

Termination
condition
Multiple round processing terminates when a full round of processing generates no new files. If unprocessed deferred symbols still exist when the termination
condition is met, KSP logs an error message for each processor with unprocessed deferred symbols.

1157

Files
accessible
at
each
round
Both newly generated files and existing files are accessible through a Resolver. KSP provides two APIs for accessing files: Resolver.getAllFiles() and
Resolver.getNewFiles(). getAllFiles() returns a combined list of both existing files and newly generated files, while getNewFiles() returns only newly generated files.

Changes
to
getSymbolsAnnotatedWith()
To avoid unnecessary reprocessing of symbols, getSymbolsAnnotatedWith() returns only those symbols found in newly generated files, together with the symbols
from deferred symbols from the last round.

Processor
instantiating
A processor instance is created only once, which means you can store information in the processor object to be used for later rounds.

Information
consistent
cross
rounds
All KSP symbols will not be reusable across multiple rounds, as the resolution result can potentially change based on what was generated in a previous round.
However, since KSP does not allow modifying existing code, some information such as the string value for a symbol name should still be reusable. To summarize,
processors can store information from previous rounds but need to bear in mind that this information might be invalid in future rounds.

Error
and
exception
handling
When an error (defined by processor calling KSPLogger.error()) or exception occurs, processing stops after the current round completes. All processors will call the
onError() method and will not call the finish() method.

Note that even though an error has occurred, other processors continue processing normally for that round. This means that error handling occurs after processing
has completed for the round.

Upon exceptions, KSP will try to distinguish the exceptions from KSP and exceptions from processors. Exceptions will result in a termination of processing
immediately and be logged as an error in KSPLogger. Exceptions from KSP should be reported to KSP developers for further investigation. At the end of the round
where exceptions or errors happened, all processors will invoke onError() function to do their own error handling.

KSP provides a default no-op implementation for onError() as part of the SymbolProcessor interface. You can override this method to provide your own error
handling logic.

Advanced

Default
behavior
for
validation
The default validation logic provided by KSP validates all directly reachable symbols inside the enclosing scope of the symbol that is being validated. Default
validation checks whether references in the enclosed scope are resolvable to a concrete type but does not recursively dive into the referenced types to perform
validation.

Write
your
own
validation
logic
Default validation behavior might not be suitable for all cases. You can reference KSValidateVisitor and write your own validation logic by providing a custom
predicate lambda, which is then used by KSValidateVisitor to filter out symbols that need to be checked.

KSP
with
Kotlin
Multiplatform
For a quick start, see a sample Kotlin Multiplatform project defining a KSP processor.

Starting from KSP 1.0.1, applying KSP on a multiplatform project is similar to that on a single platform, JVM project. The main difference is that, instead of writing
the ksp(...) configuration in dependencies, add(ksp<Target>) or add(ksp<SourceSet>) is used to specify which compilation targets need symbol processing, before
compilation.

plugins	{
				kotlin("multiplatform")
				id("com.google.devtools.ksp")
}

kotlin	{

1158

https://github.com/google/ksp/tree/main/examples/multiplatform

				jvm	{
								withJava()
				}
				linuxX64()	{
								binaries	{
												executable()
								}
				}
				sourceSets	{
								val	commonMain	by	getting
								val	linuxX64Main	by	getting
								val	linuxX64Test	by	getting
				}
}

dependencies	{
				add("kspCommonMainMetadata",	project(":test-processor"))
				add("kspJvm",	project(":test-processor"))
				add("kspJvmTest",	project(":test-processor"))	//	Not	doing	anything	because	there's	no	test	source	set	for	JVM
				//	There	is	no	processing	for	the	Linux	x64	main	source	set,	because	kspLinuxX64	isn't	specified
				add("kspLinuxX64Test",	project(":test-processor"))
}

Compilation
and
processing
In a multiplatform project, Kotlin compilation may happen multiple times (main, test, or other build flavors) for each platform. So is symbol processing. A symbol
processing task is created whenever there is a Kotlin compilation task and a corresponding ksp<Target> or ksp<SourceSet> configuration is specified.

For example, in the above build.gradle.kts, there are 4 compilation tasks: common/metadata, JVM main, Linux x64 main, Linux x64 test, and 3 symbol processing
tasks: common/metadata, JVM main, Linux x64 test.

Avoid
the
ksp(...)
configuration
on
KSP
1.0.1+
Before KSP 1.0.1, there is only one, unified ksp(...) configuration available. Therefore, processors either applies to all compilation targets, or nothing at all. Note that
the ksp(...) configuration not only applies to the main source set, but also the test source set if it exists, even on traditional, non-multiplatform projects. This brought
unnecessary overheads to build time.

Starting from KSP 1.0.1, per-target configurations are provided as shown in the above example. In the future:

1. For multiplatform projects, the ksp(...) configuration will be deprecated and removed.

2. For single platform projects, the ksp(...) configuration will only apply to the main, default compilation. Other targets like test will need to specify kspTest(...) in
order to apply processors.

Starting from KSP 1.0.1, there is an early access flag -DallowAllTargetConfiguration=false to switch to the more efficient behavior. If the current behavior is causing
performance issues, please give it a try. The default value of the flag will be flipped from true to false on KSP 2.0.

Running
KSP
from
command
line
KSP is a Kotlin compiler plugin and needs to run with Kotlin compiler. Download and extract them.

#!/bin/bash

#	Kotlin	compiler
wget	https://github.com/JetBrains/kotlin/releases/download/v1.9.10/kotlin-compiler-1.9.10.zip
unzip	kotlin-compiler-1.9.10.zip

#	KSP
wget	https://github.com/google/ksp/releases/download/1.9.10-1.0.13/artifacts.zip
unzip	artifacts.zip

To run KSP with kotlinc, pass the -Xplugin option to kotlinc.

-Xplugin=/path/to/symbol-processing-cmdline-1.9.10-1.0.13.jar

This is different from the symbol-processing-1.9.10-1.0.13.jar, which is designed to be used with kotlin-compiler-embeddable when running with Gradle. The
command line kotlinc needs symbol-processing-cmdline-1.9.10-1.0.13.jar.

1159

You'll also need the API jar.

-Xplugin=/path/to/symbol-processing-api-1.9.10-1.0.13.jar

See the complete example:

#!/bin/bash

KSP_PLUGIN_ID=com.google.devtools.ksp.symbol-processing
KSP_PLUGIN_OPT=plugin:$KSP_PLUGIN_ID

KSP_PLUGIN_JAR=./com/google/devtools/ksp/symbol-processing-cmdline/1.9.10-1.0.13/symbol-processing-cmdline-1.9.10-1.0.13.jar
KSP_API_JAR=./com/google/devtools/ksp/symbol-processing-api/1.9.10-1.0.13/symbol-processing-api-1.9.10-1.0.13.jar
KOTLINC=./kotlinc/bin/kotlinc

AP=/path/to/your-processor.jar

mkdir	out
$KOTLINC	\
								-Xplugin=$KSP_PLUGIN_JAR	\
								-Xplugin=$KSP_API_JAR	\
								-Xallow-no-source-files	\
								-P	$KSP_PLUGIN_OPT:apclasspath=$AP	\
								-P	$KSP_PLUGIN_OPT:projectBaseDir=.	\
								-P	$KSP_PLUGIN_OPT:classOutputDir=./out	\
								-P	$KSP_PLUGIN_OPT:javaOutputDir=./out	\
								-P	$KSP_PLUGIN_OPT:kotlinOutputDir=./out	\
								-P	$KSP_PLUGIN_OPT:resourceOutputDir=./out	\
								-P	$KSP_PLUGIN_OPT:kspOutputDir=./out	\
								-P	$KSP_PLUGIN_OPT:cachesDir=./out	\
								-P	$KSP_PLUGIN_OPT:incremental=false	\
								-P	$KSP_PLUGIN_OPT:apoption=key1=value1	\
								-P	$KSP_PLUGIN_OPT:apoption=key2=value2	\
								$*

KSP
FAQ

Why
KSP?
KSP has several advantages over kapt:

It is faster.

The API is more fluent for Kotlin users.

It supports multiple round processing on generated Kotlin sources.

It is being designed with multiplatform compatibility in mind.

Why
is
KSP
faster
than
kapt?
kapt has to parse and resolve every type reference in order to generate Java stubs, whereas KSP resolves references on-demand. Delegating to javac also takes
time.

Additionally, KSP's incremental processing model has a finer granularity than just isolating and aggregating. It finds more opportunities to avoid reprocessing
everything. Also, because KSP traces symbol resolutions dynamically, a change in a file is less likely to pollute other files and therefore the set of files to be
reprocessed is smaller. This is not possible for kapt because it delegates processing to javac.

Is
KSP
Kotlin-specific?
KSP can process Java sources as well. The API is unified, meaning that when you parse a Java class and a Kotlin class you get a unified data structure in KSP.

How
to
upgrade
KSP?
KSP has API and implementation. The API rarely changes and is backward compatible: there can be new interfaces, but old interfaces never change. The

1160

implementation is tied to a specific compiler version. With the new release, the supported compiler version can change.

Processors only depend on API and therefore are not tied to compiler versions. However, users of processors need to bump KSP version when bumping the
compiler version in their project. Otherwise, the following error will occur:

ksp-a.b.c	is	too	old	for	kotlin-x.y.z.	Please	upgrade	ksp	or	downgrade	kotlin-gradle-plugin

For example, some processor is released and tested with KSP 1.0.1, which depends strictly on Kotlin 1.6.0. To make it work with Kotlin 1.6.20, the only thing you
need to do is bump KSP to a version (for example, KSP 1.1.0) that is built for Kotlin 1.6.20.

Can
I
use
a
newer
KSP
implementation
with
an
older
Kotlin
compiler?
If the language version is the same, Kotlin compiler is supposed to be backward compatible. Bumping Kotlin compiler should be trivial most of the time. If you need
a newer KSP implementation, please upgrade the Kotlin compiler accordingly.

How
often
do
you
update
KSP?
KSP tries to follow Semantic Versioning as close as possible. With KSP version major.minor.patch,

major is reserved for incompatible API changes. There is no pre-determined schedule for this.

minor is reserved for new features. This is going to be updated approximately quarterly.

patch is reserved for bug fixes and new Kotlin releases. It's updated roughly monthly.

Usually a corresponding KSP release is available within a couple of days after a new Kotlin version is released, including the pre-releases (Beta or RC).

Besides
Kotlin,
are
there
other
version
requirements
to
libraries?
Here is a list of requirements for libraries/infrastructures:

Android Gradle Plugin 4.1.0+

Gradle 6.5+

What
is
KSP's
future
roadmap?
The following items have been planned:

Support new Kotlin compiler

Improve support to multiplatform. For example, running KSP on a subset of targets/sharing computations between targets.

Improve performance. There are a bunch of optimizations to be done!

Keep fixing bugs.

Please feel free to reach out to us in the #ksp channel in Kotlin Slack (get an invite) if you would like to discuss any ideas. Filing GitHub issues/feature requests or
pull requests are also welcome!

Learning
materials
overview
You can use the following materials and resources for learning Kotlin:

Basic syntax – get a quick overview of the Kotlin syntax.

Users of processors don't need to bump processor's version because processors only depend on API.

1161

https://semver.org/
https://kotlinlang.org/docs/roadmap.html
https://kotlinlang.slack.com/archives/C013BA8EQSE
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://github.com/google/ksp/issues

Idioms – learn how to write idiomatic Kotlin code for popular cases.

Java to Kotlin migration guide: Strings – learn how to perform typical tasks with strings in Java and Kotlin.

Java to Kotlin migration guide: Collections — learn how to perform typical tasks with collections in Java and Kotlin.

Java to Kotlin migration guide: Nullability — learn how to handle nullability in Java and Kotlin.

Kotlin Koans – complete exercises to learn the Kotlin syntax. Each exercise is created as a failing unit test and your job is to make it pass. Recommended for
developers with Java experience.

Kotlin by example – review a set of small and simple annotated examples for the Kotlin syntax.

Kotlin Core track by JetBrains Academy – learn all the Kotlin essentials while creating working applications step by step.

Kotlin books – find books we've reviewed and recommend for learning Kotlin.

Kotlin tips – watch short videos where the Kotlin team shows you how to use Kotlin in a more efficient and idiomatic way, so you can have more fun when writing
code.

Advent of Code puzzles – learn idiomatic Kotlin and test your language skills by completing short and fun tasks.

Kotlin hands-on tutorials – complete long-form tutorials to fully grasp a technology. These tutorials guide you through a self-contained project related to a
specific topic.

Kotlin for Java Developers – learn the similarities and differences between Java and Kotlin in this course on Coursera.

Kotlin documentation in PDF format – read our documentation offline.

Kotlin
Koans
Kotlin Koans are a series of exercises designed primarily for Java developers, to help you become familiar with the Kotlin syntax. Each exercise is created as a
failing unit test, and your job is to make it pass. You can complete the Kotlin Koans tasks in one of the following ways:

You can play with Koans online.

You can perform the tasks right inside IntelliJ IDEA or Android Studio by installing the JetBrains Academy plugin and choosing the Kotlin Koans course.

Whatever way you choose to solve koans, you can see the solution for each task:

In the online version, click Show answer.

For the JetBrains Academy plugin, try to complete the task first and then choose Peek solution if your answer is incorrect.

We recommend you check the solution after implementing the task to compare your answer with the proposed one. Make sure you don't cheat!

Kotlin
hands-on
A series of hands-on tutorials where you can create applications with Kotlin using a variety of different technologies and targeting multiple platforms. The exercises
are divided into a series of steps, walking you through each section.

Building
Reactive
Spring
Boot
applications
with
Kotlin
coroutines
and
RSocket
Build a simple chat application using Spring Boot and Kotlin, and learn about the benefits of using Kotlin for server-side development from a syntax perspective.

Start

Building
web
applications
with
React
and
Kotlin/JS
Create a React Application using Kotlin/JS, and see how you can leverage Kotlin's type system, library ecosystem, and interoperability features.

Start

Building
web
applications
with
Spring
Boot
and
Kotlin

1162

https://play.kotlinlang.org/byExample/overview
https://hyperskill.org/tracks?category=4&utm_source=jbkotlin_hs&utm_medium=referral&utm_campaign=kotlinlang-docs&utm_content=button_1&utm_term=22.03.23
https://www.coursera.org/learn/kotlin-for-java-developers
https://play.kotlinlang.org/koans
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy/docs/install-jetbrains-academy-plugin.html
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy/docs/learner-start-guide.html?section=Kotlin%20Koans
https://spring.io/guides/tutorials/spring-webflux-kotlin-rsocket/

Build a sample blog application by combining the power of Spring Boot and Kotlin.

Start

Creating
HTTP
APIs
with
Ktor
Create a backend API for your application that responds to HTTP requests.

Start

Creating
a
WebSocket
chat
with
Ktor
Create a simple Chat application using Ktor including both a JVM server and a JVM client.

Start

Creating
an
interactive
website
with
Ktor
Learn how to serve files, use templating engines such as Freemarker and the kotlinx.html DSL, and work with form input from Ktor.

Start

Introduction
to
Kotlin
coroutines
and
channels
Learn about coroutines in Kotlin and how you can communicate between them using channels.

Start

Introduction
to
Kotlin/Native
Create a simple HTTP client that can run natively on multiple platforms using Kotlin/Native and libcurl.

Start

Kotlin
Multiplatform:
networking
and
data
storage
Learn how to create a mobile application for Android and iOS using Kotlin Multiplatform with Ktor and SQLDelight.

Start

Targeting
iOS
and
Android
with
Kotlin
Multiplatform
Learn how to create a mobile application that can target both iOS and Android using Kotlin Multiplatform.

Start

Kotlin
tips
Kotlin Tips is a series of short videos where members of the Kotlin team show how to use Kotlin in a more efficient and idiomatic way to have more fun when writing
code.

Subscribe to our YouTube channel to not miss new Kotlin Tips videos.

null
+
null
in
Kotlin

1163

https://spring.io/guides/tutorials/spring-boot-kotlin/
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-web-socket-chat.html
https://ktor.io/docs/creating-interactive-website.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-ktor-sqldelight.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-create-first-app.html
https://www.youtube.com/channel/UCP7uiEZIqci43m22KDl0sNw

What happens when you add null + null in Kotlin, and what does it return? Sebastian Aigner addresses this mystery in our latest quick tip. Along the way, he also
shows why there's no reason to be scared of nullables:

Watch video online.

Deduplicating
collection
items
Got a Kotlin collection that contains duplicates? Need a collection with only unique items? Let Sebastian Aigner show you how to remove duplicates from your lists,
or turn them into sets in this Kotlin tip:

Watch video online.

The
suspend
and
inline
mystery
How come functions like repeat(), map() and filter() accept suspending functions in their lambdas, even though their signatures aren't coroutines-aware? In this
episode of Kotlin Tips Sebastian Aigner solves the riddle: it has something to do with the inline modifier:

Gif

Gif

1164

https://youtube.com/v/wwplVknTza4
https://youtube.com/v/ECOf0PeSANw
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/repeat.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/map.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/filter.html

Watch video online.

Unshadowing
declarations
with
their
fully
qualified
name
Shadowing means having two declarations in a scope have the same name. So, how do you pick? In this episode of Kotlin Tips Sebastian Aigner shows you a
simple Kotlin trick to call exactly the function that you need, using the power of fully qualified names:

Watch video online.

Return
and
throw
with
the
Elvis
operator
Elvis has entered the building once more! Sebastian Aigner explains why the operator is named after the famous singer, and how you can use ?: in Kotlin to return
or throw. The magic behind the scenes? The Nothing type.

Gif

Gif

1165

https://youtube.com/v/R2395u7SdcI
https://youtube.com/v/mJRzF9WtCpU
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-nothing.html

Watch video online.

Destructuring
declarations
With destructuring declarations in Kotlin, you can create multiple variables from a single object, all at once. In this video Sebastian Aigner shows you a selection of
things that can be destructured – pairs, lists, maps, and more. And what about your own objects? Kotlin's component functions provide an answer for those as
well:

Watch video online.

Operator
functions
with
nullable
values
In Kotlin, you can override operators like addition and subtraction for your classes and supply your own logic. But what if you want to allow null values, both on their
left and right sides? In this video, Sebastian Aigner answers this question:

Gif

Gif

1166

https://youtube.com/v/L8aFK7QrbA8
https://youtube.com/v/zu1PUAvk_Lw

Watch video online.

Timing
code
Watch Sebastian Aigner give a quick overview of the measureTimedValue() function, and learn how you can time your code:

Watch video online.

Improving
loops
In this video, Sebastian Aigner will demonstrate how to improve loops to make your code more readable, understandable, and concise:

Gif

Gif

1167

https://youtube.com/v/x2bZJv8i0vw
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.time/measure-timed-value.html
https://youtube.com/v/j_LEcry7Pms

Watch video online.

Strings
In this episode, Kate Petrova shows three tips to help you work with Strings in Kotlin:

Watch video online.

Doing
more
with
the
Elvis
operator
In this video, Sebastian Aigner will show how to add more logic to the Elvis operator, such as logging to the right part of the operator:

Gif

Gif

1168

https://youtube.com/v/i-kyPp1qFBA
https://youtube.com/v/IL3RLKvWJF4

Watch video online.

Kotlin
collections
In this episode, Kate Petrova shows three tips to help you work with Kotlin Collections:

Watch video online.

What's
next?
See the complete list of Kotlin Tips in our YouTube playlist

Learn how to write idiomatic Kotlin code for popular cases

Kotlin
books
More and more authors write books for learning Kotlin in different languages. We are very thankful to all of them and appreciate all their efforts in helping us
increase a number of professional Kotlin developers.

Here are just a few books we've reviewed and recommend you for learning Kotlin. You can find more books on our community website.

Gif

Gif

1169

https://youtube.com/v/L9wqYQ-fXaM
https://youtube.com/v/ApXbm1T_eI4
https://youtube.com/playlist?list=PLlFc5cFwUnmyDrc-mwwAL9cYFkSHoHHz7
https://kotlin.link/

Atomic Kotlin
Atomic Kotlin is for both beginning and experienced programmers!

From Bruce Eckel, author of the multi-award-winning Thinking in C++ and Thinking in Java, and Svetlana Isakova, Kotlin
Developer Advocate at JetBrains, comes a book that breaks the language concepts into small, easy-to-digest "atoms",
along with a free course consisting of exercises supported by hints and solutions directly inside IntelliJ IDEA!

Head First Kotlin
Head First Kotlin is a complete introduction to coding in Kotlin. This hands-on book helps you learn the Kotlin language with a
unique method that goes beyond syntax and how-to manuals and teaches you how to think like a great Kotlin developer.

You'll learn everything from language fundamentals to collections, generics, lambdas, and higher-order functions. Along the
way, you'll get to play with both object-oriented and functional programming.

If you want to really understand Kotlin, this is the book for you.

1170

https://www.atomickotlin.com/atomickotlin/
https://www.oreilly.com/library/view/head-first-kotlin/9781491996683/

Kotlin in Action
Kotlin in Action teaches you to use the Kotlin language for production-quality applications. Written for experienced Java
developers, this example-rich book goes further than most language books, covering interesting topics like building DSLs
with natural language syntax.

The book is written by Dmitry Jemerov and Svetlana Isakova, developers on the Kotlin team.

Chapter 6, covering the Kotlin type system, and chapter 11, covering DSLs, are available as a free preview on the publisher

web site.

Kotlin Programming: The Big Nerd
Ranch Guide

Kotlin Programming: The Big Nerd Ranch Guide

In this book you will learn to work effectively with the Kotlin language through carefully considered examples designed to
teach you Kotlin's elegant style and features.

Starting from first principles, you will work your way to advanced usage of Kotlin, empowering you to create programs that
are more reliable with less code.

1171

https://manning.com/books/kotlin-in-action
https://www.manning.com/books/kotlin-in-action#downloads
https://www.amazon.com/Kotlin-Programming-Nerd-Ranch-Guide/dp/0135161630

Programming Kotlin

Programming Kotlin is written by Venkat Subramaniam.

Programmers don't just use Kotlin, they love it. Even Google has adopted it as a first-class language for Android
development.

With Kotlin, you can intermix imperative, functional, and object-oriented styles of programming and benefit from the
approach that's most suitable for the problem at hand.

Learn to use the many features of this highly concise, fluent, elegant, and expressive statically typed language with easy-to-
understand examples.

Learn to write maintainable, high-performing JVM and Android applications, create DSLs, program asynchronously, and
much more.

The Joy of Kotlin
The Joy of Kotlin teaches you the right way to code in Kotlin.

In this insight-rich book, you'll master the Kotlin language while exploring coding techniques that will make you a better
developer no matter what language you use. Kotlin natively supports a functional style of programming, so seasoned author
Pierre-Yves Saumont begins by reviewing the FP principles of immutability, referential transparency, and the separation
between functions and effects.

Then, you'll move deeper into using Kotlin in the real world, as you learn to handle errors and data properly, encapsulate
shared state mutations, and work with laziness.

This book will change the way you code — and give you back some of the joy you had when you first started.

Advent
of
Code
puzzles
in
idiomatic
Kotlin

1172

https://pragprog.com/book/vskotlin/programming-kotlin
https://www.manning.com/books/the-joy-of-kotlin

Advent of Code is an annual December event, where holiday-themed puzzles are published every day from December 1 to December 25. With the permission of
Eric Wastl, creator of Advent of Code, we'll show how to solve these puzzles using the idiomatic Kotlin style:

Advent of Code 2021

Advent of Code 2020

Advent
of
Code
2021
Get ready

Day 1: Sonar sweep

Day 2: Dive!

Day 3: Binary diagnostic

Day 4: Giant squid

Get
ready
We'll take you through the basic tips on how to get up and running with solving Advent of Code challenges with Kotlin:

Read our blog post about Advent of Code 2021

Use this GitHub template to create projects

Check out the welcome video by Kotlin Developer Advocate, Sebastian Aigner:

Watch video online.

Day
1:
Sonar
sweep
Apply windowed and count functions to work with pairs and triplets of integers.

Read the puzzle description on Advent of Code

Check out the solution from Anton Arhipov on the Kotlin Blog or watch the video:

Gif

1173

https://adventofcode.com/
http://was.tl/
https://blog.jetbrains.com/kotlin/2021/11/advent-of-code-2021-in-kotlin/
https://github.com/kotlin-hands-on/advent-of-code-kotlin-template
https://youtube.com/v/6-XSehwRgSY
https://adventofcode.com/2021/day/1
https://blog.jetbrains.com/kotlin/2021/12/advent-of-code-2021-in-kotlin-day-1

Watch video online.

Day
2:
Dive!
Learn about destructuring declarations and the when expression.

Read the puzzle description on Advent of Code

Check out the solution from Pasha Finkelshteyn on GitHub or watch the video:

Watch video online.

Day
3:
Binary
diagnostic
Explore different ways to work with binary numbers.

Read the puzzle description on Advent of Code

Check out the solution from Sebastian Aigner on Kotlin Blog or watch the video:

Gif

Gif

1174

https://youtube.com/v/76IzmtOyiHw
https://adventofcode.com/2021/day/2
https://github.com/asm0dey/aoc-2021/blob/main/src/Day02.kt
https://youtube.com/v/4A2WwniJdNc
https://adventofcode.com/2021/day/3
https://blog.jetbrains.com/kotlin/2021/12/advent-of-code-2021-in-kotlin-day-3/

Watch video online.

Day
4:
Giant
squid
Learn how to parse the input and introduce some domain classes for more convenient processing.

Read the puzzle description on Advent of Code

Check out the solution from Anton Arhipov on the GitHub or watch the video:

Watch video online.

Advent
of
Code
2020

Day 1: Report repair

Day 2: Password philosophy

Day 3: Toboggan trajectory

Day 4: Passport processing

Day 5: Binary boarding

Day 6: Custom customs

Gif

Gif

You can find all the solutions for the Advent of Code 2020 puzzles in our GitHub repository.

1175

https://youtube.com/v/mF2PTnnOi8w
https://adventofcode.com/2021/day/4
https://github.com/antonarhipov/advent-of-code-2021/blob/main/src/Day04.kt
https://youtube.com/v/wL6sEoLezPQ
https://github.com/kotlin-hands-on/advent-of-code-2020/

Day 7: Handy haversacks

Day 8: Handheld halting

Day 9: Encoding error

Day
1:
Report
repair
Explore input handling, iterating over a list, different ways of building a map, and using the let function to simplify your code.

Read the puzzle description on Advent of Code

Check out the solution from Svetlana Isakova on the Kotlin Blog or watch the video:

Watch video online.

Day
2:
Password
philosophy
Explore string utility functions, regular expressions, operations on collections, and how the let function can be helpful to transform your expressions.

Read the puzzle description on Advent of Code

Check out the solution from Svetlana Isakova on the Kotlin Blog or watch the video:

Watch video online.

Day
3:
Toboggan
trajectory
Compare imperative and more functional code styles, work with pairs and the reduce() function, edit code in the column selection mode, and fix integer overflows.

Gif

Gif

1176

https://adventofcode.com/2020/day/1
https://blog.jetbrains.com/kotlin/2021/07/advent-of-code-in-idiomatic-kotlin/
https://youtube.com/v/o4emra1xm88
https://adventofcode.com/2020/day/2
https://blog.jetbrains.com/kotlin/2021/07/advent-of-code-in-idiomatic-kotlin-day2/
https://youtube.com/v/MyvJ7G6aErQ
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/reduce.html

Read the puzzle description on Advent of Code

Check out the solution from Mikhail Dvorkin on GitHub or watch the video:

Watch video online.

Day
4:
Passport
processing
Apply the when expression and explore different ways of how to validate the input: utility functions, working with ranges, checking set membership, and matching a
particular regular expression.

Read the puzzle description on Advent of Code

Check out the solution from Sebastian Aigner on the Kotlin Blog or watch the video:

Watch video online.

Day
5:
Binary
boarding
Use the Kotlin standard library functions (replace(), toInt(), find()) to work with the binary representation of numbers, explore powerful local functions, and learn how
to use the max() function in Kotlin 1.5.

Read the puzzle description on Advent of Code

Check out the solution from Svetlana Isakova on the Kotlin Blog or watch the video:

Gif

Gif

1177

https://adventofcode.com/2020/day/3
https://github.com/kotlin-hands-on/advent-of-code-2020/blob/master/src/day03/day3.kt
https://youtube.com/v/ounCIclwOAw
https://adventofcode.com/2020/day/4
https://blog.jetbrains.com/kotlin/2021/09/validating-input-advent-of-code-in-kotlin/
https://youtube.com/v/-kltG4Ztv1s
https://adventofcode.com/2020/day/5
https://blog.jetbrains.com/kotlin/2021/09/idiomatic-kotlin-binary-representation/

Watch video online.

Day
6:
Custom
customs
Learn how to group and count characters in strings and collections using the standard library functions: map(), reduce(), sumOf(), intersect(), and union().

Read the puzzle description on Advent of Code

Check out the solution from Anton Arhipov on the Kotlin Blog or watch the video:

Watch video online.

Day
7:
Handy
haversacks
Learn how to use regular expressions, use Java's compute() method for HashMaps from Kotlin for dynamic calculations of the value in the map, use the
forEachLine() function to read files, and compare two types of search algorithms: depth-first and breadth-first.

Read the puzzle description on Advent of Code

Check out the solution from Pasha Finkelshteyn on the Kotlin Blog or watch the video:

Gif

Gif

1178

https://youtube.com/v/XEFna3xyxeY
https://adventofcode.com/2020/day/6
https://blog.jetbrains.com/kotlin/2021/09/idiomatic-kotlin-set-operations/
https://youtube.com/v/QLAB0kZ-Tqc
https://adventofcode.com/2020/day/7
https://blog.jetbrains.com/kotlin/2021/09/idiomatic-kotlin-traversing-trees/

Watch video online.

Day
8:
Handheld
halting
Apply sealed classes and lambdas to represent instructions, apply Kotlin sets to discover loops in the program execution, use sequences and the sequence { }
builder function to construct a lazy collection, and try the experimental measureTimedValue() function to check performance metrics.

Read the puzzle description on Advent of Code

Check out the solution from Sebastian Aigner on the Kotlin Blog or watch the video:

Watch video online.

Day
9:
Encoding
error
Explore different ways to manipulate lists in Kotlin using the any(), firstOrNull(), firstNotNullOfOrNull(), windowed(), takeIf(), and scan() functions, which exemplify an
idiomatic Kotlin style.

Read the puzzle description on Advent of Code

Check out the solution from Svetlana Isakova on the Kotlin Blog or watch the video:

Gif

Gif

1179

https://youtube.com/v/KyZiveDXWHw
https://adventofcode.com/2020/day/8
https://blog.jetbrains.com/kotlin/2021/10/idiomatic-kotlin-simulating-a-console/
https://youtube.com/v/0GWTTSMatO8
https://adventofcode.com/2020/day/9
https://blog.jetbrains.com/kotlin/2021/10/idiomatic-kotlin-working-with-lists/

Watch video online.

What's
next?
Complete more tasks with Kotlin Koans

Create working applications with the free Kotlin Core track by JetBrains Academy

Learning
Kotlin
with
JetBrains
Academy
plugin
With the JetBrains Academy plugin, available both in Android Studio and IntelliJ IDEA, you can learn Kotlin through code practicing tasks.

Take a look at the Learner Start Guide, which will get you started with the Kotlin Koans course inside IntelliJ IDEA. Solve interactive coding challenges and get
instant feedback right inside the IDE.

If you want to use the JetBrains Academy plugin for teaching, read Teaching Kotlin with JetBrains Academy plugin.

Teaching
Kotlin
with
JetBrains
Academy
plugin
With the JetBrains Academy plugin, available both in Android Studio and IntelliJ IDEA, you can teach Kotlin through code practicing tasks. Take a look at the
Educator Start Guide to learn how to create a simple Kotlin course that includes a set of programming tasks and integrated tests.

If you want to use the JetBrains Academy plugin to learn Kotlin, read Learning Kotlin with JetBrains Academy plugin.

Participate
in
the
Kotlin
Early
Access
Preview
You can participate in the Kotlin Early Access Preview (EAP) to try out the latest Kotlin features before they are released.

We ship a few Beta (Beta) and Release Candidate (RC) builds before every feature (1.x) and incremental (1.x.y) release.

We'll be very thankful if you find and report bugs to our issue tracker YouTrack. It is very likely that we'll be able to fix them before the final release, which means
you won't need to wait until the next Kotlin release for your issues to be addressed.

By participating in the Early Access Preview and reporting bugs, you contribute to Kotlin and help us make it better for everyone in the growing Kotlin community.
We appreciate your help a lot!

If you have any questions and want to participate in discussions, you are welcome to join the #eap channel in Kotlin Slack. In this channel, you can also get
notifications about new EAP builds.

Install the Kotlin EAP Plugin for IDEA or Android Studio

Gif

1180

https://youtube.com/v/vj3J9MuF1mI
https://hyperskill.org/tracks?category=4&utm_source=jbkotlin_hs&utm_medium=referral&utm_campaign=kotlinlang-docs&utm_content=button_1&utm_term=22.03.23
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://developer.android.com/studio
https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy/docs/learner-start-guide.html?section=Kotlin%20Koans
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://developer.android.com/studio
https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy/docs/educator-start-guide.html?section=Kotlin
https://kotl.in/issue
https://kotlinlang.org/community/
https://app.slack.com/client/T09229ZC6/C0KLZSCHF

If you have already installed the EAP version and want to work on projects that were created previously, check our instructions on how to configure your build to
support this version.

How
the
EAP
can
help
you
be
more
productive
with
Kotlin
Prepare for the Stable release. If you work on a complex multimodule project, participating in the EAP may streamline your experience when you adopt the
Stable release version. The sooner you update to the Stable version, the sooner you can take advantage of its performance improvements and new language
features.

The migration of huge and complex projects might take a while, not only because of their size, but also because some specific use cases may not have been
covered by the Kotlin team yet. By participating in the EAP and continuously testing new versions of Kotlin, you can provide us with early feedback about your
specific use cases. This will help us address as many issues as possible and ensure you can safely update to the Stable version when it's released. Check out
how Slack benefits from testing Android, Kotlin, and Gradle pre-release versions.

Keep your library up-to-date. If you're a library author, updating to the new Kotlin version is extremely important. Using older versions could block your users
from updating Kotlin in their projects. Working with EAP versions allows you to support the latest Kotlin versions in your library almost immediately with the
Stable release, which makes your users happier and your library more popular.

Share the experience. If you're a Kotlin enthusiast and enjoy contributing to the Kotlin ecosystem by creating educational content, trying new features in the
Kotlin EAP allows you to be among the first to share the experience of using the new cool features with the community.

Build
details
No preview versions are currently available.

Install
the
EAP
Plugin
for
IntelliJ
IDEA
or
Android
Studio
You can follow these instructions to install the preview version of the Kotlin Plugin for IntelliJ IDEA or Android Studio.

1. Select Tools | Kotlin | Configure Kotlin Plugin Updates.

By participating in the EAP, you expressly acknowledge that the EAP version may not be reliable, may not work as intended, and may contain errors.

Please note that we don't provide any guarantees of compatibility between EAP and final versions of the same release.

1181

https://slack.engineering/shadow-jobs/

Select Kotlin Plugin Updates

2. In the Update channel list, select the Early Access Preview channel.

Select the EAP update channel

3. Click Check again. The latest EAP build version appears.

1182

Install the EAP build

4. Click Install.

If you want to work on existing projects that were created before installing the EAP version, you need to configure your build for EAP.

If
you
run
into
any
problems
Report an issue to our issue tracker, YouTrack.

Find help in the #eap channel in Kotlin Slack (get an invite).

Roll back to the latest stable version: in Tools | Kotlin | Configure Kotlin Plugin Updates, select the Stable update channel and click Install.

Configure
your
build
for
EAP
If you create new projects using the EAP version of Kotlin, you don't need to perform any additional steps. The Kotlin Plugin will do everything for you!

You only need to configure your build manually for existing projects — projects that were created before installing the EAP version.

To configure your build to use the EAP version of Kotlin, you need to:

Specify the EAP version of Kotlin. Available EAP versions are listed here.

Change the versions of dependencies to EAP ones. The EAP version of Kotlin may not work with the libraries of the previously released version.

The following procedures describe how to configure your build in Gradle and Maven:

Configure in Gradle

Configure in Maven

Configure
in
Gradle
This section describes how you can:

Adjust the Kotlin version

Adjust versions in dependencies

If the Kotlin EAP plugin can't find the latest EAP build, check that you are using the latest version of IntelliJ IDEA or Android Studio.

1183

https://www.jetbrains.com/help/idea/update.html
https://developer.android.com/studio/intro/update
https://kotl.in/issue
https://app.slack.com/client/T09229ZC6/C0KLZSCHF
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up

Adjust
the
Kotlin
version
In the plugins block within build.gradle(.kts), change the KOTLIN-EAP-VERSION to the actual EAP version, such as 1.9.20-RC2. Available EAP versions are listed
here.

Alternatively, you can specify the EAP version in the pluginManagement block in settings.gradle(.kts) – see Gradle documentation for details.

Here is an example for the Multiplatform project.

Kotlin

plugins	{
				java
				kotlin("multiplatform")	version	"KOTLIN-EAP-VERSION"
}

repositories	{
				mavenCentral()
}

Groovy

plugins	{
				id	'java'
				id	'org.jetbrains.kotlin.multiplatform'	version	'KOTLIN-EAP-VERSION'
}

repositories	{
				mavenCentral()
}

Adjust
versions
in
dependencies
If you use kotlinx libraries in your project, your versions of the libraries may not be compatible with the EAP version of Kotlin.

To resolve this issue, you need to specify the version of a compatible library in dependencies. For a list of compatible libraries, see EAP build details.

Here is an example.

For the kotlinx.coroutines library, add the version number – 1.7.3 – that is compatible with 1.9.20-RC2.

Kotlin

dependencies	{
				implementation("org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3")
}

Groovy

dependencies	{
				implementation	"org.jetbrains.kotlinx:kotlinx-coroutines-core:1.7.3"
}

Configure
in
Maven
In the sample Maven project definition, replace KOTLIN-EAP-VERSION with the actual version, such as 1.9.20-RC2. Available EAP versions are listed here.

<project	...>

In most cases we create libraries only for the first EAP version of a specific release and these libraries work with the subsequent EAP versions for this
release.

If there are incompatible changes in next EAP versions, we release a new version of the library.

1184

https://docs.gradle.org/current/userguide/plugins.html#sec:plugin_version_management

				<properties>
								<kotlin.version>KOTLIN-EAP-VERSION</kotlin.version>
				</properties>

				<repositories>
								<repository>
											<id>mavenCentral</id>
											<url>https://repo1.maven.org/maven2/</url>
								</repository>
				</repositories>

				<pluginRepositories>
							<pluginRepository>
										<id>mavenCentral</id>
										<url>https://repo1.maven.org/maven2/</url>
							</pluginRepository>
				</pluginRepositories>

				<dependencies>
								<dependency>
												<groupId>org.jetbrains.kotlin</groupId>
												<artifactId>kotlin-stdlib</artifactId>
												<version>${kotlin.version}</version>
								</dependency>
				</dependencies>

				<build>
								<plugins>
												<plugin>
																<groupId>org.jetbrains.kotlin</groupId>
																<artifactId>kotlin-maven-plugin</artifactId>
																<version>${kotlin.version}</version>
																...
												</plugin>
								</plugins>
				</build>
</project>

FAQ

What
is
Kotlin?
Kotlin is an open-source statically typed programming language that targets the JVM, Android, JavaScript, Wasm, and Native. It's developed by JetBrains. The
project started in 2010 and was open source from very early on. The first official 1.0 release was in February 2016.

What
is
the
current
version
of
Kotlin?
The currently released version is 1.9.20, published on November 1, 2023.
You can find more information on GitHub.

Is
Kotlin
free?
Yes. Kotlin is free, has been free and will remain free. It is developed under the Apache 2.0 license and the source code is available on GitHub.

Is
Kotlin
an
object-oriented
language
or
a
functional
one?
Kotlin has both object-oriented and functional constructs. You can use it in both OO and FP styles, or mix elements of the two. With first-class support for features
such as higher-order functions, function types and lambdas, Kotlin is a great choice if you're doing or exploring functional programming.

What
advantages
does
Kotlin
give
me
over
the
Java
programming
language?
Kotlin is more concise. Rough estimates indicate approximately a 40% cut in the number of lines of code. It's also more type-safe, for example, support for non-
nullable types makes applications less prone to NPE's. Other features including smart casting, higher-order functions, extension functions and lambdas with

1185

https://www.jetbrains.com
https://github.com/jetbrains/kotlin
https://github.com/jetbrains/kotlin

receivers provide the ability to write expressive code as well as facilitating creation of DSL.

Is
Kotlin
compatible
with
the
Java
programming
language?
Yes. Kotlin is 100% interoperable with the Java programming language and major emphasis has been placed on making sure that your existing codebase can
interact properly with Kotlin. You can easily call Kotlin code from Java and Java code from Kotlin. This makes adoption much easier and lower-risk. There's also an
automated Java-to-Kotlin converter built into the IDE that simplifies migration of existing code.

What
can
I
use
Kotlin
for?
Kotlin can be used for any kind of development, be it server-side, client-side web, Android. With Kotlin/Native currently in the works, support for other platforms
such as embedded systems, macOS and iOS is coming. People are using Kotlin for mobile and server-side applications, client-side with JavaScript or JavaFX, and
data science, just to name a few possibilities.

Can
I
use
Kotlin
for
Android
development?
Yes. Kotlin is supported as a first-class language on Android. There are hundreds of applications already using Kotlin for Android, such as Basecamp, Pinterest and
more. For more information, check out the resource on Android development.

Can
I
use
Kotlin
for
server-side
development?
Yes. Kotlin is 100% compatible with the JVM and as such you can use any existing frameworks such as Spring Boot, vert.x or JSF. In addition, there are specific
frameworks written in Kotlin such as Ktor. For more information, check out the resource on server-side development.

Can
I
use
Kotlin
for
web
development?
Yes. In addition to using for backend web, you can also use Kotlin/Wasm for client-side web. Learn how to get started with Kotlin/Wasm.

Can
I
use
Kotlin
for
desktop
development?
Yes. You can use any Java UI framework such as JavaFx, Swing or other. In addition, there are Kotlin specific frameworks such as TornadoFX.

Can
I
use
Kotlin
for
native
development?
Yes. Kotlin/Native is available as a part of Kotlin project. It compiles Kotlin to native code that can run without a VM. You can try it on popular desktop and mobile
platforms and even some IoT devices. For more information, check out the Kotlin/Native documentation.

What
IDEs
support
Kotlin?
Kotlin has full out-of-the-box support in IntelliJ IDEA, Android Studio, and JetBrains Fleet with an official Kotlin plugin developed by JetBrains.

Other IDEs and source editors, such as Eclipse, Visual Studio Code, and Atom, have Kotlin community-supported plugins.

You can also try Kotlin Playground for writing, running, and sharing Kotlin code in your browser.

In addition, a command line compiler is available, which provides straightforward support for compiling and running applications.

What
build
tools
support
Kotlin?
On the JVM side, the main build tools include Gradle, Maven, Ant, and Kobalt. There are also some build tools available that target client-side JavaScript.

What
does
Kotlin
compile
down
to?

1186

https://github.com/kotlin/ktor
https://github.com/edvin/tornadofx
https://www.jetbrains.com/idea/download/
https://developer.android.com/kotlin/get-started
https://www.jetbrains.com/help/fleet/getting-started-with-kotlin-in-fleet.html
https://play.kotlinlang.org
https://beust.com/kobalt/home/index.html

When targeting the JVM, Kotlin produces Java compatible bytecode.

When targeting JavaScript, Kotlin transpiles to ES5.1 and generates code which is compatible with module systems including AMD and CommonJS.

When targeting native, Kotlin will produce platform-specific code (via LLVM).

Which
versions
of
JVM
does
Kotlin
target?
Kotlin lets you choose the version of JVM for execution. By default, the Kotlin/JVM compiler produces Java 8 compatible bytecode. If you want to make use of
optimizations available in newer versions of Java, you can explicitly specify the target Java version from 9 to 21. Note that in this case the resulting bytecode might
not run on lower versions. Starting with Kotlin 1.5, the compiler does not support producing bytecode compatible with Java versions below 8.

Is
Kotlin
hard?
Kotlin is inspired by existing languages such as Java, C#, JavaScript, Scala and Groovy. We've tried to ensure that Kotlin is easy to learn, so that people can easily
jump on board, reading and writing Kotlin in a matter of days. Learning idiomatic Kotlin and using some more of its advanced features can take a little longer, but
overall it is not a complicated language.
For more information, check out our learning materials.

What
companies
are
using
Kotlin?
There are too many companies using Kotlin to list, but some more visible companies that have publicly declared usage of Kotlin, be this via blog posts, GitHub
repositories or talks include Square, Pinterest, Basecamp, and Corda.

Who
develops
Kotlin?
Kotlin is primarily developed by a team of engineers at JetBrains (current team size is 100+). The lead language designer is Michail Zarečenskij. In addition to the
core team, there are also over 250 external contributors on GitHub.

Where
can
I
learn
more
about
Kotlin?
The best place to start is our website. From there you can download the compiler, try it online as well as get access to resources.

Are
there
any
books
on
Kotlin?
There are a number of books available for Kotlin. Some of them we have reviewed and can recommend to start with. They are listed on the Books page. For more
books, see the community-maintained list at kotlin.link.

Are
any
online
courses
available
for
Kotlin?
You can learn all the Kotlin essentials while creating working applications with the Kotlin Core track by JetBrains Academy.

A few other courses you can take:

Pluralsight Course: Getting Started with Kotlin by Kevin Jones

O'Reilly Course: Introduction to Kotlin Programming by Hadi Hariri

Udemy Course: 10 Kotlin Tutorials for Beginneres by Peter Sommerhoff

You can also check out the other tutorials and content on our YouTube channel.

Does
Kotlin
have
a
community?
Yes! Kotlin has a very vibrant community. Kotlin developers hang out on the Kotlin forums, StackOverflow and more actively on the Kotlin Slack (with close to 30000
members as of April 2020).

1187

https://medium.com/square-corner-blog/square-open-source-loves-kotlin-c57c21710a17
https://www.youtube.com/watch?v=mDpnc45WwlI
https://m.signalvnoise.com/how-we-made-basecamp-3s-android-app-100-kotlin-35e4e1c0ef12
https://docs.corda.net/releases/release-M9.2/further-notes-on-kotlin.html
https://www.jetbrains.com/
https://kotlinlang.org
https://play.kotlinlang.org
https://kotlin.link/
https://hyperskill.org/tracks?category=4&utm_source=jbkotlin_hs&utm_medium=referral&utm_campaign=kotlinlang-docs&utm_content=button_1&utm_term=22.03.23
https://www.pluralsight.com/courses/kotlin-getting-started
https://www.oreilly.com/library/view/introduction-to-kotlin/9781491964125/
https://petersommerhoff.com/dev/kotlin/kotlin-beginner-tutorial/
https://www.youtube.com/c/Kotlin
https://discuss.kotlinlang.org
https://stackoverflow.com/questions/tagged/kotlin
https://slack.kotlinlang.org

Are
there
Kotlin
events?
Yes! There are many User Groups and Meetups now focused exclusively around Kotlin. You can find a list on the website. In addition, there are community-
organized Kotlin Nights events around the world.

Is
there
a
Kotlin
conference?
Yes! KotlinConf is an annual conference hosted by JetBrains, which brings together developers, enthusiasts, and experts from around the world to share their
knowledge and experience with Kotlin.

In addition to technical talks and workshops, KotlinConf also offers networking opportunities, community interactions, and social events where attendees can
connect with fellow Kotliners and exchange ideas. It serves as a platform for fostering collaboration and community building within the Kotlin ecosystem.

Kotlin is also being covered in different conferences worldwide. You can find a list of upcoming talks on the website.

Is
Kotlin
on
social
media?
Yes. Subscribe to the Kotlin YouTube channel and follow Kotlin on Twitter.

Any
other
online
Kotlin
resources?
The website has a bunch of online resources, including Kotlin Digests by community members, a newsletter, a podcast and more.

Where
can
I
get
an
HD
Kotlin
logo?
Logos can be downloaded here. When using the logos, please follow simple rules in the guidelines.pdf inside the archive and Kotlin brand usage guidelines.

For more information, check out the page about Kotlin brand assets.

Kotlin
Evolution

Principles
of
Pragmatic
Evolution

Kotlin is designed to be a pragmatic tool for programmers. When it comes to language evolution, its pragmatic nature is captured by the following principles:

Keep the language modern over the years.

Stay in the constant feedback loop with the users.

Make updating to new versions comfortable for the users.

As this is key to understanding how Kotlin is moving forward, let's expand on these principles.

Keeping the Language Modern. We acknowledge that systems accumulate legacy over time. What had once been cutting-edge technology can be hopelessly
outdated today. We have to evolve the language to keep it relevant to the needs of the users and up-to-date with their expectations. This includes not only adding
new features, but also phasing out old ones that are no longer recommended for production use and have altogether become legacy.

Comfortable Updates. Incompatible changes, such as removing things from a language, may lead to painful migration from one version to the next if carried out
without proper care. We will always announce such changes well in advance, mark things as deprecated and provide automated migration tools before the change

Language design is cast in stone,

but this stone is reasonably soft,

and with some effort we can reshape it later.

Kotlin Design Team

1188

https://kotlinlang.org/user-groups/user-group-list.html
https://kotlinlang.org/community/events.html
https://kotlinconf.com/
https://kotlinlang.org/community/talks.html?time=upcoming
https://www.youtube.com/c/Kotlin
https://twitter.com/kotlin
https://kotlinlang.org/community/
https://kotlin.link
http://kotlinweekly.net
https://talkingkotlin.com
https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_logos.zip
https://kotlinfoundation.org/guidelines/

happens. By the time the language is changed we want most of the code in the world to be already updated and thus have no issues migrating to the new version.

Feedback Loop. Going through deprecation cycles requires significant effort, so we want to minimize the number of incompatible changes we'll be making in the
future. Apart from using our best judgement, we believe that trying things out in real life is the best way to validate a design. Before casting things in stone we want
them battle-tested. This is why we use every opportunity to make early versions of our designs available in production versions of the language, but in one of the
pre-stable statuses: Experimental, Alpha, or Beta. Such features are not stable, they can be changed at any time, and the users that opt into using them do so
explicitly to indicate that they are ready to deal with the future migration issues. These users provide invaluable feedback that we gather to iterate on the design and
make it rock-solid.

Incompatible
changes
If, upon updating from one version to another, some code that used to work doesn't work any more, it is an incompatible change in the language (sometimes
referred to as "breaking change"). There can be debates as to what "doesn't work any more" means precisely in some cases, but it definitely includes the following:

Code that compiled and ran fine is now rejected with an error (at compile or link time). This includes removing language constructs and adding new restrictions.

Code that executed normally is now throwing an exception.

The less obvious cases that belong to the "grey area" include handling corner cases differently, throwing an exception of a different type than before, changing
behavior observable only through reflection, changes in undocumented/undefined behavior, renaming binary artifacts, etc. Sometimes such changes are very
important and affect migration experience dramatically, sometimes they are insignificant.

Some examples of what definitely isn't an incompatible change include

Adding new warnings.

Enabling new language constructs or relaxing limitations for existing ones.

Changing private/internal APIs and other implementation details.

The principles of Keeping the Language Modern and Comfortable Updates suggest that incompatible changes are sometimes necessary, but they should be
introduced carefully. Our goal is to make the users aware of upcoming changes well in advance to let them migrate their code comfortably.

Ideally, every incompatible change should be announced through a compile-time warning reported in the problematic code (usually referred to as a deprecation
warning) and accompanied with automated migration aids. So, the ideal migration workflow goes as follows:

Update to version A (where the change is announced)

See warnings about the upcoming change

Migrate the code with the help of the tooling

Update to version B (where the change happens)

See no issues at all

In practice some changes can't be accurately detected at compile time, so no warnings can be reported, but at least the users will be notified through Release
notes of version A that a change is coming in version B.

Dealing
with
compiler
bugs
Compilers are complicated software and despite the best effort of their developers they have bugs. The bugs that cause the compiler itself to fail or report spurious
errors or generate obviously failing code, though annoying and often embarrassing, are easy to fix, because the fixes do not constitute incompatible changes. Other
bugs may cause the compiler to generate incorrect code that does not fail: e.g. by missing some errors in the source or simply generating wrong instructions. Fixes
of such bugs are technically incompatible changes (some code used to compile fine, but now it won't any more), but we are inclined to fixing them as soon as
possible to prevent the bad code patterns from spreading across user code. In our opinion, this serves the principle of Comfortable Updates, because fewer users
have a chance of encountering the issue. Of course, this applies only to bugs that are found soon after appearing in a released version.

Decision
making
JetBrains, the original creator of Kotlin, is driving its progress with the help of the community and in accord with the Kotlin Foundation.

All changes to the Kotlin Programming Language are overseen by the Lead Language Designer (currently Michail Zarečenskij). The Lead Designer has the final say
in all matters related to language evolution. Additionally, incompatible changes to fully stable components have to be approved to by the Language Committee
designated under the Kotlin Foundation (currently comprised of Jeffrey van Gogh, Werner Dietl, and Michail Zarečenskij).

1189

https://jetbrains.com
https://kotlinfoundation.org/
https://kotlinfoundation.org/structure/
https://kotlinfoundation.org/structure/
https://kotlinfoundation.org/structure/

The Language Committee makes final decisions on what incompatible changes will be made and what exact measures should be taken to make user updates
comfortable. In doing so, it relies on a set of guidelines available here.

Feature
releases
and
incremental
releases
Stable releases with versions 1.2, 1.3, etc. are usually considered to be feature releases bringing major changes in the language. Normally, we publish incremental
releases, numbered 1.2.20, 1.2.30, etc, in between feature releases.

Incremental releases bring updates in the tooling (often including features), performance improvements and bug fixes. We try to keep such versions compatible with
each other, so changes to the compiler are mostly optimizations and warning additions/removals. Pre-stable features may, of course, be added, removed or
changed at any time.

Feature releases often add new features and may remove or change previously deprecated ones. Feature graduation from pre-stable to stable also happens in
feature releases.

EAP
builds
Before releasing stable versions, we usually publish a number of preview builds dubbed EAP (for "Early Access Preview") that let us iterate faster and gather
feedback from the community. EAPs of feature releases usually produce binaries that will be later rejected by the stable compiler to make sure that possible bugs in
the binary format survive no longer than the preview period. Final Release Candidates normally do not bear this limitation.

Pre-stable
features
According to the Feedback Loop principle described above, we iterate on our designs in the open and release versions of the language where some features have
one of the pre-stable statuses and are supposed to change. Such features can be added, changed or removed at any point and without warning. We do our best to
ensure that pre-stable features can't be used accidentally by an unsuspecting user. Such features usually require some sort of an explicit opt-in either in the code
or in the project configuration.

Pre-stable features usually graduate to the stable status after some iterations.

Status
of
different
components
To check the stability status of different components of Kotlin (Kotlin/JVM, JS, Native, various libraries, etc), please consult this link.

Libraries
A language is nothing without its ecosystem, so we pay extra attention to enabling smooth library evolution.

Ideally, a new version of a library can be used as a "drop-in replacement" for an older version. This means that upgrading a binary dependency should not break
anything, even if the application is not recompiled (this is possible under dynamic linking).

On the one hand, to achieve this, the compiler has to provide certain ABI stability guarantees under the constraints of separate compilation. This is why every
change in the language is examined from the point of view of binary compatibility.

On the other hand, a lot depends on the library authors being careful about which changes are safe to make. Thus it's very important that library authors understand
how source changes affect compatibility and follow certain best practices to keep both APIs and ABIs of their libraries stable. Here are some assumptions that we
make when considering language changes from the library evolution standpoint:

Library code should always specify return types of public/protected functions and properties explicitly thus never relying on type inference for public API. Subtle
changes in type inference may cause return types to change inadvertently, leading to binary compatibility issues.

Overloaded functions and properties provided by the same library should do essentially the same thing. Changes in type inference may result in more precise
static types to be known at call sites causing changes in overload resolution.

Library authors can use the @Deprecated and @RequiresOptIn annotations to control the evolution of their API surface. Note that @Deprecated(level=HIDDEN) can
be used to preserve binary compatibility even for declarations removed from the API.

Also, by convention, packages named "internal" are not considered public API. All API residing in packages named "experimental" is considered pre-stable and can
change at any moment.

We evolve the Kotlin Standard Library (kotlin-stdlib) for stable platforms according to the principles stated above. Changes to the contracts for its API undergo the
same procedures as changes in the language itself.

1190

https://kotlinfoundation.org/language-committee-guidelines/

Compiler
keys
Command line keys accepted by the compiler are also a kind of public API, and they are subject to the same considerations. Supported flags (those that don't have
the "-X" or "-XX" prefix) can be added only in feature releases and should be properly deprecated before removing them. The "-X" and "-XX" flags are experimental
and can be added and removed at any time.

Compatibility
tools
As legacy features get removed and bugs fixed, the source language changes, and old code that has not been properly migrated may not compile any more. The
normal deprecation cycle allows a comfortable period of time for migration, and even when it's over and the change ships in a stable version, there's still a way to
compile unmigrated code.

Compatibility
flags
We provide the -language-version X.Y and -api-version X.Y flags that make a new version emulate the behavior of an old one for compatibility purposes. To give
you more time for migration, we support the development for three previous language and API versions in addition to the latest stable one.

Actively maintained code bases can benefit from getting bug fixes ASAP, without waiting for a full deprecation cycle to complete. Currently, such project can enable
the -progressive flag and get such fixes enabled even in incremental releases.

All flags are available on the command line as well as Gradle and Maven.

Evolving
the
binary
format
Unlike sources that can be fixed by hand in the worst case, binaries are a lot harder to migrate, and this makes backwards compatibility very important in the case
of binaries. Incompatible changes to binaries can make updates very uncomfortable and thus should be introduced with even more care than those in the source
language syntax.

For fully stable versions of the compiler the default binary compatibility protocol is the following:

All binaries are backwards compatible, i.e. a newer compiler can read older binaries (e.g. 1.3 understands 1.0 through 1.2),

Older compilers reject binaries that rely on new features (e.g. a 1.0 compiler rejects binaries that use coroutines).

Preferably (but we can't guarantee it), the binary format is mostly forwards compatible with the next feature release, but not later ones (in the cases when new
features are not used, e.g. 1.3 can understand most binaries from 1.4, but not 1.5).

This protocol is designed for comfortable updates as no project can be blocked from updating its dependencies even if it's using a slightly outdated compiler.

Please note that not all target platforms have reached this level of stability (but Kotlin/JVM has).

Stability
of
Kotlin
components
The Kotlin language and toolset are divided into many components such as the compilers for the JVM, JS and Native targets, the Standard Library, various
accompanying tools and so on. Many of these components were officially released as Stable which means that they are evolved in the backward-compatible way
following the principles of Comfortable Updates and Keeping the Language Modern. Among such stable components are, for example, the Kotlin compiler for the
JVM, the Standard Library, and Coroutines.

Following the Feedback Loop principle we release many things early for the community to try out, so a number of components are not yet released as Stable. Some
of them are very early stage, some are more mature. We mark them as Experimental, Alpha or Beta depending on how quickly each component is evolving and how
much risk the users are taking when adopting it.

Stability
levels
explained
Here's a quick guide to these stability levels and their meaning:

Experimental means "try it only in toy projects":

We are just trying out an idea and want some users to play with it and give feedback. If it doesn't work out, we may drop it any minute.

Alpha means "use at your own risk, expect migration issues":

1191

We decided to productize this idea, but it hasn't reached the final shape yet.

Beta means "you can use it, we'll do our best to minimize migration issues for you":

It's almost done, user feedback is especially important now.

Still, it's not 100% finished, so changes are possible (including ones based on your own feedback).

Watch for deprecation warnings in advance for the best update experience.

We collectively refer to Experimental, Alpha and Beta as pre-stable levels.

Stable means "use it even in most conservative scenarios":

It's done. We will be evolving it according to our strict backward compatibility rules.

Please note that stability levels do not say anything about how soon a component will be released as Stable. Similarly, they do not indicate how much a component
will be changed before release. They only say how fast a component is changing and how much risk of update issues users are running.

GitHub
badges
for
Kotlin
components
The Kotlin GitHub organization hosts different Kotlin-related projects. Some of them we develop full-time, while others are side projects.

Each Kotlin project has two GitHub badges describing its stability and support status:

Stability status. This shows how quickly each project is evolving and how much risk the users are taking when adopting it. The stability status completely
coincides with the stability level of the Kotlin language features and its components:

experimentalexperimental stands for Experimental

alphaalpha stands for Alpha

betabeta stands for Beta

stablestable stands for Stable

Support status. This shows our commitment to maintaining a project and helping users to solve their problems. The level of support is unified for all JetBrains
products.
See the JetBrains Confluence document for details.

Stability
of
subcomponents
A stable component may have an experimental subcomponent, for example:

a stable compiler may have an experimental feature;

a stable API may include experimental classes or functions;

a stable command-line tool may have experimental options.

We make sure to document precisely which subcomponents are not stable. We also do our best to warn users where possible and ask to opt in explicitly to avoid
accidental usages of features that have not been released as stable.

Current
stability
of
Kotlin
components

Component Status Status since version Comment

Kotlin/JVM Stable 1.0

Kotlin K2 (JVM) Alpha 1.7

1192

https://kotlinfoundation.org/language-committee-guidelines/
https://github.com/Kotlin
https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub

kotlin-stdlib (JVM) Stable 1.0

Coroutines Stable 1.3

kotlin-reflect (JVM) Beta 1.0

Kotlin/JS (Classic back-end) Stable 1.3 Deprecated from 1.8.0, read the IR migration guide

Kotlin/JVM (IR-based) Stable 1.5

Kotlin/JS (IR-based) Stable 1.8

Kotlin/Native Runtime Stable 1.9.20

Kotlin/Native memory manager Stable 1.9.20

klib binaries Stable 1.9.20

Kotlin Multiplatform Stable 1.9.20

Kotlin/Native interop with C and Objective C Beta 1.3

CocoaPods integration Stable 1.9.20

Kotlin Multiplatform Mobile plugin for Android Studio Beta 0.8.0 Versioned separately from the language

expected and actual functions and properties Stable 1.9.20

expected and actual classes Beta 1.7.20

KDoc syntax Stable 1.0

Dokka Beta 1.6

Scripting syntax and semantics Alpha 1.2

Scripting embedding and extension API Beta 1.5

Component Status Status since version Comment

1193

Scripting IDE support Beta Available since IntelliJ IDEA 2023.1 and later

CLI scripting Alpha 1.2

Compiler Plugin API Experimental 1.0

Serialization Compiler Plugin Stable 1.4

Serialization Core Library Stable 1.0.0 Versioned separately from the language

Inline classes Stable 1.5

Unsigned arithmetic Stable 1.5

Contracts in stdlib Stable 1.3

User-defined contracts Experimental 1.3

All other experimental components, by default Experimental N/A

Component Status Status since version Comment

The pre-1.4 version of this page is available here.

Stability
of
Kotlin
components
(pre
1.4)
There can be different modes of stability depending of how quickly a component is evolving:

Moving fast (MF): no compatibility should be expected between even incremental releases, any functionality can be added, removed or changed without
warning.

Additions in Incremental Releases (AIR): things can be added in an incremental release, removals and changes of behavior should be avoided and announced in
a previous incremental release if necessary.

Stable Incremental Releases (SIR): incremental releases are fully compatible, only optimizations and bug fixes happen. Any changes can be made in a feature
release.

Fully Stable (FS): incremental releases are fully compatible, only optimizations and bug fixes happen. Feature releases are backwards compatible.

Source and binary compatibility may have different modes for the same component, e.g. the source language can reach full stability before the binary format
stabilizes, or vice versa.

The provisions of the Kotlin evolution policy fully apply only to components that have reached Full Stability (FS). From that point on incompatible changes have to be
approved by the Language Committee.

Component Status Entered at version Mode for Sources Mode for Binaries

Kotlin/JVM 1.0 FS FS

1194

kotlin-stdlib (JVM) 1.0 FS FS

KDoc syntax 1.0 FS N/A

Coroutines 1.3 FS FS

kotlin-reflect (JVM) 1.0 SIR SIR

Kotlin/JS 1.1 AIR MF

Kotlin/Native 1.3 AIR MF

Kotlin Scripts (*.kts) 1.2 AIR MF

dokka 0.1 MF N/A

Kotlin Scripting APIs 1.2 MF MF

Compiler Plugin API 1.0 MF MF

Serialization 1.3 MF MF

Multiplatform Projects 1.2 MF MF

Inline classes 1.3 MF MF

Unsigned arithmetics 1.3 MF MF

All other experimental features, by default N/A MF MF

Component Status Entered at version Mode for Sources Mode for Binaries

Compatibility
guide
for
Kotlin
1.9
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.8 to Kotlin 1.9.

Basic
terms
In this document we introduce several kinds of compatibility:

1195

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language

Remove
language
version
1.3

Prohibit
super
constructor
call
when
the
super
interface
type
is
a
function
literal

Prohibit
cycles
in
annotation
parameter
types

Issue: KT-61111

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 introduces language version 1.9 and removes support for language version 1.3.

Deprecation cycle:

1.6.0: report a warning

1.9.0: raise the warning to an error

Issue: KT-46344

Component: Core language

Incompatible change type: source

Short summary: If an interface inherits from a function literal type, Kotlin 1.9 prohibits super constructor calls because no such constructor exists.

Deprecation cycle:

1.7.0: report a warning (or an error in progressive mode)

1.9.0: raise the warning to an error

1196

https://youtrack.jetbrains.com/issue/KT-61111/Remove-language-version-1.3
https://youtrack.jetbrains.com/issue/KT-46344

Prohibit
use
of
@ExtensionFunctionType
annotation
on
function
types
with
no
parameters

Prohibit
Java
field
type
mismatch
on
assignment

No
source
code
excerpts
in
platform-type
nullability
assertion
exceptions

Issue: KT-47932

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 prohibits the type of an annotation being used as one of its parameter types, either directly or indirectly. This prevents cycles
from being created. However, you are allowed to have parameter types that are an Array or a vararg of the annotation type.

Deprecation cycle:

1.7.0: report a warning (or an error in progressive mode) on cycles in types of annotation parameters

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitCyclesInAnnotations can be used to temporarily revert to pre-1.9 behavior

Issue: KT-43527

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 prohibits using the @ExtensionFunctionType annotation on function types with no parameters, or on types that aren't function
types.

Deprecation cycle:

1.7.0: report a warning for annotations on types that aren't function types, report an error for annotations on types that are function types

1.9.0: raise the warning for function types to an error

Issue: KT-48994

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.9 reports a compiler error if it detects that the type of a value assigned to a Java field doesn't match the Java field's projected
type.

Deprecation cycle:

1.6.0: report a warning (or an error in the progressive mode) when a projected Java field type doesn't match the assigned value type

1.9.0: raise the warning to an error, -XXLanguage:-RefineTypeCheckingOnAssignmentsToJavaFields can be used to temporarily revert to pre-1.9
behavior

1197

https://youtrack.jetbrains.com/issue/KT-47932
https://youtrack.jetbrains.com/issue/KT-43527
https://youtrack.jetbrains.com/issue/KT-48994

Prohibit
the
delegation
of
super
calls
to
an
abstract
superclass
member

Deprecate
confusing
grammar
in
when-with-subject

Prevent
implicit
coercions
between
different
numeric
types

Issue: KT-57570

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: In Kotlin 1.9, exception messages for expression null checks do not include source code excerpts. Instead, the name of the method or
field is displayed. If the expression is not a method or field, there is no additional information provided in the message.

Deprecation cycle:

< 1.9.0: exception messages generated by expression null checks contain source code excerpts

1.9.0: exception messages generated by expression null checks contain method or field names only, -XXLanguage:-
NoSourceCodeInNotNullAssertionExceptions can be used to temporarily revert to pre-1.9 behavior

Issues: KT-45508, KT-49017, KT-38078

Component: Core language

Incompatible change type: source

Short summary: Kotlin will report a compile error when an explicit or implicit super call is delegated to an abstract member of the superclass, even if
there's a default implementation in a super interface.

Deprecation cycle:

1.5.20: introduce a warning when non-abstract classes that do not override all abstract members are used

1.7.0: report a warning if a super call, in fact, accesses an abstract member from a superclass

1.7.0: report an error in all affected cases if the -Xjvm-default=all or -Xjvm-default=all-compatibility compatibility modes are enabled; report an error in
the progressive mode

1.8.0: report an error in cases of declaring a concrete class with a non-overridden abstract method from the superclass, and super calls of Any
methods are overridden as abstract in the superclass

1.9.0: report an error in all affected cases, including explicit super calls to an abstract method from the super class

Issue: KT-48385

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 deprecated several confusing grammar constructs in when condition expressions.

Deprecation cycle:

1.6.20: introduce a deprecation warning on the affected expressions

1.8.0: raise this warning to an error, -XXLanguage:-ProhibitConfusingSyntaxInWhenBranches can be used to temporarily revert to the pre-1.8 behavior

>= 2.1: repurpose some deprecated constructs for new language features

1198

https://youtrack.jetbrains.com/issue/KT-57570
https://youtrack.jetbrains.com/issue/KT-45508
https://youtrack.jetbrains.com/issue/KT-49017
https://youtrack.jetbrains.com/issue/KT-38078
https://youtrack.jetbrains.com/issue/KT-48385

Prohibit
upper
bound
violation
in
a
generic
type
alias
usage
(a
type
parameter
used
in
a
generic
type
argument
of
a
type
argument
of
the
aliased
type)

Keep
nullability
when
approximating
local
types
in
public
signatures

Do
not
propagate
deprecation
through
overrides

Issue: KT-48645

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin will avoid converting numeric values automatically to a primitive numeric type where only a downcast to that type is needed
semantically.

Deprecation cycle:

< 1.5.30: the old behavior in all affected cases

1.5.30: fix the downcast behavior in generated property delegate accessors, -Xuse-old-backend can be used to temporarily revert to the pre-1.5.30 fix
behavior

>= 2.0: fix the downcast behavior in other affected cases

Issue: KT-54066

Component: Core language

Incompatible change type: source

Short summary: Kotlin will prohibit using a type alias with type arguments that violate the upper bound restrictions of the corresponding type parameters
of the aliased type in case when the typealias type parameter is used as a generic type argument of a type argument of the aliased type, for example,
typealias Alias<T> = Base<List<T>>.

Deprecation cycle:

1.8.0: report a warning when a generic typealias usage has type arguments violating upper bound constraints of the corresponding type parameters of
the aliased type

2.0.0: raise the warning to an error

Issue: KT-53982

Component: Core language

Incompatible change type: source, binary

Short summary: when a local or anonymous type is returned from an expression-body function without an explicitly specified return type, Kotlin compiler
infers (or approximates) the return type using the known supertype of that type. During this, the compiler can infer a non-nullable type where the null value
could in fact be returned.

Deprecation cycle:

1.8.0: approximate flexible types by flexible supertypes

1.8.0: report a warning when a declaration is inferred to have a non-nullable type that should be nullable, prompting users to specify the type explicitly

2.0.0: approximate nullable types by nullable supertypes, -XXLanguage:-KeepNullabilityWhenApproximatingLocalType can be used to temporarily
revert to the pre-2.0 behavior

1199

https://youtrack.jetbrains.com/issue/KT-48645
https://youtrack.jetbrains.com/issue/KT-54066
https://youtrack.jetbrains.com/issue/KT-53982

Prohibit
using
collection
literals
in
annotation
classes
anywhere
except
their
parameters
declaration

Prohibit
forward
referencing
of
parameters
in
default
value
expressions

Prohibit
extension
calls
on
inline
functional
parameters

Issue: KT-47902

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will no longer propagate deprecation from a deprecated member in the superclass to its overriding member in the subclass,
thus providing an explicit mechanism for deprecating a member of the superclass while leaving it non-deprecated in the subclass.

Deprecation cycle:

1.6.20: reporting a warning with the message of the future behavior change and a prompt to either suppress this warning or explicitly write a
@Deprecated annotation on an override of a deprecated member

1.9.0: stop propagating deprecation status to the overridden members. This change also takes effect immediately in the progressive mode

Issue: KT-39041

Component: Core language

Incompatible change type: source

Short summary: Kotlin allows using collection literals in a restricted way - for passing arrays to parameters of annotation classes or specifying default
values for these parameters. However besides that, Kotlin allowed using collections literals anywhere else inside an annotation class, for example, in its
nested object. Kotlin 1.9 will prohibit using collection literals in annotation classes anywhere except their parameters' default values.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) on array literals in nested objects in annotation classes

1.9.0: raise the warning to an error

Issue: KT-25694

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit forward referencing of parameters in default value expressions of other parameters. This ensures that by the time
the parameter is accessed in a default value expression, it would already have a value either passed to the function or initialized by its own default value
expression.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when a parameter with default value is references in default value of another parameter
that comes before it

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitIllegalValueParameterUsageInDefaultArguments can be used to temporarily revert to the
pre-1.9 behavior

1200

https://youtrack.jetbrains.com/issue/KT-47902
https://youtrack.jetbrains.com/issue/KT-39041
https://youtrack.jetbrains.com/issue/KT-25694

Prohibit
calls
to
infix
functions
named
suspend
with
an
anonymous
function
argument

Prohibit
using
captured
type
parameters
in
inner
classes
against
their
variance

Prohibit
recursive
call
of
a
function
without
explicit
return
type
in
compound
assignment
operators

Issue: KT-52502

Component: Core language

Incompatible change type: source

Short summary: while Kotlin allowed passing an inline functional parameter to another inline function as a receiver, it always resulted in compiler
exceptions when compiling such code. Kotlin 1.9 will prohibit this, thus reporting an error instead of crashing the compiler.

Deprecation cycle:

1.7.20: report a warning (or an error in the progressive mode) for inline extension calls on inline functional parameters

1.9.0: raise the warning to an error

Issue: KT-49264

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will no longer allow calling infix functions named suspend that have a single argument of a functional type passed as an
anonymous function literal.

Deprecation cycle:

1.7.20: report a warning on suspend infix calls with an anonymous function literal

1.9.0: raise the warning to an error, -XXLanguage:-ModifierNonBuiltinSuspendFunError can be used to temporarily revert to the pre-1.9 behavior

TODO: Change how the suspend fun token sequence is interpreted by the parser

Issue: KT-50947

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit using type parameters of an outer class having in or out variance in an inner class of that class in positions
violating that type parameters' declared variance.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when an outer class' type parameter usage position violates the variance rules of that
parameter

1.9.0: raise the warning to an error, -XXLanguage:-ReportTypeVarianceConflictOnQualifierArguments can be used to temporarily revert to the pre-1.9
behavior

1201

https://youtrack.jetbrains.com/issue/KT-52502
https://youtrack.jetbrains.com/issue/KT-49264
https://youtrack.jetbrains.com/issue/KT-50947

Prohibit
unsound
calls
with
expected
@NotNull
T
and
given
Kotlin
generic
parameter
with
nullable
bound

Prohibit
access
to
members
of
a
companion
of
an
enum
class
from
entry
initializers
of
this
enum

Deprecate
and
remove
Enum.declaringClass
synthetic
property

Issue: KT-48546

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit calling a function without explicitly specified return type in an argument of a compound assignment operator inside
that function's body, as it currently does in other expressions inside the body of that function.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when a function without explicitly specified return type is called recursively in that
function's body in a compound assignment operator argument

1.9.0: raise the warning to an error

Issue: KT-36770

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit method calls where a value of a potentially nullable generic type is passed for a @NotNull-annotated parameter of
a Java method.

Deprecation cycle:

1.5.20: report a warning when an unconstrained generic type parameter is passed where a non-nullable type is expected

1.9.0: report a type mismatch error instead of the warning above,
-XXLanguage:-ProhibitUsingNullableTypeParameterAgainstNotNullAnnotated can be used to temporarily revert to the pre-1.8 behavior

Issue: KT-49110

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit all kinds of access to the companion object of an enum from an enum entry initializer.

Deprecation cycle:

1.6.20: report a warning (or an error in the progressive mode) on such companion member access

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitAccessToEnumCompanionMembersInEnumConstructorCall can be used to temporarily
revert to the pre-1.8 behavior

1202

https://youtrack.jetbrains.com/issue/KT-48546
https://youtrack.jetbrains.com/issue/KT-36770
https://youtrack.jetbrains.com/issue/KT-49110

Deprecate
enable
and
compatibility
modes
of
the
compiler
option
-Xjvm-default

Prohibit
implicit
inferring
a
type
variable
into
an
upper
bound
in
the
builder
inference
context

Standard
library

Warn
about
potential
overload
resolution
change
when
Range/Progression
starts
implementing
Collection

Issue: KT-49653

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin allowed using the synthetic property declaringClass on Enum values produced from the method getDeclaringClass() of the
underlying Java class java.lang.Enum even though this method is not available for Kotlin Enum type. Kotlin 1.9 will prohibit using this property, proposing
to migrate to the extension property declaringJavaClass instead.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) on declaringClass property usages, propose the migration to declaringJavaClass
extension

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitEnumDeclaringClass can be used to temporarily revert to the pre-1.9 behavior

2.0.0: remove declaringClass synthetic property

Issues: KT-46329, KT-54746

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.9 prohibits using the enable and compatibility modes of the -Xjvm-default compiler option.

Deprecation cycle:

1.6.20: introduce a warning on the enable and compatibility modes of the -Xjvm-default compiler option

1.9.0: raise this warning to an error

Issue: KT-47986

Component: Core language

Incompatible change type: source

Short summary: Kotlin 2.0 will prohibit inferring a type variable into the corresponding type parameter's upper bound in the absence of any use-site type
information in the scope of builder inference lambda functions, the same way as it does currently in other contexts.

Deprecation cycle:

1.7.20: report a warning (or an error in the progressive mode) when a type parameter is inferred into declared upper bounds in the absence of use-site
type information

2.0.0: raise the warning to an error

1203

https://youtrack.jetbrains.com/issue/KT-49653
https://youtrack.jetbrains.com/issue/KT-46329
https://youtrack.jetbrains.com/issue/KT-54746
https://youtrack.jetbrains.com/issue/KT-47986

Migrate
declarations
from
kotlin.dom
and
kotlin.browser
packages
to
kotlinx.*

Deprecate
some
JS-only
API

Issue: KT-49276

Component: Core language / kotlin-stdlib

Incompatible change type: source

Short summary: it is planned to implement the Collection interface in the standard progressions and concrete ranges inherited from them in Kotlin 1.9.
This could make a different overload selected in the overload resolution if there are two overloads of some method, one accepting an element and
another accepting a collection. Kotlin will make this situation visible by reporting a warning or an error when such overloaded method is called with a
range or progression argument.

Deprecation cycle:

1.6.20: report a warning when an overloaded method is called with the standard progression or its range inheritor as an argument if implementing the
Collection interface by this progression/range leads to another overload being selected in this call in future

1.8.0: raise this warning to an error

2.1.0: stop reporting the error, implement Collection interface in progressions thus changing the overload resolution result in the affected cases

Issue: KT-39330

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: declarations from the kotlin.dom and kotlin.browser packages are moved to the corresponding kotlinx.* packages to prepare for
extracting them from stdlib.

Deprecation cycle:

1.4.0: introduce the replacement API in kotlinx.dom and kotlinx.browser packages

1.4.0: deprecate the API in kotlin.dom and kotlin.browser packages and propose the new API above as a replacement

1.6.0: raise the deprecation level to an error

1.8.20: remove the deprecated functions from stdlib for JS-IR target

>= 2.0: move the API in kotlinx.* packages to a separate library

1204

https://youtrack.jetbrains.com/issue/KT-49276
https://youtrack.jetbrains.com/issue/KT-39330

Tools

Remove
enableEndorsedLibs
flag
from
Gradle
setup

Remove
Gradle
conventions

Remove
classpath
property
of
KotlinCompile
task

Issue: KT-48587

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: a number of JS-only functions in stdlib are deprecated for removal. They include: String.concat(String), String.match(regex: String),
String.matches(regex: String), and the sort functions on arrays taking a comparison function, for example, Array<out T>.sort(comparison: (a: T, b: T) ->
Int).

Deprecation cycle:

1.6.0: deprecate the affected functions with a warning

1.9.0: raise the deprecation level to an error

>=2.0: remove the deprecated functions from the public API

Issue: KT-54098

Component: Gradle

Incompatible change type: source

Short summary: the enableEndorsedLibs flag is no longer supported in Gradle setup.

Deprecation cycle:

< 1.9.0: enableEndorsedLibs flag is supported in Gradle setup

1.9.0: enableEndorsedLibs flag is not supported in Gradle setup

Issue: KT-52976

Component: Gradle

Incompatible change type: source

Short summary: Gradle conventions were deprecated in Gradle 7.1 and have been removed in Gradle 8.

Deprecation cycle:

1.7.20: Gradle conventions deprecated

1.9.0: Gradle conventions removed

1205

https://youtrack.jetbrains.com/issue/KT-48587
https://youtrack.jetbrains.com/issue/KT-54098
https://youtrack.jetbrains.com/issue/KT-52976

Deprecate
kotlin.internal.single.build.metrics.file
property

Compatibility
guide
for
Kotlin
1.8
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.7 to Kotlin 1.8.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language

Prohibit
the
delegation
of
super
calls
to
an
abstract
superclass
member

Issue: KT-53748

Component: Gradle

Incompatible change type: source

Short summary: the classpath property of the KotlinCompile task is removed.

Deprecation cycle:

1.7.0: the classpath property is deprecated

1.8.0: raise the deprecation level to an error

1.9.0: remove the deprecated functions from the public API

Issue: KT-53357

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kotlin.internal.single.build.metrics.file property used to define a single file for build reports. Use the property
kotlin.build.report.single_file instead with kotlin.build.report.output=single_file.

Deprecation cycle:

1.8.0: raise the deprecation level to a warning

>= 1.9: delete the property

1206

https://youtrack.jetbrains.com/issue/KT-53748
https://youtrack.jetbrains.com/issue/KT-53357

Deprecate
confusing
grammar
in
when-with-subject

Prevent
implicit
coercions
between
different
numeric
types

Issues: KT-45508, KT-49017, KT-38078

Component: Core language

Incompatible change type: source

Short summary: Kotlin will report a compile error when an explicit or implicit super call is delegated to an abstract member of the superclass, even if
there's a default implementation in a super interface

Deprecation cycle:

1.5.20: introduce a warning when non-abstract classes that do not override all abstract members are used

1.7.0: report a warning if a super call, in fact, accesses an abstract member from a superclass

1.7.0: report an error in all affected cases if the -Xjvm-default=all or -Xjvm-default=all-compatibility compatibility modes are enabled; report an error in
the progressive mode

1.8.0: report an error in cases of declaring a concrete class with a non-overridden abstract method from the superclass, and super calls of Any
methods are overridden as abstract in the superclass

1.9.0: report an error in all affected cases, including explicit super calls to an abstract method from the super class

Issue: KT-48385

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 deprecated several confusing grammar constructs in when condition expressions

Deprecation cycle:

1.6.20: introduce a deprecation warning on the affected expressions

1.8.0: raise this warning to an error, -XXLanguage:-ProhibitConfusingSyntaxInWhenBranches can be used to temporarily revert to the pre-1.8 behavior

>= 1.9: repurpose some deprecated constructs for new language features

Issue: KT-48645

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin will avoid converting numeric values automatically to a primitive numeric type where only a downcast to that type is needed
semantically

Deprecation cycle:

< 1.5.30: the old behavior in all affected cases

1.5.30: fix the downcast behavior in generated property delegate accessors, -Xuse-old-backend can be used to temporarily revert to the pre-1.5.30 fix
behavior

>= 1.9: fix the downcast behavior in other affected cases

1207

https://youtrack.jetbrains.com/issue/KT-45508
https://youtrack.jetbrains.com/issue/KT-49017
https://youtrack.jetbrains.com/issue/KT-38078
https://youtrack.jetbrains.com/issue/KT-48385
https://youtrack.jetbrains.com/issue/KT-48645

Make
private
constructors
of
sealed
classes
really
private

Prohibit
using
operator
==
on
incompatible
numeric
types
in
builder
inference
context

Prohibit
if
without
else
and
non-exhaustive
when
in
right
hand
side
of
elvis
operator

Prohibit
upper
bound
violation
in
a
generic
type
alias
usage
(one
type
parameter
used
in
several
type
arguments
of
the
aliased
type)

Issue: KT-44866

Component: Core language

Incompatible change type: source

Short summary: after relaxing restrictions on where the inheritors of sealed classes could be declared in the project structure, the default visibility of
sealed class constructors became protected. However, until 1.8, Kotlin still allowed calling explicitly declared private constructors of sealed classes
outside those classes' scopes

Deprecation cycle:

1.6.20: report a warning (or an error in the progressive mode) when a private constructor of a sealed class is called outside that class

1.8.0: use default visibility rules for private constructors (a call to a private constructor can be resolved only if this call is inside the corresponding
class), the old behavior can be brought back temporarily by specifying the -XXLanguage:-UseConsistentRulesForPrivateConstructorsOfSealedClasses
compiler argument

Issue: KT-45508

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit using the operator == on incompatible numeric types, for example, Int and Long, in scopes of builder inference
lambda functions, the same way as it currently does in other contexts

Deprecation cycle:

1.6.20: report a warning (or an error in the progressive mode) when the operator == is used on incompatible numeric types

1.8.0: raise the warning to an error, -XXLanguage:-ProperEqualityChecksInBuilderInferenceCalls can be used to temporarily revert to the pre-1.8
behavior

Issue: KT-44705

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit using a non-exhaustive when or the if expression without an else branch on the right hand side of the Elvis operator
(?:). Previously, it was allowed if the Elvis operator's result was not used as an expression

Deprecation cycle:

1.6.20: report a warning (or an error in the progressive mode) on such non-exhaustive if and when expressions

1.8.0: raise this warning to an error,
-XXLanguage:-ProhibitNonExhaustiveIfInRhsOfElvis can be used to temporarily revert to the pre-1.8 behavior

1208

https://youtrack.jetbrains.com/issue/KT-44866
https://youtrack.jetbrains.com/issue/KT-45508
https://youtrack.jetbrains.com/issue/KT-44705

Prohibit
upper
bound
violation
in
a
generic
type
alias
usage
(a
type
parameter
used
in
a
generic
type
argument
of
a
type
argument
of
the
aliased
type)

Prohibit
using
a
type
parameter
declared
for
an
extension
property
inside
delegate

Forbid
@Synchronized
annotation
on
suspend
functions

Issues: KT-29168

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit using a type alias with type arguments that violate the upper bound restrictions of the corresponding type
parameters of the aliased type in case when one typealias type parameter is used in several type arguments of the aliased type, for example, typealias
Alias<T> = Base<T, T>

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) on usages of a type alias with type arguments violating upper bound constraints of the
corresponding type parameters of the aliased type

1.8.0: raise this warning to an error, -XXLanguage:-ReportMissingUpperBoundsViolatedErrorOnAbbreviationAtSupertypes can be used to temporarily
revert to the pre-1.8 behavior

Issue: KT-54066

Component: Core language

Incompatible change type: source

Short summary: Kotlin will prohibit using a type alias with type arguments that violate the upper bound restrictions of the corresponding type parameters
of the aliased type in case when the typealias type parameter is used as a generic type argument of a type argument of the aliased type, for example,
typealias Alias<T> = Base<List<T>>

Deprecation cycle:

1.8.0: report a warning when a generic typealias usage has type arguments violating upper bound constraints of the corresponding type parameters of
the aliased type

>=1.10: raise the warning to an error

Issue: KT-24643

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit delegating extension properties on a generic type to generic types that use the type parameter of the receiver in an
unsafe way

Deprecation cycle:

1.6.0: report a warning (or an error in the progressive mode) when delegating an extension property to a type that uses type parameters inferred from
the delegated property's type arguments in a particular way

1.8.0: raise the warning to an error, -XXLanguage:-ForbidUsingExtensionPropertyTypeParameterInDelegate can be used to temporarily revert to the
pre-1.8 behavior

1209

https://youtrack.jetbrains.com/issue/KT-29168
https://youtrack.jetbrains.com/issue/KT-54066
https://youtrack.jetbrains.com/issue/KT-24643

Prohibit
using
spread
operator
for
passing
arguments
to
non-vararg
parameters

Prohibit
null-safety
violation
in
lambdas
passed
to
functions
overloaded
by
lambda
return
type

Keep
nullability
when
approximating
local
types
in
public
signatures

Issue: KT-48516

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit placing the @Synchronized annotation on suspend functions because a suspending call should not be allowed to
happen inside a synchronized block

Deprecation cycle:

1.6.0: report a warning on suspend functions annotated with the @Synchronized annotation, the warning is reported as an error in the progressive
mode

1.8.0: raise the warning to an error, -XXLanguage:-SynchronizedSuspendError can be used to temporarily revert to the pre-1.8 behavior

Issue: KT-48162

Component: Core language

Incompatible change type: source

Short summary: Kotlin allowed passing arrays with the spread operator (*) to non-vararg array parameters in certain conditions. Since Kotlin 1.8, this will
be prohibited

Deprecation cycle:

1.6.0: report a warning (or an error in the progressive mode) on using the spread operator where a non-vararg array parameter is expected

1.8.0: raise the warning to an error, -XXLanguage:-ReportNonVarargSpreadOnGenericCalls can be used to temporarily revert to the pre-1.8 behavior

Issue: KT-49658

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.8 will prohibit returning null from lambdas passed to functions overloaded by those lambdas' return types when overloads don't
allow a nullable return type. Previously, it was allowed when null was returned from one of the branches of the when operator

Deprecation cycle:

1.6.20: report a type mismatch warning (or an error in the progressive mode)

1.8.0: raise the warning to an error, -XXLanguage:-DontLoseDiagnosticsDuringOverloadResolutionByReturnType can be used to temporarily revert to
the pre-1.8 behavior

1210

https://youtrack.jetbrains.com/issue/KT-48516
https://youtrack.jetbrains.com/issue/KT-48162
https://youtrack.jetbrains.com/issue/KT-49658

Do
not
propagate
deprecation
through
overrides

Prohibit
implicit
inferring
a
type
variable
into
an
upper
bound
in
the
builder
inference
context

Prohibit
using
collection
literals
in
annotation
classes
anywhere
except
their
parameters
declaration

Issue: KT-53982

Component: Core language

Incompatible change type: source, binary

Short summary: when a local or anonymous type is returned from an expression-body function without an explicitly specified return type, Kotlin compiler
infers (or approximates) the return type using the known supertype of that type. During this, the compiler can infer a non-nullable type where the null value
could in fact be returned

Deprecation cycle:

1.8.0: approximate flexible types by flexible supertypes

1.8.0: report a warning when a declaration is inferred to have a non-nullable type that should be nullable, prompting users to specify the type explicitly

1.9.0: approximate nullable types by nullable supertypes, -XXLanguage:-KeepNullabilityWhenApproximatingLocalType can be used to temporarily
revert to the pre-1.9 behavior

Issue: KT-47902

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will no longer propagate deprecation from a deprecated member in the superclass to its overriding member in the subclass,
thus providing an explicit mechanism for deprecating a member of the superclass while leaving it non-deprecated in the subclass

Deprecation cycle:

1.6.20: reporting a warning with the message of the future behavior change and a prompt to either suppress this warning or explicitly write a
@Deprecated annotation on an override of a deprecated member

1.9.0: stop propagating deprecation status to the overridden members. This change also takes effect immediately in the progressive mode

Issue: KT-47986

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit inferring a type variable into the corresponding type parameter's upper bound in the absence of any use-site type
information in the scope of builder inference lambda functions, the same way as it does currently in other contexts

Deprecation cycle:

1.7.20: report a warning (or an error in the progressive mode) when a type parameter is inferred into declared upper bounds in the absence of use-site
type information

1.9.0: raise the warning to an error, -XXLanguage:-ForbidInferringPostponedTypeVariableIntoDeclaredUpperBound can be used to temporarily revert
to the pre-1.9 behavior

1211

https://youtrack.jetbrains.com/issue/KT-53982
https://youtrack.jetbrains.com/issue/KT-47902
https://youtrack.jetbrains.com/issue/KT-47986

Prohibit
forward
referencing
of
parameters
with
default
values
in
default
value
expressions

Prohibit
extension
calls
on
inline
functional
parameters

Prohibit
calls
to
infix
functions
named
suspend
with
an
anonymous
function
argument

Issue: KT-39041

Component: Core language

Incompatible change type: source

Short summary: Kotlin allows using collection literals in a restricted way - for passing arrays to parameters of annotation classes or specifying default
values for these parameters. However besides that, Kotlin allowed using collections literals anywhere else inside an annotation class, for example, in its
nested object. Kotlin 1.9 will prohibit using collection literals in annotation classes anywhere except their parameters' default values.

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) on array literals in nested objects in annotation classes

1.9.0: raise the warning to an error

Issue: KT-25694

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit forward referencing of parameters with default values in default value expressions of other parameters. This
ensures that by the time the parameter is accessed in a default value expression, it would already have a value either passed to the function or initialized
by its own default value expression

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when a parameter with default value is references in default value of another parameter
that comes before it

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitIllegalValueParameterUsageInDefaultArguments can be used to temporarily revert to the
pre-1.9 behavior

Issue: KT-52502

Component: Core language

Incompatible change type: source

Short summary: while Kotlin allowed passing an inline functional parameter to another inline function as a receiver, it always resulted in compiler
exceptions when compiling such code. Kotlin 1.9 will prohibit this, thus reporting an error instead of crashing the compiler

Deprecation cycle:

1.7.20: report a warning (or an error in the progressive mode) for inline extension calls on inline functional parameters

1.9.0: raise the warning to an error

1212

https://youtrack.jetbrains.com/issue/KT-39041
https://youtrack.jetbrains.com/issue/KT-25694
https://youtrack.jetbrains.com/issue/KT-52502

Prohibit
using
captured
type
parameters
in
inner
classes
against
their
variance

Prohibit
recursive
call
of
a
function
without
explicit
return
type
in
compound
assignment
operators

Prohibit
unsound
calls
with
expected
@NotNull
T
and
given
Kotlin
generic
parameter
with
nullable
bound

Issue: KT-49264

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will no longer allow calling infix functions named suspend that have a single argument of a functional type passed as an
anonymous function literal

Deprecation cycle:

1.7.20: report a warning on suspend infix calls with an anonymous function literal

1.9.0: raise the warning to an error, -XXLanguage:-ModifierNonBuiltinSuspendFunError can be used to temporarily revert to the pre-1.9 behavior

>=1.10: Change how the suspend fun token sequence is interpreted by the parser

Issue: KT-50947

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit using type parameters of an outer class having in or out variance in an inner class of that class in positions
violating that type parameters' declared variance

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when an outer class' type parameter usage position violates the variance rules of that
parameter

1.9.0: raise the warning to an error, -XXLanguage:-ReportTypeVarianceConflictOnQualifierArguments can be used to temporarily revert to the pre-1.9
behavior

Issue: KT-48546

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit calling a function without explicitly specified return type in an argument of a compound assignment operator inside
that function's body, as it currently does in other expressions inside the body of that function

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) when a function without explicitly specified return type is called recursively in that
function's body in a compound assignment operator argument

1.9.0: raise the warning to an error

1213

https://youtrack.jetbrains.com/issue/KT-49264
https://youtrack.jetbrains.com/issue/KT-50947
https://youtrack.jetbrains.com/issue/KT-48546

Prohibit
access
to
members
of
a
companion
of
an
enum
class
from
entry
initializers
of
this
enum

Deprecate
and
remove
Enum.declaringClass
synthetic
property

Deprecate
the
enable
and
the
compatibility
modes
of
the
compiler
option
-Xjvm-default

Issue: KT-36770

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit method calls where a value of a potentially nullable generic type is passed for a @NotNull-annotated parameter of
a Java method

Deprecation cycle:

1.5.20: report a warning when an unconstrained generic type parameter is passed where a non-nullable type is expected

1.9.0: report a type mismatch error instead of the warning above,
-XXLanguage:-ProhibitUsingNullableTypeParameterAgainstNotNullAnnotated can be used to temporarily revert to the pre-1.8 behavior

Issue: KT-49110

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.9 will prohibit all kinds of access to the companion object of an enum from an enum entry initializer

Deprecation cycle:

1.6.20: report a warning (or an error in the progressive mode) on such companion member access

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitAccessToEnumCompanionMembersInEnumConstructorCall can be used to temporarily
revert to the pre-1.8 behavior

Issue: KT-49653

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin allowed using the synthetic property declaringClass on Enum values produced from the method getDeclaringClass() of the
underlying Java class java.lang.Enum even though this method is not available for Kotlin Enum type. Kotlin 1.9 will prohibit using this property, proposing
to migrate to the extension property declaringJavaClass instead

Deprecation cycle:

1.7.0: report a warning (or an error in the progressive mode) on declaringClass property usages, propose the migration to declaringJavaClass
extension

1.9.0: raise the warning to an error, -XXLanguage:-ProhibitEnumDeclaringClass can be used to temporarily revert to the pre-1.9 behavior

>=1.10: remove declaringClass synthetic property

1214

https://youtrack.jetbrains.com/issue/KT-36770
https://youtrack.jetbrains.com/issue/KT-49110
https://youtrack.jetbrains.com/issue/KT-49653

Standard
library

Warn
about
potential
overload
resolution
change
when
Range/Progression
starts
implementing
Collection

Migrate
declarations
from
kotlin.dom
and
kotlin.browser
packages
to
kotlinx.*

Issue: KT-46329

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6.20 warns about the usage of the enable and compatibility modes of the -Xjvm-default compiler option

Deprecation cycle:

1.6.20: introduce a warning on the enable and compatibility modes of the -Xjvm-default compiler option

>= 1.9: raise this warning to an error

Issue: KT-49276

Component: Core language / kotlin-stdlib

Incompatible change type: source

Short summary: it is planned to implement the Collection interface in the standard progressions and concrete ranges inherited from them in Kotlin 1.9.
This could make a different overload selected in the overload resolution if there are two overloads of some method, one accepting an element and
another accepting a collection. Kotlin will make this situation visible by reporting a warning or an error when such overloaded method is called with a
range or progression argument

Deprecation cycle:

1.6.20: report a warning when an overloaded method is called with the standard progression or its range inheritor as an argument if implementing the
Collection interface by this progression/range leads to another overload being selected in this call in future

1.8.0: raise this warning to an error

1.9.0: stop reporting the error, implement Collection interface in progressions thus changing the overload resolution result in the affected cases

Issue: KT-39330

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: declarations from the kotlin.dom and kotlin.browser packages are moved to the corresponding kotlinx.* packages to prepare for
extracting them from stdlib

Deprecation cycle:

1.4.0: introduce the replacement API in kotlinx.dom and kotlinx.browser packages

1.4.0: deprecate the API in kotlin.dom and kotlin.browser packages and propose the new API above as a replacement

1.6.0: raise the deprecation level to an error

1.8.20: remove the deprecated functions from stdlib for JS-IR target

>= 1.9: move the API in kotlinx.* packages to a separate library

1215

https://youtrack.jetbrains.com/issue/KT-46329
https://youtrack.jetbrains.com/issue/KT-49276
https://youtrack.jetbrains.com/issue/KT-39330

Deprecate
some
JS-only
API

Tools

Raise
deprecation
level
of
classpath
property
of
KotlinCompile
task

Remove
kapt.use.worker.api
Gradle
property

Remove
kotlin.compiler.execution.strategy
system
property

Issue: KT-48587

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: a number of JS-only functions in stdlib are deprecated for removal. They include: String.concat(String), String.match(regex: String),
String.matches(regex: String), and the sort functions on arrays taking a comparison function, for example, Array<out T>.sort(comparison: (a: T, b: T) -> Int)

Deprecation cycle:

1.6.0: deprecate the affected functions with a warning

1.9.0: raise the deprecation level to an error

>=1.10.0: remove the deprecated functions from the public API

Issue: KT-51679

Component: Gradle

Incompatible change type: source

Short summary: the classpath property of the KotlinCompile task is deprecated

Deprecation cycle:

1.7.0: the classpath property is deprecated

1.8.0: raise the deprecation level to an error

>=1.9.0: remove the deprecated functions from the public API

Issue: KT-48827

Component: Gradle

Incompatible change type: behavioral

Short summary: remove the kapt.use.worker.api property that allowed to run kapt via Gradle Workers API (default: true)

Deprecation cycle:

1.6.20: raise the deprecation level to a warning

1.8.0: remove this property

1216

https://youtrack.jetbrains.com/issue/KT-48587
https://youtrack.jetbrains.com/issue/KT-51679
https://youtrack.jetbrains.com/issue/KT-48827

Changes
in
compiler
options

Deprecate
kotlin.internal.single.build.metrics.file
property

Compatibility
guide
for
Kotlin
1.7.20
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

Usually incompatible changes happen only in feature releases, but this time we have to introduce two such changes in an incremental release to limit spread of the

Issue: KT-51831

Component: Gradle

Incompatible change type: behavioral

Short summary: remove the kotlin.compiler.execution.strategy system property used to choose a compiler execution strategy. Use the Gradle property
kotlin.compiler.execution.strategy or the compile task property compilerExecutionStrategy instead

Deprecation cycle:

1.7.0: raise the deprecation level to a warning

1.8.0: remove the property

Issues: KT-27301, KT-48532

Component: Gradle

Incompatible change type: source, binary

Short summary: this change might affect Gradle plugins authors. In kotlin-gradle-plugin, there are additional generic parameters to some internal types
(you should add generic types or *). KotlinNativeLink task does not inherit the AbstractKotlinNativeCompile task anymore.
KotlinJsCompilerOptions.outputFile and the related KotlinJsOptions.outputFile options are deprecated. Use the Kotlin2JsCompile.outputFileProperty task
input instead. The kotlinOptions task input and the kotlinOptions{...} task DSL are in a support mode and will be deprecated in upcoming releases.
compilerOptions and kotlinOptions can not be changed on a task execution phase (see one exception in What's new in Kotlin 1.8). freeCompilerArgs
returns an immutable List<String> – kotlinOptions.freeCompilerArgs.remove("something") will fail. The useOldBackend property that allowed to use the
old JVM backend is removed

Deprecation cycle:

1.8.0: KotlinNativeLink task does not inherit the AbstractKotlinNativeCompile. KotlinJsCompilerOptions.outputFile and the related
KotlinJsOptions.outputFile options are deprecated. The useOldBackend property that allowed to use the old JVM backend is removed.

Issue: KT-53357

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kotlin.internal.single.build.metrics.file property used to define a single file for build reports. Use the property
kotlin.build.report.single_file instead with kotlin.build.report.output=single_file

Deprecation cycle:

1.8.0: raise the deprecation level to a warning >= 1.9: delete the property

1217

https://youtrack.jetbrains.com/issue/KT-51831
https://youtrack.jetbrains.com/issue/KT-27301
https://youtrack.jetbrains.com/issue/KT-48532
https://youtrack.jetbrains.com/issue/KT-53357

problems introduced by changes in Kotlin 1.7.

This document summarizes them, providing a reference for migration from Kotlin 1.7.0 and 1.7.10 to Kotlin 1.7.20.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language

Rollback
attempt
to
fix
proper
constraints
processing

Forbid
some
builder
inference
cases
to
avoid
problematic
interaction
with
multiple
lambdas
and
resolution

Compatibility
guide
for
Kotlin
1.7
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which

Issue: KT-53813

Component: Core language

Incompatible change type: source

Short summary: Rollback an attempt of fixing issues in type inference constraints processing appeared in 1.7.0 after implementing the change described
in KT-52668. The attempt was made in 1.7.10, but it in turn introduced new problems.

Deprecation cycle:

1.7.20: Rollback to 1.7.0 behavior

Issue: KT-53797

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.7 introduced a feature called unrestricted builder inference, so that even the lambdas passed to parameters not annotated with
@BuilderInference could benefit from the builder inference. However, that could cause several problems if more than one such lambda occurred in a
function invocation.

Kotlin 1.7.20 will report an error if more than one lambda function having the corresponding parameter not annotated with @BuilderInference requires
using builder inference to complete inferring the types in the lambda.

Deprecation cycle:

1.7.20: report an error on such lambda functions,
-XXLanguage:+NoBuilderInferenceWithoutAnnotationRestriction can be used to temporarily revert to the pre-1.7.20 behavior

1218

https://youtrack.jetbrains.com/issue/KT-53813
https://youtrack.jetbrains.com/issue/KT-52668
https://youtrack.jetbrains.com/issue/KT-53797

obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.6 to Kotlin 1.7.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language

Make
safe
call
result
always
nullable

Prohibit
the
delegation
of
super
calls
to
an
abstract
superclass
member

Issue: KT-46860

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.7 will consider the type of safe call result always nullable, even when the receiver of the safe call is non-nullable

Deprecation cycle:

<1.3: report a warning on an unnecessary safe call on non-nullable receivers

1.6.20: warn additionally that the result of an unnecessary safe call will change its type in the next version

1.7.0: change the type of safe call result to nullable,
-XXLanguage:-SafeCallsAreAlwaysNullable can be used to temporarily revert to the pre-1.7 behavior

1219

https://youtrack.jetbrains.com/issue/KT-46860

Prohibit
exposing
non-public
types
through
public
properties
declared
in
a
non-public
primary
constructor

Prohibit
access
to
uninitialized
enum
entries
qualified
with
the
enum
name

Prohibit
computing
constant
values
of
complex
boolean
expressions
in
when
condition
branches
and
conditions
of
loops

Issues: KT-45508, KT-49017, KT-38078

Component: Core language

Incompatible change type: source

Short summary: Kotlin will report a compile error when an explicit or implicit super call is delegated to an abstract member of the superclass, even if
there's a default implementation in a super interface

Deprecation cycle:

1.5.20: introduce a warning when non-abstract classes that do not override all abstract members are used

1.7.0: report an error if a super call, in fact, accesses an abstract member from a superclass

1.7.0: report an error if the -Xjvm-default=all or -Xjvm-default=all-compatibility compatibility modes are enabled; report an error in the progressive
mode

>=1.8.0: report an error in all cases

Issue: KT-28078

Component: Core language

Incompatible change type: source

Short summary: Kotlin will prevent declaring public properties having non-public types in a private primary constructor. Accessing such properties from
another package could lead to an IllegalAccessError

Deprecation cycle:

1.3.20: report a warning on a public property that has a non-public type and is declared in a non-public constructor

1.6.20: raise this warning to an error in the progressive mode

1.7.0: raise this warning to an error

Issue: KT-41124

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.7 will prohibit access to uninitialized enum entries from the enum static initializer block when these entries are qualified with the
enum name

Deprecation cycle:

1.7.0: report an error when uninitialized enum entries are accessed from the enum static initializer block

1220

https://youtrack.jetbrains.com/issue/KT-45508
https://youtrack.jetbrains.com/issue/KT-49017
https://youtrack.jetbrains.com/issue/KT-38078
https://youtrack.jetbrains.com/issue/KT-28078
https://youtrack.jetbrains.com/issue/KT-41124

Make
when
statements
with
enum,
sealed,
and
Boolean
subjects
exhaustive
by
default

Deprecate
confusing
grammar
in
when-with-subject

Type
nullability
enhancement
improvements

Issue: KT-39883

Component: Core language

Incompatible change type: source

Short summary: Kotlin will no longer make exhaustiveness and control flow assumptions based on constant boolean expressions other than literal true
and false

Deprecation cycle:

1.5.30: report a warning when exhaustiveness of when or control flow reachability is determined based on a complex constant boolean expression in
when branch or loop condition

1.7.0: raise this warning to an error

Issue: KT-47709

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.7 will report an error about the when statement with an enum, sealed, or Boolean subject being non-exhaustive

Deprecation cycle:

1.6.0: introduce a warning when the when statement with an enum, sealed, or Boolean subject is non-exhaustive (error in the progressive mode)

1.7.0: raise this warning to an error

Issue: KT-48385

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 deprecated several confusing grammar constructs in when condition expressions

Deprecation cycle:

1.6.20: introduce a deprecation warning on the affected expressions

1.8.0: raise this warning to an error

>= 1.8: repurpose some deprecated constructs for new language features

1221

https://youtrack.jetbrains.com/issue/KT-39883
https://youtrack.jetbrains.com/issue/KT-47709
https://youtrack.jetbrains.com/issue/KT-48385

Prevent
implicit
coercions
between
different
numeric
types

Deprecate
the
enable
and
the
compatibility
modes
of
the
compiler
option
-Xjvm-default

Prohibit
calls
to
functions
named
suspend
with
a
trailing
lambda

Issue: KT-48623

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.7 will change how it loads and interprets type nullability annotations in Java code

Deprecation cycle:

1.4.30: introduce warnings for cases where more precise type nullability could lead to an error

1.7.0: infer more precise nullability of Java types, -XXLanguage:-TypeEnhancementImprovementsInStrictMode can be used to temporarily revert to the
pre-1.7 behavior

Issue: KT-48645

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin will avoid converting numeric values automatically to a primitive numeric type where only a downcast to that type was needed
semantically

Deprecation cycle:

< 1.5.30: the old behavior in all affected cases

1.5.30: fix the downcast behavior in generated property delegate accessors, -Xuse-old-backend can be used to temporarily revert to the pre-1.5.30 fix
behavior

>= 1.7.20: fix the downcast behavior in other affected cases

Issue: KT-46329

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6.20 warns about the usage of enable and compatibility modes of the -Xjvm-default compiler option

Deprecation cycle:

1.6.20: introduce a warning on the enable and compatibility modes of the -Xjvm-default compiler option

>= 1.8.0: raise this warning to an error

1222

https://youtrack.jetbrains.com/issue/KT-48623
https://youtrack.jetbrains.com/issue/KT-48645
https://youtrack.jetbrains.com/issue/KT-46329

Prohibit
smart
cast
on
a
base
class
property
if
the
base
class
is
from
another
module

Do
not
neglect
meaningful
constraints
during
type
inference

Standard
library

Gradually
change
the
return
type
of
collection
min
and
max
functions
to
non-nullable

Issue: KT-22562

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 no longer allows calling user functions named suspend that have the single argument of a functional type passed as a trailing
lambda

Deprecation cycle:

1.3.0: introduce a warning on such function calls

1.6.0: raise this warning to an error

1.7.0: introduce changes to the language grammar so that suspend before { is parsed as a keyword

Issue: KT-52629

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.7 will no longer allow smart casts on properties of a superclass if that class is located in another module

Deprecation cycle:

1.6.0: report a warning on a smart cast on a property declared in the superclass located in another module

1.7.0: raise this warning to an error,
-XXLanguage:-ProhibitSmartcastsOnPropertyFromAlienBaseClass can be used to temporarily revert to the pre-1.7 behavior

Issue: KT-52668

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.4−1.6 neglected some type constraints during type inference due to an incorrect optimization. It could allow writing unsound
code, causing ClassCastException at runtime. Kotlin 1.7 takes these constraints into account, thus prohibiting the unsound code

Deprecation cycle:

1.5.20: report a warning on expressions where a type mismatch would happen if all the type inference constraints were taken into account

1.7.0: take all the constraints into account, thus raising this warning to an error,
-XXLanguage:-ProperTypeInferenceConstraintsProcessing can be used to temporarily revert to the pre-1.7 behavior

1223

https://youtrack.jetbrains.com/issue/KT-22562
https://youtrack.jetbrains.com/issue/KT-52629
https://youtrack.jetbrains.com/issue/KT-52668

Deprecate
floating-point
array
functions:
contains,
indexOf,
lastIndexOf

Migrate
declarations
from
kotlin.dom
and
kotlin.browser
packages
to
kotlinx.*

Deprecate
some
JS-only
API

Issue: KT-38854

Component: kotlin-stdlib

Incompatible change type: source

Short summary: the return type of collection min and max functions will be changed to non-nullable in Kotlin 1.7

Deprecation cycle:

1.4.0: introduce ...OrNull functions as synonyms and deprecate the affected API (see details in the issue)

1.5.0: raise the deprecation level of the affected API to an error

1.6.0: hide the deprecated functions from the public API

1.7.0: reintroduce the affected API but with non-nullable return type

Issue: KT-28753

Component: kotlin-stdlib

Incompatible change type: source

Short summary: Kotlin deprecates floating-point array functions contains, indexOf, lastIndexOf that compare values using the IEEE-754 order instead of
the total order

Deprecation cycle:

1.4.0: deprecate the affected functions with a warning

1.6.0: raise the deprecation level to an error

1.7.0: hide the deprecated functions from the public API

Issue: KT-39330

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: declarations from the kotlin.dom and kotlin.browser packages are moved to the corresponding kotlinx.* packages to prepare for
extracting them from stdlib

Deprecation cycle:

1.4.0: introduce the replacement API in kotlinx.dom and kotlinx.browser packages

1.4.0: deprecate the API in kotlin.dom and kotlin.browser packages and propose the new API above as a replacement

1.6.0: raise the deprecation level to an error

>= 1.8: remove the deprecated functions from stdlib

>= 1.8: move the API in kotlinx.* packages to a separate library

1224

https://youtrack.jetbrains.com/issue/KT-38854
https://youtrack.jetbrains.com/issue/KT-28753
https://youtrack.jetbrains.com/issue/KT-39330

Tools

Remove
KotlinGradleSubplugin
class

Remove
useIR
compiler
option

Deprecate
kapt.use.worker.api
Gradle
property

Issue: KT-48587

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: a number of JS-only functions in stdlib are deprecated for removal. They include: String.concat(String), String.match(regex: String),
String.matches(regex: String), and the sort functions on arrays taking a comparison function, for example, Array<out T>.sort(comparison: (a: T, b: T) -> Int)

Deprecation cycle:

1.6.0: deprecate the affected functions with a warning

1.8.0: raise the deprecation level to an error

1.9.0: remove the deprecated functions from the public API

Issue: KT-48831

Component: Gradle

Incompatible change type: source

Short summary: remove the KotlinGradleSubplugin class. Use the KotlinCompilerPluginSupportPlugin class instead

Deprecation cycle:

1.6.0: raise the deprecation level to an error

1.7.0: remove the deprecated class

Issue: KT-48847

Component: Gradle

Incompatible change type: source

Short summary: remove the deprecated and hidden useIR compiler option

Deprecation cycle:

1.5.0: raise the deprecation level to a warning

1.6.0: hide the option

1.7.0: remove the deprecated option

1225

https://youtrack.jetbrains.com/issue/KT-48587
https://youtrack.jetbrains.com/issue/KT-48831
https://youtrack.jetbrains.com/issue/KT-48847

Remove
kotlin.experimental.coroutines
Gradle
DSL
option
and
kotlin.coroutines
Gradle
property

Deprecate
useExperimentalAnnotation
compiler
option

Deprecate
kotlin.compiler.execution.strategy
system
property

Issue: KT-48826

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kapt.use.worker.api property that allowed to run kapt via Gradle Workers API (default: true)

Deprecation cycle:

1.6.20: raise the deprecation level to a warning

>= 1.8.0: remove this property

Issue: KT-50494

Component: Gradle

Incompatible change type: source

Short summary: remove the kotlin.experimental.coroutines Gradle DSL option and the kotlin.coroutines property

Deprecation cycle:

1.6.20: raise the deprecation level to a warning

1.7.0: remove the DSL option, its enclosing experimental block, and the property

Issue: KT-47763

Component: Gradle

Incompatible change type: source

Short summary: remove the hidden useExperimentalAnnotation() Gradle function used to opt in to using an API in a module. optIn() function can be used
instead

Deprecation cycle:

1.6.0: hide the deprecation option

1.7.0: remove the deprecated option

1226

https://youtrack.jetbrains.com/issue/KT-48826
https://youtrack.jetbrains.com/issue/KT-50494
https://youtrack.jetbrains.com/issue/KT-47763

Remove
kotlinOptions.jdkHome
compiler
option

Remove
noStdlib
compiler
option

Remove
kotlin2js
and
kotlin-dce-plugin
plugins

Issue: KT-51830

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kotlin.compiler.execution.strategy system property used to choose a compiler execution strategy. Use the Gradle property
kotlin.compiler.execution.strategy or the compile task property compilerExecutionStrategy instead

Deprecation cycle:

1.7.0: raise the deprecation level to a warning

> 1.7.0: remove the property

Issue: KT-46541

Component: Gradle

Incompatible change type: source

Short summary: remove the kotlinOptions.jdkHome compiler option used to include a custom JDK from the specified location into the classpath instead
of the default JAVA_HOME. Use Java toolchains instead

Deprecation cycle:

1.5.30: raise the deprecation level to a warning

> 1.7.0: remove the option

Issue: KT-49011

Component: Gradle

Incompatible change type: source

Short summary: remove the noStdlib compiler option. The Gradle plugin uses the kotlin.stdlib.default.dependency=true property to control whether the
Kotlin standard library is present

Deprecation cycle:

1.5.0: raise the deprecation level to a warning

1.7.0: remove the option

1227

https://youtrack.jetbrains.com/issue/KT-51830
https://youtrack.jetbrains.com/issue/KT-46541
https://youtrack.jetbrains.com/issue/KT-49011

Changes
in
compile
tasks

Compatibility
guide
for
Kotlin
1.6
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.5 to Kotlin 1.6.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language

Issue: KT-48276

Component: Gradle

Incompatible change type: source

Short summary: remove the kotlin2js and kotlin-dce-plugin plugins. Instead of kotlin2js, use the new org.jetbrains.kotlin.js plugin. Dead code elimination
(DCE) works when the Kotlin/JS Gradle plugin is properly configured

Deprecation cycle:

1.4.0: raise the deprecation level to a warning

1.7.0: remove the plugins

Issue: KT-32805

Component: Gradle

Incompatible change type: source

Short summary: Kotlin compile tasks no longer inherit the Gradle AbstractCompile task and that's why the sourceCompatibility and targetCompatibility
inputs are no longer available in Kotlin users' scripts. The SourceTask.stableSources input is no longer available. The sourceFilesExtensions input was
removed. The deprecated Gradle destinationDir: File output was replaced with the destinationDirectory: DirectoryProperty output. The classpath property
of the KotlinCompile task is deprecated

Deprecation cycle:

1.7.0: inputs are not available, the output is replaced, the classpath property is deprecated

1228

https://youtrack.jetbrains.com/issue/KT-48276
http://javascript-dce.md
https://youtrack.jetbrains.com/issue/KT-32805

Make
when
statements
with
enum,
sealed,
and
Boolean
subjects
exhaustive
by
default

Deprecate
confusing
grammar
in
when-with-subject

Prohibit
access
to
class
members
in
the
super
constructor
call
of
its
companion
and
nested
objects

Type
nullability
enhancement
improvements

Issue: KT-47709

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will warn about the when statement with an enum, sealed, or Boolean subject being non-exhaustive

Deprecation cycle:

1.6.0: introduce a warning when the when statement with an enum, sealed, or Boolean subject is non-exhaustive (error in the progressive mode)

1.7.0: raise this warning to an error

Issue: KT-48385

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will deprecate several confusing grammar constructs in when condition expressions

Deprecation cycle:

1.6.20: introduce a deprecation warning on the affected expressions

1.8.0: raise this warning to an error

>= 1.8: repurpose some deprecated constructs for new language features

Issue: KT-25289

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will report an error for arguments of super constructor call of companion and regular objects if the receiver of such arguments
refers to the containing declaration

Deprecation cycle:

1.5.20: introduce a warning on the problematic arguments

1.6.0: raise this warning to an error, -XXLanguage:-ProhibitSelfCallsInNestedObjects can be used to temporarily revert to the pre-1.6 behavior

1229

https://youtrack.jetbrains.com/issue/KT-47709
https://youtrack.jetbrains.com/issue/KT-48385
https://youtrack.jetbrains.com/issue/KT-25289

Prevent
implicit
coercions
between
different
numeric
types

Prohibit
declarations
of
repeatable
annotation
classes
whose
container
annotation
violates
JLS

Prohibit
declaring
a
nested
class
named
Container
in
a
repeatable
annotation
class

Issue: KT-48623

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.7 will change how it loads and interprets type nullability annotations in Java code

Deprecation cycle:

1.4.30: introduce warnings for cases where more precise type nullability could lead to an error

1.7.0: infer more precise nullability of Java types, -XXLanguage:-TypeEnhancementImprovementsInStrictMode can be used to temporarily revert to the
pre-1.7 behavior

Issue: KT-48645

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin will avoid converting numeric values automatically to a primitive numeric type where only a downcast to that type was needed
semantically

Deprecation cycle:

< 1.5.30: the old behavior in all affected cases

1.5.30: fix the downcast behavior in generated property delegate accessors, -Xuse-old-backend can be used to temporarily revert to the pre-1.5.30 fix
behavior

>= 1.6.20: fix the downcast behavior in other affected cases

Issue: KT-47928

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6 will check that the container annotation of a repeatable annotation satisfies the same requirements as in JLS 9.6.3: array-typed
value method, retention, and target

Deprecation cycle:

1.5.30: introduce a warning on repeatable container annotation declarations violating JLS requirements (error in the progressive mode)

1.6.0: raise this warning to an error, -XXLanguage:-RepeatableAnnotationContainerConstraints can be used to temporarily disable the error reporting

1230

https://youtrack.jetbrains.com/issue/KT-48623
https://youtrack.jetbrains.com/issue/KT-48645
https://youtrack.jetbrains.com/issue/KT-47928
https://docs.oracle.com/javase/specs/jls/se16/html/jls-9.html#jls-9.6.3

Prohibit
@JvmField
on
a
property
in
the
primary
constructor
that
overrides
an
interface
property

Deprecate
the
enable
and
the
compatibility
modes
of
the
compiler
option
-Xjvm-default

Prohibit
super
calls
from
public-abi
inline
functions

Issue: KT-47971

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6 will check that a repeatable annotation declared in Kotlin doesn't have a nested class with the predefined name Container

Deprecation cycle:

1.5.30: introduce a warning on nested classes with the name Container in a Kotlin-repeatable annotation class (error in the progressive mode)

1.6.0: raise this warning to an error, -XXLanguage:-RepeatableAnnotationContainerConstraints can be used to temporarily disable the error reporting

Issue: KT-32753

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6 will outlaw annotating a property declared in the primary constructor that overrides an interface property with the @JvmField
annotation

Deprecation cycle:

1.5.20: introduce a warning on the @JvmField annotation on such properties in the primary constructor

1.6.0: raise this warning to an error, -XXLanguage:-ProhibitJvmFieldOnOverrideFromInterfaceInPrimaryConstructor can be used to temporarily disable
the error reporting

Issue: KT-46329

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.6.20 will warn about the usage of enable and compatibility modes of the -Xjvm-default compiler option

Deprecation cycle:

1.6.20: introduce a warning on the enable and compatibility modes of the -Xjvm-default compiler option

>= 1.8.0: raise this warning to an error

1231

https://youtrack.jetbrains.com/issue/KT-47971
https://youtrack.jetbrains.com/issue/KT-32753
https://youtrack.jetbrains.com/issue/KT-46329

Prohibit
protected
constructor
calls
from
public
inline
functions

Prohibit
exposing
private
nested
types
from
private-in-file
types

Annotation
target
is
not
analyzed
in
several
cases
for
annotations
on
a
type

Issue: KT-45379

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will outlaw calling functions with a super qualifier from public or protected inline functions and properties

Deprecation cycle:

1.5.0: introduce a warning on super calls from public or protected inline functions or property accessors

1.6.0: raise this warning to an error, -XXLanguage:-ProhibitSuperCallsFromPublicInline can be used to temporarily disable the error reporting

Issue: KT-48860

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will outlaw calling protected constructors from public or protected inline functions and properties

Deprecation cycle:

1.4.30: introduce a warning on protected constructor calls from public or protected inline functions or property accessors

1.6.0: raise this warning to an error, -XXLanguage:-ProhibitProtectedConstructorCallFromPublicInline can be used to temporarily disable the error
reporting

Issue: KT-20094

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will outlaw exposing private nested types and inner classes from private-in-file types

Deprecation cycle:

1.5.0: introduce a warning on private types exposed from private-in-file types

1.6.0: raise this warning to an error, -XXLanguage:-PrivateInFileEffectiveVisibility can be used to temporarily disable the error reporting

1232

https://youtrack.jetbrains.com/issue/KT-45379
https://youtrack.jetbrains.com/issue/KT-48860
https://youtrack.jetbrains.com/issue/KT-20094

Prohibit
calls
to
functions
named
suspend
with
a
trailing
lambda

Standard
library

Remove
brittle
contains
optimization
in
minus/removeAll/retainAll

Change
value
generation
algorithm
in
Random.nextLong

Issue: KT-28449

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will no longer allow annotations on types that should not be applicable to types

Deprecation cycle:

1.5.20: introduce an error in the progressive mode

1.6.0: introduce an error, -XXLanguage:-ProperCheckAnnotationsTargetInTypeUsePositions can be used to temporarily disable the error reporting

Issue: KT-22562

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.6 will no longer allow calling functions named suspend that have the single argument of a functional type passed as a trailing
lambda

Deprecation cycle:

1.3.0: introduce a warning on such function calls

1.6.0: raise this warning to an error

>= 1.7.0: introduce changes to the language grammar, so that suspend before { is parsed as a keyword

Issue: KT-45438

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: Kotlin 1.6 will no longer perform conversion to set for the argument of functions and operators that remove several elements from
collection/iterable/array/sequence.

Deprecation cycle:

< 1.6: the old behavior: the argument is converted to set in some cases

1.6.0: if the function argument is a collection, it's no longer converted to Set. If it's not a collection, it can be converted to List instead.
The old behavior can be temporarily turned back on JVM by setting the system property kotlin.collections.convert_arg_to_set_in_removeAll=true

>= 1.7: the system property above will no longer have an effect

1233

https://youtrack.jetbrains.com/issue/KT-28449
https://youtrack.jetbrains.com/issue/KT-22562
https://youtrack.jetbrains.com/issue/KT-45438

Gradually
change
the
return
type
of
collection
min
and
max
functions
to
non-nullable

Deprecate
floating-point
array
functions:
contains,
indexOf,
lastIndexOf

Migrate
declarations
from
kotlin.dom
and
kotlin.browser
packages
to
kotlinx.*

Issue: KT-47304

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: Kotlin 1.6 changes the value generation algorithm in the Random.nextLong function to avoid producing values out of the specified range.

Deprecation cycle:

1.6.0: the behavior is fixed immediately

Issue: KT-38854

Component: kotlin-stdlib

Incompatible change type: source

Short summary: the return type of collection min and max functions will be changed to non-nullable in Kotlin 1.7

Deprecation cycle:

1.4.0: introduce ...OrNull functions as synonyms and deprecate the affected API (see details in the issue)

1.5.0: raise the deprecation level of the affected API to an error

1.6.0: hide the deprecated functions from the public API

>= 1.7: reintroduce the affected API but with non-nullable return type

Issue: KT-28753

Component: kotlin-stdlib

Incompatible change type: source

Short summary: Kotlin deprecates floating-point array functions contains, indexOf, lastIndexOf that compare values using the IEEE-754 order instead of
the total order

Deprecation cycle:

1.4.0: deprecate the affected functions with a warning

1.6.0: raise the deprecation level to an error

>= 1.7: hide the deprecated functions from the public API

1234

https://youtrack.jetbrains.com/issue/KT-47304
https://youtrack.jetbrains.com/issue/KT-38854
https://youtrack.jetbrains.com/issue/KT-28753

Make
Regex.replace
function
not
inline
in
Kotlin/JS

Different
behavior
of
the
Regex.replace
function
in
JVM
and
JS
when
replacement
string
contains
group
reference

Use
the
Unicode
case
folding
in
JS
Regex

Issue: KT-39330

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: declarations from the kotlin.dom and kotlin.browser packages are moved to the corresponding kotlinx.* packages to prepare for
extracting them from stdlib

Deprecation cycle:

1.4.0: introduce the replacement API in kotlinx.dom and kotlinx.browser packages

1.4.0: deprecate the API in kotlin.dom and kotlin.browser packages and propose the new API above as a replacement

1.6.0: raise the deprecation level to an error

>= 1.7: remove the deprecated functions from stdlib

>= 1.7: move the API in kotlinx.* packages to a separate library

Issue: KT-27738

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: the Regex.replace function with the functional transform parameter will no longer be inline in Kotlin/JS

Deprecation cycle:

1.6.0: remove the inline modifier from the affected function

Issue: KT-28378

Component: kotlin-stdlib (JS)

Incompatible change type: behavioral

Short summary: the function Regex.replace in Kotlin/JS with the replacement pattern string will follow the same syntax of that pattern as in Kotlin/JVM

Deprecation cycle:

1.6.0: change the replacement pattern handling in Regex.replace of the Kotlin/JS stdlib

1235

https://youtrack.jetbrains.com/issue/KT-39330
https://youtrack.jetbrains.com/issue/KT-27738
https://youtrack.jetbrains.com/issue/KT-28378

Deprecate
some
JS-only
API

Hide
implementation-
and
interop-specific
functions
from
the
public
API
of
classes
in
Kotlin/JS

Tools

Deprecate
KotlinGradleSubplugin
class

Issue: KT-45928

Component: kotlin-stdlib (JS)

Incompatible change type: behavioral

Short summary: the Regex class in Kotlin/JS will use unicode flag when calling the underlying JS Regular expressions engine to search and compare
characters according to the Unicode rules. This brings certain version requirements of the JS environment and causes more strict validation of
unnecessary escaping in the regex pattern string.

Deprecation cycle:

1.5.0: enable the Unicode case folding in most functions of the JS Regex class

1.6.0: enable the Unicode case folding in the Regex.replaceFirst function

Issue: KT-48587

Component: kotlin-stdlib (JS)

Incompatible change type: source

Short summary: a number of JS-only functions in stdlib are deprecated for removal. They include: String.concat(String), String.match(regex: String),
String.matches(regex: String), and the sort functions on arrays taking a comparison function, for example, Array<out T>.sort(comparison: (a: T, b: T) -> Int)

Deprecation cycle:

1.6.0: deprecate the affected functions with a warning

1.7.0: raise the deprecation level to an error

1.8.0: remove the deprecated functions from the public API

Issue: KT-48587

Component: kotlin-stdlib (JS)

Incompatible change type: source, binary

Short summary: the functions HashMap.createEntrySet and AbstactMutableCollection.toJSON change their visibility to internal

Deprecation cycle:

1.6.0: make the functions internal, thus removing them from the public API

1236

https://youtrack.jetbrains.com/issue/KT-45928
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp/unicode
https://youtrack.jetbrains.com/issue/KT-48587
https://youtrack.jetbrains.com/issue/KT-48587

Remove
kotlin.useFallbackCompilerSearch
build
option

Remove
several
compiler
options

Deprecate
useIR
compiler
option

Issue: KT-48830

Component: Gradle

Incompatible change type: source

Short summary: the class KotlinGradleSubplugin will be deprecated in favor of KotlinCompilerPluginSupportPlugin

Deprecation cycle:

1.6.0: raise the deprecation level to an error

>= 1.7.0: remove the deprecated class

Issue: KT-46719

Component: Gradle

Incompatible change type: source

Short summary: remove the deprecated 'kotlin.useFallbackCompilerSearch' build option

Deprecation cycle:

1.5.0: raise the deprecation level to a warning

1.6.0: remove the deprecated option

Issue: KT-48847

Component: Gradle

Incompatible change type: source

Short summary: remove the deprecated noReflect and includeRuntime compiler options

Deprecation cycle:

1.5.0: raise the deprecation level to an error

1.6.0: remove the deprecated options

1237

https://youtrack.jetbrains.com/issue/KT-48830
https://youtrack.jetbrains.com/issue/KT-46719
https://youtrack.jetbrains.com/issue/KT-48847

Deprecate
kapt.use.worker.api
Gradle
property

Remove
kotlin.parallel.tasks.in.project
Gradle
property

Deprecate
kotlin.experimental.coroutines
Gradle
DSL
option
and
kotlin.coroutines
Gradle
property

Issue: KT-48847

Component: Gradle

Incompatible change type: source

Short summary: hide the deprecated useIR compiler option

Deprecation cycle:

1.5.0: raise the deprecation level to a warning

1.6.0: hide the option

>= 1.7.0: remove the deprecated option

Issue: KT-48826

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kapt.use.worker.api property that allowed to run kapt via Gradle Workers API (default: true)

Deprecation cycle:

1.6.20: raise the deprecation level to a warning

>= 1.8.0: remove this property

Issue: KT-46406

Component: Gradle

Incompatible change type: source

Short summary: remove the kotlin.parallel.tasks.in.project property

Deprecation cycle:

1.5.20: raise the deprecation level to a warning

1.6.20: remove this property

1238

https://youtrack.jetbrains.com/issue/KT-48847
https://youtrack.jetbrains.com/issue/KT-48826
https://youtrack.jetbrains.com/issue/KT-46406

Compatibility
guide
for
Kotlin
1.5
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.4 to Kotlin 1.5.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language
and
stdlib

Forbid
spread
operator
in
signature-polymorphic
calls

Forbid
non-abstract
classes
containing
abstract
members
invisible
from
that
classes
(internal/package-private)

Issue: KT-50369

Component: Gradle

Incompatible change type: source

Short summary: deprecate the kotlin.experimental.coroutines Gradle DSL option and the kotlin.coroutines property

Deprecation cycle:

1.6.20: raise the deprecation level to a warning

>= 1.7.0: remove the DSL option and the property

Issue: KT-35226

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw the use of spread operator (*) on signature-polymorphic calls

Deprecation cycle:

< 1.5: introduce warning for the problematic operator at call-site

>= 1.5: raise this warning to an error, -XXLanguage:-ProhibitSpreadOnSignaturePolymorphicCall can be used to temporarily revert to pre-1.5 behavior

1239

https://youtrack.jetbrains.com/issue/KT-50369
https://youtrack.jetbrains.com/issue/KT-35226

Forbid
using
array
based
on
non-reified
type
parameters
as
reified
type
arguments
on
JVM

Forbid
secondary
enum
class
constructors
which
do
not
delegate
to
the
primary
constructor

Forbid
exposing
anonymous
types
from
private
inline
functions

Issue: KT-27825

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw non-abstract classes containing abstract members invisible from that classes (internal/package-private)

Deprecation cycle:

< 1.5: introduce warning for the problematic classes

>= 1.5: raise this warning to an error, -XXLanguage:-ProhibitInvisibleAbstractMethodsInSuperclasses can be used to temporarily revert to pre-1.5
behavior

Issue: KT-31227

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw using array based on non-reified type parameters as reified type arguments on JVM

Deprecation cycle:

< 1.5: introduce warning for the problematic calls

>= 1.5: raise this warning to an error, -XXLanguage:-ProhibitNonReifiedArraysAsReifiedTypeArguments can be used to temporarily revert to pre-1.5
behavior

Issue: KT-35870

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw secondary enum class constructors which do not delegate to the primary constructor

Deprecation cycle:

< 1.5: introduce warning for the problematic constructors

>= 1.5: raise this warning to an error, -XXLanguage:-RequiredPrimaryConstructorDelegationCallInEnums can be used to temporarily revert to pre-1.5
behavior

1240

https://youtrack.jetbrains.com/issue/KT-27825
https://youtrack.jetbrains.com/issue/KT-31227
https://youtrack.jetbrains.com/issue/KT-35870

Forbid
passing
non-spread
arrays
after
arguments
with
SAM-conversion

Support
special
semantics
for
underscore-named
catch
block
parameters

Change
implementation
strategy
of
SAM
conversion
from
anonymous
class-based
to
invokedynamic

Issue: KT-33917

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw exposing anonymous types from private inline functions

Deprecation cycle:

< 1.5: introduce warning for the problematic constructors

>= 1.5: raise this warning to an error, -XXLanguage:-ApproximateAnonymousReturnTypesInPrivateInlineFunctions can be used to temporarily revert to
pre-1.5 behavior

Issue: KT-35224

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw passing non-spread arrays after arguments with SAM-conversion

Deprecation cycle:

1.3.70: introduce warning for the problematic calls

>= 1.5: raise this warning to an error, -XXLanguage:-ProhibitVarargAsArrayAfterSamArgument can be used to temporarily revert to pre-1.5 behavior

Issue: KT-31567

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw references to the underscore symbol (_) that is used to omit parameter name of an exception in the catch block

Deprecation cycle:

1.4.20: introduce warning for the problematic references

>= 1.5: raise this warning to an error, -XXLanguage:-ForbidReferencingToUnderscoreNamedParameterOfCatchBlock can be used to temporarily revert
to pre-1.5 behavior

1241

https://youtrack.jetbrains.com/issue/KT-33917
https://youtrack.jetbrains.com/issue/KT-35224
https://youtrack.jetbrains.com/issue/KT-31567

Performance
issues
with
the
JVM
IR-based
backend

New
field
sorting
in
the
JVM
IR-based
backend

Issue: KT-44912

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Since Kotlin 1.5, implementation strategy of SAM (single abstract method) conversion will be changed from generating an anonymous
class to using the invokedynamic JVM instruction

Deprecation cycle:

1.5: change implementation strategy of SAM conversion, -Xsam-conversions=class can be used to revert implementation scheme to the one that used
before

Issue: KT-48233

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin 1.5 uses the IR-based backend for the Kotlin/JVM compiler by default. The old backend is still used by default for earlier language
versions.

You might encounter some performance degradation issues using the new compiler in Kotlin 1.5. We are working on fixing such cases.

Deprecation cycle:

< 1.5: by default, the old JVM backend is used

>= 1.5: by default, the IR-based backend is used. If you need to use the old backend in Kotlin 1.5, add the following lines to the project's configuration
file to temporarily revert to pre-1.5 behavior:

In Gradle:

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile>	{
		kotlinOptions.useOldBackend	=	true
}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile)	{
		kotlinOptions.useOldBackend	=	true
}

In Maven:

<configuration>
				<args>
								<arg>-Xuse-old-backend</arg>
				</args>
</configuration>

Support for this flag will be removed in one of the future releases.

1242

https://youtrack.jetbrains.com/issue/KT-44912
https://youtrack.jetbrains.com/issue/KT-48233
https://blog.jetbrains.com/kotlin/2021/02/the-jvm-backend-is-in-beta-let-s-make-it-stable-together/

Generate
nullability
assertion
for
delegated
properties
with
a
generic
call
in
the
delegate
expression

Turn
warnings
into
errors
for
calls
with
type
parameters
annotated
by
@OnlyInputTypes

Issue: KT-46378

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Since version 1.5, Kotlin uses the IR-based backend that sorts JVM bytecode differently: it generates fields declared in the constructor
before fields declared in the body, while it's vice versa for the old backend. The new sorting may change the behavior of programs that use serialization
frameworks that depend on the field order, such as Java serialization.

Deprecation cycle:

< 1.5: by default, the old JVM backend is used. It has fields declared in the body before fields declared in the constructor.

>= 1.5: by default, the new IR-based backend is used. Fields declared in the constructor are generated before fields declared in the body. As a
workaround, you can temporarily switch to the old backend in Kotlin 1.5. To do that, add the following lines to the project's configuration file:

In Gradle:

Kotlin

tasks.withType<org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile>	{
		kotlinOptions.useOldBackend	=	true
}

Groovy

tasks.withType(org.jetbrains.kotlin.gradle.dsl.KotlinJvmCompile)	{
		kotlinOptions.useOldBackend	=	true
}

In Maven:

<configuration>
				<args>
								<arg>-Xuse-old-backend</arg>
				</args>
</configuration>

Support for this flag will be removed in one of the future releases.

Issue: KT-44304

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Since Kotlin 1.5, the Kotlin compiler will emit nullability assertions for delegated properties with a generic call in the delegate expression

Deprecation cycle:

1.5: emit nullability assertion for delegated properties (see details in the issue), -Xuse-old-backend or -language-version 1.4 can be used to temporarily
revert to pre-1.5 behavior

1243

https://youtrack.jetbrains.com/issue/KT-46378
https://blog.jetbrains.com/kotlin/2021/02/the-jvm-backend-is-in-beta-let-s-make-it-stable-together/
https://youtrack.jetbrains.com/issue/KT-44304

Use
the
correct
order
of
arguments
execution
in
calls
with
named
vararg

Use
default
value
of
the
parameter
in
operator
functional
calls

Produce
empty
reversed
progressions
in
for
loops
if
regular
progression
is
also
empty

Issue: KT-45861

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.5 will outlaw calls like contains, indexOf, and assertEquals with senseless arguments to improve type safety

Deprecation cycle:

1.4.0: introduce warning for the problematic constructors

>= 1.5: raise this warning to an error, -XXLanguage:-StrictOnlyInputTypesChecks can be used to temporarily revert to pre-1.5 behavior

Issue: KT-17691

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin 1.5 will change the order of arguments execution in calls with named vararg

Deprecation cycle:

< 1.5: introduce warning for the problematic constructors

>= 1.5: raise this warning to an error, -XXLanguage:-UseCorrectExecutionOrderForVarargArguments can be used to temporarily revert to pre-1.5
behavior

Issue: KT-42064

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin 1.5 will use default value of the parameter in operator calls

Deprecation cycle:

< 1.5: old behavior (see details in the issue)

>= 1.5: behavior changed, -XXLanguage:-JvmIrEnabledByDefault can be used to temporarily revert to pre-1.5 behavior

1244

https://youtrack.jetbrains.com/issue/KT-45861
https://youtrack.jetbrains.com/issue/KT-17691
https://youtrack.jetbrains.com/issue/KT-42064

Straighten
Char-to-code
and
Char-to-digit
conversions
out

Inconsistent
case-insensitive
comparison
of
characters
in
kotlin.text
functions

Remove
default
locale-sensitive
case
conversion
API

Issue: KT-42533

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Kotlin 1.5 will produce empty reversed progressions in for loops if regular progression is also empty

Deprecation cycle:

< 1.5: old behavior (see details in the issue)

>= 1.5: behavior changed, -XXLanguage:-JvmIrEnabledByDefault can be used to temporarily revert to pre-1.5 behavior

Issue: KT-23451

Component: kotlin-stdlib

Incompatible change type: source

Short summary: Since Kotlin 1.5, conversions of Char to number types will be deprecated

Deprecation cycle:

1.5: deprecate Char.toInt()/toShort()/toLong()/toByte()/toDouble()/toFloat() and the reverse functions like Long.toChar(), and propose replacement

Issue: KT-45496

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: Since Kotlin 1.5, Char.equals will be improved in case-insensitive case by first comparing whether the uppercase variants of characters
are equal, then whether the lowercase variants of those uppercase variants (as opposed to the characters themselves) are equal

Deprecation cycle:

< 1.5: old behavior (see details in the issue)

1.5: change behavior for Char.equals function

Issue: KT-43023

Component: kotlin-stdlib

Incompatible change type: source

Short summary: Since Kotlin 1.5, default locale-sensitive case conversion functions like String.toUpperCase() will be deprecated

Deprecation cycle:

1.5: deprecate case conversions functions with the default locale (see details in the issue), and propose replacement

1245

https://youtrack.jetbrains.com/issue/KT-42533
https://youtrack.jetbrains.com/issue/KT-23451
https://youtrack.jetbrains.com/issue/KT-45496
https://youtrack.jetbrains.com/issue/KT-43023

Gradually
change
the
return
type
of
collection
min
and
max
functions
to
non-nullable

Raise
the
deprecation
level
of
conversions
of
floating-point
types
to
Short
and
Byte

Tools

Do
not
mix
several
JVM
variants
of
kotlin-test
in
a
single
project

Issue: KT-38854

Component: kotlin-stdlib (JVM)

Incompatible change type: source

Short summary: return type of collection min and max functions will be changed to non-nullable in 1.6

Deprecation cycle:

1.4: introduce ...OrNull functions as synonyms and deprecate the affected API (see details in the issue)

1.5.0: raise the deprecation level of the affected API to error

>=1.6: reintroduce the affected API but with non-nullable return type

Issue: KT-30360

Component: kotlin-stdlib (JVM)

Incompatible change type: source

Short summary: conversions of floating-point types to Short and Byte deprecated in Kotlin 1.4 with WARNING level will cause errors since Kotlin 1.5.0.

Deprecation cycle:

1.4: deprecate Double.toShort()/toByte() and Float.toShort()/toByte() and propose replacement

1.5.0: raise the deprecation level to error

1246

https://youtrack.jetbrains.com/issue/KT-38854
https://youtrack.jetbrains.com/issue/KT-30360

Compatibility
guide
for
Kotlin
1.4
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.3 to Kotlin 1.4.

Basic
terms
In this document we introduce several kinds of compatibility:

source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

behavioral: a change is said to be behavioral-incompatible if the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (for example, from Java) is out of
the scope of this document.

Language
and
stdlib

Unexpected
behavior
with
in
infix
operator
and
ConcurrentHashMap

Issue: KT-40225

Component: Gradle

Incompatible change type: behavioral

Short summary: several mutually exclusive kotlin-test variants for different testing frameworks could have been in a project if one of them is brought by a
transitive dependency. From 1.5.0, Gradle won't allow having mutually exclusive kotlin-test variants for different testing frameworks.

Deprecation cycle:

< 1.5: having several mutually exclusive kotlin-test variants for different testing frameworks is allowed

>= 1.5: behavior changed,
Gradle throws an exception like "Cannot select module with conflict on capability...". Possible solutions:

use the same kotlin-test variant and the corresponding testing framework as the transitive dependency brings.

find another variant of the dependency that doesn't bring the kotlin-test variant transitively, so you can use the testing framework you would like to
use.

find another variant of the dependency that brings another kotlin-test variant transitively, which uses the same testing framework you would like to
use.

exclude the testing framework that is brought transitively. The following example is for excluding JUnit 4:

configurations	{	
				testImplementation.get().exclude("org.jetbrains.kotlin",	"kotlin-test-junit")
}

After excluding the testing framework, test your application. If it stopped working, rollback excluding changes, use the same testing framework as
the library does, and exclude your testing framework.

1247

https://youtrack.jetbrains.com/issue/KT-40225

Prohibit
access
to
protected
members
inside
public
inline
members

Contracts
on
calls
with
implicit
receivers

Inconsistent
behavior
of
floating-point
number
comparisons

Issue: KT-18053

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.4 will outlaw auto operator contains coming from the implementors of java.util.Map written in Java

Deprecation cycle:

< 1.4: introduce warning for problematic operators at call-site

>= 1.4: raise this warning to an error, -XXLanguage:-ProhibitConcurrentHashMapContains can be used to temporarily revert to pre-1.4 behavior

Issue: KT-21178

Component: Core language

Incompatible change type: source

Short summary: Kotlin 1.4 will prohibit access to protected members from public inline members.

Deprecation cycle:

< 1.4: introduce warning at call-site for problematic cases

1.4: raise this warning to an error, -XXLanguage:-ProhibitProtectedCallFromInline can be used to temporarily revert to pre-1.4 behavior

Issue: KT-28672

Component: Core Language

Incompatible change type: behavioral

Short summary: smart casts from contracts will be available on calls with implicit receivers in 1.4

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-ContractsOnCallsWithImplicitReceiver can be used to temporarily revert to pre-1.4 behavior

1248

https://youtrack.jetbrains.com/issue/KT-18053
https://youtrack.jetbrains.com/issue/KT-21178
https://youtrack.jetbrains.com/issue/KT-28672

No
smart
cast
on
the
last
expression
in
a
generic
lambda

Do
not
depend
on
the
order
of
lambda
arguments
to
coerce
result
to
Unit

Wrong
common
supertype
between
raw
and
integer
literal
type
leads
to
unsound
code

Issues: KT-22723

Component: Core language

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, Kotlin compiler will use IEEE 754 standard to compare floating-point numbers

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-ProperIeee754Comparisons can be used to temporarily revert to pre-1.4 behavior

Issue: KT-15020

Component: Core Language

Incompatible change type: behavioral

Short summary: smart casts for last expressions in lambdas will be correctly applied since 1.4

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-36045

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, lambda arguments will be resolved independently without implicit coercion to Unit

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

1249

https://youtrack.jetbrains.com/issue/KT-22723
https://youtrack.jetbrains.com/issue/KT-15020
https://youtrack.jetbrains.com/issue/KT-36045

Type
safety
problem
because
several
equal
type
variables
are
instantiated
with
a
different
types

Type
safety
problem
because
of
incorrect
subtyping
for
intersection
types

No
type
mismatch
with
an
empty
when
expression
inside
lambda

Issue: KT-35681

Components: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, common supertype between raw Comparable type and integer literal type will be more specific

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-35679

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, Kotlin compiler will prohibit instantiating equal type variables with different types

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issues: KT-22474

Component: Core language

Incompatible change type: source

Short summary: in Kotlin 1.4, subtyping for intersection types will be refined to work more correctly

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

1250

https://youtrack.jetbrains.com/issue/KT-35681
https://youtrack.jetbrains.com/issue/KT-35679
https://youtrack.jetbrains.com/issue/KT-22474

Return
type
Any
inferred
for
lambda
with
early
return
with
integer
literal
in
one
of
possible
return
values

Proper
capturing
of
star
projections
with
recursive
types

Common
supertype
calculation
with
non-proper
type
and
flexible
one
leads
to
incorrect
results

Issue: KT-17995

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, there will be a type mismatch for empty when expression if it's used as the last expression in a lambda

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-20226

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, integer type returning from a lambda will be more specific for cases when there is early return

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-33012

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, more candidates will become applicable because capturing for recursive types will work more correctly

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

1251

https://youtrack.jetbrains.com/issue/KT-17995
https://youtrack.jetbrains.com/issue/KT-20226
https://youtrack.jetbrains.com/issue/KT-33012

Type
safety
problem
because
of
lack
of
captured
conversion
against
nullable
type
argument

Preserve
intersection
type
for
covariant
types
after
unchecked
cast

Type
variable
leaks
from
builder
inference
because
of
using
this
expression

Issue: KT-37054

Component: Core language

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, common supertype between flexible types will be more specific protecting from runtime errors

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-35487

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, subtyping between captured and nullable types will be more correct protecting from runtime errors

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-37280

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, uchecked casts of covariant types produce the intersection type for smart casts, not the type of the unchecked cast.

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

1252

https://youtrack.jetbrains.com/issue/KT-37054
https://youtrack.jetbrains.com/issue/KT-35487
https://youtrack.jetbrains.com/issue/KT-37280

Wrong
overload
resolution
for
contravariant
types
with
nullable
type
arguments

Builder
inference
with
non-nested
recursive
constraints

Eager
type
variable
fixation
leads
to
a
contradictory
constraint
system

Issue: KT-32126

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, using this inside builder functions like sequence {} is prohibited if there are no other proper constraints

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-31670

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, if two overloads of a function that takes contravariant type arguments differ only by the nullability of the type (such as
In<T> and In<T?>), the nullable type is considered more specific.

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-34975

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, builder functions such as sequence {} with type that depends on a recursive constraint inside the passed lambda cause
a compiler error.

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

1253

https://youtrack.jetbrains.com/issue/KT-32126
https://youtrack.jetbrains.com/issue/KT-31670
https://youtrack.jetbrains.com/issue/KT-34975

Prohibit
tailrec
modifier
on
open
functions

The
INSTANCE
field
of
a
companion
object
more
visible
than
the
companion
object
class
itself

Outer
finally
block
inserted
before
return
is
not
excluded
from
thecatch
interval
of
the
inner
try
block
without
finally

Issue: KT-25175

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, the type inference in certain cases works less eagerly allowing to find the constraint system that is not contradictory.

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-NewInference can be used to temporarily revert to pre-1.4 behavior. Note that this flag will also disable
several new language features.

Issue: KT-18541

Component: Core language

Incompatible change type: source

Short summary: since Kotlin 1.4, functions can't have open and tailrec modifiers at the same time.

Deprecation cycle:

< 1.4: report a warning on functions that have open and tailrec modifiers together (error in the progressive mode).

>= 1.4: raise this warning to an error.

Issue: KT-11567

Component: Kotlin/JVM

Incompatible change type: source

Short summary: since Kotlin 1.4, if a companion object is private, then its field INSTANCE will be also private

Deprecation cycle:

< 1.4: the compiler generates object INSTANCE with a deprecated flag

>= 1.4: companion object INSTANCE field has proper visibility

1254

https://youtrack.jetbrains.com/issue/KT-25175
https://youtrack.jetbrains.com/issue/KT-18541
https://youtrack.jetbrains.com/issue/KT-11567

Use
the
boxed
version
of
an
inline
class
in
return
type
position
for
covariant
and
generic-specialized
overrides

Do
not
declare
checked
exceptions
in
JVM
bytecode
when
using
delegation
to
Kotlin
interfaces

Changed
behavior
of
signature-polymorphic
calls
to
methods
with
a
single
vararg
parameter
to
avoid
wrapping
the
argument
into
another
array

Issue: KT-31923

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, the catch interval will be computed properly for nested try/catch blocks

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-ProperFinally can be used to temporarily revert to pre-1.4 behavior

Issues: KT-30419

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, functions using covariant and generic-specialized overrides will return boxed values of inline classes

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-35834

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.4 will not generate checked exceptions during interface delegation to Kotlin interfaces

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-DoNotGenerateThrowsForDelegatedKotlinMembers can be used to temporarily revert to pre-1.4 behavior

1255

https://youtrack.jetbrains.com/issue/KT-31923
https://youtrack.jetbrains.com/issue/KT-30419
https://youtrack.jetbrains.com/issue/KT-35834

Incorrect
generic
signature
in
annotations
when
KClass
is
used
as
a
generic
parameter

Forbid
spread
operator
in
signature-polymorphic
calls

Change
initialization
order
of
default
values
for
tail-recursive
optimized
functions

Issue: KT-35469

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.4 will not wrap the argument into another array on a signature-polymorphic call

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-35207

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.4 will fix incorrect type mapping in annotations when KClass is used as a generic parameter

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-35226

Component: Kotlin/JVM

Incompatible change type: source

Short summary: Kotlin 1.4 will prohibit the use of spread operator (*) on signature-polymorphic calls

Deprecation cycle:

< 1.4: report a warning on the use of a spread operator in signature-polymorphic calls

>= 1.5: raise this warning to an error, -XXLanguage:-ProhibitSpreadOnSignaturePolymorphicCall can be used to temporarily revert to pre-1.4 behavior

1256

https://youtrack.jetbrains.com/issue/KT-35469
https://youtrack.jetbrains.com/issue/KT-35207
https://youtrack.jetbrains.com/issue/KT-35226

Do
not
generate
ConstantValue
attribute
for
non-const
vals

Generated
overloads
for
@JvmOverloads
on
open
methods
should
be
final

Lambdas
returning
kotlin.Result
now
return
boxed
value
instead
of
unboxed

Issue: KT-31540

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Since Kotlin 1.4, the initialization order for tail-recursive functions will be the same as for regular functions

Deprecation cycle:

< 1.4: report a warning at declaration-site for problematic functions

>= 1.4: behavior changed, -XXLanguage:-ProperComputationOrderOfTailrecDefaultParameters can be used to temporarily revert to pre-1.4 behavior

Issue: KT-16615

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: Since Kotlin 1.4, the compiler will not generate the ConstantValue attribute for non-const vals

Deprecation cycle:

< 1.4: report a warning through an IntelliJ IDEA inspection

>= 1.4: behavior changed, -XXLanguage:-NoConstantValueAttributeForNonConstVals can be used to temporarily revert to pre-1.4 behavior

Issue: KT-33240

Components: Kotlin/JVM

Incompatible change type: source

Short summary: overloads for functions with @JvmOverloads will be generated as final

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed, -XXLanguage:-GenerateJvmOverloadsAsFinal can be used to temporarily revert to pre-1.4 behavior

1257

https://youtrack.jetbrains.com/issue/KT-31540
https://youtrack.jetbrains.com/issue/KT-16615
https://youtrack.jetbrains.com/issue/KT-33240

Unify
exceptions
from
null
checks

Comparing
floating-point
values
in
array/list
operations
contains,
indexOf,
lastIndexOf:
IEEE
754
or
total
order

Gradually
change
the
return
type
of
collection
min
and
max
functions
to
non-nullable

Issue: KT-39198

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, lambdas returning values of kotlin.Result type will return boxed value instead of unboxed

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-22275

Component: Kotlin/JVM

Incompatible change type: behavior

Short summary: Starting from Kotlin 1.4, all runtime null checks will throw a java.lang.NullPointerException

Deprecation cycle:

< 1.4: runtime null checks throw different exceptions, such as KotlinNullPointerException, IllegalStateException, IllegalArgumentException, and
TypeCastException

>= 1.4: all runtime null checks throw a java.lang.NullPointerException. -Xno-unified-null-checks can be used to temporarily revert to pre-1.4 behavior

Issue: KT-28753

Component: kotlin-stdlib (JVM)

Incompatible change type: behavioral

Short summary: the List implementation returned from Double/FloatArray.asList() will implement contains, indexOf, and lastIndexOf, so that they use total
order equality

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

1258

https://youtrack.jetbrains.com/issue/KT-39198
https://youtrack.jetbrains.com/issue/KT-22275
https://youtrack.jetbrains.com/issue/KT-28753

Deprecate
appendln
in
favor
of
appendLine

Deprecate
conversions
of
floating-point
types
to
Short
and
Byte

Fail
fast
in
Regex.findAll
on
an
invalid
startIndex

Issue: KT-38854

Component: kotlin-stdlib (JVM)

Incompatible change type: source

Short summary: return type of collection min and max functions will be changed to non-nullable in 1.6

Deprecation cycle:

1.4: introduce ...OrNull functions as synonyms and deprecate the affected API (see details in the issue)

1.5.x: raise the deprecation level of the affected API to error

>=1.6: reintroduce the affected API but with non-nullable return type

Issue: KT-38754

Component: kotlin-stdlib (JVM)

Incompatible change type: source

Short summary: StringBuilder.appendln() will be deprecated in favor of StringBuilder.appendLine()

Deprecation cycle:

1.4: introduce appendLine function as a replacement for appendln and deprecate appendln

>=1.5: raise the deprecation level to error

Issue: KT-30360

Component: kotlin-stdlib (JVM)

Incompatible change type: source

Short summary: since Kotlin 1.4, conversions of floating-point types to Short and Byte will be deprecated

Deprecation cycle:

1.4: deprecate Double.toShort()/toByte() and Float.toShort()/toByte() and propose replacement

>=1.5: raise the deprecation level to error

1259

https://youtrack.jetbrains.com/issue/KT-38854
https://youtrack.jetbrains.com/issue/KT-38754
https://youtrack.jetbrains.com/issue/KT-30360

Remove
deprecated
kotlin.coroutines.experimental

Remove
deprecated
mod
operator

Hide
Throwable.addSuppressed
member
and
prefer
extension
instead

Issue: KT-28356

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: since Kotlin 1.4, findAll will be improved to check that startIndex is in the range of the valid position indices of the input char sequence at
the moment of entering findAll, and throw IndexOutOfBoundsException if it's not

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-36083

Component: kotlin-stdlib

Incompatible change type: source

Short summary: since Kotlin 1.4, the deprecated kotlin.coroutines.experimental API is removed from stdlib

Deprecation cycle:

< 1.4: kotlin.coroutines.experimental is deprecated with the ERROR level

>= 1.4: kotlin.coroutines.experimental is removed from stdlib. On the JVM, a separate compatibility artifact is provided (see details in the issue).

Issue: KT-26654

Component: kotlin-stdlib

Incompatible change type: source

Short summary: since Kotlin 1.4, mod operator on numeric types is removed from stdlib

Deprecation cycle:

< 1.4: mod is deprecated with the ERROR level

>= 1.4: mod is removed from stdlib

1260

https://youtrack.jetbrains.com/issue/KT-28356
https://youtrack.jetbrains.com/issue/KT-36083
https://youtrack.jetbrains.com/issue/KT-26654

capitalize
should
convert
digraphs
to
title
case

Tools

Compiler
arguments
with
delimiter
characters
must
be
passed
in
double
quotes
on
Windows

KAPT:
Names
of
synthetic
$annotations()
methods
for
properties
have
changed

Issue: KT-38777

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: Throwable.addSuppressed() extension function is now preferred over the Throwable.addSuppressed() member function

Deprecation cycle:

< 1.4: old behavior (see details in the issue)

>= 1.4: behavior changed

Issue: KT-38817

Component: kotlin-stdlib

Incompatible change type: behavioral

Short summary: String.capitalize() function now capitalizes digraphs from the Serbo-Croatian Gaj's Latin alphabet in the title case (ǅ instead of Ǆ)

Deprecation cycle:

< 1.4: digraphs are capitalized in the upper case (Ǆ)

>= 1.4: digraphs are capitalized in the title case (ǅ)

Issue: KT-41309

Component: CLI

Incompatible change type: behavioral

Short summary: on Windows, kotlinc.bat arguments that contain delimiter characters (whitespace, =, ;, ,) now require double quotes (")

Deprecation cycle:

< 1.4: all compiler arguments are passed without quotes

>= 1.4: compiler arguments that contain delimiter characters (whitespace, =, ;, ,) require double quotes (")

1261

https://youtrack.jetbrains.com/issue/KT-38777
https://youtrack.jetbrains.com/issue/KT-38817
https://en.wikipedia.org/wiki/Gaj%2527s_Latin_alphabet
https://youtrack.jetbrains.com/issue/KT-41309

Compatibility
guide
for
Kotlin
1.3
Keeping the Language Modern and Comfortable Updates are among the fundamental principles in Kotlin Language Design. The former says that constructs which
obstruct language evolution should be removed, and the latter says that this removal should be well-communicated beforehand to make code migration as smooth
as possible.

While most of the language changes were already announced through other channels, like update changelogs or compiler warnings, this document summarizes
them all, providing a complete reference for migration from Kotlin 1.2 to Kotlin 1.3.

Basic
terms
In this document we introduce several kinds of compatibility:

Source: source-incompatible change stops code that used to compile fine (without errors or warnings) from compiling anymore

Binary: two binary artifacts are said to be binary-compatible if interchanging them doesn't lead to loading or linkage errors

Behavioral: a change is said to be behavioral-incompatible if one and the same program demonstrates different behavior before and after applying the change

Remember that those definitions are given only for pure Kotlin. Compatibility of Kotlin code from the other languages perspective (e.g. from Java) is out of the
scope of this document.

Incompatible
changes

Evaluation
order
of
constructor
arguments
regarding
call

Missing
getter-targeted
annotations
on
annotation
constructor
parameters

Issue: KT-36926

Component: KAPT

Incompatible change type: behavioral

Short summary: names of synthetic $annotations() methods generated by KAPT for properties have changed in 1.4

Deprecation cycle:

< 1.4: names of synthetic $annotations() methods for properties follow the template <propertyName>@annotations()

>= 1.4: names of synthetic $annotations() methods for properties include the get prefix: get<PropertyName>@annotations()

Issue: KT-19532

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: evaluation order with respect to class initialization is changed in 1.3

Deprecation cycle:

<1.3: old behavior (see details in the Issue)

>= 1.3: behavior changed, -Xnormalize-constructor-calls=disable can be used to temporarily revert to pre-1.3 behavior. Support for this flag is going to
be removed in the next major release.

1262

https://youtrack.jetbrains.com/issue/KT-36926
https://youtrack.jetbrains.com/issue/KT-19532

Missing
errors
in
class
constructor's
@get:
annotations

Nullability
assertions
on
access
to
Java
types
annotated
with
@NotNull

Unsound
smartcasts
on
enum
members

Issue: KT-25287

Component: Kotlin/JVM

Incompatible change type: behavioral

Short summary: getter-target annotations on annotations constructor parameters will be properly written to classfiles in 1.3

Deprecation cycle:

<1.3: getter-target annotations on annotation constructor parameters are not applied

>=1.3: getter-target annotations on annotation constructor parameters are properly applied and written to the generated code

Issue: KT-19628

Component: Core language

Incompatible change type: Source

Short summary: errors in getter-target annotations will be reported properly in 1.3

Deprecation cycle:

<1.2: compilation errors in getter-target annotations were not reported, causing incorrect code to be compiled fine.

1.2.x: errors reported only by tooling, the compiler still compiles such code without any warnings

>=1.3: errors reported by the compiler too, causing erroneous code to be rejected

Issue: KT-20830

Component: Kotlin/JVM

Incompatible change type: Behavioral

Short summary: nullability assertions for Java-types annotated with not-null annotations will be generated more aggressively, causing code which passes
null here to fail faster.

Deprecation cycle:

<1.3: the compiler could miss such assertions when type inference was involved, allowing potential null propagation during compilation against
binaries (see Issue for details).

>=1.3: the compiler generates missed assertions. This can cause code which was (erroneously) passing nulls here fail faster.
-XXLanguage:-StrictJavaNullabilityAssertions can be used to temporarily return to the pre-1.3 behavior. Support for this flag will be removed in the
next major release.

1263

https://youtrack.jetbrains.com/issue/KT-25287
https://youtrack.jetbrains.com/issue/KT-19628
https://youtrack.jetbrains.com/issue/KT-20830

val
backing
field
reassignment
in
getter

Array
capturing
before
the
for-loop
where
it
is
iterated

Nested
classifiers
in
enum
entries

Issue: KT-20772

Component: Core language

Incompatible change type: Source

Short summary: a smartcast on a member of one enum entry will be correctly applied to only this enum entry

Deprecation cycle:

<1.3: a smartcast on a member of one enum entry could lead to an unsound smartcast on the same member of other enum entries.

>=1.3: smartcast will be properly applied only to the member of one enum entry.
-XXLanguage:-SoundSmartcastForEnumEntries will temporarily return old behavior. Support for this flag will be removed in the next major release.

Issue: KT-16681

Components: Core language

Incompatible change type: Source

Short summary: reassignment of the backing field of val-property in its getter is now prohibited

Deprecation cycle:

<1.2: Kotlin compiler allowed to modify backing field of val in its getter. Not only it violates Kotlin semantic, but also generates ill-behaved JVM
bytecode which reassigns final field.

1.2.X: deprecation warning is reported on code which reassigns backing field of val

>=1.3: deprecation warnings are elevated to errors

Issue: KT-21354

Component: Kotlin/JVM

Incompatible change type: Source

Short summary: if an expression in for-loop range is a local variable updated in a loop body, this change affects loop execution. This is inconsistent with
iterating over other containers, such as ranges, character sequences, and collections.

Deprecation cycle:

<1.2: described code patterns are compiled fine, but updates to local variable affect loop execution

1.2.X: deprecation warning reported if a range expression in a for-loop is an array-typed local variable which is assigned in a loop body

1.3: change behavior in such cases to be consistent with other containers

1264

https://youtrack.jetbrains.com/issue/KT-20772
https://youtrack.jetbrains.com/issue/KT-16681
https://youtrack.jetbrains.com/issue/KT-21354

Data
class
overriding
copy

Inner
classes
inheriting
Throwable
that
capture
generic
parameters
from
the
outer
class

Visibility
rules
regarding
complex
class
hierarchies
with
companion
objects

Issue: KT-16310

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, nested classifiers (classes, object, interfaces, annotation classes, enum classes) in enum entries are prohibited

Deprecation cycle:

<1.2: nested classifiers in enum entries are compiled fine, but may fail with exception at runtime

1.2.X: deprecation warnings reported on the nested classifiers

>=1.3: deprecation warnings elevated to errors

Issue: KT-19618

Components: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, data classes are prohibited to override copy()

Deprecation cycle:

<1.2: data classes overriding copy() are compiled fine but may fail at runtime/expose strange behavior

1.2.X: deprecation warnings reported on data classes overriding copy()

>=1.3: deprecation warnings elevated to errors

Issue: KT-17981

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, inner classes are not allowed to inherit Throwable

Deprecation cycle:

<1.2: inner classes inheriting Throwable are compiled fine. If such inner classes happen to capture generic parameters, it could lead to strange code
patterns which fail at runtime.

1.2.X: deprecation warnings reported on inner classes inheriting Throwable

>=1.3: deprecation warnings elevated to errors

1265

https://youtrack.jetbrains.com/issue/KT-16310
https://youtrack.jetbrains.com/issue/KT-19618
https://youtrack.jetbrains.com/issue/KT-17981

Non-constant
vararg
annotation
parameters

Local
annotation
classes

Smartcasts
on
local
delegated
properties

Issues: KT-21515, KT-25333

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, rules of visibility by short names are stricter for complex class hierarchies involving companion objects and nested
classifiers.

Deprecation cycle:

<1.2: old visibility rules (see Issue for details)

1.2.X: deprecation warnings reported on short names which are not going to be accessible anymore. Tooling suggests automated migration by adding
full name.

>=1.3: deprecation warnings elevated to errors. Offending code should add full qualifiers or explicit imports

Issue: KT-23153

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, setting non-constant values as vararg annotation parameters is prohibited

Deprecation cycle:

<1.2: the compiler allows to pass non-constant value for vararg annotation parameter, but actually drops that value during bytecode generation,
leading to non-obvious behavior

1.2.X: deprecation warnings reported on such code patterns

>=1.3: deprecation warnings elevated to errors

Issue: KT-23277

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 local annotation classes are not supported

Deprecation cycle:

<1.2: the compiler compiled local annotation classes fine

1.2.X: deprecation warnings reported on local annotation classes

>=1.3: deprecation warnings elevated to errors

1266

https://youtrack.jetbrains.com/issue/KT-21515
https://youtrack.jetbrains.com/issue/KT-25333
https://youtrack.jetbrains.com/issue/KT-23153
https://youtrack.jetbrains.com/issue/KT-23277

mod
operator
convention

Passing
single
element
to
vararg
in
named
form

Retention
of
annotations
with
target
EXPRESSION

Issue: KT-22517

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 smartcasts on local delegated properties are not allowed

Deprecation cycle:

<1.2: the compiler allowed to smartcast local delegated property, which could lead to unsound smartcast in case of ill-behaved delegates

1.2.X: smartcasts on local delegated properries are reported as deprecated (the compiler issues warnings)

>=1.3: deprecation warnings elevated to errors

Issues: KT-24197

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3 declaration of mod operator is prohibited, as well as calls which resolve to such declarations

Deprecation cycle:

1.1.X, 1.2.X: report warnings on declarations of operator mod, as well as on calls which resolve to it

1.3.X: elevate warnings to error, but still allow to resolve to operator mod declarations

1.4.X: do not resolve calls to operator mod anymore

Issues: KT-20588, KT-20589. See also KT-20171

Component: Core language

Incompatible change type: Source

Short summary: in Kotlin 1.3, assigning single element to vararg is deprecated and should be replaced with consecutive spread and array construction.

Deprecation cycle:

<1.2: assigning one value element to vararg in named form compiles fine and is treated as assigning single element to array, causing non-obvious
behavior when assigning array to vararg

1.2.X: deprecation warnings are reported on such assignments, users are suggested to switch to consecutive spread and array construction.

1.3.X: warnings are elevated to errors

>= 1.4: change semantic of assigning single element to vararg, making assignment of array equivalent to the assignment of a spread of an array

1267

https://youtrack.jetbrains.com/issue/KT-22517
https://youtrack.jetbrains.com/issue/KT-24197
https://youtrack.jetbrains.com/issue/KT-20588
https://youtrack.jetbrains.com/issue/KT-20589
https://youtrack.jetbrains.com/issue/KT-20171

Annotations
with
target
PARAMETER
shouldn't
be
applicable
to
parameter's
type

Array.copyOfRange
throws
an
exception
when
indices
are
out
of
bounds
instead
of
enlarging
the
returned
array

Progressions
of
ints
and
longs
with
a
step
of
Int.MIN_VALUE
and
Long.MIN_VALUE
are
outlawed
and
won't
be
allowed
to
be
instantiated

Issue: KT-13762

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, only SOURCE retention is allowed for annotations with target EXPRESSION

Deprecation cycle:

<1.2: annotations with target EXPRESSION and retention other than SOURCE are allowed, but silently ignored at use-sites

1.2.X: deprecation warnings are reported on declarations of such annotations

>=1.3: warnings are elevated to errors

Issue: KT-9580

Component: Core language

Incompatible change type: Source

Short summary: since Kotlin 1.3, error about wrong annotation target will be properly reported when annotation with target PARAMETER is applied to
parameter's type

Deprecation cycle:

<1.2: aforementioned code patterns are compiled fine; annotations are silently ignored and not present in the bytecode

1.2.X: deprecation warnings are reported on such usages

>=1.3: warnings are elevated to errors

Issue: KT-19489

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, ensure that the toIndex argument of Array.copyOfRange, which represents the exclusive end of the range being copied,
is not greater than the array size and throw IllegalArgumentException if it is.

Deprecation cycle:

<1.3: in case toIndex in the invocation of Array.copyOfRange is greater than the array size, the missing elements in range fill be filled with nulls,
violating soundness of the Kotlin type system.

>=1.3: check that toIndex is in the array bounds, and throw exception if it isn't

1268

https://youtrack.jetbrains.com/issue/KT-13762
https://youtrack.jetbrains.com/issue/KT-9580
https://youtrack.jetbrains.com/issue/KT-19489

Check
for
index
overflow
in
operations
on
very
long
sequences

Unify
split
by
an
empty
match
regex
result
across
the
platforms

Discontinued
deprecated
artifacts
in
the
compiler
distribution

Issue: KT-17176

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, prohibit step value for integer progressions being the minimum negative value of its integer type (Long or Int), so that
calling IntProgression.fromClosedRange(0, 1, step = Int.MIN_VALUE) will throw IllegalArgumentException

Deprecation cycle:

<1.3: it was possible to create an IntProgression with Int.MIN_VALUE step, which yields two values [0, -2147483648], which is non-obvious behavior

>=1.3: throw IllegalArgumentException if the step is the minimum negative value of its integer type

Issue: KT-16097

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, make sure index, count and similar methods do not overflow for long sequences. See the Issue for the full list of affected
methods.

Deprecation cycle:

<1.3: calling such methods on very long sequences could produce negative results due to integer overflow

>=1.3: detect overflow in such methods and throw exception immediately

Issue: KT-21049

Component: kotlin-stdlib (JVM)

Incompatible change type: Behavioral

Short summary: since Kotlin 1.3, unify behavior of split method by empty match regex across all platforms

Deprecation cycle:

<1.3: behavior of described calls is different when comparing JS, JRE 6, JRE 7 versus JRE 8+

>=1.3: unify behavior across the platforms

1269

https://youtrack.jetbrains.com/issue/KT-17176
https://youtrack.jetbrains.com/issue/KT-16097
https://youtrack.jetbrains.com/issue/KT-21049

Annotations
in
stdlib

Compatibility
modes
When a big team is migrating onto a new version, it may appear in an "inconsistent state" at some point, when some developers have already updated but others
haven't. To prevent the former from writing and committing code that others may not be able to compile, we provide the following command line switches (also
available in the IDE and Gradle/Maven):

-language-version X.Y - compatibility mode for Kotlin language version X.Y, reports errors for all language features that came out later.

-api-version X.Y - compatibility mode for Kotlin API version X.Y, reports errors for all code using newer APIs from the Kotlin Standard Library (including the code
generated by the compiler).

Currently, we support the development for at least three previous language and API versions in addition to the latest stable one.

What
is
cross-platform
mobile
development?
Nowadays, many companies are facing the challenge of needing to build mobile apps for multiple platforms, specifically for both Android and iOS. This is why
cross-platform mobile development solutions have emerged as one of the most popular software development trends.

According to Statista, there were 3.48 million mobile apps available on the Google Play Store and 2.22 million apps on the App Store in the first quarter of 2021,
with Android and iOS now accounting for 99% of the worldwide mobile operating system market.

How do you go about creating a mobile app that can reach Android and iOS audiences? In this article, you will find out why more and more mobile engineers are
choosing a cross-platform, or multiplatform, mobile development approach.

Issue: KT-23799

Component: other

Incompatible change type: Binary

Short summary: Kotlin 1.3 discontinues the following deprecated binary artifacts:

kotlin-runtime: use kotlin-stdlib instead

kotlin-stdlib-jre7/8: use kotlin-stdlib-jdk7/8 instead

kotlin-jslib in the compiler distribution: use kotlin-stdlib-js instead

Deprecation cycle:

1.2.X: the artifacts were marked as deprecated, the compiler reported warning on usage of those artifacts

>=1.3: the artifacts are discontinued

Issue: KT-21784

Component: kotlin-stdlib (JVM)

Incompatible change type: Binary

Short summary: Kotlin 1.3 removes annotations from the package org.jetbrains.annotations from stdlib and moves them to the separate artifacts shipped
with the compiler: annotations-13.0.jar and mutability-annotations-compat.jar

Deprecation cycle:

<1.3: annotations were shipped with the stdlib artifact

>=1.3: annotations ship in separate artifacts

1270

https://youtrack.jetbrains.com/issue/KT-23799
https://youtrack.jetbrains.com/issue/KT-21784
https://gs.statcounter.com/os-market-share/mobile/worldwide

Cross-platform
mobile
development:
definition
and
solutions
Multiplatform mobile development is an approach that allows you to build a single mobile application that runs smoothly on several operating systems. In cross-
platform apps, some or even all of the source code can be shared. This means that developers can create and deploy mobile assets that work on both Android and
iOS without having to recode them for each individual platform.

Different
approaches
to
mobile
app
development
There are four main ways to create an application for both Android and iOS.

1. Separate native apps for each operating system
When creating native apps, developers build an application for a particular operating system and rely on tools and programming languages designed specifically for
one platform: Kotlin or Java for Android, Objective-C or Swift for iOS.

These tools and languages give you access to the features and capabilities of a given OS and allow you to craft responsive apps with intuitive interfaces. But if you
want to reach both Android and iOS audiences, you will have to create separate applications, and that takes a lot of time and effort.

2. Progressive web apps (PWAs)
Progressive web apps combine the features of mobile apps with solutions used in web development. Roughly speaking, they offer a mix of a website and a mobile
application. Developers build PWAs using web technologies, such as JavaScript, HTML, CSS, and WebAssembly.

Web applications do not require separate bundling or distribution and can be published online. They are accessible via the browser on your computer, smartphone,
and tablet, and don't need to be installed via Google Play or the App Store.

The drawback here is that a user cannot utilize all of their device's functionality, for example, contacts, calendars, the phone, and other assets, which results in a
limited user experience. In terms of app performance, native apps have the lead.

3. Cross-platform apps
As mentioned earlier, multiplatform apps are designed to run identically on different mobile platforms. Cross-platform frameworks allow you to write shareable and
reusable code for the purpose of developing these apps.

This approach has several benefits, such as efficiency with respect to both time and cost. We'll take a closer look at the pros and cons of cross-platform mobile
development in a later section.

4. Hybrid apps
When browsing websites and forums, you may notice that some people use the terms "cross-platform mobile development" and "hybrid mobile development"
interchangeably. Doing so, however, is not entirely accurate.

When it comes to cross-platform apps, mobile engineers can write code once and then reuse it on different platforms. Hybrid app development, on the other hand,
is an approach that combines native and web technologies. It requires you to embed code written in a web development language like HTML, CSS, or JavaScript
into a native app. You can do this with the help of frameworks, such as Ionic Capacitor and Apache Cordova, using additional plugins to get access to the native
functionalities of platforms.

The only similarity between cross-platform and hybrid development is code shareability. In terms of performance, hybrid applications are not on par with native
apps. Because hybrid apps deploy a single code base, some features are specific to a particular OS and don't function well on others.

Native
or
cross-platform
app
development:
a
longstanding
debate
The debate around native and cross-platform development remains unresolved in the tech community. Both of these technologies are in constant evolution and
come with their own benefits and limitations.

Some experts still prefer native mobile development over multiplatform solutions, identifying the stronger performance and better user experience of native apps as
some of the most important benefits.

However, many modern businesses need to reduce the time to market and the cost of per platform development while still aiming to have a presence both on
Android and iOS. This is where cross-platform development frameworks like Kotlin Multiplatform Mobile can help, as David Henry and Mel Yahya, a pair of senior
software engineers from Netflix, note:

1271

https://kotlinlang.org/lp/multiplatform/
https://netflixtechblog.com/netflix-android-and-ios-studio-apps-kotlin-multiplatform-d6d4d8d25d23

Is
cross-platform
mobile
development
right
for
you?
Choosing a mobile development approach that is right for you depends on many factors, like business requirements, objectives, and tasks. Like any other solution,
cross-platform mobile development has its pros and cons.

Benefits
of
cross-platform
development
There are plenty of reasons businesses choose this approach over other options.

1. Reusable code
With cross-platform programming, mobile engineers don't need to write new code for every operating system. Using a single codebase allows developers to cut
down on time spent doing repetitive tasks, such as API calls, data storage, data serialization, and analytics implementation.

In our Kotlin Multiplatform survey from Q3-Q4 2021, we asked the Kotlin community about the parts of code they were able to share between different platforms.

Parts of code Kotlin Multiplatform Mobile users can share between platforms

2. Time savings
Due to code reusability, cross-platform applications require less code, and when it comes to coding, less code is more. Time saved is because you do not have to
write as much code. Additionally, with fewer lines of code, there are fewer places for bugs to emerge, resulting in less time spent testing and maintaining your code.

3. Effective resource management
Building separate applications is expensive. Having a single codebase helps you effectively manage your resources. Both your Android and your iOS development
teams can learn how to write and use shared code.

4. Attractive opportunities for developers
Many mobile engineers view modern cross-platform technologies as desirable elements in a product's tech stack. Developers may get bored at work due to

The high likelihood of unreliable network connectivity led us to lean into mobile solutions for robust client side persistence and offline support. The need
for fast product delivery led us to experiment with a multiplatform architecture. Now we're taking this one step further by using Kotlin Multiplatform to
write platform agnostic business logic once in Kotlin and compiling to a Kotlin library for Android and a native Universal Framework for iOS.

1272

repetitive and routine tasks, such as JSON parsing. However, new technologies and tasks can bring back their excitement, motivation, and joy for work tasks. This
means that having a modern tech stack can actually simplify the hiring process for your mobile team.

5. Opportunity to reach wider audiences
You don't have to choose between different platforms. Since your app is compatible with multiple operating systems, you can satisfy the needs of both Android and
iOS audiences and maximize your reach.

6. Quicker time to market and customization
Since you don't need to build different apps for different platforms, you can develop and launch your product much faster. What's more, if your application needs to
be customized or transformed, it will be easier for programmers to make small changes to specific parts of your codebase. This will also allow you to be more
responsive to user feedback.

Challenges
of
a
cross-platform
development
approach
All solutions come with their own limitations. What issues might you encounter with cross-platform programming? Some individuals in the tech community argue
that multiplatform development still struggles with glitches related to performance. Furthermore, project leads might have fears that their aim to optimize the
development process will have a negative impact on the user experience of an application. However, with improvements to the technologies, cross-platform
solutions are becoming increasingly stable, adaptable, and flexible.

In our Kotlin Multiplatform survey from Q1-Q2 2021, we asked survey participants whether they were satisfied with the quality of their apps after adopting Kotlin
Multiplatform Mobile. When asked whether they were satisfied with their apps' performance, binary size, and appearance, as many as 98.3% of respondents
answered positively.

How are users satisfied with the quality of their app after Kotlin Multiplatform Mobile adoption?

Another concern is the inability to seamlessly support the native features of applications. Nevertheless, if you're building a multiplatform app that needs to access
platform-specific APIs, you can use Kotlin's expected and actual declarations. They allow you to define in common code that you "expect" to be able to call the
same function across multiple platforms and provide the "actual" implementations, which can interact with any platform-specific libraries thanks to Kotlin
interoperability with Java and Objective-C/Swift.

These issues raise the question of whether the end-user will notice a difference between native and cross-platform apps.

As modern multiplatform frameworks continue to evolve, they increasingly allow mobile engineers to craft a native-like experience. If an application is well written,
the user will not be able to notice the difference. However, the quality of your product will heavily depend on the cross-platform app development tools you choose.

1273

https://blog.jetbrains.com/kotlin/2021/10/multiplatform-survey-q1-q2-2021/

The
most
popular
cross-platform
solutions
The most popular cross-platform frameworks include Flutter, React Native, and Kotlin Multiplatform Mobile. Each of these frameworks has its own capabilities and
strengths. Depending on the tool you use, your development process and the outcome may vary.

Flutter
Flutter is a cross-platform development framework that was created by Google and uses the Dart programming language. Flutter supports native features, such as
location services, camera functionality, and hard drive access. If you need to create a specific app feature that's not supported in Flutter, you can write platform-
specific code using the Platform Channel technology.

Apps built with Flutter need to share all of their UX and UI layers, which is why they may not always feel 100% native. One of the best things about this framework is
its Hot Reload feature, which allows developers to make changes and view them instantly.

This framework may be the best option in the following situations:

You want to share UI components between your apps but you want your applications to look close to native.

The app is expected to put a heavy load on CPU/GPU.

You need to develop an MVP application.

Among the most popular apps built with Flutter are Google Ads, Xianyu by Alibaba, eBay Motors, and Hamilton.

React
Native
Facebook introduced React Native in 2015 as an open-source framework designed to help mobile engineers build hybrid native/cross-platform apps. It's based on
ReactJS – a JavaScript library for building user interfaces. In other words, it uses JavaScript to build mobile apps for Android and iOS systems.

React Native provides access to several third-party UI libraries with ready-to-use components, helping mobile engineers save time during the development process.
Like Flutter, it allows you to see all your changes immediately, thanks to the Fast Refresh feature.

You should consider using React Native for your app in the following cases:

Your application is relatively simple and is expected to be lightweight.

The development team is fluent in JavaScript or React.

Applications built with React Native include Facebook, Instagram, Skype, and Uber Eats.

Kotlin
Multiplatform
Mobile
Kotlin Multiplatform Mobile is an SDK for cross-platform mobile development provided by JetBrains. It allows you to create Android and iOS apps with shared logic.
Its key benefits include:

Smooth integration with existing projects.

Full control over the UI, along with the ability to use the latest UI frameworks, such as SwiftUI and Jetpack Compose.

Easy access to Android and iOS SDKs without any restrictions.

Global companies and start-ups alike have already leveraged Kotlin Multiplatform Mobile to optimize and accelerate their mobile development efforts. The benefits
of this approach are apparent from the stories of the companies that have already adopted it.

The development team from the award-winning to-do list app Todoist started using Kotlin Multiplatform Mobile to synchronize their app's sorting logic on
multiple platforms, and in doing so they combined the benefits of creating cross-platform and native apps. You can learn more about their experience in this
video.

The introduction of Kotlin Multiplatform allowed Philips to become faster at implementing new features and increased the interaction between their Android and
iOS developers.

Shopify was able to use Kotlin Multiplatform to share an astounding 95% of their code, which also delivered a significant performance improvement. Similarly,
the startup company Down Dog is using Kotlin Multiplatform to increase the development speed for the apps by maximizing the amount of code shared between

Share the logic of your iOS and Android apps. Get started with Kotlin Multiplatform.

1274

https://brightmarbles.io/blog/platform-channel-in-flutter-benefits-and-limitations/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html
https://www.youtube.com/watch?v=z-o9MqN86eE
https://kotlinlang.org/lp/multiplatform/case-studies/philips
https://shopify.engineering/managing-native-code-react-native
https://kotlinlang.org/lp/multiplatform/case-studies/down-dog

all the platforms: JVM, Native, and JS.

Conclusion
As cross-platform development solutions continue to evolve, their limitations have begun to pale in comparison to the benefits they provide. A variety of
technologies are available on the market, all suited to different sets of workflows and requirements. Each of the tools discussed in this article offers extensive
support for teams thinking about giving cross-platform a try.

Ultimately, carefully considering your specific business needs, objectives, and tasks, and developing clear goals that you want to achieve with your app, will help
you identify the best solution for you.

Native
and
cross-platform
app
development:
how
to
choose?
People spend much of their waking time on their mobile devices. They also spend 4.8 hours per day on mobile applications, which makes them attractive to all
kinds of businesses.

Mobile app development is constantly evolving, with new technologies and frameworks emerging every year. With various solutions on the market, it's often difficult
to choose between them. You might have heard about the long-standing "native versus cross-platform" debate.

There are many factors to consider before building an app, such as development cost, time, and app functionality. This is especially true if you want to target both
Android and iOS audiences. It may be challenging to decide which mobile development approach will be the best for your particular project. To help you choose
between native and cross-platform app development, we've created a list of six essential things to keep in mind.

What
is
native
mobile
app
development?
Native mobile development means that you build an app for a particular mobile operating system – in most cases Android or iOS. While working on native
applications, developers use specific programming languages and tools. For example, you can create a native Android application with Kotlin or Java, or build an
app for iOS with Objective-C or Swift.

Here are the core benefits and limitations.

Benefits Limitations

High performance. The core programming language and APIs used to build
native apps make them fast and responsive.

High cost. Native app development requires two separate teams with different
sets of skills, which adds to the time and cost of the development process.

Intuitive user experience. Mobile engineers develop native apps using native
SDKs, which makes the UI look consistent. The interfaces of native apps are
designed to work well with a specific platform, which makes them feel like an
integrated part of the device and provides a more intuitive user experience.

Big development team. Managing large teams of multiple specialists can be
challenging. The more people you have working on one project, the greater the
effort required for communication and collaboration.

Access to the full feature set of a particular device. Native apps built for a
particular operating system have direct access to the device's hardware, such
as camera, microphone, and GPS location support.

More errors in code. More lines of code can leave more room for bugs.

Risks of having different logic on Android and iOS apps. With native app
development, the code written for one mobile platform cannot be tailored to
another platform. For instance, Android and iOS apps might show different
prices for the same item because of a mistake in the way the discount is
calculated.

What
is
cross-platform
app
development?

1275

https://www.data.ai/en/insights/market-data/state-of-mobile-2022/

Cross-platform app development, also called multiplatform development, is the process of building mobile apps that are compatible with several operating
systems. Instead of creating separate applications for iOS and Android, mobile engineers can share some or all of the source code between multiple platforms. This
way, the applications will work the same on both iOS and Android.

There are various open-source frameworks for cross-platform mobile app development available today. Some of the most popular are Flutter, React Native, and
Kotlin Multiplatform Mobile. Below are some of the key pros and cons.

Benefits Limitations

Shareable code. Developers create a single codebase without the
need to write new code for each OS.

Performance issues. Some developers argue that the performance of multiplatform
applications is low compared to native apps.

Faster development. You don't need to write or test as much code,
which can help you accelerate the development process.

Difficult to access native features of mobile devices. Building a cross-platform app that
needs to access platform-specific APIs requires more effort.

Cost-effectiveness. The cross-platform solution can be a good
option to consider for startups and companies with smaller budgets
because it allows them to reduce development costs.

Limited UI consistency. With cross-platform development frameworks that allow you to
share the UI, applications may look and feel less native.

New work opportunities. You can attract new talent to your team
with modern cross-platform technologies in a product's tech stack.
Many developers want to tackle new challenges at work, which is
why new technologies and tasks tend to increase developers'
motivation and enjoyment while working.

Challenging hiring process. It can be harder to find professionals who can build
multiplatform apps, compared to native app developers. For example, while writing this
article, we found about 2,400 Android developer jobs versus 348 Flutter developer
vacancies on Glassdoor. However, this situation may change as cross-platform
technologies continually evolve and attract more mobile engineers.

Shared logic. Because this approach involves using a single
codebase, you can be sure that you have the same application logic
on different platforms.

These are just a few of the key advantages of cross-platform app development. You can learn more about its benefits and use cases from global companies in our
article about cross-platform mobile development. As for the challenges of the approach – we'll discuss those in the following section.

Debugging
some
popular
myths
about
cross-platform
app
development
Multiplatform technology is constantly evolving. Some cross-platform development frameworks like Kotlin Multiplatform Mobile provide the benefits of building both
cross-platform and native apps and remove the limitations that are commonly associated with the approach.

1. Cross-platform apps provide poorer performance than native apps.
Poor performance was long considered to be one of the main disadvantages of multiplatform applications. However, the performance and quality of your product
largely depend on the tools you use to build the app. The latest cross-platform frameworks provide all the tools necessary to develop apps with a native-like user
experience.

By using different compiler backends, Kotlin is compiled to platform formats – JVM bytecode for Android and native binaries for iOS. As a result, the performance of
your shared code is the same as if you write them natively.

2. Cross-platform frameworks are unsafe.
There's a common misconception that native apps are much more secure and reliable. However, modern cross-platform development tools allow developers to
build safe apps that guarantee reliable data protection. Mobile engineers just need to take additional measures to make their apps secure.

3. Cross-platform apps don't have access to all native functions of mobile devices.
It is true that not all cross-platform frameworks allow you to build apps with full access to the device's features. Nevertheless, some modern multiplatform
frameworks can help you overcome this challenge. For example, Kotlin Multiplatform Mobile gives easy access to Android and iOS SDKs. It provides a Kotlin
mechanism of expected and actual declarations to help you access the device's capabilities and features.

1276

https://kotlinlang.org/lp/multiplatform/
https://appstronauts.co/blog/are-cross-platform-apps-as-fast-and-secure-as-native-apps/#:~:text=Unsecurity%20of%20cross%252Dplatform%20apps,a%20cross%252Dplatform%20app%2527s%20code.

4. It can often be difficult to manage cross-platform projects.
In fact, it's the opposite. Cross-platform solutions help you more effectively manage resources. Your development teams can learn how to write and reuse shared
code. Android and iOS developers can achieve high efficiency and transparency by interacting and sharing knowledge.

Six
key
aspects
to
help
you
choose
between
cross-platform
app
development
and
the
native
approach
Now, let's take a look at important factors you need to consider when choosing between native and cross-platform solutions for mobile app development.

1.
The
type
and
purpose
of
your
future
app
One of the first steps is understanding what app you will be building, including its features and purpose. A complex application with many features will require a lot
of programming, especially if it's something new that doesn't have any existing templates.

How crucial is the user interface of your app? Are you looking for outstanding visuals or is the UI less important? Will it require any specific hardware functionality
and access to camera and GPS location support? You need to make sure the mobile development approach you choose provides the necessary tools to build the
app you need and provide a great user experience.

2.
Your
team's
experience
in
programming
languages
and
tools
The developers on your team should have enough experience and expertise to work with particular frameworks. Pay close attention to what programming skills and
languages the development tools require.

For example, developers need to know Objective-C or Swift to create native apps for iOS, and they need to know Kotlin or Java for Android. The cross-platform
framework Flutter requires knowledge of Dart. If you use Kotlin Multiplatform Mobile, Kotlin syntax is easy for iOS developers to learn because it follows concepts
similar to Swift.

3.
Long-term
viability
When choosing between different approaches and frameworks, you need to be confident that the platform vendor will continue supporting it over the long term.
You can dig into the details about the provider, the size of their community, and adoption by global companies. For example, Kotlin Multiplatform Mobile was
developed by JetBrains, Flutter by Google, and React Native by Facebook.

4.
Development
cost
and
your
budget
As mentioned above, different mobile development solutions and tools come with different expenses. Depending on how flexible your budget is, you can choose the
right solution for your project.

5.
Adoption
in
the
industry
You can always find out what other experts in the tech community are saying about different approaches. Reddit, StackOverflow, and Google Trends are a few
good resources. Just take a look at search trends for the following two terms: "native mobile development" versus "cross-platform mobile development". Many
users are still interested in learning about native app development, but it also seems like the cross-platform approach is gaining popularity.

1277

Native mobile development in Google Trends

Cross-platform mobile development in Google Trends

If a technology is widely used by professionals, it has a strong ecosystem, many libraries, and best practices from the tech community, which makes development
faster.

6.
Visibility
and
learning
resources
If you're considering trying cross-platform app development, one of the factors you should consider is how easy it is to find learning materials for the different
multiplatform frameworks. Check their official documentation, books, and courses. Be sure they provide a product roadmap with long-term plans.

1278

https://blog.jetbrains.com/kotlin/2022/06/what-to-expect-from-the-kotlin-team-in-202223/

When
should
you
choose
cross-platform
app
development?
Cross-platform solutions for mobile app development will save you time and effort when building applications for both Android and iOS.

In a nutshell, you should to opt for cross-platform solutions if:

You need to build an app for both Android and iOS.

You want to optimize development time.

You want to have a single codebase for the app logic while keeping full control over UI elements. Not all cross-platform frameworks allow you to do this, but
some, like Kotlin Multiplatform Mobile, provide this capability.

You're eager to embrace a modern technology that continues to evolve.

When
should
you
choose
native
app
development?
There may be a few specific cases when it makes sense to choose native mobile development. You should choose this approach if:

Your app is targeting one specific audience – either Android or iOS.

The user interface is critical to your future application. However, even if you take the native approach, you can try using multiplatform mobile app development
solutions that allow you to share app logic, but not the UI, for your project.

Your team is equipped with highly skilled Android and iOS developers, but you don't have time to introduce new technologies.

Takeaways
Keep in mind all the aspects described above, your project's goals, and the end user. Whether you're better off with native or cross-platform development depends
on your unique needs. Each solution has its strengths and weaknesses.

Nevertheless, keep an eye on what happens in the community. Knowing the latest mobile development trends will help you make the best choice for your project.

The
Six
Most
Popular
Cross-Platform
App
Development
Frameworks
Over the years, cross-platform app development has become one of the most popular ways to build mobile applications. A cross-platform, or multiplatform,
approach allows developers to create apps that run similarly on different mobile platforms.

Interest has steadily increased over the period from 2010 to date, as this Google Trends chart illustrates:

Share the logic of your iOS and Android apps. See Kotlin Multiplatform in action.

1279

https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html

Google Trends chart illustrating the interest in cross-platform app development

The growing popularity of the rapidly advancing cross-platform mobile development technology has resulted in many new tools emerging on the market. With many
options available, it can be challenging to pick the one that will best suit your needs. To help you find the right tool, we've put together a list of the six best cross-
platform app development frameworks and the features that make them great. At the end of this article, you will also find a few key things to pay attention to when
choosing a multiplatform development framework for your business.

What
is
a
cross-platform
app
development
framework?
Mobile engineers use cross-platform mobile development frameworks to build native-looking applications for multiple platforms, such as Android and iOS, using a
single codebase. Shareable code is one of the key advantages this approach has over native app development. Having one single codebase means that mobile
engineers can save time by avoiding the need to write code for each operating system, accelerating the development process.

With demand for cross-platform solutions for mobile app development growing, the number of tools available on the market is increasing as well. In the following
section, we provide an overview of the most widely used frameworks for building cross-platform mobile apps for iOS, Android, and other platforms. Our summaries
include the programming languages these frameworks are based on, as well as their main features and advantages.

Popular
cross-platform
app
development
frameworks
This list of tools is not exhaustive; many other options are available on the market today. The important thing to realize is that there's no one-size-fits-all tool that will
be ideal for everyone. The choice of framework largely depends on your particular project and your goals, as well as other specifics that we will cover at the end of
the article.

Nevertheless, we've tried to pick out some of the best frameworks for cross-platform mobile development to give you a starting point for your decision.

Flutter
Released by Google in 2017, Flutter is a popular framework for building mobile, web, and desktop apps from a single codebase. To build applications with Flutter,
you will need to use Google's programming language called Dart.

Programming language: Dart.

Mobile apps: eBay, Alibaba, Google Pay, ByteDance apps.

Key features:

Flutter's hot reload feature allows you to see how your application changes as soon as you modify your code, without you having to recompile it.

Flutter supports Google's Material Design, a design system that helps developers build digital experiences. You can use multiple visual and behavioral widgets

1280

https://kotlinlang.org/docs/cross-platform-mobile-development.html#kotlin-multiplatform-mobile

when building your app.

Flutter doesn't rely on web browser technology. Instead, it has its own rendering engine for drawing widgets.

Flutter has a relatively active community of users around the world. It is widely used by many developers. According to the Stack Overflow Developer Survey 2021,
Flutter is the second most-loved framework.

React
Native
An open-source UI software framework, React Native was developed in 2015 (a bit earlier than Flutter) by Meta Platforms, formerly Facebook. It's based on
Facebook's JavaScript library React and allows developers to build natively rendered cross-platform mobile apps.

Programming language: JavaScript.

Mobile apps: Skype, Bloomberg, Shopify, various small modules in Facebook and Instagram.

Key features:

Developers can see their changes in their React components immediately, thanks to the Fast Refresh feature.

One of React Native's advantages is a focus on the UI. React primitives render to native platform UI components, allowing you to build a customized and
responsive user interface.

In versions 0.62 and higher, integration between React Native and the mobile app debugger Flipper is enabled by default. Flipper is used to debug Android, iOS,
and React native apps, and it provides tools like a log viewer, an interactive layout inspector, and a network inspector.

As one of the most popular cross-platform app development frameworks, React Native has a large and strong community of developers who share their technical
knowledge. Thanks to this community, you can get the support you need when building mobile apps with the framework.

Kotlin
Multiplatform
Mobile
Kotlin Multiplatform Mobile is an SDK developed by JetBrains for creating Android and iOS applications. It allows you to share common code between the two
platforms and write platform-specific code only when it's necessary, for example, when you need to build native UI components or when you are working with
platform-specific APIs.

Programming language: Kotlin.

Mobile apps: Philips, Baidu, Netflix, Leroy Merlin.

Key features:

You can easily start using Kotlin Multiplatform Mobile in existing projects.

Kotlin Multiplatform Mobile provides you with full access over the user interface. You can utilize the latest UI frameworks, such as SwiftUI and Jetpack Compose.

Developers have easy access to the Android and iOS SDKs without any restrictions.

Even though this cross-platform mobile development framework is the youngest on our list, it has a mature community. It's growing fast and is already making a
distinct impression on today's market. Thanks to its regularly updated documentation and community support, you can always find answers to your questions.
What's more, many global companies and startups already use Kotlin Multiplatform Mobile to develop multiplatform apps with a native-like user experience.

Ionic
Ionic is an open-source UI toolkit that was released in 2013. It helps developers build hybrid mobile and desktop applications using a combination of native and
web technologies, like HTML, CSS, and JavaScript, with integrations for the Angular, React, and Vue frameworks.

Programming language: JavaScript.

Mobile apps: T-Mobile, BBC (Children's & Education apps), EA Games.

Key features:

Ionic is based on a SaaS UI framework designed specifically for mobile OS and provides multiple UI components for building applications.

The Ionic framework uses the Cordova and Capacitor plugins to provide access to device's built-in features, such as the camera, flashlight, GPS, and audio

Create your first cross-platform mobile app with Kotlin Multiplatform.

1281

https://insights.stackoverflow.com/survey/2021#technology-most-loved-dreaded-and-wanted
https://itcraftapps.com/blog/7-react-native-myths-vs-reality/#facebook-instagram-in-react-native
https://kotlinlang.org/lp/multiplatform/case-studies/
https://www.jetbrains.com/help/kotlin-multiplatform-dev/multiplatform-getting-started.html

recorder.

Ionic has its own IDE called Ionic Studio, which was designed for building and prototyping apps with minimal coding.

There's constant activity on the Ionic Forum, where community members exchange knowledge and help each other overcome their development challenges.

Xamarin
Xamarin was launched in 2011 and is now owned by Microsoft. It's an open-source cross-platform app development framework that uses the C# language and the
.Net framework to develop apps for Android, iOS, and Windows.

Programming language: С#.

Mobile apps: UPS, Alaska Airlines, Academy Members (Academy of Motion Picture Arts and Sciences).

Key features:

Xamarin applications use the Base Class Library, or .NET BCL, a large collection of classes that have a range of comprehensive features, including XML,
database, IO, and networking support, and more. Existing C# code can be compiled for use in your app, giving you access to many libraries that add
functionality beyond the BCL.

With Xamarin.Forms, developers can utilize platform-specific UI elements to achieve a consistent look for their apps across different operating systems.

Compiled bindings in Xamarin.Forms improve data binding performance. Using these bindings provides compile-time validation for all binding expressions.
Because of this feature, mobile engineers get fewer runtime errors.

Xamarin is supported by many contributors across the globe and is especially popular among C, C++, and C# developers who create mobile applications.

NativeScript
This open-source mobile application development framework was initially released in 2014. NativeScript allows you to build Android and iOS mobile apps using
JavaScript or languages that transpile to JavaScript, like TypeScript, and frameworks like Angular and Vue.js.

Programming language: JavaScript, TypeScript.

Mobile apps: Daily Nanny, Strudel, Breethe.

Key features:

NativeScript allows developers to easily access native Android and iOS APIs.

The framework renders platform-native UIs. Apps built with NativeScript run directly on a native device without relying on WebViews, a system component for
the Android OS that allows Android applications to show content from the web inside an app.

NativeScript offers various plugins and pre-built app templates, eliminating the need for third-party solutions.

NativeScript is based on well-known web technologies like JavaScript and Angular, which is why many developers choose this framework. Nevertheless, it's usually
used by small companies and startups.

How
do
you
choose
the
right
cross-platform
app
development
framework
for
your
project?
There are other cross-platform frameworks besides those mentioned above, and new tools will continue to appear on the market. Given the wide array of options,
how can you find the right one for your next project? The first step is to understand your project's requirements and goals, and to get a clear idea of what you want
your future app to look like. Next, you'll want to take the following important factors into account so you can decide on the best fit for your business.

1.
The
expertise
of
your
team
Different cross-platform mobile development frameworks are based on different programming languages. Before adopting a framework, check what skills it requires
and make sure your team of mobile engineers has enough knowledge and experience to work with it.

For example, if your team is equipped with highly skilled JavaScript developers, and you don't have enough resources to introduce new technologies, it may be
worth choosing frameworks that use this language, such as React Native.

2.
Vendor
reliability
and
support

1282

It's important to be sure that the maintainer of the framework will continue to support it in the long run. Learn more about the companies that develop and support
the frameworks you're considering, and take a look at the mobile apps that have been built using them.

3.
UI
customization
Depending on how crucial the user interface is for your future app, you may need to know how easily you can customize the UI using a particular framework. For
example, Kotlin Multiplatform Mobile provides you with full control over the UI and the ability to use the latest UI frameworks, such as SwiftUI and Jetpack
Compose.

4.
Framework
maturity
Find out how frequently the public API and tooling for a prospective framework changes. For example, some changes to native operating system components break
internal cross-platform behavior. It's better to be aware of possible challenges you may face when working with the mobile app development framework. You can
also browse GitHub and check how many bugs the framework has and how these bugs are being handled.

5.
Framework
capabilities
Each framework has its own capabilities and limitations. Knowing what features and tools a framework provides is crucial to identifying the best solution for you.
Does it have code analyzers and unit testing frameworks? How quickly and easily will you be able to build, debug, and test your app?

6.
Consistency
between
different
platforms
Providing consistency between multiple platforms can be challenging, given how much platforms like Android and iOS significantly differ, particularly in terms of the
development experience. For example, tools and libraries aren't the same on these operating systems, so there may be many differences when it comes to the
business logic. Some technologies, like Kotlin Multiplatform Mobile, allow you to write and share the app's business logic between Android and iOS platforms.

7.
Security
Security and privacy are especially important when building a critical mobile app for business, for example, banking and e-commerce apps that include a payment
system. According to OWASP Mobile Top 10, among the most critical security risks for mobile applications are insecure data storage, authentication, and
authorization.

You need to ensure that the multiplatform mobile development framework of your choice provides the required level of security. One way to do this is to browse the
security tickets on the framework's issue tracker if it has one that's publicly available.

8.
Educational
materials
The volume and quality of available learning resources about a framework can also help you understand how smooth your experience will be when working with it.
Comprehensive official documentation, online and offline conferences, and educational courses are a good sign that you will be able to find enough essential
information about a product when you need it.

Key
takeaways
Without considering these factors, it's difficult to choose the framework for cross-platform mobile development that will best meet your specific needs. Take a
closer look at your future application requirements and weigh them against capabilities of various frameworks. Doing so will allow you to find the right cross-
platform solution to help you deliver high-quality apps.

Google
Summer
of
Code
with
Kotlin
This article contains the list of project ideas for Google Summer of Code with Kotlin, and contributor guidelines.

Kotlin resources:

Kotlin GitHub repository

Kotlin Slack and the #gsoc Slack channel

If you got any questions, contact us via gsoc@kotlinfoundation.org

1283

https://owasp.org/www-project-mobile-top-10/
https://kotlinlang.org/docs/home.html
https://github.com/jetbrains/kotlin
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://slack-chats.kotlinlang.org/c/gsoc
mailto:gsoc@kotlinfoundation.org

Kotlin
contributor
guidelines
for
Google
Summer
of
Code
(GSoC)

Getting
started
1. Check out the GSoC FAQ and the program announcement.

2. Familiarize yourself with the Kotlin language:

The official Kotlin website is a great place to start.

Read the official documentation to get a better understanding of the language.

Take a look at the Kotlin courses on JetBrains Academy or the Android team’s Training options.

Follow the Kotlin Twitter account to stay up to date on the latest news and developments.

Check out the Kotlin YouTube channel for tutorials, tips, and the latest updates.

3. Get to know the Kotlin open source community:

Explore the general Kotlin contribution guidelines.

Join the Kotlin Slack channel to connect with other developers and get help with any questions you may have.

Join the #gsoc channel to ask questions and get support from the GSoC team.

How
to
apply

1. Check out the project ideas and select the one you would like to work on.

2. If you are not familiar with Kotlin, read the introductory info on the Kotlin website.

3. Refer to the GSoC contributor guidelines.

4. Apply via the GSoC website.

We suggest that you write a working code sample relevant to the proposed project. You can also show us any code sample that you are particularly proud of.

Describe why you are interested in Kotlin and your experience with it.

If you participate in open source projects, please reference your contribution history.

If you have a GitHub, Twitter account, blog, or portfolio of technical or scientific publications, please reference them as well.

Disclose any conflicts with the GSoC timeline due to other commitments, such as exams and vacations.

Thank you! We look forward to reading your applications!

Project
ideas

Kotlin
Multiplatform
protobufs
[Hard,
350
hrs]
Description

Add support for Kotlin/Common protos to protoc with Kotlin/Native (iOS) runtime and Objective-C interop.

Motivation

While protobufs have many platform implementations, there isn't a way to use them in Kotlin Multiplatform projects.

Expected outcomes

Design and build Kotlin Multiplatform Protobuf support, culminating in contributions to:

Applications are accepted from March 20 to April 4, 2023.

1284

https://developers.google.com/open-source/gsoc/faq
https://opensource.googleblog.com/2022/11/get-ready-for-google-summer-of-code-2023.html
https://kotlinlang.org/
https://lp.jetbrains.com/academy/learn-kotlin/
https://developer.android.com/courses/
https://twitter.com/kotlin
https://www.youtube.com/@Kotlin
https://surveys.jetbrains.com/s3/kotlin-slack-sign-up
https://slack-chats.kotlinlang.org/c/gsoc
https://google.github.io/gsocguides/student/writing-a-proposal
https://summerofcode.withgoogle.com/

GitHub – protocolbuffers/protobuf: Protocol Buffers – Google's data interchange format

GitHub – google/protobuf-gradle-plugin

Kotlin Multiplatform Gradle Plugin

Skills required (preferred)

Kotlin

Objective-C

C++

Kotlin
Compiler
error
messages
[Hard,
350
hrs]
Description

Add improved compiler error messages to the K2 Kotlin compiler: more actionable and detailed information (like Rust has).

Motivation

Rust compiler error messages are often regarded as being by far the most helpful of any compiler. The Kotlin K2 compiler provides a great foundation for better
compiler errors in Kotlin but this potential is somewhat untapped.

Expected outcomes

Using StackOverflow and other data sources, uncover common compiler errors which would have significant value to users. Make contributions back to the
compiler to improve those error messages.

Skills required (preferred)

Kotlin

Compiler architecture

Kotlin
Multiplatform
libraries
[Easy
or
Medium,
175
or
350
hrs]
Description

Create and deliver (to Maven Central) Kotlin Multiplatform libraries that are commonly needed. For instance, compression, crypto.

Motivation

Kotlin Multiplatform is still fairly new and could use some additional libraries which are either platform independent (Kotlin/Common) and/or have platform
implementations (expect/actual).

Expected outcomes

Design and deliver at least one Kotlin Multiplatform library with a greater priority on JVM/Android and Kotlin/Native (iOS) than other targets (Kotlin/JS).

Skills required (preferred)

Kotlin

Objective-C

Groovy
to
Kotlin
Gradle
DSL
Converter
[Medium,
350
hrs]
Description

The project aims to create a Groovy-to-Kotlin converter with a primary focus on Gradle scripts. We will start from basic use cases, such as when a user wants to
paste Groovy-style dependency declarations to a Kotlin script and the IDE automatically converts them. Later, we will start supporting more complex code
constructs and conversions of complete files.

Motivation

The Kotlin Gradle DSL is gaining popularity, so much so that it will soon become the default choice for building projects with Gradle. However, many documents
and resources about Gradle still refer to Groovy, and pasting Groovy samples into build.gradle.kts requires manual editing. Furthermore, many new features around
Gradle will be in Kotlin first, and consequently users will migrate from the Groovy DSL to the Kotlin DSL. The automatic code conversion of a build setup will

1285

https://github.com/protocolbuffers/protobuf
https://github.com/google/protobuf-gradle-plugin
https://plugins.gradle.org/plugin/org.jetbrains.kotlin.multiplatform

therefore greatly ease this migration, saving a lot of time.

Expected outcomes

A plugin for IntelliJ IDEA that can convert Groovy code to Kotlin with the main focus on the Gradle DSL.

Skills required (preferred)

Basic knowledge of Gradle

Basic knowledge of parsers and how compilers work in general

Basic knowledge of Kotlin

Eclipse
Gradle
KTS
editing
[Medium,
350
hrs]
Description

Improve the experience of editing Gradle Kotlin Scripts (KTS) in Eclipse.

Motivation

IntelliJ IDEA and Android Studio have great support for editing KTS Gradle build scripts, but the Eclipse support is lacking. Ctrl-Click to definition, Code completion,
Code error highlighting could all be improved.

Expected outcomes

Make contributions to the Gradle Eclipse plugin that improve the developer experience for editing KTS.

Skills required (preferred)

Kotlin

Gradle

Eclipse platform and plugins

Improve
support
for
parameter
forwarding
in
the
Kotlin
Plugin
for
IntelliJ
IDEA
[Medium,
350
hrs]
Description and motivation

The Kotlin plugin provides Kotlin language support in IntelliJ IDEA and Android Studio. In the scope of this project, you will improve parameter forwarding support
for the plugin.

To prefer composition over inheritance is a widely known principle. IntelliJ IDEA provides great support for writing code that uses inheritance (completion and quick-
fixes the IDE suggests), but the support for code that uses composition instead of inheritance has yet to be implemented.

The main problem of working with code that heavily uses composition is parameter forwarding. In particular:

The IDE doesn't suggest completing parameter declarations that can be forwarded as arguments to other functions that currently use default arguments.

The IDE doesn't rename the chain of forwarded parameters.

The IDE doesn't provide any quick-fixes that fill in all the required arguments with parameters that can be forwarded.

One notable example where such support would be greatly appreciated is Jetpack Compose. Android’s modern tool kit for building UI, Jetpack Compose heavily
uses function composition and parameter forwarding. It quickly becomes tedious to work with @Composable functions because they have a lot of parameters. For
example, androidx.compose.material.TextField has 19 parameters.

Expected outcomes

Improved parameter and argument completion suggestions in IntelliJ IDEA.

Implemented IDE quick-fixes that suggest filling in all the required arguments with parameters with the same names and types.

The Rename refactoring renames the chain of forwarded parameters.

All other IDE improvements around parameter forwarding and functions that have a lot of parameters.

Skills required (preferred)

1286

https://github.com/JetBrains/intellij-community/tree/master/plugins/kotlin

Knowledge of Kotlin and Java

Ability to navigate in a large codebase

Enhance
the
kotlinx-benchmark
library
API
and
user
experience
[Easy,
175
hrs]
Description

kotlinx-benchmark is an open-source library for benchmarking multiplatform code written in Kotlin. It has a barebones skeleton but lacks quality-of-life features,
such as fine-grained benchmark configuration (like time units, modes), feature parity between JVM and Kotlin/Native benchmarking, a command-line API, and
modern Gradle support. Its documentation, integration tests, and examples are also lagging.

Motivation

The library has already been implemented, but it is sometimes difficult to use correctly and confuses some users. Improving the library’s user experience would
greatly help the Kotlin community.

Expected outcomes

The library has clear documentation with usage examples.

The library API is simple and easy to use.

Options for benchmarking Kotlin/JVM code are also available for benchmarking code on other platforms.

Skills required (preferred)

Kotlin

Gradle internals

Parallel
stacks
for
Kotlin
Coroutines
in
the
debugger
[Hard,
350
hrs]
Description

Implement Parallel Stacks view for Kotlin coroutines to improve the coroutine debugging experience.

Motivation

Currently, support for coroutines debugging is very limited in IntelliJ IDEA. The Kotlin debugger has the Coroutines Panel that allows a user to view all of the
coroutines and their states, but it's not very helpful when debugging an application with lots of coroutines in it. The JetBrains Rider has the Parallel Stacks feature
that allows a user to inspect threads and their stack traces in a graph view, which could be a great way of inspecting coroutines.

Expected outcomes

Using the Kotlin coroutines debugger API, develop the IntelliJ IDEA plugin which would add the parallel stacks view for coroutines to the debugger. Find ways to
improve the graph representation of coroutines.

Skills required (preferred)

Kotlin

Kotlin coroutines

IntelliJ IDEA plugin development

Security
We do our best to make sure our products are free of security vulnerabilities. To reduce the risk of introducing a vulnerability, you can follow these best practices:

Always use the latest Kotlin release. For security purposes, we sign our releases published on Maven Central with these PGP keys:

Key ID: kt-a@jetbrains.com

Fingerprint: 2FBA 29D0 8D2E 25EE 84C1 32C3 0729 A0AF F899 9A87

Key size: RSA 3072

1287

https://www.jetbrains.com/help/rider/Debugging_Multithreaded_Applications.html#parallel-stacks
https://www.jetbrains.com/help/rider/Debugging_Multithreaded_Applications.html#parallel-stacks
https://central.sonatype.com/search?q=g:org.jetbrains.kotlin

Use the latest versions of your application's dependencies. If you need to use a specific version of a dependency, periodically check if any new security
vulnerabilities have been discovered. You can follow the guidelines from GitHub or browse known vulnerabilities in the CVE base.

We are very eager and grateful to hear about any security issues you find. To report vulnerabilities that you discover in Kotlin, please post a message directly to our
issue tracker or send us an email.

For more information on how our responsible disclosure process works, please check the JetBrains Coordinated Disclosure Policy.

Kotlin
documentation
as
PDF
Here you can download a PDF version of Kotlin documentation that includes everything except tutorials and API reference.

Download Kotlin 1.9.0 documentation (PDF)

View the latest Kotlin documentation (online)

Contribution
Kotlin is an open-source project under the Apache 2.0 License. The source code, tooling, documentation, and even this web site are maintained on GitHub. While
Kotlin is mostly developed by JetBrains, there are hundreds of external contributors to the Kotlin project and we are always on the lookout for more people to help
us.

Participate
in
Early
Access
Preview
You can help us improve Kotlin by participating in Kotlin Early Access Preview (EAP) and providing us with your valuable feedback.

For every release, Kotlin ships a few preview builds where you can try out the latest features before they go to production. You can report any bugs you find to our
issue tracker YouTrack and we will try to fix them before a final release. This way, you can get bug fixes earlier than the standard Kotlin release cycle.

Contribute
to
the
compiler
and
standard
library
If you want to contribute to the Kotlin compiler and standard library, go to JetBrains/Kotlin GitHub, check out the latest Kotlin version, and follow the instructions on
how to contribute.

You can help us by completing open tasks. Please keep an open line of communication with us because we may have questions and comments on your changes.
Otherwise, we won't be able to incorporate your contributions.

Contribute
to
the
Kotlin
IDE
plugin
Kotlin IDE plugin is a part of the IntelliJ IDEA repository.

To contribute to the Kotlin IDE plugin, clone the IntelliJ IDEA repository and follow the instructions on how to contribute.

Contribute
to
other
Kotlin
libraries
and
tools
Besides the standard library that provides core capabilities, Kotlin has a number of additional (kotlinx) libraries that extend its functionality. Each kotlinx library is
developed in a separate repository, has its own versioning and release cycle.

If you want to contribute to a kotlinx library (such as kotlinx.coroutines or kotlinx.serialization) and tools, go to Kotlin GitHub, choose the repository you are
interested in and clone it.

Follow the contribution process described for each library and tool, such as kotlinx.serialization, ktor and others.

If you have a library that could be useful to other Kotlin developers, let us know via feedback@kotlinlang.org.

Contribute
to
the
documentation
If you've found an issue in the Kotlin documentation, feel free to check out the documentation source code on GitHub and send us a pull request. Follow these
guidelines on style and formatting.

1288

https://help.github.com/en/github/managing-security-vulnerabilities/managing-vulnerabilities-in-your-projects-dependencies
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=kotlin
https://youtrack.jetbrains.com/newIssue?project=KT&c=Type%20Security%20Problem
mailto:security@jetbrains.org
https://www.jetbrains.com/legal/docs/terms/coordinated-disclosure/
https://kotlinlang.org/docs/kotlin-reference.pdf
https://github.com/JetBrains/kotlin/blob/master/license/LICENSE.txt
https://github.com/jetbrains/kotlin
https://kotl.in/issue
https://github.com/jetbrains/kotlin
https://github.com/JetBrains/kotlin/blob/master/docs/contributing.md
https://youtrack.jetbrains.com/issues/KT?q=tag:%20%257BUp%20For%20Grabs%257D%20and%20State:%20Open
https://github.com/JetBrains/intellij-community/tree/master/plugins/kotlin
https://github.com/JetBrains/intellij-community/
https://github.com/JetBrains/intellij-community/blob/master/plugins/kotlin/CONTRIBUTING.md
https://github.com/Kotlin/kotlinx.coroutines
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin
https://github.com/Kotlin/kotlinx.serialization/blob/master/CONTRIBUTING.md
https://github.com/ktorio/ktor/blob/master/CONTRIBUTING.md
mailto:feedback@kotlinlang.org
https://github.com/JetBrains/kotlin-web-site/tree/master/docs/topics
https://docs.google.com/document/d/1mUuxK4xwzs3jtDGoJ5_zwYLaSEl13g_SuhODdFuh2Dc/edit?usp=sharing

Please keep an open line of communication with us because we may have questions and comments on your changes. Otherwise, we won't be able to incorporate
your contributions.

Create
tutorials
or
videos
If you've created tutorials or videos for Kotlin, please share them with us via feedback@kotlinlang.org.

Translate
documentation
to
other
languages
You are welcome to translate the Kotlin documentation into your own language and publish the translation on your website. However, we won't be able to host your
translation in the main repository and publish it on kotlinlang.org.

This site is the official documentation for the language, and we ensure that all the information here is correct and up to date. Unfortunately, we won't be able to
review documentation in other languages.

Hold
events
and
presentations
If you've given or just plan to give presentations or hold events on Kotlin, please fill out the form. We'll feature them on the event list.

KUG
guidelines
A Kotlin User Group, or KUG, is a community that is dedicated to Kotlin and that offers you a place to share your Kotlin programming experience with like-minded
people.

To become an KUG, your community should have some specific features shared by every KUG. It should:

Provide Kotlin-related content, with regular meetups as the main form of activity.

Host regular events (at least once every 3 months) with open registration and without any restriction for attendance.

Be driven and organized by the community, and it should not use events to earn money or gain any other business benefits from members and attendees.

Follow and ensure a code of conduct in order to provide a welcoming environment for attendees of any background and experience (check-out our
recommended Code of Conduct).

There are no limits regarding the format for KUG meetups. They can take place in whatever fashion works best for the community, whether that includes
presentations, hands-on labs, lectures, hackathons, or informal beer-driven get-togethers.

How
to
run
a
KUG?
In order to promote group cohesion and prevent miscommunication, we recommend keeping to a limit of one KUG per city. Check out the list of KUGs to see if
there is already a KUG in your area.

Use the official KUG logo and branding. Check out the branding guidelines.

Keep your user group active. Run meetups regularly, at least once every 3 months.

Announce your KUG meetups at least 2 weeks in advance. The announcement should contain a list of talks and the names of the speakers, as well as the
location, timing, and any other crucial info about the event.

KUG events should be free or, if you need to cover organizing expenses, limit prices to a maximum of 10 USD.

Your group should have a code of conduct available for all members.

If your community has all the necessary features and follows these guidelines, you are ready to Apply to be a new KUG.

Have a question? Contact us

For Kotlin User Group brand assets, see Kotlin brand assets documentation.

1289

mailto:feedback@kotlinlang.org
https://kotlinlang.org/
https://surveys.jetbrains.com/s3/Submit-a-Kotlin-Talk
https://kotlinlang.org/docs/events.html
https://confluence.jetbrains.com/display/ALL/JetBrains+Open+Source+and+Community+Code+of+Conduct
https://kotlinlang.org/community/user-groups
https://surveys.jetbrains.com/s3/submit-a-local-kotlin-user-group
mailto:kug@jetbrains.com

Support
for
KUGs
from
JetBrains
Active KUGs that host at least 1 meetup every 3 months can apply for the community support program, which includes:

Official KUG branding.

A special entry on the Kotlin website.

Free licenses for JetBrains products to raffle off at meetups.

Priority support for Kotlin events and campaigns.

Help with recruiting Kotlin speakers for your events.

Support
from
JetBrains
for
other
tech
communities
If you organize any other tech communities, you can apply for support as well. By doing so, you may receive:

Free licenses for JetBrains products to raffle off at meetups.

Information about Kotlin official events and campaigns.

Kotlin stickers.

Help with recruiting Kotlin speakers for your events.

Kotlin
Night
guidelines
Kotlin Night is a meetup that includes 3-4 talks on Kotlin or related technologies.

Event
guidelines
Please use the branding materials we've provided. Having all events and materials in the same style will help keep the Kotlin Night experience consistent.

Kotlin Night should be a free event. A minimal fee can be charged to cover expenses, but it should remain a non-profit event.

The event should be announced publicly and open for all people to attend without any kind of discrimination.

If you publish the contents of the talks online after the event, they must be free and accessible to everyone, without any sign-up or registration procedures.

Recordings are optional but recommended, and they should also be made available. If you decide to record the talks, we suggest having a plan to ensure the
quality is good.

The talks should primarily be about Kotlin and should not focus on marketing or sales.

The event can serve food and drinks optionally.

Event
requirements
JetBrains is excited to support your Kotlin Night event. Because we want all events to provide the same high-quality experience, we need organizers to ensure that
some basic requirements are met for the event to receive JetBrains support. As an organizer, you are responsible for the following aspects of the event:

1. The location and everything required to host the event, including booking a comfortable venue. Please make sure that:

All the participants are aware of the exact date, place, and starting time of the event, along with the event schedule and program.

There is enough space as well as food and beverages, if you provide them, for everyone.

You have a plan with your speakers. This includes a schedule, topics, abstracts for the talks, and any necessary equipment for the presentations.

For Kotlin Night brand assets, see Kotlin brand assets documentation.

1290

2. Content and speakers

Feel free to invite presenters from your local community, from neighboring countries, or even from all over the globe. You don't have to have any JetBrains
representatives or speakers at your event. However, we are always happy to hear about more Kotlin Nights, so feel free to notify us.

3. Announcements and promotion

Announce your event at least three weeks before the date of a meetup.

Include the schedule, topics, abstracts, and speaker bios in the announcement.

Spread the word on social media.

4. Providing event material to JetBrains after the event

We would be glad to announce your event at kotlinlang.org, and we would appreciate it if you provided slides and video materials for a follow-up posting.

JetBrains
support
JetBrains provides support with:

Access to Kotlin Night Branding, which includes the name and logos

Merchandise, such as stickers and t-shirts for speakers and small souvenirs for attendees

A listing for the event on the Kotlin Talks page

Help to reach out to speakers to take part in the event, if necessary

Help to find a location if possible (via contacts, etc.), as well as help to identify possible partnerships with local businesses

Kotlin
brand
assets

Kotlin
Logo
Our logo consists of a mark and a typeface. The full-color version is the main one and should be used in the vast majority of cases.

Download all versions

Kotlin logo

Our logo and mark have a protective field. Please position the logo so that other design elements do not come into the box. The minimum size of the protective field
is half the height of the mark.

1291

https://kotlinlang.org/community/talks.html
https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_logos.zip

Kotlin logo proportions

Pay special attention to the following restrictions concerning the use of the logo:

Do not separate the mark from the text. Do not swap elements.

Do not change the transparency of the logo.

Do not outline the logo.

Do not repaint the logo in third-party colors.

Do not change the text.

Do not set the logo against a complex background. Do not place the logo in front of a bright background.

Kotlin
mascot
Kodee is Kotlin's reimagined mascot. More than just a symbol, Kodee is your friendly companion who’s there to encourage and inspire you to express your
creativity. When using it, we ask you to follow these simple guidelines.

1292

https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_mascot.zip

Kotlin mascot Kodee proportions

You can use Kodee in your digital and print materials. For this purpose, we have prepared a variety of Kotlin mascot assets for you to download and explore.

Download all assets

Kotlin mascot Kodee in action

Kotlin
User
Group
brand
assets

1293

https://resources.jetbrains.com/storage/products/kotlin/docs/kotlin_mascot_2.zip

We provide Kotlin user groups with a logo that is specifically designed to be recognizable and convey a reference to Kotlin.

The official Kotlin logo is associated with the language itself. It should not be used otherwise in different scopes, as this could cause confusion. The same
applies to its close derivatives.

User groups logo also means that the opinions and actions of the community are independent of the Kotlin team.

Your opinions don't have to agree with ours, and we think this is the most beneficial model for a creative and strong community.

Download all assets

Style
for
user
groups
Since the launch of the Kotlin community support program at the beginning of 2017, the number of user groups has multiplied, with around 2-4 new user groups
joining us every month. Please check out the complete list of groups in the Kotlin User Groups section to find one in your area.

We provide new Kotlin user groups with a user group logo and a profile picture.

Branding image

There are two main reasons why we are doing it:

Firstly, we received numerous requests from the community asking for special Kotlin style branded materials to help them be recognized as officially dedicated
user groups.

Secondly, we wanted to provide a distinct style for the user group and community content to make it clear which Kotlin-related materials are from the official
team and which are created by the community.

Create
the
logo
of
your
user
group
To create a logo of your users group:

1. Copy the Kotlin user group logo file to your Google drive (you have to be signed in to your Google account).

2. Replace the Your City text with the name of your user group.

3. Download the picture and use it for the user group materials.

1294

https://drive.google.com/drive/folders/0B3Zi34svOj1RZ2sxZExhblRJc1k
https://docs.google.com/drawings/d/1IcJp8Z2jAwEliXrHB-l9RNK_2LrqGTkNuPPtjrW1iIU/edit

Belarusian Kotlin User Group sample

Belarusian Kotlin User Group Profile Picture sample

You can download a set of graphics including vector graphics and samples of cover pictures for social networks.

Create
your
group's
profile
picture
for
different
platforms
To create your group's profile picture:

1. Make a copy of the Kotlin user group profile picture file to your Google Drive (you have to be signed in to your Google account).

2. Add a shortened name of the user group's location (up to 4 capital symbols according to our default sample).

3. Download the picture and use it for your profiles on Facebook, Twitter, or any other platform.

Create
meetup.com
cover
photo
To create a cover photo with a group's logo for meetup.com:

1. Make a copy of the picture file to your Google Drive (you have to be signed in to your Google account).

2. Add a shortened name of the user group's location to the logo on the right upper corner of the picture. If you want to replace the general pattern with a custom
picture, click on the background pattern-picture, choose 'Replace Image', then 'Upload from Computer' or any other source.

3. Download the picture and use it for your profile on meetup.com.

1295

https://drive.google.com/drive/folders/0B3Zi34svOj1RZ2sxZExhblRJc1k
https://docs.google.com/drawings/d/1buhwccmllb7wFS0OIAub0WC4DIuSHRiDpjEQhB4tkPs/edit
https://drive.google.com/file/d/1g_0Plf_do6vrXvy1R-Hx430vfV2CPVKN/view
https://meetup.com

User Group examples

Kotlin
Night
brand
assets
JetBrains provides branding and materials for Kotlin Night events. Our team will prepare digital assets for the event promotion and ship your merchandise pack
containing stickers and t-shirts. Check out what we have to make your Kotlin Night fun!

Download all assets

Social
media
Stickers can be used to brand any media necessary for a Kotlin Night. Just stick them on anything you can get your hands on. It's fun!

Cover/Logo

1296

https://drive.google.com/drive/folders/1wTJ-PiO6VvbY6XdACGLsWZ_N8KHI0Nvr

Cover Social

Branding
stickers
Stickers can be used to brand assets for a Kotlin Night. Just stick them on anything you can get your hands on. It is funny!

Stickers

1297

Press-wall
You can decorate a press wall with stickers for unforgettable event pictures.

Press Wall

Sticky
badges
Use stickers as badges for the attendees and boost networking at the event!

Board
for
stickers
Or you can provide a board where your guests can paste stickers with their impressions, feedback, and wishes.

board pack

T-shirts
Guests of the event are offered to paste stickers on the board with their impressions of the meeting. What does it mean for you?

1298

Sticker pack

1299

	Table of Contents
	Kotlin Docs
	Get started with Kotlin
	Install Kotlin
	Create your powerful application with Kotlin
	Is anything missing?

	Welcome to our tour of Kotlin!
	Hello world
	Variables
	String templates
	Practice
	Exercise

	Next step

	Basic types
	Practice
	Exercise

	Next step

	Collections
	List
	Set
	Map
	Practice
	Exercise 1
	Exercise 2
	Exercise 3

	Next step

	Control flow
	Conditional expressions
	If
	When

	Ranges
	Loops
	For
	While

	Practice
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Next step

	Functions
	Named arguments
	Default parameter values
	Functions without return
	Single-expression functions
	Functions practice
	Exercise 1
	Exercise 2
	Exercise 3

	Lambda expressions
	Assign to variable
	Pass to another function
	Function types
	Return from a function
	Invoke separately
	Trailing lambdas

	Lambda expressions practice
	Exercise 1
	Exercise 2

	Next step

	Classes
	Properties
	Create instance
	Access properties
	Member functions
	Data classes
	Print as string
	Compare instances
	Copy instance

	Practice
	Exercise 1
	Exercise 2

	Next step

	Null safety
	Nullable types
	Check for null values
	Use safe calls
	Use Elvis operator
	Practice
	Exercise

	What's next?

	Kotlin Multiplatform
	Kotlin Multiplatform use cases
	Android and iOS applications
	Multiplatform libraries
	Desktop applications

	Code sharing between platforms
	Get started
	Sample projects

	Kotlin for server side
	Frameworks for server-side development with Kotlin
	Deploying Kotlin server-side applications
	Products that use Kotlin on the server side
	Next steps

	Kotlin for Android
	Kotlin Wasm
	Browser support
	Interoperability
	Compose Multiplatform for Web
	How to get started
	Libraries support
	Feedback

	Kotlin Native
	Why Kotlin/Native?
	Target platforms
	Interoperability
	Sharing code between platforms
	How to get started

	Kotlin for JavaScript
	Kotlin/JS IR compiler
	Kotlin/JS frameworks
	KVision
	fritz2
	Doodle

	Join the Kotlin/JS community

	Kotlin for data science
	Interactive editors
	Kotlin Notebook
	Jupyter Kotlin kernel
	Kotlin Notebooks in Datalore
	Zeppelin Kotlin interpreter

	Libraries
	Kotlin libraries
	Java libraries

	Kotlin for competitive programming
	Simple example: Reachable Numbers problem
	Functional operators example: Long Number problem
	More tips and tricks
	Learning Kotlin

	What's new in Kotlin 1.9.20
	IDE support
	New Kotlin K2 compiler updates
	Support for Kotlin/Wasm
	Preview kapt compiler plugin with K2
	How to enable the Kotlin K2 compiler
	Enable K2 in Gradle
	Enable K2 in Maven
	Enable K2 in JPS

	Leave your feedback on the new K2 compiler

	Kotlin/JVM
	Kotlin/Native
	Custom memory allocator enabled by default
	How to enable the custom memory allocator

	Performance improvements for the garbage collector
	Full parallel mark to reduce the pause time for the GC
	Tracking memory in big chunks to improve the allocation performance

	Incremental compilation of klib artifacts
	Managing library linkage issues
	Companion object initialization on class constructor calls
	Opt–in requirement for all cinterop declarations
	Custom message for linker errors
	Removal of the legacy memory manager
	Change to our target tiers policy

	Kotlin Multiplatform
	Kotlin Multiplatform is Stable
	Template for configuring multiplatform projects
	Create your project easier
	Use completion for source sets
	Set up the target hierarchy
	See the full hierarchy template

	New project wizard
	Full support for the Gradle configuration cache in Kotlin Multiplatform
	Easier configuration of new standard library versions in Gradle
	Default support for third–party cinterop libraries
	Support for Kotlin/Native compilation caches in Compose Multiplatform projects
	Compatibility guidelines

	Kotlin/Wasm
	Compatibility with Wasm GC phase 4 and final opcodes
	New wasm-wasi target, and the renaming of the wasm target to wasm-js
	Support for the WASI API in the standard library
	Kotlin/Wasm API improvements

	Gradle
	Support for test fixtures to access internal declarations
	New property to configure paths to Konan directories
	New build report metrics for Kotlin/Native tasks

	Standard library
	Replacement of the Enum class values generic function
	How to enable the enumEntries function

	The Kotlin/Native standard library becomes Stable
	Improvements to the Atomics API

	Improved performance of HashMap operations in Kotlin/JS

	Documentation updates
	Install Kotlin 1.9.20
	Check the IDE version
	Configure Gradle settings

	What's new in Kotlin 1.9.0
	IDE support
	New Kotlin K2 compiler updates
	Compatibility of the kapt compiler plugin with the K2 compiler
	Try the K2 compiler in your project
	Gradle build reports
	Current K2 compiler limitations
	Leave your feedback on the new K2 compiler

	Language
	Stable replacement of the enum class values function
	Stable data objects for symmetry with data classes
	Support for secondary constructors with bodies in inline value classes

	Kotlin/JVM
	Deprecation of JvmDefault annotation and legacy -Xjvm-default modes

	Kotlin/Native
	Preview of custom memory allocator
	How to enable
	Leave feedback

	Objective-C or Swift object deallocation hook on the main thread
	How to opt out

	No object initialization when accessing constant values in Kotlin/Native
	Ability to configure standalone mode for iOS simulator tests in Kotlin/Native
	Library linkage in Kotlin/Native
	Compiler option for C interop implicit integer conversions

	Kotlin Multiplatform
	Changes to Android target support
	New Android source set layout enabled by default
	Preview of the Gradle configuration cache

	Kotlin/Wasm
	Size-related optimizations
	Updates in JavaScript interop
	Restriction of Dynamic types
	Restriction of non-external types

	Kotlin/Wasm in Kotlin Playground

	Kotlin/JS
	Removal of the old Kotlin/JS compiler
	Deprecation of the Kotlin/JS Gradle plugin
	Deprecation of external enum
	Experimental support for ES6 classes and modules
	Changed default destination of JS production distribution
	Extract org.w3c declarations from stdlib-js

	Gradle
	Removed classpath property
	New compiler options
	Project-level compiler options for Kotlin/JVM
	Compiler option for Kotlin/Native module name
	Separate compiler plugins for official Kotlin libraries
	Incremented minimum supported version
	kapt doesn't cause eager task creation in Gradle
	Programmatic configuration of the JVM target validation mode

	Standard library
	Stable ..< operator for open-ended ranges
	Stable time API
	Measure code execution time
	Mark and measure differences in time

	The Kotlin/Native standard library's journey towards stabilization
	Explicit C-interoperability stability guarantees

	Stable @Volatile annotation
	New common function to get regex capture group by name
	New path utility to create parent directories
	New HexFormat class to format and parse hexadecimals

	Documentation updates
	Install Kotlin 1.9.0
	Check the IDE version
	Configure Gradle settings

	Compatibility guide for Kotlin 1.9.0

	What's new in Kotlin 1.9.20-RC2
	IDE support
	New Kotlin K2 compiler updates
	Support for Kotlin/Wasm
	Preview kapt compiler plugin with K2
	How to enable the Kotlin K2 compiler
	Leave your feedback on the new K2 compiler

	Kotlin Multiplatform
	Template for configuring multiplatform projects
	Create your project easier
	Enjoy improved tooling support
	Set up the target hierarchy
	See the full hierarchy template

	Full support for the Gradle configuration cache in Kotlin Multiplatform

	Kotlin/Native
	Custom memory allocator enabled by default
	How to enable the custom memory allocator

	Performance improvements for the garbage collector
	Full parallel mark to reduce the pause time for the GC
	Tracking memory in big chunks to improve the allocation performance

	Incremental compilation of klib artifacts
	Support for Xcode 15

	Kotlin/Wasm
	New wasm-wasi target, and the renaming of the wasm target to wasm-js
	Support for the WASI API in the standard library

	How to update to Kotlin 1.9.20-RC2

	What's new in Kotlin 1.8.20
	IDE support
	New Kotlin K2 compiler updates
	How to enable the Kotlin K2 compiler
	Leave your feedback on the new K2 compiler

	Language
	A modern and performant replacement of the Enum class values function
	How to enable the entries property

	Preview of data objects for symmetry with data classes
	Semantics of data objects
	How to enable the data objects preview

	Preview of lifting restriction on secondary constructors with bodies in inline classes
	How to enable secondary constructors with bodies

	New Kotlin/Wasm target
	How to enable Kotlin/Wasm
	Leave your feedback on Kotlin/Wasm

	Kotlin/JVM
	Preview of Java synthetic property references
	How to enable Java synthetic property references

	Support for the JVM IR backend in kapt stub generating task by default

	Kotlin/Native
	Update for Kotlin/Native targets
	Deprecation of the legacy memory manager
	Support for Objective-C headers with @import directives
	Support for the link-only mode in Cocoapods Gradle plugin
	Import Objective-C extensions as class members in UIKit
	Reimplementation of compiler cache management in the compiler
	Deprecation of useLibraries() in Cocoapods Gradle plugin

	Kotlin Multiplatform
	New approach to source set hierarchy
	Set up your project
	Why replace shortcuts
	How to enable the default hierarchy
	Leave feedback

	Preview of Gradle composite builds support in Kotlin Multiplatform
	Known issues

	Improved output for Gradle errors in Xcode

	Kotlin/JavaScript
	Removal of Dukat integration from Gradle plugin
	Kotlin variable and function names in source maps
	Opt in for generation of TypeScript definition files

	Gradle
	New Gradle plugins versions alignment
	New JVM incremental compilation by default in Gradle
	Precise backup of compilation tasks' outputs
	Example of precise backup usage in JetBrains
	Evaluating optimizations with build reports

	Lazy Kotlin/JVM tasks creation for all Gradle versions
	Non-default location of compile tasks' destinationDirectory
	Ability to opt-out from reporting compiler arguments to an HTTP statistics service

	Standard library
	Support for the AutoCloseable interface
	Support for Base64 encoding
	Support for @Volatile in Kotlin/Native
	How to enable

	Bug fix for stack overflow when using regex in Kotlin/Native

	Serialization updates
	Prototype serialization compiler plugin for Kotlin K2 compiler
	Prohibit implicit serializer customization via companion object

	Documentation updates
	Install Kotlin 1.8.20
	Check the IDE version
	Configure Gradle settings

	What's new in Kotlin 1.8.0
	IDE support
	Kotlin/JVM
	Ability to not generate TYPE_USE and TYPE_PARAMETER annotation targets
	A new compiler option for disabling optimizations
	Removal of the old backend
	Support for Lombok's @Builder annotation

	Kotlin/Native
	Support for Xcode 14.1
	Improved Objective-C/Swift interoperability
	Dynamic frameworks by default in the CocoaPods Gradle plugin

	Kotlin Multiplatform: A new Android source set layout
	KotlinSourceSet naming schema
	SourceDirectories
	The location of the AndroidManifest.xml file
	The relation between Android and common tests
	Support for Android flavors
	Configuration and setup

	Kotlin/JS
	Stable JS IR compiler backend
	New settings for reporting that yarn.lock has been updated
	Add test targets for browsers via Gradle properties
	New approach to adding CSS support to your project

	Gradle
	Exposing Kotlin compiler options as Gradle lazy properties
	Limitations

	Bumping the minimum supported versions
	Ability to disable the Kotlin daemon fallback strategy
	Usage of the latest kotlin-stdlib version in transitive dependencies
	Obligatory check for JVM targets of related Kotlin and Java compile tasks
	Resolution of Kotlin Gradle plugins' transitive dependencies
	Deprecations and removals

	Standard library
	Updated JVM compilation target
	cbrt()
	TimeUnit conversion between Java and Kotlin
	Comparable and subtractable TimeMarks
	Recursive copying or deletion of directories
	Error handling
	File overwrite
	Custom copying action

	Java Optionals extension functions
	Improved kotlin-reflect performance

	Documentation updates
	Revamped and new pages
	New and updated tutorials

	Install Kotlin 1.8.0
	Compatibility guide for Kotlin 1.8.0

	What's new in Kotlin 1.7.20
	Support for Kotlin K2 compiler plugins
	How to enable the Kotlin K2 compiler
	Leave your feedback on the new K2 compiler

	Language
	Preview of the ..< operator for creating open-ended ranges
	Standard library API changes
	How to enable the ..< operator

	Improved string representations for singletons and sealed class hierarchies with data objects
	How to enable data objects

	New builder type inference restrictions

	Kotlin/JVM
	Generic inline classes
	More optimized cases of delegated properties
	Support for the JVM IR backend in kapt stub generating task

	Kotlin/Native
	The new Kotlin/Native memory manager enabled by default
	Configuration and setup
	Freezing
	Calling Kotlin suspending functions from Swift/Objective-C
	Leave your feedback

	Customizing the Info.plist file

	Kotlin/JS
	Gradle
	Target configuration
	Source directories configuration
	New method for JVM toolchain configuration

	Standard library
	Documentation updates
	Revamped and improved pages
	New articles in the Kotlin Multiplatform journal
	New and updated tutorials
	Changes in release documentation

	Install Kotlin 1.7.20
	Compatibility guide for Kotlin 1.7.20

	What's new in Kotlin 1.7.0
	New Kotlin K2 compiler for the JVM in Alpha
	Language
	Allow implementation by delegation to an inlined value of an inline class
	Underscore operator for type arguments
	Stable builder inference
	Stable opt-in requirements
	Stable definitely non-nullable types

	Kotlin/JVM
	Compiler performance optimizations
	New compiler option: -Xjdk-release
	Stable callable references to functional interface constructors
	Removed JVM target version 1.6

	Kotlin/Native
	Performance improvements for the new memory manager
	Unified compiler plugin ABI with JVM and JS IR backends
	Support for standalone Android executables
	Interop with Swift async/await: returning Void instead of KotlinUnit
	Prohibited undeclared exceptions through Objective-C bridges
	Improved CocoaPods integration
	Overriding the Kotlin/Native compiler download URL

	Kotlin/JS
	Performance improvements for the new IR backend
	Minification for member names when using IR
	Support for older browsers via polyfills in the IR backend
	Dynamically load JavaScript modules from js expressions
	Specify environment variables for JavaScript test runners

	Standard library
	min() and max() collection functions return as non-nullable
	Regular expression matching at specific indices
	Extended support for previous language and API versions
	Access to annotations via reflection
	Stable deep recursive functions
	Time marks based on inline classes for default time source
	New experimental extension functions for Java Optionals
	Support for named capturing groups in JS and Native
	Retrieve matched group value by name
	Named backreferencing
	Named groups in replacement expressions

	Gradle
	A new approach to incremental compilation
	Build reports for Kotlin compiler tasks
	Bumping minimum supported versions
	Support for Gradle plugin variants
	Updates in the Kotlin Gradle plugin API
	The sam-with-receiver plugin is available via the plugins API
	Changes in compile tasks
	Statistics of generated files by each annotation processor in kapt
	Deprecation of the kotlin.compiler.execution.strategy system property
	Removal of deprecated options, methods, and plugins
	Removal of the useExperimentalAnnotation method
	Removal of deprecated compiler options
	Removal of deprecated plugins
	Removal of the deprecated coroutines DSL option and property
	Removal of the type cast in the toolchain extension method

	Migrating to Kotlin 1.7.0
	Install Kotlin 1.7.0
	Migrate existing or start a new project with Kotlin 1.7.0
	Compatibility guide for Kotlin 1.7.0

	What's new in Kotlin 1.6.20
	Language
	Prototype of context receivers for Kotlin/JVM
	Definitely non-nullable types

	Kotlin/JVM
	New @JvmDefaultWithCompatibility annotation for interfaces
	Compatibility changes in the -Xjvm-default modes
	Support for parallel compilation of a single module in the JVM backend
	Support for callable references to functional interface constructors

	Kotlin/Native
	An update on the new memory manager
	Concurrent implementation for the sweep phase in new memory manager
	Instantiation of annotation classes
	Interop with Swift async/await: returning Void instead of KotlinUnit
	Better stack traces with libbacktrace
	Support for standalone Android executables
	Performance improvements
	Improved error handling during cinterop modules import
	Support for Xcode 13 libraries

	Kotlin Multiplatform
	Hierarchical structure support for multiplatform projects
	Better code-sharing in your project
	More opportunities for library authors
	Configuration and setup
	Leave your feedback

	Kotlin CocoaPods Gradle plugin

	Kotlin/JS
	Incremental compilation for development binaries with IR compiler
	Lazy initialization of top-level properties by default with IR compiler
	Separate JS files for project modules by default with IR compiler
	Char class optimization
	Improvements to export and TypeScript declaration generation
	@AfterTest guarantees for asynchronous tests

	Security
	Using relative paths in klibs
	Persisting yarn.lock for Kotlin/JS Gradle projects
	Installation of npm dependencies with --ignore-scripts by default

	Gradle
	Properties for defining Kotlin compiler execution strategy
	Deprecation of build options for kapt and coroutines
	Removal of the kotlin.parallel.tasks.in.project build option

	What's new in Kotlin 1.6.0
	Language
	Stable exhaustive when statements for enum, sealed, and Boolean subjects
	Stable suspending functions as supertypes
	Stable suspend conversions
	Stable instantiation of annotation classes
	Improved type inference for recursive generic types
	Changes to builder inference
	Support for annotations on class type parameters

	Supporting previous API versions for a longer period
	Kotlin/JVM
	Repeatable annotations with runtime retention for 1.8 JVM target
	Optimize delegated properties which call get/set on the given KProperty instance

	Kotlin/Native
	Preview of the new memory manager
	Support for Xcode 13
	Compilation of Windows targets on any host
	LLVM and linker updates
	Performance improvements
	Unified compiler plugin ABI with JVM and JS IR backends
	Detailed error messages for klib linkage failures
	Reworked unhandled exception handling API

	Kotlin/JS
	Option to use pre-installed Node.js and Yarn

	Kotlin Gradle plugin
	Standard library
	New readline functions
	Stable typeOf()
	Stable collection builders
	Stable Duration API
	Splitting Regex into a sequence
	Bit rotation operations on integers
	Changes for replace() and replaceFirst() in JS
	Improvements to the existing API
	Deprecations
	concat(), match(), and matches() string functions
	sort() on arrays taking comparison functions

	Tools
	Kover – a code coverage tool for Kotlin

	Coroutines 1.6.0-RC
	Migrating to Kotlin 1.6.0

	What's new in Kotlin 1.5.30
	Language features
	Exhaustive when statements for sealed and Boolean subjects
	Suspending functions as supertypes
	Requiring opt-in on implicit usages of experimental APIs
	Changes to using opt-in requirement annotations with different targets
	Improvements to type inference for recursive generic types
	Eliminating builder inference restrictions

	Kotlin/JVM
	Instantiation of annotation classes
	Improved nullability annotation support configuration

	Kotlin/Native
	Apple silicon support
	Improved Kotlin DSL for the CocoaPods Gradle plugin
	New parameters for Kotlin/Native frameworks
	Support custom names for Xcode configuration

	Experimental interoperability with Swift 5.5 async/await
	Improved Swift/Objective-C mapping for objects and companion objects
	Deprecation of linkage against DLLs without import libraries for MinGW targets

	Kotlin Multiplatform
	Ability to use custom cinterop libraries in shared native code
	Support for XCFrameworks
	New default publishing setup for Android artifacts

	Kotlin/JS
	JS IR compiler backend reaches Beta
	Better debugging experience for applications with the Kotlin/JS IR backend

	Gradle
	Support for Java toolchains
	Ability to specify JDK home with UsesKotlinJavaToolchain interface
	Easier way to explicitly specify Kotlin daemon JVM arguments

	Standard library
	Changing Duration.toString() output
	Parsing Duration from String
	Matching with Regex at a particular position
	Splitting Regex to a sequence

	Serialization 1.3.0-RC

	What's new in Kotlin 1.5.20
	Kotlin/JVM
	String concatenation via invokedynamic
	Support for JSpecify nullness annotations
	Support for calling Java's Lombok-generated methods within modules that have Kotlin and Java code

	Kotlin/Native
	Opt-in export of KDoc comments to generated Objective-C headers
	Compiler bug fixes
	Improved performance of Array.copyInto() inside one array

	Kotlin/JS
	Migration guide for the JS IR backend

	Gradle
	Caching for annotation processors' classloaders in kapt
	Deprecation of the kotlin.parallel.tasks.in.project build property

	Standard library
	Support for all Unicode digits in Char.digitToInt() in Kotlin/Native and Kotlin/JS
	Unification of Char.isLowerCase()/isUpperCase() implementations across platforms

	What's new in Kotlin 1.5.0
	Language features
	JVM records support
	Sealed interfaces
	Package-wide sealed class hierarchies
	Inline classes

	Kotlin/JVM
	Stable JVM IR backend
	New default JVM target: 1.8
	SAM adapters via invokedynamic
	Lambdas via invokedynamic
	Deprecation of @JvmDefault and old Xjvm-default modes
	Improvements to handling nullability annotations

	Kotlin/Native
	Performance improvements
	Deactivation of the memory leak checker

	Kotlin/JS
	Upgrade to webpack 5
	Frameworks and libraries for the IR compiler

	Kotlin Multiplatform
	Standard library
	Stable unsigned integer types
	Stable locale-agnostic API for upper/lowercasing text
	Stable char-to-integer conversion API
	Stable Path API
	Floored division and the mod operator
	Duration API changes
	New API for getting a char category now available in multiplatform code
	New collections function firstNotNullOf()
	Strict version of String?.toBoolean()

	kotlin-test library
	Simplified test dependencies usage in multiplatform projects
	Automatic selection of a testing framework for Kotlin/JVM source sets
	Assertion function updates

	kotlinx libraries
	Coroutines 1.5.0-RC
	Serialization 1.2.1
	dateTime 0.2.0

	Migrating to Kotlin 1.5.0

	What's new in Kotlin 1.4.30
	Language features
	JVM records support
	Sealed interfaces
	Package-wide sealed class hierarchies
	Improved inline classes

	Kotlin/JVM
	JVM IR compiler backend reaches Beta

	Kotlin/Native
	Performance improvements
	Apple watchOS 64-bit simulator target
	Support for Xcode 12.2 libraries

	Kotlin/JS
	Lazy initialization of top-level properties

	Gradle project improvements
	Support the Gradle configuration cache

	Standard library
	Locale-agnostic API for upper/lowercasing text
	Clear Char-to-code and Char-to-digit conversions

	Serialization updates
	Inline classes serialization support
	Unsigned primitive type serialization support

	What's new in Kotlin 1.4.20
	Kotlin/JVM
	Java 15 target
	invokedynamic string concatenation

	Kotlin/JS
	Gradle DSL changes
	Single point for webpack configuration
	package.json customization from Gradle
	Selective yarn dependency resolutions
	Disabling granular workspaces

	New Wizard templates
	Ignoring compilation errors with IR compiler

	Kotlin/Native
	Escape analysis
	Performance improvements and bug fixes
	Opt-in wrapping of Objective-C exceptions
	CocoaPods plugin improvements
	Improved task execution
	Extended DSL
	Updated integration with Xcode

	Support for Xcode 12 libraries

	Kotlin Multiplatform
	Updated structure of multiplatform library publications
	Compatibility with earlier versions

	Standard library
	Extensions for java.nio.file.Path
	Improved String.replace function performance

	Kotlin Android Extensions
	Deprecation of synthetic views
	New plugin for Parcelable implementation generator

	What's new in Kotlin 1.4.0
	Language features and improvements
	SAM conversions for Kotlin interfaces
	Explicit API mode for library authors
	Mixing named and positional arguments
	Trailing comma
	Callable reference improvements
	References to functions with default argument values
	Function references in Unit-returning functions
	References that adapt based on the number of arguments in a function
	Suspend conversion on callable references

	Using break and continue inside when expressions included in loops

	New tools in the IDE
	New flexible Project Wizard
	Coroutine Debugger

	New compiler
	New more powerful type inference algorithm
	More cases where type is inferred automatically
	Smart casts for a lambda's last expression
	Smart casts for callable references
	Better inference for delegated properties
	SAM conversion for Java interfaces with different arguments
	Java SAM interfaces in Kotlin

	Unified backends and extensibility

	Kotlin/JVM
	New JVM IR backend
	New modes for generating default methods
	Unified exception type for null checks
	Type annotations in the JVM bytecode

	Kotlin/JS
	New Gradle DSL
	New JS IR backend

	Kotlin/Native
	Support for Kotlin's suspending functions in Swift and Objective-C
	Objective-C generics support by default
	Exception handling in Objective-C/Swift interop
	Generate release .dSYMs on Apple targets by default
	Performance improvements
	Simplified management of CocoaPods dependencies

	Kotlin Multiplatform
	Sharing code in several targets with the hierarchical project structure
	Leveraging native libs in the hierarchical structure
	Specifying dependencies only once

	Gradle project improvements
	Dependency on the standard library added by default
	Minimum Gradle version for Kotlin projects
	Improved *.gradle.kts support in the IDE

	Standard library
	Common exception processing API
	New functions for arrays and collections
	Collections
	Arrays
	ArrayDeque

	Functions for string manipulations
	Bit operations
	Delegated properties improvements
	Converting from KType to Java Type
	Proguard configurations for Kotlin reflection
	Improving the existing API
	module-info descriptors for stdlib artifacts
	Deprecations
	toShort() and toByte() of Double and Float
	contains(), indexOf(), and lastIndexOf() on floating-point arrays
	min() and max() collection functions

	Exclusion of the deprecated experimental coroutines

	Stable JSON serialization
	Scripting and REPL
	New dependencies resolution API
	New REPL API
	Compiled scripts cache
	Artifacts renaming

	Migrating to Kotlin 1.4.0

	What's new in Kotlin 1.3
	Coroutines release
	Kotlin/Native
	Multiplatform projects
	Contracts
	Contracts in stdlib
	Custom contracts

	Capturing when subject in a variable
	@JvmStatic and @JvmField in companions of interfaces
	Nested declarations in annotation classes
	Parameterless main
	Functions with big arity
	Progressive mode
	Inline classes
	Unsigned integers
	@JvmDefault
	Standard library
	Multiplatform random
	isNullOrEmpty and orEmpty extensions
	Copy elements between two existing arrays
	associateWith
	ifEmpty and ifBlank functions
	Sealed classes in reflection
	Smaller changes

	Tooling
	Code style support in IDE
	kotlinx.serialization
	Scripting update
	Scratches support

	What's new in Kotlin 1.2
	Table of contents
	Multiplatform projects (experimental)
	Other language features
	Array literals in annotations
	Lateinit top-level properties and local variables
	Check whether a lateinit var is initialized
	Inline functions with default functional parameters
	Information from explicit casts is used for type inference
	Smart cast improvements
	Support for ::foo as a shorthand for this::foo
	Breaking change: sound smart casts after try blocks
	Deprecation: data classes overriding copy
	Deprecation: nested types in enum entries
	Deprecation: single named argument for vararg
	Deprecation: inner classes of generic classes extending Throwable
	Deprecation: mutating backing field of a read-only property

	Standard library
	Kotlin standard library artifacts and split packages
	windowed, chunked, zipWithNext
	fill, replaceAll, shuffle/shuffled
	Math operations in kotlin-stdlib
	Operators and conversions for BigInteger and BigDecimal
	Floating point to bits conversions
	Regex is now serializable
	Closeable.use calls Throwable.addSuppressed if available

	JVM backend
	Constructor calls normalization
	Java-default method calls
	Breaking change: consistent behavior of x.equals(null) for platform types
	Breaking change: fix for platform null escaping through an inlined extension receiver

	JavaScript backend
	TypedArrays support enabled by default

	Tools
	Warnings as errors

	What's new in Kotlin 1.1
	Table of contents
	JavaScript
	Coroutines (experimental)
	Other language features
	Type aliases
	Bound callable references
	Sealed and data classes
	Destructuring in lambdas
	Underscores for unused parameters
	Underscores in numeric literals
	Shorter syntax for properties
	Inline property accessors
	Local delegated properties
	Interception of delegated property binding
	Generic enum value access
	Scope control for implicit receivers in DSLs
	rem operator

	Standard library
	String to number conversions
	onEach()
	also(), takeIf(), and takeUnless()
	groupingBy()
	Map.toMap() and Map.toMutableMap()
	Map.minus(key)
	minOf() and maxOf()
	Array-like List instantiation functions
	Map.getValue()
	Abstract collections
	Array manipulation functions

	JVM Backend
	Java 8 bytecode support
	Java 8 standard library support
	Parameter names in the bytecode
	Constant inlining
	Mutable closure variables
	javax.script support
	kotlin.reflect.full

	JavaScript backend
	Unified standard library
	Better code generation
	The external modifier
	Improved import handling

	Kotlin releases
	Update to a new release
	IDE support
	Release details

	Kotlin roadmap
	Key priorities
	Kotlin roadmap by subsystem
	YouTrack board
	Roadmap details

	What's changed since December 2022
	Completed items
	New items
	Removed items
	Items in progress

	Basic syntax
	Package definition and imports
	Program entry point
	Print to the standard output
	Functions
	Variables
	Creating classes and instances
	Comments
	String templates
	Conditional expressions
	for loop
	while loop
	when expression
	Ranges
	Collections
	Nullable values and null checks
	Type checks and automatic casts

	Idioms
	Create DTOs (POJOs/POCOs)
	Default values for function parameters
	Filter a list
	Check the presence of an element in a collection
	String interpolation
	Instance checks
	Read-only list
	Read-only map
	Access a map entry
	Traverse a map or a list of pairs
	Iterate over a range
	Lazy property
	Extension functions
	Create a singleton
	Instantiate an abstract class
	If-not-null shorthand
	If-not-null-else shorthand
	Execute a statement if null
	Get first item of a possibly empty collection
	Execute if not null
	Map nullable value if not null
	Return on when statement
	try-catch expression
	if expression
	Builder-style usage of methods that return Unit
	Single-expression functions
	Call multiple methods on an object instance (with)
	Configure properties of an object (apply)
	Java 7's try-with-resources
	Generic function that requires the generic type information
	Swap two variables
	Mark code as incomplete (TODO)
	What's next?

	Coding conventions
	Configure style in IDE
	Apply the style guide
	Verify that your code follows the style guide

	Source code organization
	Directory structure
	Source file names
	Multiplatform projects

	Source file organization
	Class layout
	Interface implementation layout
	Overload layout

	Naming rules
	Function names
	Names for test methods
	Property names
	Names for backing properties
	Choose good names

	Formatting
	Indentation
	Horizontal whitespace
	Colon
	Class headers
	Modifiers order
	Annotations
	File annotations
	Functions
	Expression bodies
	Properties
	Control flow statements
	Method calls
	Wrap chained calls
	Lambdas
	Trailing commas
	Enumerations
	Value arguments
	Class properties and parameters
	Function value parameters
	Parameters with optional type (including setters)
	Indexing suffix
	Parameters in lambdas
	when entry
	Collection literals (in annotations)
	Type arguments
	Type parameters
	Destructuring declarations

	Documentation comments
	Avoid redundant constructs
	Unit return type
	Semicolons
	String templates

	Idiomatic use of language features
	Immutability
	Default parameter values
	Type aliases
	Lambda parameters
	Returns in a lambda
	Named arguments
	Conditional statements
	if versus when
	Nullable Boolean values in conditions
	Loops
	Loops on ranges
	Strings
	Functions vs properties
	Extension functions
	Infix functions
	Factory functions
	Platform types
	Scope functions apply/with/run/also/let

	Coding conventions for libraries

	Basic types
	Numbers
	Integer types
	Floating-point types
	Literal constants for numbers
	Numbers representation on the JVM
	Explicit number conversions
	Operations on numbers
	Division of integers
	Bitwise operations
	Floating-point numbers comparison

	Unsigned integer types
	Unsigned arrays and ranges
	Unsigned integers literals
	Use cases
	Non-goals

	Booleans
	Characters
	Strings
	String literals
	Escaped strings
	Multiline strings

	String templates

	Arrays
	When to use arrays
	Create arrays
	Nested arrays

	Access and modify elements
	Work with arrays
	Pass variable number of arguments to a function
	Compare arrays
	Transform arrays
	Sum
	Shuffle

	Convert arrays to collections
	Convert to List or Set
	Convert to Map

	Primitive-type arrays
	What's next?

	Type checks and casts
	is and !is operators
	Smart casts
	"Unsafe" cast operator
	"Safe" (nullable) cast operator

	Conditions and loops
	If expression
	When expression
	For loops
	While loops
	Break and continue in loops

	Returns and jumps
	Break and continue labels
	Return to labels

	Exceptions
	Exception classes
	Try is an expression

	Checked exceptions
	The Nothing type
	Java interoperability

	Packages and imports
	Default imports
	Imports
	Visibility of top-level declarations

	Classes
	Constructors
	Secondary constructors

	Creating instances of classes
	Class members
	Inheritance
	Abstract classes
	Companion objects

	Inheritance
	Overriding methods
	Overriding properties
	Derived class initialization order
	Calling the superclass implementation
	Overriding rules

	Properties
	Declaring properties
	Getters and setters
	Backing fields
	Backing properties

	Compile-time constants
	Late-initialized properties and variables
	Checking whether a lateinit var is initialized

	Overriding properties
	Delegated properties

	Interfaces
	Implementing interfaces
	Properties in interfaces
	Interfaces Inheritance
	Resolving overriding conflicts

	Functional (SAM) interfaces
	SAM conversions
	Migration from an interface with constructor function to a functional interface
	Functional interfaces vs. type aliases

	Visibility modifiers
	Packages
	Class members
	Constructors
	Local declarations

	Modules

	Extensions
	Extension functions
	Extensions are resolved statically
	Nullable receiver
	Extension properties
	Companion object extensions
	Scope of extensions
	Declaring extensions as members
	Note on visibility

	Data classes
	Properties declared in the class body
	Copying
	Data classes and destructuring declarations
	Standard data classes

	Sealed classes and interfaces
	Location of direct subclasses
	Inheritance in multiplatform projects

	Sealed classes and when expression

	Generics: in, out, where
	Variance
	Declaration-site variance

	Type projections
	Use-site variance: type projections
	Star-projections

	Generic functions
	Generic constraints
	Upper bounds

	Definitely non-nullable types
	Type erasure
	Generics type checks and casts
	Unchecked casts

	Underscore operator for type arguments

	Nested and inner classes
	Inner classes
	Anonymous inner classes

	Enum classes
	Anonymous classes
	Implementing interfaces in enum classes
	Working with enum constants

	Inline value classes
	Members
	Inheritance
	Representation
	Mangling
	Calling from Java code

	Inline classes vs type aliases
	Inline classes and delegation

	Object expressions and declarations
	Object expressions
	Creating anonymous objects from scratch
	Inheriting anonymous objects from supertypes
	Using anonymous objects as return and value types
	Accessing variables from anonymous objects

	Object declarations
	Data objects
	Differences between data objects and data classes
	Using data objects with sealed hierarchies

	Companion objects
	Semantic difference between object expressions and declarations

	Delegation
	Overriding a member of an interface implemented by delegation

	Delegated properties
	Standard delegates
	Lazy properties
	Observable properties

	Delegating to another property
	Storing properties in a map
	Local delegated properties
	Property delegate requirements
	Translation rules for delegated properties
	Optimized cases for delegated properties
	Translation rules when delegating to another property

	Providing a delegate

	Type aliases
	Functions
	Function usage
	Parameters
	Default arguments
	Named arguments
	Unit-returning functions
	Single-expression functions
	Explicit return types
	Variable number of arguments (varargs)
	Infix notation

	Function scope
	Local functions
	Member functions

	Generic functions
	Tail recursive functions

	Higher-order functions and lambdas
	Higher-order functions
	Function types
	Instantiating a function type
	Invoking a function type instance
	Inline functions

	Lambda expressions and anonymous functions
	Lambda expression syntax
	Passing trailing lambdas
	it: implicit name of a single parameter
	Returning a value from a lambda expression
	Underscore for unused variables
	Destructuring in lambdas
	Anonymous functions
	Closures
	Function literals with receiver

	Inline functions
	noinline
	Non-local returns
	Reified type parameters
	Inline properties
	Restrictions for public API inline functions

	Operator overloading
	Unary operations
	Unary prefix operators
	Increments and decrements

	Binary operations
	Arithmetic operators
	in operator
	Indexed access operator
	invoke operator
	Augmented assignments
	Equality and inequality operators
	Comparison operators
	Property delegation operators

	Infix calls for named functions

	Type-safe builders
	How it works
	Scope control: @DslMarker
	Full definition of the com.example.html package

	Using builders with builder type inference
	Writing your own builders
	Requirements for enabling builder inference
	Supported features

	How builder inference works
	Postponed type variables
	Contributing to builder inference results

	Null safety
	Nullable types and non-nullable types
	Checking for null in conditions
	Safe calls
	Nullable receiver
	Elvis operator
	The !! operator
	Safe casts
	Collections of a nullable type
	What's next?

	Equality
	Structural equality
	Referential equality
	Floating-point numbers equality
	Array equality

	This expressions
	Qualified this
	Implicit this

	Asynchronous programming techniques
	Threading
	Callbacks
	Futures, promises, and others
	Reactive extensions
	Coroutines

	Coroutines
	How to start
	Documentation
	Tutorials

	Sample projects

	Annotations
	Usage
	Constructors
	Instantiation
	Lambdas
	Annotation use-site targets
	Java annotations
	Arrays as annotation parameters
	Accessing properties of an annotation instance
	Ability to not generate JVM 1.8+ annotation targets

	Repeatable annotations

	Destructuring declarations
	Example: returning two values from a function
	Example: destructuring declarations and maps
	Underscore for unused variables
	Destructuring in lambdas

	Reflection
	JVM dependency
	Class references
	Bound class references

	Callable references
	Function references
	Example: function composition

	Property references
	Interoperability with Java reflection
	Constructor references
	Bound function and property references
	Bound constructor references

	Get started with Kotlin Multiplatform
	Start from scratch
	Dive deep into Kotlin Multiplatform
	Get help

	The basics of Kotlin Multiplatform project structure
	Common code
	Targets
	Source sets
	Platform-specific source sets
	Compilation to a specific target
	Intermediate source sets
	Apple device and simulator targets

	Integration with tests
	What's next?

	Set up targets for Kotlin Multiplatform
	Distinguish several targets for one platform

	Share code on platforms
	Share code on all platforms
	Share code on similar platforms
	Share code in libraries
	Connect platform-specific libraries
	What's next?

	Expected and actual declarations
	Rules for expected and actual declarations
	Different approaches for using expected and actual declarations
	Expected and actual functions
	Interfaces with expected and actual functions
	Expected and actual properties
	Expected and actual objects
	Recommendations on dependency injection

	Expected and actual classes
	Inheritance from platform classes
	Application in frameworks

	Advanced use cases
	Using type aliases to satisfy actual declarations
	Expanded visibility in actual declarations
	Additional enumeration entries on actualization
	Expected annotation classes

	What's next?

	Hierarchical project structure
	Default hierarchy template
	Additional configuration
	Replacing manual configuration
	Creating additional source sets
	Modifying source sets
	See the full hierarchy template

	Manual configuration

	Adding dependencies on multiplatform libraries
	Dependency on a Kotlin library
	Standard library
	Test libraries
	kotlinx libraries

	Dependency on Kotlin Multiplatform libraries
	Library shared for all source sets
	Library used in specific source sets

	Dependency on another multiplatform project
	What's next?

	Adding Android dependencies
	What's next?

	Adding iOS dependencies
	With CocoaPods
	Without CocoaPods
	Add a library without CocoaPods
	Add a framework without CocoaPods

	What's next?

	Configure compilations
	Configure all compilations
	Configure compilations for one target
	Configure one compilation
	Create a custom compilation
	Use Java sources in JVM compilations
	Configure interop with native languages
	Compilation for Android
	Compilation of the source set hierarchy

	Build final native binaries (Experimental DSL)
	Declare binaries
	Configure binaries
	Libraries and frameworks
	Library
	Framework

	Fat frameworks
	XCFrameworks

	Build final native binaries
	Declare binaries
	Access binaries
	Export dependencies to binaries
	Build universal frameworks
	Build XCFrameworks
	Customize the Info.plist file

	Publishing multiplatform libraries
	Structure of publications
	Avoid duplicate publications
	Publish an Android library
	Disable sources publication

	Introduce cross-platform development to your team
	Start with empathy
	Explain how it works
	Show the value
	Offer proof
	Prepare for questions
	Be supportive

	Multiplatform Gradle DSL reference
	Id and version
	Top-level blocks
	Targets
	Common target configuration
	JVM targets
	JavaScript targets
	Browser
	Node.js

	Native targets
	Binaries
	CInterops

	Android targets

	Source sets
	Predefined source sets
	Custom source sets
	Source set parameters

	Compilations
	Predefined compilations
	Custom compilations
	Compilation parameters

	Dependencies
	Language settings

	Android source set layout
	Check the compatibility
	Rename Kotlin source sets
	Move source files
	Move the AndroidManifest.xml file
	Check the relationship between Android and common tests
	Adjust the implementation of Android flavors

	Compatibility guide for Kotlin Multiplatform
	Version compatibility
	New approach to auto-generated targets
	Changes in Gradle input and output compile tasks
	New configuration names for dependencies on the compilation
	Deprecated Gradle properties for hierarchical structure support
	Deprecated support of multiplatform libraries published in the legacy mode
	Deprecated API for adding Kotlin source sets directly to the Kotlin compilation
	Migration from kotlin-js Gradle plugin to kotlin-multiplatform Gradle plugin
	Rename of android target to androidTarget
	Declaring several similar targets
	Deprecated jvmWithJava preset
	Deprecated legacy Android source set layout
	Deprecated commonMain and commonTest with custom dependsOn
	Deprecated target presets API

	Kotlin Multiplatform Mobile plugin releases
	Update to the new release
	Release details

	Get started with Kotlin/JVM
	Create a project
	Create an application
	Run the application
	What's next?

	Comparison to Java
	Some Java issues addressed in Kotlin
	What Java has that Kotlin does not
	What Kotlin has that Java does not
	What's next?

	Calling Java from Kotlin
	Getters and setters
	Java synthetic property references
	How to enable Java synthetic property references

	Methods returning void
	Escaping for Java identifiers that are keywords in Kotlin
	Null-safety and platform types
	Notation for platform types
	Nullability annotations
	Annotating type arguments and type parameters
	Type arguments
	Type parameters

	JSR-305 support
	Type qualifier nicknames
	Type qualifier defaults
	@UnderMigration annotation
	Compiler configuration

	Mapped types
	Java generics in Kotlin
	Java arrays
	Java varargs
	Operators
	Checked exceptions
	Object methods
	wait()/notify()
	getClass()
	clone()
	finalize()

	Inheritance from Java classes
	Accessing static members
	Java reflection
	SAM conversions
	Using JNI with Kotlin
	Using Lombok-generated declarations in Kotlin

	Calling Kotlin from Java
	Properties
	Package-level functions
	Instance fields
	Static fields
	Static methods
	Default methods in interfaces
	Compatibility modes for default methods
	disable
	all
	all-compatibility

	Visibility
	KClass
	Handling signature clashes with @JvmName
	Overloads generation
	Checked exceptions
	Null-safety
	Variant generics
	Translation of type Nothing

	Get started with Spring Boot and Kotlin
	Next step
	See also

	Join the community

	Create a Spring Boot project with Kotlin
	Before you start
	Create a Spring Boot project
	Explore the project Gradle build file
	Explore the generated Spring Boot application
	Create a controller
	Run the application
	Next step
	Get the Kotlin language map

	Add a data class to Spring Boot project
	Update your application
	Run the application
	Next step
	Get the Kotlin language map

	Add database support for Spring Boot project
	Add database support
	Update the MessageController class
	Update the MessageService class
	Configure the database
	Add messages to database via HTTP request
	Alternative way to execute requests

	Retrieve messages by id
	Run the application
	Next step
	Get the Kotlin language map

	Use Spring Data CrudRepository for database access
	Update your application
	Run the application
	Next step

	Test code using JUnit in JVM – tutorial
	Add dependencies
	Add the code to test it
	Create a test
	Run a test
	What's next

	Mixing Java and Kotlin in one project – tutorial
	Adding Java source code to an existing Kotlin project
	Adding Kotlin source code to an existing Java project
	Converting an existing Java file to Kotlin with J2K

	Using Java records in Kotlin
	Using Java records from Kotlin code
	Declare records in Kotlin
	Requirements
	Enabling JVM records

	Further discussion

	Strings in Java and Kotlin
	Concatenate strings
	Build a string
	Create a string from collection items
	Set default value if the string is blank
	Replace characters at the beginning and end of a string
	Replace occurrences
	Split a string
	Take a substring
	Use multiline strings
	What's next?

	Collections in Java and Kotlin
	Operations that are the same in Java and Kotlin
	Operations on lists, sets, queues, and deques
	Operations on maps
	Operations that exist only for lists

	Operations that differ a bit
	Operations on any collection type
	Operations on lists

	Operations that don't exist in Java's standard library
	Mutability
	Covariance
	Ranges and progressions
	Comparison by several criteria
	Sequences
	Removal of elements from a list
	Traverse a map
	Get the first and the last items of a possibly empty collection
	Create a set from a list
	Group elements
	Filter elements
	Filter elements by type
	Test predicates

	Collection transformation operations
	Zip elements
	Associate elements

	What's next?

	Nullability in Java and Kotlin
	Support for nullable types
	Platform types
	Support for definitely non-nullable types
	Checking the result of a function call
	Default values instead of null
	Functions returning a value or null
	Aggregate operations
	Casting types safely
	What's next?

	Introduction
	Cognitive complexity
	What's next?

	Readability
	API consistency
	Use a builder DSL
	Use constructor-like functions where applicable
	Use member and extension functions appropriately
	Avoid using Boolean arguments in functions
	What's next?

	Predictability
	Use sealed interfaces
	Hide implementations with sealed classes
	Validate your inputs and state
	Validate inputs with the require() function
	Validate state with the check() function

	Avoid arrays in public signatures
	Avoid varargs
	What's next?

	Debuggability
	Always provide a toString() method
	What's next?

	Backward compatibility
	Definition of backward compatibility
	Read more about compatibility types

	"Don't do" recommendations
	Don't add arguments to existing API functions
	Learn more about what happened with the help of decompilation

	Don't use data classes in an API
	Don't make return types narrower

	The @PublishedApi annotation
	The @RequiresOptIn annotation
	Explicit API mode
	Tools designed to enforce backward compatibility
	Binary compatibility validator
	japicmp

	Get started with Kotlin/Native in IntelliJ IDEA
	Before you start
	Build and run the application
	Update the application
	Count the letters in your name
	Count the unique letters in your name

	What's next?

	Get started with Kotlin/Native using Gradle
	Create project files
	Build and run the application
	Open the project in an IDE
	What's next?

	Get started with Kotlin/Native using the command-line compiler
	Obtain the compiler
	Write "Hello Kotlin/Native" program
	Compile the code from the console

	Interoperability with C
	Platform libraries
	Simple example
	Create bindings for a new library
	Select library headers
	Filter headers by globs
	Filter headers by module maps

	C compiler and linker options
	Linker errors

	Add custom declarations
	Include a static library in your klib

	Bindings
	Basic interop types
	Pointer types

	Memory allocation
	Pass pointers to bindings
	Strings
	Scope-local pointers
	Pass and receive structs by value
	Callbacks
	Pass user data to callbacks

	Macros
	Definition file hints
	Portability
	Object pinning

	Mapping primitive data types from C – tutorial
	Types in C language
	Example C library
	Inspect generated Kotlin APIs for a C library
	Primitive types in kotlin
	Fix the code
	Next steps

	Mapping struct and union types from C – tutorial
	Mapping struct and union C types
	Inspect Generated Kotlin APIs for a C library
	Struct and union types in Kotlin
	Use struct and union types from Kotlin
	Create a CValue
	Create struct and union as CValuesRef
	Conversion between CValue and CValuesRef

	Run the code
	Next steps

	Mapping function pointers from C – tutorial
	Mapping function pointer types from C
	Inspect generated Kotlin APIs for a C library
	C function pointers in Kotlin
	Pass Kotlin function as C function pointer
	Use the C function pointer from Kotlin
	Fix the code
	Next Steps

	Mapping Strings from C – tutorial
	Working with C strings
	Inspect generated Kotlin APIs for a C library
	Strings in Kotlin
	Pass Kotlin string to C
	Read C Strings in Kotlin
	Receive C string bytes from Kotlin
	Fix the Code
	Next steps

	Create an app using C Interop and libcurl – tutorial
	Before you start
	Create a definition file
	Add interoperability to the build process
	Write the application code
	Compile and run the application

	Interoperability with Swift/Objective-C
	Usage
	Hiding Kotlin declarations

	Mappings
	Name translation
	Initializers
	Setters
	Top-level functions and properties
	Method names translation
	Errors and exceptions
	Enums
	Suspending functions
	Extensions and category members
	Kotlin singletons
	NSNumber
	NSMutableString
	Collections
	Function types
	Generics
	Limitations
	Nullability
	Variance
	Constraints
	To disable

	Casting between mapped types
	Subclassing
	Subclassing Kotlin classes and interfaces from Swift/Objective-C
	Subclassing Swift/Objective-C classes and protocols from Kotlin

	C features
	Export of KDoc comments to generated Objective-C headers
	Unsupported

	Kotlin/Native as an Apple framework – tutorial
	Create a Kotlin library
	Generated framework headers
	Kotlin/Native runtime declarations
	Kotlin numbers and NSNumber
	Classes and objects from Kotlin
	Global declarations from Kotlin

	Garbage collection and reference counting
	Use the code from Objective-C
	Use the code from Swift
	Xcode and framework dependencies
	Xcode for macOS target
	Xcode for iOS targets

	Next steps

	CocoaPods overview and setup
	Set up an environment to work with CocoaPods
	If you use Kotlin prior to version 1.7.0

	Add and configure Kotlin CocoaPods Gradle plugin
	Update Podfile for Xcode
	Possible issues and solutions
	CocoaPods installation
	Ruby installation
	Version compatibility

	Module not found
	Specify the framework name
	Check the definition file

	Rsync error

	Add dependencies on a Pod library
	From the CocoaPods repository
	On a locally stored library
	From a custom Git repository
	From a custom Podspec repository
	With custom cinterop options
	Support for Objective-C headers with @import directives
	Share Kotlin cinterop between dependent Pods

	Use a Kotlin Gradle project as a CocoaPods dependency
	Xcode project with one target
	Xcode project with several targets

	CocoaPods Gradle plugin DSL reference
	Enable the plugin
	cocoapods block
	Targets
	framework block

	pod() function

	Kotlin/Native libraries
	Kotlin compiler specifics
	cinterop tool specifics
	klib utility
	Several examples
	Advanced topics
	Library search sequence
	Library format
	Using relative paths in klibs

	Platform libraries
	POSIX bindings
	Popular native libraries
	Availability by default

	Kotlin/Native as a dynamic library – tutorial
	Create a Kotlin library
	Generated headers file
	Runtime functions
	Your library functions
	Entry point

	Use generated headers from C
	Compile and run the example on Linux and macOS
	Compile and run the example on Windows
	Next steps

	Kotlin/Native memory management
	Garbage collector
	Enable garbage collection manually
	Monitor GC performance
	Disable garbage collection

	Memory consumption
	Check for memory leaks
	Adjust memory consumption

	Unit tests in the background
	What's next

	iOS integration
	Threads
	Deinitializers
	Completion handlers
	Calling Kotlin suspending functions

	Garbage collection and lifecycle
	Object reclamation
	Objective-C objects lifecycle
	Garbage collection of Swift and Kotlin objects' chains

	Support for background state and App Extensions

	Migrate to the new memory manager
	Update Kotlin
	Update dependencies
	Update your code
	Support both new and legacy memory managers
	What's next

	Debugging Kotlin/Native
	Produce binaries with debug info with Kotlin/Native compiler
	Breakpoints
	lldb
	gdb

	Stepping
	Variable inspection
	Known issues

	Symbolicating iOS crash reports
	Producing .dSYM for release Kotlin binaries
	Make frameworks static when using rebuild from bitcode
	Decode inlined stack frames

	Kotlin/Native target support
	Tier 1
	Tier 2
	Tier 3
	For library authors

	Tips for improving Kotlin/Native compilation times
	General recommendations
	Gradle configuration
	Windows OS configuration

	License files for the Kotlin/Native binaries
	Kotlin/Native FAQ
	How do I run my program?
	What is Kotlin/Native memory management model?
	How do I create a shared library?
	How do I create a static library or an object file?
	How do I run Kotlin/Native behind a corporate proxy?
	How do I specify a custom Objective-C prefix/name for my Kotlin framework?
	How do I rename the iOS framework?
	How do I enable bitcode for my Kotlin framework?
	Why do I see InvalidMutabilityException?
	How do I make a singleton object mutable?
	How can I compile my project with unreleased versions of Kotlin/Native?

	Get started with Kotlin/Wasm in IntelliJ IDEA
	Before you start
	Run the application
	Troubleshooting

	Update your application
	What's next?

	Add dependencies on Kotlin libraries to Kotlin/Wasm project
	Supported Kotlin libraries for Kotlin/Wasm
	Enable libraries in your project
	What's next?

	Interoperability with JavaScript
	Use JavaScript code from Kotlin
	external modifier
	@JsFun annotation
	@JsModule

	Use Kotlin code from JavaScript
	@JsExport annotation

	Kotlin types in JavaScript
	Supported types

	Exception handling
	Workarounds for Kotlin/JS features non-supported in Kotlin/Wasm
	Dynamic type
	Inline JavaScript
	Extending external interfaces and classes with non-external classes

	Set up a Kotlin/JS project
	Execution environments
	Dependencies
	Kotlin standard libraries
	npm dependencies

	run task
	test task
	Karma configuration

	webpack bundling
	webpack version
	webpack task
	webpack configuration file
	Building executables

	CSS
	Node.js
	Use pre-installed Node.js

	Yarn
	Additional Yarn features: .yarnrc
	Use pre-installed Yarn
	Version locking via kotlin-js-store
	Reporting that yarn.lock has been updated
	Installing npm dependencies with --ignore-scripts by default

	Distribution target directory
	Module name
	package.json customization
	Troubleshooting

	Run Kotlin/JS
	Run the Node.js target
	Run the browser target

	Development server and continuous compilation
	Debug Kotlin/JS code
	Debug in browser
	Debug in the IDE
	Debug in Node.js
	What's next?
	If you run into any problems

	Run tests in Kotlin/JS
	Kotlin/JS dead code elimination
	Exclude declarations from DCE
	Disable DCE

	Kotlin/JS IR compiler
	Lazy initialization of top-level properties
	Incremental compilation for development binaries
	Output .js files: one per module or one for the whole project
	Ignoring compilation errors
	Minification of member names in production
	Preview: generation of TypeScript declaration files (d.ts)
	Current limitations of the IR compiler
	Migrating existing projects to the IR compiler
	Authoring libraries for the IR compiler with backwards compatibility

	Migrating Kotlin/JS projects to the IR compiler
	Convert JS- and React-related classes and interfaces to external interfaces
	Convert properties of external interfaces to var
	Convert functions with receivers in external interfaces to regular functions
	Create plain JS objects for interoperability
	Replace toString() calls on function references with .name
	Explicitly specify binaries.executable() in the build script
	Additional troubleshooting tips when working with the Kotlin/JS IR compiler
	Make boolean properties nullable in external interfaces

	Browser and DOM API
	Interaction with the DOM

	Use JavaScript code from Kotlin
	Inline JavaScript
	external modifier
	Declare (static) members of a class
	Declare optional parameters
	Extend JavaScript classes
	external interfaces
	Casts

	Dynamic type
	Use dependencies from npm
	Use Kotlin code from JavaScript
	Isolating declarations in a separate JavaScript object in plain mode
	Package structure
	@JsName annotation
	@JsExport annotation

	Kotlin types in JavaScript
	Primitive arrays

	JavaScript modules
	Browser targets
	JavaScript libraries and Node.js files
	Choose the target module system

	@JsModule annotation
	Apply @JsModule to packages
	Import deeper package hierarchies
	@JsNonModule annotation
	Module system used by the Kotlin Standard Library

	Kotlin/JS reflection
	Class references
	KType and typeOf()
	Example

	Typesafe HTML DSL
	Build a web application with React and Kotlin/JS — tutorial
	Before you start
	Run the development server
	Enable hot reload / continuous mode

	Create a web app draft
	Add the first static page with React
	Convert HTML to Kotlin's typesafe HTML DSL
	Add videos using Kotlin constructs in markup
	Add styles with typesafe CSS

	Design app components
	Add the main component
	Extract a list component
	Add props to pass data between components
	Make the list interactive
	Add state to keep values

	Compose components
	Lift state
	Pass handlers

	Add more components
	Extract the video player component
	Add a button and wire it
	Move video lists to the application state

	Use packages from npm
	Add the video player component
	Add social share buttons

	Use an external REST API
	Use JS functionality from Kotlin
	Add serialization
	Fetch videos

	Deploy to production and the cloud
	Package a production build
	Deploy to Heroku

	What's next
	Add more features
	Improve the style: responsiveness and grids
	Join the community and get help
	Learn more about coroutines
	Learn more about React

	Get started with Kotlin custom scripting – tutorial
	Project structure
	Before you start
	Create a project
	Add scripting modules
	Create a script definition
	Create a scripting host
	Run scripts
	What's next?

	Collections overview
	Collection types
	Collection
	List
	Set
	Map
	ArrayDeque

	Constructing collections
	Construct from elements
	Create with collection builder functions
	Empty collections
	Initializer functions for lists
	Concrete type constructors
	Copy
	Invoke functions on other collections

	Iterators
	List iterators
	Mutable iterators

	Ranges and progressions
	Progression

	Sequences
	Construct
	From elements
	From an Iterable
	From a function
	From chunks

	Sequence operations
	Sequence processing example
	Iterable
	Sequence

	Collection operations overview
	Extension and member functions
	Common operations
	Write operations

	Collection transformation operations
	Map
	Zip
	Associate
	Flatten
	String representation

	Filtering collections
	Filter by predicate
	Partition
	Test predicates

	Plus and minus operators
	Grouping
	Retrieve collection parts
	Slice
	Take and drop
	Chunked
	Windowed

	Retrieve single elements
	Retrieve by position
	Retrieve by condition
	Retrieve with selector
	Random element
	Check element existence

	Ordering
	Natural order
	Custom orders
	Reverse order
	Random order

	Aggregate operations
	Fold and reduce

	Collection write operations
	Adding elements
	Removing elements
	Updating elements

	List-specific operations
	Retrieve elements by index
	Retrieve list parts
	Find element positions
	Linear search
	Binary search in sorted lists
	Comparator binary search
	Comparison binary search

	List write operations
	Add
	Update
	Remove
	Sort

	Set-specific operations
	Map-specific operations
	Retrieve keys and values
	Filter
	Plus and minus operators
	Map write operations
	Add and update entries
	Remove entries

	Opt-in requirements
	Opt in to using API
	Propagating opt-in
	Non-propagating opt-in
	Module-wide opt-in

	Require opt-in for API
	Create opt-in requirement annotations
	Mark API elements

	Opt-in requirements for pre-stable APIs

	Scope functions
	Function selection
	Distinctions
	Context object: this or it
	this
	it

	Return value
	Context object
	Lambda result

	Functions
	let
	with
	run
	apply
	also

	takeIf and takeUnless

	Time measurement
	Calculate duration
	Create duration
	Get string representation
	Convert duration
	Compare duration
	Break duration into components

	Measure time
	Measure code execution time
	Mark moments in time
	Measure differences in time

	Time sources
	Default time sources per platform
	Create time source

	Coroutines guide
	Table of contents
	Additional references

	Coroutines basics
	Your first coroutine
	Structured concurrency

	Extract function refactoring
	Scope builder
	Scope builder and concurrency
	An explicit job
	Coroutines are light-weight

	Coroutines and channels − tutorial
	Before you start
	Generate a GitHub developer token
	Run the code

	Blocking requests
	Task 1
	Solution for task 1

	Callbacks
	Use a background thread
	Task 2
	Solution for task 2

	Use the Retrofit callback API
	Task 3 (optional)
	The first attempted solution for task 3
	The second attempted solution for task 3
	The third attempted solution for task 3

	Suspending functions
	Task 4
	Solution for task 4

	Coroutines
	Starting a new coroutine

	Concurrency
	Task 5
	Tip for task 5
	Solution for task 5

	Structured concurrency
	Canceling the loading of contributors
	Using the outer scope's context

	Showing progress
	Task 6
	Solution for task 6
	Consecutive vs concurrent

	Channels
	Task 7
	Tip for task 7
	Solution for task 7

	Testing coroutines
	Task 8
	Tip for task 8
	Solution for task 8

	What's next

	Cancellation and timeouts
	Cancelling coroutine execution
	Cancellation is cooperative
	Making computation code cancellable
	Closing resources with finally
	Run non-cancellable block
	Timeout
	Asynchronous timeout and resources

	Composing suspending functions
	Sequential by default
	Concurrent using async
	Lazily started async
	Async-style functions
	Structured concurrency with async

	Coroutine context and dispatchers
	Dispatchers and threads
	Unconfined vs confined dispatcher
	Debugging coroutines and threads
	Debugging with IDEA
	Debugging using logging

	Jumping between threads
	Job in the context
	Children of a coroutine
	Parental responsibilities
	Naming coroutines for debugging
	Combining context elements
	Coroutine scope
	Thread-local data

	Asynchronous Flow
	Representing multiple values
	Sequences
	Suspending functions
	Flows

	Flows are cold
	Flow cancellation basics
	Flow builders
	Intermediate flow operators
	Transform operator
	Size-limiting operators

	Terminal flow operators
	Flows are sequential
	Flow context
	A common pitfall when using withContext
	flowOn operator

	Buffering
	Conflation
	Processing the latest value

	Composing multiple flows
	Zip
	Combine

	Flattening flows
	flatMapConcat
	flatMapMerge
	flatMapLatest

	Flow exceptions
	Collector try and catch
	Everything is caught

	Exception transparency
	Transparent catch
	Catching declaratively

	Flow completion
	Imperative finally block
	Declarative handling
	Successful completion

	Imperative versus declarative
	Launching flow
	Flow cancellation checks
	Making busy flow cancellable

	Flow and Reactive Streams

	Channels
	Channel basics
	Closing and iteration over channels
	Building channel producers
	Pipelines
	Prime numbers with pipeline
	Fan-out
	Fan-in
	Buffered channels
	Channels are fair
	Ticker channels

	Coroutine exceptions handling
	Exception propagation
	CoroutineExceptionHandler
	Cancellation and exceptions
	Exceptions aggregation
	Supervision
	Supervision job
	Supervision scope
	Exceptions in supervised coroutines

	Shared mutable state and concurrency
	The problem
	Volatiles are of no help
	Thread-safe data structures
	Thread confinement fine-grained
	Thread confinement coarse-grained
	Mutual exclusion

	Select expression (experimental)
	Selecting from channels
	Selecting on close
	Selecting to send
	Selecting deferred values
	Switch over a channel of deferred values

	Debug coroutines using IntelliJ IDEA – tutorial
	Create coroutines
	Debug coroutines
	Optimized-out variables

	Debug Kotlin Flow using IntelliJ IDEA – tutorial
	Create a Kotlin flow
	Debug the coroutine
	Optimized-out variables

	Add a concurrently running coroutine
	Debug a Kotlin flow with two coroutines

	Serialization
	Libraries
	Formats
	Example: JSON serialization

	Lincheck guide
	Add Lincheck to your project
	Explore Lincheck
	Additional references

	Write your first test with Lincheck
	Create a project
	Add required dependencies
	Write a concurrent counter and run the test
	Trace the invalid execution
	Test the Java standard library
	Next step
	See also

	Stress testing and model checking
	Stress testing
	Write a stress test
	How stress testing works

	Model checking
	Write a model checking test
	How model checking works

	Which testing strategy is better?
	Configure the testing strategy
	Scenario minimization
	Logging data structure states
	Next step

	Operation arguments
	Next step

	Data structure constraints
	Next step

	Progress guarantees
	Next step

	Sequential specification
	Keywords and operators
	Hard keywords
	Soft keywords
	Modifier keywords
	Special identifiers
	Operators and special symbols

	Gradle
	What's next?

	Get started with Gradle and Kotlin/JVM
	Create a project
	Explore the build script
	Run the application
	What's next?

	Configure a Gradle project
	Apply the plugin
	Targeting the JVM
	Kotlin and Java sources
	Check for JVM target compatibility of related compile tasks
	What can go wrong if not checking targets compatibility

	Gradle Java toolchains support
	Set JDK version with the Task DSL
	Associate compiler tasks
	Configure with Java Modules (JPMS) enabled
	Other details
	Lazy Kotlin/JVM task creation
	Non-default location of compile tasks' destinationDirectory

	Targeting multiple platforms
	Targeting Android
	Targeting JavaScript
	Kotlin and Java sources for JavaScript

	Triggering configuration actions with the KotlinBasePlugin interface
	Configure dependencies
	Dependency types
	Dependency on the standard library
	Versions alignment of transitive dependencies

	Set dependencies on test libraries
	Set a dependency on a kotlinx library
	Set dependencies at top level

	What's next?

	Compiler options in the Kotlin Gradle plugin
	How to define options
	Target the JVM
	Target JavaScript
	For all Kotlin compilation tasks

	All compiler options
	Common attributes
	Attributes specific to JVM
	Attributes common to JVM, JS, and JS DCE
	Example of additional arguments usage via freeCompilerArgs

	Attributes common to JVM and JS
	Example of setting a languageVersion

	Attributes specific to JS
	Types for compiler options

	What's next?

	Compilation and caches in the Kotlin Gradle plugin
	Incremental compilation
	A new approach to incremental compilation
	Precise backup of compilation tasks' outputs
	Example of using precise backup at JetBrains
	Evaluating optimizations with build reports

	Gradle build cache support
	Gradle configuration cache support
	The Kotlin daemon and how to use it with Gradle
	Setting Kotlin daemon's JVM arguments
	Gradle daemon arguments inheritance
	kotlin.daemon.jvm.options system property
	kotlin.daemon.jvmargs property
	kotlin extension
	Specific task definition

	Kotlin daemon's behavior with JVM arguments

	The new Kotlin compiler
	Defining Kotlin compiler execution strategy
	Kotlin compiler fallback strategy
	Build reports
	Enabling build reports
	Limit of custom values
	Switching off collecting project and system properties

	What's next?

	Support for Gradle plugin variants
	Troubleshooting
	Gradle can't select a KGP variant in a custom configuration

	What's next?

	Maven
	Configure plugin and versions
	Use JDK 17

	Set dependencies
	Compile Kotlin-only source code
	Compile Kotlin and Java sources
	Enable incremental compilation
	Configure annotation processing
	Create JAR file
	Create self-contained JAR file
	Specify compiler options
	Attributes common to JVM and JS
	Attributes specific to JVM
	Attributes specific to JS

	Use BOM
	Generate documentation
	Enable OSGi support

	Ant
	Getting the Ant tasks
	Targeting JVM with Kotlin-only source
	Targeting JVM with Kotlin-only source and multiple roots
	Targeting JVM with Kotlin and Java source
	Targeting JavaScript with single source folder
	Targeting JavaScript with Prefix, PostFix and sourcemap options
	Targeting JavaScript with single source folder and metaInfo option
	References
	Attributes common for kotlinc and kotlin2js
	kotlinc attributes
	kotlin2js attributes
	Passing raw compiler arguments

	Introduction
	Community

	Get started with Dokka
	Gradle
	Apply Dokka
	Generate documentation
	Single-project builds
	Experimental formats

	Multi-project builds
	MultiModule tasks
	Experimental formats (multi-module)
	MultiModule results
	Collector tasks
	Collector results
	Partial tasks

	Build javadoc.jar
	Configuration examples
	Single-project configuration
	Multi-project configuration
	Subproject configuration
	Parent project configuration

	Configuration options
	General configuration
	Source set configuration
	Source link configuration
	Package options
	External documentation links configuration
	Complete configuration

	Maven
	Apply Dokka
	Generate documentation
	Experimental
	Other output formats

	Build javadoc.jar
	Configuration example
	Configuration options
	General configuration
	Source link configuration
	External documentation links configuration
	Package options
	Complete configuration

	CLI
	Get started
	Generate documentation
	Prerequisites
	Run with command line options
	Run with JSON configuration
	Other output formats

	Command line options
	Source set options

	JSON configuration
	General configuration
	Source set configuration
	Source link configuration
	Per-package configuration
	External documentation links configuration
	Complete configuration

	HTML
	Generate HTML documentation
	Configuration
	Configuration options

	Customization
	Customize styles
	Customize assets
	Change the logo
	Modify the footer
	Templates
	Variables
	Directives

	Markdown
	GFM
	Jekyll

	Javadoc
	Generate Javadoc documentation

	Dokka plugins
	Apply Dokka plugins
	Configure Dokka plugins
	Notable plugins

	Module documentation
	File format
	Pass files to Dokka

	IDEs for Kotlin development
	IntelliJ IDEA
	Android Studio
	Eclipse
	Compatibility with the Kotlin language versions
	Other IDEs support
	What's next?

	Migrate to Kotlin code style
	Kotlin coding conventions and IntelliJ IDEA formatter
	Differences between "Kotlin coding conventions" and "IntelliJ IDEA default code style"
	Migration to a new code style discussion
	Migration to a new code style
	In Gradle
	In Maven

	Store old code style in project

	Run code snippets
	IDE: scratches and worksheets
	Interactive mode
	Use modules
	Run as REPL

	Browser: Kotlin Playground
	Write and edit code
	Choose execution environment
	Share code online

	Command line: ki shell
	Install and run ki shell
	Code completion and highlighting
	Check an expression's type
	Load code
	Add external dependencies

	Kotlin and continuous integration with TeamCity
	Gradle, Maven, and Ant
	IntelliJ IDEA Build System
	Download and install the meta-runner
	Setup Kotlin compiler fetching step
	Setup Kotlin compilation step

	Other CI servers

	Document Kotlin code: KDoc
	KDoc syntax
	Block tags
	@param name
	@return
	@constructor
	@receiver
	@property name
	@throws class, @exception class
	@sample identifier
	@see identifier
	@author
	@since
	@suppress

	Inline markup
	Links to elements
	External links

	What's next?

	Kotlin and OSGi
	Maven
	Gradle
	FAQ
	Why not just add required manifest options to all Kotlin libraries

	Kotlin command-line compiler
	Install the compiler
	Manual install
	SDKMAN!
	Homebrew
	Snap package

	Create and run an application
	Compile a library
	Run the REPL
	Run scripts

	Kotlin compiler options
	Compiler options
	Common options
	-version
	-nowarn
	-Werror
	-verbose
	-script
	-help (-h)
	-X
	-kotlin-home path
	-P plugin:pluginId:optionName=value
	-language-version version
	-api-version version
	-progressive
	@argfile
	-opt-in annotation

	Kotlin/JVM compiler options
	-classpath path (-cp path)
	-d path
	-include-runtime
	-jdk-home path
	-Xjdk-release=version
	-jvm-target version
	-java-parameters
	-module-name name (JVM)
	-no-jdk
	-no-reflect
	-no-stdlib (JVM)
	-script-templates classnames[,]

	Kotlin/JS compiler options
	-libraries path
	-main {call|noCall}
	-meta-info
	-module-kind {umd|commonjs|amd|plain}
	-no-stdlib (JS)
	-output filepath
	-output-postfix filepath
	-output-prefix filepath
	-source-map
	-source-map-base-dirs path
	-source-map-embed-sources {always|never|inlining}
	-source-map-names-policy {simple-names|fully-qualified-names|no}
	-source-map-prefix

	Kotlin/Native compiler options
	-enable-assertions (-ea)
	-g
	-generate-test-runner (-tr)
	-generate-no-exit-test-runner (-trn)
	-include-binary path (-ib path)
	-library path (-l path)
	-library-version version (-lv version)
	-list-targets
	-manifest path
	-module-name name (Native)
	-native-library path (-nl path)
	-no-default-libs
	-nomain
	-nopack
	-linker-option
	-linker-options args
	-nostdlib
	-opt
	-output name (-o name)
	-entry name (-e name)
	-produce output (-p output)
	-repo path (-r path)
	-target target

	All-open compiler plugin
	Gradle
	Maven
	Spring support
	Command-line compiler

	No-arg compiler plugin
	In your Kotlin file
	Gradle
	Maven
	JPA support
	Command-line compiler

	SAM-with-receiver compiler plugin
	Gradle
	Maven
	Command-line compiler

	kapt compiler plugin
	Use in Gradle
	Try Kotlin K2 compiler
	Annotation processor arguments
	Gradle build cache support
	Improve the speed of builds that use kapt
	Run kapt tasks in parallel
	Caching for annotation processors' classloaders
	Measure performance of annotation processors
	Measure the number of files generated with annotation processors

	Compile avoidance for kapt
	Incremental annotation processing
	Java compiler options
	Non-existent type correction
	Use in Maven
	Use in IntelliJ build system
	Use in CLI
	Generate Kotlin sources
	AP/Javac options encoding
	Keep Java compiler's annotation processors

	Lombok compiler plugin
	Supported annotations
	Gradle
	Using the Lombok configuration file

	Maven
	Using with kapt
	Command-line compiler

	Kotlin Symbol Processing API
	Overview
	How KSP looks at source files
	SymbolProcessorProvider: the entry point
	Resources
	Supported libraries

	KSP quickstart
	Create a processor of your own
	Use your own processor in a project
	Pass options to processors
	Make IDE aware of generated code

	Why KSP
	KSP makes creating lightweight compiler plugins easier
	Comparison to kotlinc compiler plugins
	Comparison to reflection
	Comparison to kapt
	Limitations

	KSP examples
	Get all member functions
	Check whether a class or function is local
	Find the actual class or interface declaration that the type alias points to
	Collect suppressed names in a file annotation

	How KSP models Kotlin code
	Type and resolution

	Java annotation processing to KSP reference
	Program elements
	Types
	Misc
	Details
	AnnotationMirror
	AnnotationValue
	Element
	ExecutableElement
	Parameterizable
	QualifiedNameable
	TypeElement
	TypeParameterElement
	VariableElement
	ArrayType
	DeclaredType
	ExecutableType
	IntersectionType
	TypeMirror
	TypeVariable
	WildcardType
	Elements
	Types

	Incremental processing
	Aggregating vs Isolating
	How it is implemented

	Example 1
	Example 2
	How file dirtiness is determined
	Reporting bugs

	Multiple round processing
	Changes to your processor
	Multiple round behavior
	Deferring symbols to the next round
	Validating symbols
	Termination condition
	Files accessible at each round
	Changes to getSymbolsAnnotatedWith()
	Processor instantiating
	Information consistent cross rounds
	Error and exception handling

	Advanced
	Default behavior for validation
	Write your own validation logic

	KSP with Kotlin Multiplatform
	Compilation and processing
	Avoid the ksp(...) configuration on KSP 1.0.1+

	Running KSP from command line
	KSP FAQ
	Why KSP?
	Why is KSP faster than kapt?
	Is KSP Kotlin-specific?
	How to upgrade KSP?
	Can I use a newer KSP implementation with an older Kotlin compiler?
	How often do you update KSP?
	Besides Kotlin, are there other version requirements to libraries?
	What is KSP's future roadmap?

	Learning materials overview
	Kotlin Koans
	Kotlin hands-on
	Building Reactive Spring Boot applications with Kotlin coroutines and RSocket
	Building web applications with React and Kotlin/JS
	Building web applications with Spring Boot and Kotlin
	Creating HTTP APIs with Ktor
	Creating a WebSocket chat with Ktor
	Creating an interactive website with Ktor
	Introduction to Kotlin coroutines and channels
	Introduction to Kotlin/Native
	Kotlin Multiplatform: networking and data storage
	Targeting iOS and Android with Kotlin Multiplatform

	Kotlin tips
	null + null in Kotlin
	Deduplicating collection items
	The suspend and inline mystery
	Unshadowing declarations with their fully qualified name
	Return and throw with the Elvis operator
	Destructuring declarations
	Operator functions with nullable values
	Timing code
	Improving loops
	Strings
	Doing more with the Elvis operator
	Kotlin collections
	What's next?

	Kotlin books
	Advent of Code puzzles in idiomatic Kotlin
	Advent of Code 2021
	Get ready
	Day 1: Sonar sweep
	Day 2: Dive!
	Day 3: Binary diagnostic
	Day 4: Giant squid

	Advent of Code 2020
	Day 1: Report repair
	Day 2: Password philosophy
	Day 3: Toboggan trajectory
	Day 4: Passport processing
	Day 5: Binary boarding
	Day 6: Custom customs
	Day 7: Handy haversacks
	Day 8: Handheld halting
	Day 9: Encoding error

	What's next?

	Learning Kotlin with JetBrains Academy plugin
	Teaching Kotlin with JetBrains Academy plugin
	Participate in the Kotlin Early Access Preview
	How the EAP can help you be more productive with Kotlin
	Build details

	Install the EAP Plugin for IntelliJ IDEA or Android Studio
	If you run into any problems

	Configure your build for EAP
	Configure in Gradle
	Adjust the Kotlin version
	Adjust versions in dependencies

	Configure in Maven

	FAQ
	What is Kotlin?
	What is the current version of Kotlin?
	Is Kotlin free?
	Is Kotlin an object-oriented language or a functional one?
	What advantages does Kotlin give me over the Java programming language?
	Is Kotlin compatible with the Java programming language?
	What can I use Kotlin for?
	Can I use Kotlin for Android development?
	Can I use Kotlin for server-side development?
	Can I use Kotlin for web development?
	Can I use Kotlin for desktop development?
	Can I use Kotlin for native development?
	What IDEs support Kotlin?
	What build tools support Kotlin?
	What does Kotlin compile down to?
	Which versions of JVM does Kotlin target?
	Is Kotlin hard?
	What companies are using Kotlin?
	Who develops Kotlin?
	Where can I learn more about Kotlin?
	Are there any books on Kotlin?
	Are any online courses available for Kotlin?
	Does Kotlin have a community?
	Are there Kotlin events?
	Is there a Kotlin conference?
	Is Kotlin on social media?
	Any other online Kotlin resources?
	Where can I get an HD Kotlin logo?

	Kotlin Evolution
	Principles of Pragmatic Evolution
	Incompatible changes
	Dealing with compiler bugs

	Decision making
	Feature releases and incremental releases
	EAP builds
	Pre-stable features
	Status of different components

	Libraries
	Compiler keys
	Compatibility tools
	Compatibility flags
	Evolving the binary format

	Stability of Kotlin components
	Stability levels explained
	GitHub badges for Kotlin components
	Stability of subcomponents
	Current stability of Kotlin components

	Stability of Kotlin components (pre 1.4)
	Compatibility guide for Kotlin 1.9
	Basic terms
	Language
	Remove language version 1.3
	Prohibit super constructor call when the super interface type is a function literal
	Prohibit cycles in annotation parameter types
	Prohibit use of @ExtensionFunctionType annotation on function types with no parameters
	Prohibit Java field type mismatch on assignment
	No source code excerpts in platform-type nullability assertion exceptions
	Prohibit the delegation of super calls to an abstract superclass member
	Deprecate confusing grammar in when-with-subject
	Prevent implicit coercions between different numeric types
	Prohibit upper bound violation in a generic type alias usage (a type parameter used in a generic type argument of a type argument of the aliased type)
	Keep nullability when approximating local types in public signatures
	Do not propagate deprecation through overrides
	Prohibit using collection literals in annotation classes anywhere except their parameters declaration
	Prohibit forward referencing of parameters in default value expressions
	Prohibit extension calls on inline functional parameters
	Prohibit calls to infix functions named suspend with an anonymous function argument
	Prohibit using captured type parameters in inner classes against their variance
	Prohibit recursive call of a function without explicit return type in compound assignment operators
	Prohibit unsound calls with expected @NotNull T and given Kotlin generic parameter with nullable bound
	Prohibit access to members of a companion of an enum class from entry initializers of this enum
	Deprecate and remove Enum.declaringClass synthetic property
	Deprecate enable and compatibility modes of the compiler option -Xjvm-default
	Prohibit implicit inferring a type variable into an upper bound in the builder inference context

	Standard library
	Warn about potential overload resolution change when Range/Progression starts implementing Collection
	Migrate declarations from kotlin.dom and kotlin.browser packages to kotlinx.*
	Deprecate some JS-only API

	Tools
	Remove enableEndorsedLibs flag from Gradle setup
	Remove Gradle conventions
	Remove classpath property of KotlinCompile task
	Deprecate kotlin.internal.single.build.metrics.file property

	Compatibility guide for Kotlin 1.8
	Basic terms
	Language
	Prohibit the delegation of super calls to an abstract superclass member
	Deprecate confusing grammar in when-with-subject
	Prevent implicit coercions between different numeric types
	Make private constructors of sealed classes really private
	Prohibit using operator == on incompatible numeric types in builder inference context
	Prohibit if without else and non-exhaustive when in right hand side of elvis operator
	Prohibit upper bound violation in a generic type alias usage (one type parameter used in several type arguments of the aliased type)
	Prohibit upper bound violation in a generic type alias usage (a type parameter used in a generic type argument of a type argument of the aliased type)
	Prohibit using a type parameter declared for an extension property inside delegate
	Forbid @Synchronized annotation on suspend functions
	Prohibit using spread operator for passing arguments to non-vararg parameters
	Prohibit null-safety violation in lambdas passed to functions overloaded by lambda return type
	Keep nullability when approximating local types in public signatures
	Do not propagate deprecation through overrides
	Prohibit implicit inferring a type variable into an upper bound in the builder inference context
	Prohibit using collection literals in annotation classes anywhere except their parameters declaration
	Prohibit forward referencing of parameters with default values in default value expressions
	Prohibit extension calls on inline functional parameters
	Prohibit calls to infix functions named suspend with an anonymous function argument
	Prohibit using captured type parameters in inner classes against their variance
	Prohibit recursive call of a function without explicit return type in compound assignment operators
	Prohibit unsound calls with expected @NotNull T and given Kotlin generic parameter with nullable bound
	Prohibit access to members of a companion of an enum class from entry initializers of this enum
	Deprecate and remove Enum.declaringClass synthetic property
	Deprecate the enable and the compatibility modes of the compiler option -Xjvm-default

	Standard library
	Warn about potential overload resolution change when Range/Progression starts implementing Collection
	Migrate declarations from kotlin.dom and kotlin.browser packages to kotlinx.*
	Deprecate some JS-only API

	Tools
	Raise deprecation level of classpath property of KotlinCompile task
	Remove kapt.use.worker.api Gradle property
	Remove kotlin.compiler.execution.strategy system property
	Changes in compiler options
	Deprecate kotlin.internal.single.build.metrics.file property

	Compatibility guide for Kotlin 1.7.20
	Basic terms
	Language
	Rollback attempt to fix proper constraints processing
	Forbid some builder inference cases to avoid problematic interaction with multiple lambdas and resolution

	Compatibility guide for Kotlin 1.7
	Basic terms
	Language
	Make safe call result always nullable
	Prohibit the delegation of super calls to an abstract superclass member
	Prohibit exposing non-public types through public properties declared in a non-public primary constructor
	Prohibit access to uninitialized enum entries qualified with the enum name
	Prohibit computing constant values of complex boolean expressions in when condition branches and conditions of loops
	Make when statements with enum, sealed, and Boolean subjects exhaustive by default
	Deprecate confusing grammar in when-with-subject
	Type nullability enhancement improvements
	Prevent implicit coercions between different numeric types
	Deprecate the enable and the compatibility modes of the compiler option -Xjvm-default
	Prohibit calls to functions named suspend with a trailing lambda
	Prohibit smart cast on a base class property if the base class is from another module
	Do not neglect meaningful constraints during type inference

	Standard library
	Gradually change the return type of collection min and max functions to non-nullable
	Deprecate floating-point array functions: contains, indexOf, lastIndexOf
	Migrate declarations from kotlin.dom and kotlin.browser packages to kotlinx.*
	Deprecate some JS-only API

	Tools
	Remove KotlinGradleSubplugin class
	Remove useIR compiler option
	Deprecate kapt.use.worker.api Gradle property
	Remove kotlin.experimental.coroutines Gradle DSL option and kotlin.coroutines Gradle property
	Deprecate useExperimentalAnnotation compiler option
	Deprecate kotlin.compiler.execution.strategy system property
	Remove kotlinOptions.jdkHome compiler option
	Remove noStdlib compiler option
	Remove kotlin2js and kotlin-dce-plugin plugins
	Changes in compile tasks

	Compatibility guide for Kotlin 1.6
	Basic terms
	Language
	Make when statements with enum, sealed, and Boolean subjects exhaustive by default
	Deprecate confusing grammar in when-with-subject
	Prohibit access to class members in the super constructor call of its companion and nested objects
	Type nullability enhancement improvements
	Prevent implicit coercions between different numeric types
	Prohibit declarations of repeatable annotation classes whose container annotation violates JLS
	Prohibit declaring a nested class named Container in a repeatable annotation class
	Prohibit @JvmField on a property in the primary constructor that overrides an interface property
	Deprecate the enable and the compatibility modes of the compiler option -Xjvm-default
	Prohibit super calls from public-abi inline functions
	Prohibit protected constructor calls from public inline functions
	Prohibit exposing private nested types from private-in-file types
	Annotation target is not analyzed in several cases for annotations on a type
	Prohibit calls to functions named suspend with a trailing lambda

	Standard library
	Remove brittle contains optimization in minus/removeAll/retainAll
	Change value generation algorithm in Random.nextLong
	Gradually change the return type of collection min and max functions to non-nullable
	Deprecate floating-point array functions: contains, indexOf, lastIndexOf
	Migrate declarations from kotlin.dom and kotlin.browser packages to kotlinx.*
	Make Regex.replace function not inline in Kotlin/JS
	Different behavior of the Regex.replace function in JVM and JS when replacement string contains group reference
	Use the Unicode case folding in JS Regex
	Deprecate some JS-only API
	Hide implementation- and interop-specific functions from the public API of classes in Kotlin/JS

	Tools
	Deprecate KotlinGradleSubplugin class
	Remove kotlin.useFallbackCompilerSearch build option
	Remove several compiler options
	Deprecate useIR compiler option
	Deprecate kapt.use.worker.api Gradle property
	Remove kotlin.parallel.tasks.in.project Gradle property
	Deprecate kotlin.experimental.coroutines Gradle DSL option and kotlin.coroutines Gradle property

	Compatibility guide for Kotlin 1.5
	Basic terms
	Language and stdlib
	Forbid spread operator in signature-polymorphic calls
	Forbid non-abstract classes containing abstract members invisible from that classes (internal/package-private)
	Forbid using array based on non-reified type parameters as reified type arguments on JVM
	Forbid secondary enum class constructors which do not delegate to the primary constructor
	Forbid exposing anonymous types from private inline functions
	Forbid passing non-spread arrays after arguments with SAM-conversion
	Support special semantics for underscore-named catch block parameters
	Change implementation strategy of SAM conversion from anonymous class-based to invokedynamic
	Performance issues with the JVM IR-based backend
	New field sorting in the JVM IR-based backend
	Generate nullability assertion for delegated properties with a generic call in the delegate expression
	Turn warnings into errors for calls with type parameters annotated by @OnlyInputTypes
	Use the correct order of arguments execution in calls with named vararg
	Use default value of the parameter in operator functional calls
	Produce empty reversed progressions in for loops if regular progression is also empty
	Straighten Char-to-code and Char-to-digit conversions out
	Inconsistent case-insensitive comparison of characters in kotlin.text functions
	Remove default locale-sensitive case conversion API
	Gradually change the return type of collection min and max functions to non-nullable
	Raise the deprecation level of conversions of floating-point types to Short and Byte

	Tools
	Do not mix several JVM variants of kotlin-test in a single project

	Compatibility guide for Kotlin 1.4
	Basic terms
	Language and stdlib
	Unexpected behavior with in infix operator and ConcurrentHashMap
	Prohibit access to protected members inside public inline members
	Contracts on calls with implicit receivers
	Inconsistent behavior of floating-point number comparisons
	No smart cast on the last expression in a generic lambda
	Do not depend on the order of lambda arguments to coerce result to Unit
	Wrong common supertype between raw and integer literal type leads to unsound code
	Type safety problem because several equal type variables are instantiated with a different types
	Type safety problem because of incorrect subtyping for intersection types
	No type mismatch with an empty when expression inside lambda
	Return type Any inferred for lambda with early return with integer literal in one of possible return values
	Proper capturing of star projections with recursive types
	Common supertype calculation with non-proper type and flexible one leads to incorrect results
	Type safety problem because of lack of captured conversion against nullable type argument
	Preserve intersection type for covariant types after unchecked cast
	Type variable leaks from builder inference because of using this expression
	Wrong overload resolution for contravariant types with nullable type arguments
	Builder inference with non-nested recursive constraints
	Eager type variable fixation leads to a contradictory constraint system
	Prohibit tailrec modifier on open functions
	The INSTANCE field of a companion object more visible than the companion object class itself
	Outer finally block inserted before return is not excluded from thecatch interval of the inner try block without finally
	Use the boxed version of an inline class in return type position for covariant and generic-specialized overrides
	Do not declare checked exceptions in JVM bytecode when using delegation to Kotlin interfaces
	Changed behavior of signature-polymorphic calls to methods with a single vararg parameter to avoid wrapping the argument into another array
	Incorrect generic signature in annotations when KClass is used as a generic parameter
	Forbid spread operator in signature-polymorphic calls
	Change initialization order of default values for tail-recursive optimized functions
	Do not generate ConstantValue attribute for non-const vals
	Generated overloads for @JvmOverloads on open methods should be final
	Lambdas returning kotlin.Result now return boxed value instead of unboxed
	Unify exceptions from null checks
	Comparing floating-point values in array/list operations contains, indexOf, lastIndexOf: IEEE 754 or total order
	Gradually change the return type of collection min and max functions to non-nullable
	Deprecate appendln in favor of appendLine
	Deprecate conversions of floating-point types to Short and Byte
	Fail fast in Regex.findAll on an invalid startIndex
	Remove deprecated kotlin.coroutines.experimental
	Remove deprecated mod operator
	Hide Throwable.addSuppressed member and prefer extension instead
	capitalize should convert digraphs to title case

	Tools
	Compiler arguments with delimiter characters must be passed in double quotes on Windows
	KAPT: Names of synthetic $annotations() methods for properties have changed

	Compatibility guide for Kotlin 1.3
	Basic terms
	Incompatible changes
	Evaluation order of constructor arguments regarding call
	Missing getter-targeted annotations on annotation constructor parameters
	Missing errors in class constructor's @get: annotations
	Nullability assertions on access to Java types annotated with @NotNull
	Unsound smartcasts on enum members
	val backing field reassignment in getter
	Array capturing before the for-loop where it is iterated
	Nested classifiers in enum entries
	Data class overriding copy
	Inner classes inheriting Throwable that capture generic parameters from the outer class
	Visibility rules regarding complex class hierarchies with companion objects
	Non-constant vararg annotation parameters
	Local annotation classes
	Smartcasts on local delegated properties
	mod operator convention
	Passing single element to vararg in named form
	Retention of annotations with target EXPRESSION
	Annotations with target PARAMETER shouldn't be applicable to parameter's type
	Array.copyOfRange throws an exception when indices are out of bounds instead of enlarging the returned array
	Progressions of ints and longs with a step of Int.MIN_VALUE and Long.MIN_VALUE are outlawed and won't be allowed to be instantiated
	Check for index overflow in operations on very long sequences
	Unify split by an empty match regex result across the platforms
	Discontinued deprecated artifacts in the compiler distribution
	Annotations in stdlib

	Compatibility modes
	What is cross-platform mobile development?
	Cross-platform mobile development: definition and solutions
	Different approaches to mobile app development
	1. Separate native apps for each operating system
	2. Progressive web apps (PWAs)
	3. Cross-platform apps
	4. Hybrid apps

	Native or cross-platform app development: a longstanding debate

	Is cross-platform mobile development right for you?
	Benefits of cross-platform development
	1. Reusable code
	2. Time savings
	3. Effective resource management
	4. Attractive opportunities for developers
	5. Opportunity to reach wider audiences
	6. Quicker time to market and customization

	Challenges of a cross-platform development approach

	The most popular cross-platform solutions
	Flutter
	React Native
	Kotlin Multiplatform Mobile

	Conclusion

	Native and cross-platform app development: how to choose?
	What is native mobile app development?
	What is cross-platform app development?
	Debugging some popular myths about cross-platform app development
	1. Cross-platform apps provide poorer performance than native apps.
	2. Cross-platform frameworks are unsafe.
	3. Cross-platform apps don't have access to all native functions of mobile devices.
	4. It can often be difficult to manage cross-platform projects.

	Six key aspects to help you choose between cross-platform app development and the native approach
	1. The type and purpose of your future app
	2. Your team's experience in programming languages and tools
	3. Long-term viability
	4. Development cost and your budget
	5. Adoption in the industry
	6. Visibility and learning resources

	When should you choose cross-platform app development?
	When should you choose native app development?
	Takeaways

	The Six Most Popular Cross-Platform App Development Frameworks
	What is a cross-platform app development framework?
	Popular cross-platform app development frameworks
	Flutter
	React Native
	Kotlin Multiplatform Mobile
	Ionic
	Xamarin
	NativeScript

	How do you choose the right cross-platform app development framework for your project?
	1. The expertise of your team
	2. Vendor reliability and support
	3. UI customization
	4. Framework maturity
	5. Framework capabilities
	6. Consistency between different platforms
	7. Security
	8. Educational materials

	Key takeaways

	Google Summer of Code with Kotlin
	Kotlin contributor guidelines for Google Summer of Code (GSoC)
	Getting started
	How to apply

	Project ideas
	Kotlin Multiplatform protobufs [Hard, 350 hrs]
	Kotlin Compiler error messages [Hard, 350 hrs]
	Kotlin Multiplatform libraries [Easy or Medium, 175 or 350 hrs]
	Groovy to Kotlin Gradle DSL Converter [Medium, 350 hrs]
	Eclipse Gradle KTS editing [Medium, 350 hrs]
	Improve support for parameter forwarding in the Kotlin Plugin for IntelliJ IDEA [Medium, 350 hrs]
	Enhance the kotlinx-benchmark library API and user experience [Easy, 175 hrs]
	Parallel stacks for Kotlin Coroutines in the debugger [Hard, 350 hrs]

	Security
	Kotlin documentation as PDF
	Contribution
	Participate in Early Access Preview
	Contribute to the compiler and standard library
	Contribute to the Kotlin IDE plugin
	Contribute to other Kotlin libraries and tools
	Contribute to the documentation
	Create tutorials or videos
	Translate documentation to other languages
	Hold events and presentations

	KUG guidelines
	How to run a KUG?
	Support for KUGs from JetBrains
	Support from JetBrains for other tech communities

	Kotlin Night guidelines
	Event guidelines
	Event requirements
	JetBrains support

	Kotlin brand assets
	Kotlin Logo
	Kotlin mascot
	Kotlin User Group brand assets
	Style for user groups
	Create the logo of your user group
	Create your group's profile picture for different platforms
	Create meetup.com cover photo

	Kotlin Night brand assets
	Social media
	Branding stickers
	Press-wall
	Sticky badges
	Board for stickers
	T-shirts

